
A Formalisation of Biochemical
Process Languages in Lean

Jonathan Coates

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2020



1

Abstract
The continuous π-calculus is a process algebra for modelling the behaviour of
biochemical molecular systems. I have developed a mechanisation of the calculus
within the Lean theorem prover, and shown the semantics are sound. I extend
the semantics to allow an arbitrary equivalence relation.

I defined one such alternative relation, which allowed us to create a computable
version of the semantics. This was then used to demonstrate several cπ examples
have the behaviour expected from standard systems biology.



Table of Contents

1 Introduction 4
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Continuous π-calculus . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Example of an enzyme system . . . . . . . . . . . . . . . . 7
2.2 The L∃∀N Theorem Prover . . . . . . . . . . . . . . . . . . . . . 8

3 The Continuous π-calculus 11
3.1 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Prefix Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Expressing our example in Lean . . . . . . . . . . . . . . . 14
3.3.2 Free variables and renaming . . . . . . . . . . . . . . . . . 14
3.3.3 Structural congruence . . . . . . . . . . . . . . . . . . . . 16
3.3.4 Prime species . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Semantics of cπ 20
4.1 Concretions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Pseudo-application . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Labels and Productions . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Enumerating transitions . . . . . . . . . . . . . . . . . . . 29
4.3.2 Transitions of structurally congruent species . . . . . . . . 31

4.4 Continuous Semantics . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Interaction tensor . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.3 Process behaviour . . . . . . . . . . . . . . . . . . . . . . 35
4.4.4 Extraction of ODEs . . . . . . . . . . . . . . . . . . . . . 36

5 Alternative Equivalences 39
5.1 Semantics using Alternative Equivalences . . . . . . . . . . . . . . 39
5.2 n-Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



TABLE OF CONTENTS 3

6 Evaluation 44
6.1 Our Mechanisation of Continuous-π . . . . . . . . . . . . . . . . . 44
6.2 Working with Lean . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.1 Dependent types . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.2 Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Conclusion 48
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Appendices 52
A Unordered Pairs in Lean . . . . . . . . . . . . . . . . . . . . . . . 52
B Example Enzyme System in Lean . . . . . . . . . . . . . . . . . . 53
C Computing Prime Species . . . . . . . . . . . . . . . . . . . . . . 54
D Remaining axioms . . . . . . . . . . . . . . . . . . . . . . . . . . 55
E Synthesis and Degradation in Lean . . . . . . . . . . . . . . . . . 56
F Phosphorylation and Dephosphorylation in Lean . . . . . . . . . . 56
G Perfectly Adapted Response in Lean . . . . . . . . . . . . . . . . 58



Chapter 1

Introduction

As biological research progresses, we find ourselves increasingly dependent on the
ability to model complex biochemical systems[1, 2]. There are two primary ways
of generating such models. The mathematical method, which gives a series of
equations to solve, and the computational method which provides a program to
‘execute’.

One approach to building computational models is to view biomolecular systems
as a series of communicating processes, with message passing representing reac-
tions between molecules. Much work has been done on using process algebras,
such as Regev et. all in [3]. Of interest to us is the continuous π-calculus (or cπ),
devised by Kwiatkowski and Stark[4].

Loosely derived from the π-calculus, cπ’s semantics operate on a real vector space
of species. It provides a compositional way to create interacting molecules and
generate ordinary differential equations (ODEs) describing how concentrations of
involved molecules change over time.

While the continuous π-calculus provides many interesting features, the defini-
tions and properties of cπ have only been expressed by humans on pen and paper.
The proofs for some of these properties are incredibly nuanced and so, even un-
der the most watchful eye, there is always the risk of flaws. The solution is to
describe the calculus in a theorem prover, providing a machine-checked proof for
every proposition. Doing so gives us a concrete guarantee that our theorems are
correct.

Interactive theorem provers, or proof assistants, are one class of such systems.
These provide an interactive environment where the user can develop proofs with
help from the computer. Lean[5] is one such interactive theorem prover. Initially
developed in 2013 it has a vibrant community, generating a reasonable amount of
interest in the mathematical world due to its expressiveness. For these reasons, I
decided to use Lean for this project.

4



Chapter 1. Introduction 5

1.1 Contributions
• The primary contribution is a largely complete mechanised definition of the

continuous-π calculus within Lean. It contains all thirteen definitions of [4],
and proves four of the five theorems, with the remaining one relying on a
single axiom.

• In order to obtain a computable semantics, we define an alternative equiva-
lence relation (n-equivalence), which is strictly weaker than structural con-
gruence. We use this to execute several examples, and demonstrate the
produced ODEs are what we would expect.

1.2 Overview
As part of this project, I built a model of the cπ-calculus within Lean. This
model, and the proofs relating to it, are about 5700 lines of Lean code. The code
for this may be found at the associated GitHub repository1.

The remainder of the report is structured as follows.

• In Chapter 2, I introduce the basics of the continuous π-calculus and present
an example using an enzyme system which will be used throughout this
document. I also provide a brief introduction to the Lean theorem prover.

• Chapter 3 describes the syntax of cπ in detail. As definitions are introduced,
I present the Lean code required to describe each construct.

• Chapter 4 presents the semantics of the calculus, including the transition
system, execution, and generation of ODEs. We also show the required
lemmas, largely focusing on those involving structural congruence.

• Chapter 5 discusses several problems that arise when working with struc-
tural congruence within a theorem prover. We explore whether an alter-
native equivalence relation may be used, defining the necessary properties
that such a relation must have, and investigate one possible candidate.

• Finally, Chapter 6 and Chapter 7 describe our progress, evaluate our suc-
cesses and failures, and explore possible future avenues of work.

1https://github.com/continuouspi/lean-cpi

https://github.com/continuouspi/lean-cpi


Chapter 2

Background

2.1 Continuous π-calculus
The continuous π-calculus is a process calculus designed for modelling biological
systems. Molecules, and the reactions that they undergo, are expressed as a
species. Species may then be mixed together at specific concentrations to form a
process, from which we can derive the ODEs for this system.

Species are the fundamental building block of cπ, and are described by the fol-
lowing grammar.

A,B ::= 0 | D(~a) |
n

∑
i=0

πi.Ai | A |B | (νM)A

The inert species The null - or inert - species 0 represents a molecule which
will no longer undergo any reactions.

Species invocation Species invocation allows you to build species which refer
to themselves, or other named species. Given some definition of D (D(~y) def

=A), any
invocation of this species (D(~a)) is replaced with A, with all names in y replaced
with their corresponding names in a.

Parallel composition Parallel composition A |B describes two species A and
B which may both participate in reactions. Note that these species may react
with other molecules in the system, or each other.

Guarded choice Guarded choice, written as Σn
i=0πi.Ai or π0.A0+ · · ·+πn.An,

denotes a series of mutually exclusive reactions. The prefix π describes the inter-
action which will take place, with species A being the reaction’s product.

6



Chapter 2. Background 7

Restriction Name restriction (νM)A introduces new names into the current
scope, making them accessible only to A. This allows for dynamic interaction
between molecules.

An associated affinity network ⟨M, f ⟩ defines the set of bound names M, along
with a symmetric function f : M×M → R≥0. This function defines the ‘affinity’
between two names, effectively describing how well they interact with each other.

2.1.1 Example of an enzyme system
One useful example, which I refer to throughout this document, is the simple
enzyme and substrate system pictured in Figure 2.1.

Figure 2.1: The reaction between enzyme and substrate. The enzyme (grey) and
substrate (green) bind, producing two products (blue and orange).[6].

The enzyme system starts with two molecules, the substrate S and enzyme E.
These bind together to form the complex C, as seen in Figure 2.1. Once the two
molecules have bound together, they react to form the original enzyme (which
may partake in further reactions) and two products P1, P2, which degrade at their
own rate.

This behaviour of the substrate, enzyme and products can be expressed in the
continuous π-calculus as seen in Figure 2.2. While this system is relatively simple,
it makes use of all the features of cπ.

S def
= s(x,y).(x.S+ y.(P1 |P2))

E def
= ν(u,r, t : M)e⟨u,r⟩.t.E

P1 = P2
def
= τ@kdegrade.0

Π
def
= c1 ·E ∥ c2 ·S

Figure 2.2: Our enzyme system as a series of cπ expressions.



Chapter 2. Background 8

e s
kbind

u r

t

kunbind kreact

Figure 2.3: The global affinity network Aff and local affinity network M.

Given the definitions of species and substrate, as well as the affinity networks
in Figure 2.3, one can determine what transitions the system undergoes and at
what rate those transitions occur.

Figure 2.4 demonstrates how the reactions in Figure 2.1 translate to transitions
between various species. One can see the enzyme and substrate reacting at rate
kbind to form some complex, which then goes on to participate in further reactions.

E |S

(νM)t.E | (u.S+ r.(P1 |P2))

E |S E |P1 |P2

kbind

kunbind kreact

Figure 2.4: Transitions the enzyme system undertakes.

2.2 The L∃∀N Theorem Prover
Lean is an open source theorem prover and programming language developed
by Microsoft research[5]. Like Coq and Agda, Lean is based on the theory of
dependent types, using the Calculus of Constructors with inductive types[7, 8].

Lean’s syntax is somewhat reminiscent of ML and Caml, featuring many familiar
syntactical constructs like let and match. Top level definitions are introduced with
the def keyword.
/-- Define a variable "zero" with the type "ℕ" equal to "0". -/
def zero : ℕ := 0

/-- Define a function which takes natural x as a parameter and returns x + 1. -/
def add_one (x : ℕ) := x + 1

example : ℕ := add_one zero

Inductive types are introduced by the inductive keyword. Here our tree type is
parameterised by a type variable α.



Chapter 2. Background 9

inductive tree (α : Type) : Type
| empty {} : tree
| node : tree → α → tree → tree

-- Constructors are namespaced by default, so must be accessed using `tree.zero'
example : tree ℕ := tree.node tree.empty zero tree.empty

Such inductive definitions can then be pattern matched upon, either using the
match expression or within a function definition.
def tree.append {α : Type} : tree α → tree α → tree α
| tree.empty b := b
| (tree.node l x r) b := tree.node l x (tree.append r b)

Type classes Lean also supports type classes, using them extensively in the
standard library. For example, the ++ operator can be overloaded by providing
an instance of the has_append class.
namespace tree
variable (α : Type)

instance : has_append (tree α) := ⟨ tree.append ⟩
end tree

Tactics Lean has support for tactics. These are separate procedures which,
instead of working on values, work on the current ‘tactic state’, building up
an appropriate proof or program for the current goal. Lean, and its companion
library mathlib[9], come with a wealth of existing tactics. New ones can be added
within Lean itself, making it its own metalanguage.
-- Using the simp tactic to find a proof that `a + b + c' equals 'b + a + c'.
example (a b c : ℕ) : a + b + c = b + a + c := by simp

Computational irrelevance One major distinguishing feature from Coq and
Agda, is that Lean’s theory also introduces the axiom of proof irrelevance[10].
This means that any two propositions (values of sort Prop) are indistinguishable
in a computational context.

A consequence of this is that we cannot write a non-trivial function which con-
sumes a proposition and yields a non-proposition value. For instance, given the
proposition ∃ x,x > 0, we cannot write a function which extracts the x.
-- induction tactic failed, recursor 'Exists.dcases_on' can only eliminate into Prop
example : (∃ (x : ℕ), x > 0) → ℕ
| ⟨ x, h ⟩ := x

This property is incredibly useful, as it allows us to safely use classical logic in
proof contexts, while not affecting the computability of the system as a whole.

Quotients Quotients allow us to define override equality for a type, defining
it using an equivalence relation. If we have some type α and equivalence relation



Chapter 2. Background 10

R : α×α, we can define the quotient as the set of elements of α modulo R. Thus,
if two values a and b are related by R, then their quotients are equal.

Lean provides built-in support for this, where quotient R is the quotient α modulo
R and ⟦ x ⟧ represents the equivalence class of x : α.
def α' := quotient R /- A quotient under relation R -/

def x' : α' := ⟦ x ⟧ /- The equivalence class of x -/

/- If x ≈ y, then their quotients are equal -/
example : ⟦ x ⟧ = ⟦ y ⟧ := quotient.sound_



Chapter 3

The Continuous π-calculus

3.1 Names
Kwiatkowski and Stark[4, §2.1] define the set of names N as a countably infinite
set of lowercase letters (a, b, …). While named variables are easy to reason about,
such a scheme ends up being difficult to formalise.

The well-established alternative is to use de Bruijn indices[11, 12]. Instead of
using a set of names, variables are represented as a natural representing the
number of binders between a variable’s definition and usage. However in the case
of the cπ-calculus, all binders declare a vector of names. In order to represent
this, we view our variables as a pair of naturals; one determining the binding
depth, and another representing the “index” of any one variable within the name
vector.

One remaining issue with de Bruijn indices is that it is essential to update the
index of any variables when removing or adding a new binder. While forgetting
to do so will mean later proofs do not go through, it is possible to enforce this
directly with an intrinsically typed version of names. Every term, including
names, prefixes and species, are indexed by context, which represents the current
binder depth and each binders’ arity. When one adds or removes a binder, the
context changes, and so you are forced to rename all variables.

inductive context : Type
| nil : context
| extend : ℕ → context → context

inductive name : context → Type
| zero {Γ} {n : ℕ} : fin n → name (context.extend n Γ)
| extend {Γ} {n : ℕ} : name Γ → name (context.extend n Γ)

Listing 3.1: The definition of contexts and names.

11



Chapter 3. The Continuous π-calculus 12

/-- A telescope may introduce 0 or 1 binders. -/
inductive telescope : Type
| extend : ℕ → telescope
| preserve : telescope

/-- Apply a telescope to a context. -/
def telescope.apply : telescope → context → context
| (telescope.extend n) Γ := context.extend n Γ
| telescope.preserve Γ := Γ

/-- A prefix expression. -/
inductive prefix_expr (ℍ : Type) : context → telescope → Type
| communicate {} {Γ} (a : name Γ) (b : list (name Γ)) (y : ℕ)
: prefix_expr Γ (telescope.extend y)

| spontaneous {} {Γ} (k : ℍ) : prefix_expr Γ telescope.preserve

-- Define some additional notation, and sugar
notation a `#(` b ` ; ` y `)` := prefix_expr.communicate a b y
notation a `#(` y `)` := prefix_expr.communicate a [] y
notation a `#⟨` b `⟩` := prefix_expr.communicate a b 0
notation a `#` := prefix_expr.communicate a [] 0

Listing 3.2: Our Lean definition of prefix expressions.

3.2 Prefix Expressions
As mentioned in Section 2.1, prefix expressions are used to represent the reaction
a species may participate in. Prefixes come in two forms, communication and
spontaneous.

π ::= a(~b;~y) | τ@k

Communication prefix A communication prefix a(~b;~y) models the interaction
between two molecules. This is a combination of sending and receiving in the
traditional π-calculus; we send the values in vector~b across channel a, and receive
another series of values, binding them to the names in ~y.

Spontaneous prefix A spontaneous or silent prefix τ@k models a reaction
which occurs without any external interaction, at rate k ∈ R≥0.

Note that the communication prefix binds additional variables, while the sponta-
neous prefix does not. Thus we need some way of extending a context depending
on the kind of prefix. This is done by an additional “telescope” type, which de-
scribes how a context should be extended. Prefixes are then indexed by their
appropriate telescope.

An alternative formalisation would be to view spontaneous prefix as binding 0
variables. This would allow prefixes to be indexed by the arity of their binder
instead, removing the need for telescopes and the various definitions and lemmas



Chapter 3. The Continuous π-calculus 13

related to them. However, this the introduces complexities to the representation
of transitions later on1.

Prefixes, and by extension species and processes, are parameterised by an ar-
bitrary type H. This represents the rate of a reaction (either within an affinity
matrix or a spontaneous prefix). The continuous π paper uses the set of real num-
bers R for this, but we can generalise for any commutative ring, which proves
useful when dealing with differential equations.

3.3 Species
As we described in Section 2.1, species are defined by the following grammar.

A,B ::= 0 | D(~a) | Σn
i=0πi.Ai | A |B | (νM)A

However, it is not immediately clear how such a definition should be translated
into Lean.

Here, guarded choice is defined as a list of prefix-species pairs, with species A
occurring within the binder potentially introduced by prefix π. Representing
such a type on its own in Lean is straightforward. However, we need to do so
within the definition of species themselves. Lean does not support this nesting2,
and so we must find an alternative formulation. I choose to formalise species by
separating out the elements of guarded choice into a separate, mutually recursive
inductive type, giving the following definition.

A,B ::= 0 | D(~a) | Σ As | A |B | (νM)A
As ::= [] | π.A :: As

While this can be represented in Lean, mutually-recursive inductive types do not
have first-class support. Instead, they are translated to a single inductive type
indexed by a ‘tag type’ which determines to which type name each constructor
belongs. The original definitions then wrap this internal combined type. As a
result, tactics such as induction or cases do not work on mutually recursive types,
which makes writing proofs harder than necessary.

In order to avoid this complexity, I apply this translation manually. I introduce
a kind type, which determines whether each constructor is part of our species (A,
B) or an element in our list of choices (As). Our flattened type whole is then
indexed by this kind.

1While the proofs are largely the same, Lean finds them much harder to reason about and
frequently times out.

2This is possible within systems such as Agda, but it does not result in simpler proofs. One
cannot map or fold over such a list, as it prevents showing well-foundedness of a proof, and so
one must write the mutually-recursive proofs, much like in Lean.



Chapter 3. The Continuous π-calculus 14

inductive kind
| species
| choices

/-- The set of species and choices. -/
inductive whole (ℍ : Type) (ω : context) : kind → context → Type
/- Species -/

| nil {} {Γ} : whole kind.species Γ
| apply {} {Γ} {n} : reference n ω → vector (name Γ) n → whole kind.species Γ
| choice {Γ} : whole kind.choices Γ → whole kind.species Γ
| parallel {Γ} : whole kind.species Γ → whole kind.species Γ → whole kind.species

Γ↪→

| restriction {Γ} (M : affinity ℍ) :
whole kind.species (context.extend M.arity Γ) → whole kind.species Γ

/- Elements in our list of choices -/
| empty {} {Γ} : whole kind.choices Γ
| cons {Γ} {f} (π : prefix_expr ℍ Γ f) :

whole kind.species (f.apply Γ) → whole kind.choices Γ → whole kind.choices Γ

/-- An alias for species within the `whole' datatype. -/
def species (ℍ : Type) (ω : context) := @whole ℍ ω kind.species

/-- An alias for choices within the `whole' datatype. -/
def choices (ℍ : Type) (ω : context) := @whole ℍ ω kind.choices

Listing 3.3: Species and guarded choice within Lean.

Our Lean definition of species is given within Listing 3.3. We also define notation
for parallel composition (|ₛ) and guarded choice (Σ##).

3.3.1 Expressing our example in Lean
Recalling our example enzyme system, we can now translate the equations in
Figure 2.2 into equivalent expressions within Lean.

For instance, the substrate S def
= s(x,y).(x.S+ y.(P1 |P2)) can be written as.

def S_ : species ℝ ω Γ :=
s #( 2 ) • Σ# ( whole.cons (x #) (apply S ∅)

$ whole.cons (y #) (apply P₁ ∅ |ₛ apply P₂ ∅)
$ whole.empty ) )

Likewise our enzyme E def
= ν(u,r, t : M)e⟨u,r⟩.t.E becomes

def E_ : species ℝ ω Γ :=
ν(M) (name.extend e #⟨ [u, r] ⟩) • (name.extend t # • apply E ∅)

3.3.2 Free variables and renaming
Now we have definitions for the syntactic elements of the calculus, we are able to
begin work on the main elements of [4]. One definition which, while not explicitly
stated, is assumed, is the notion of renaming.



Chapter 3. The Continuous π-calculus 15

Given some function ρ : name Γ→ name ∆, one should be able to lift this function
to map over prefixes and species in contexts Γ, ∆.
/-- Rename prefix expressions -/
def prefix_expr.rename {Γ Δ} : Π {f}, (name Γ → name Δ)
→ prefix_expr ℍ Γ f → prefix_expr ℍ Δ f

| f (a#(b; y)) ρ := (ρ a)#(list.map ρ b; y)
| f τ@k ρ := τ@k

/-- Rename species and choices -/
def species.rename : Π {Γ Δ k}, (name Γ → name Δ)
→ whole ℍ ω k Γ → whole ℍ ω k Δ

/- ... -/

While these renaming functions technically allow us to map between arbitrary
contexts, in practice we find the only useful operation is to rename into an ex-
tended context by incrementing every de Bruijn index (ρ : Γ→ context.extend n Γ).
However, sometimes we would like to be able to perform the inverse. For instance,
consider the species ν(M)D(a), where a is not bound by M. As our binder is never
used, ideally we might be able to drop it, rewriting the expression to D(a). How-
ever, it is not clear how this could be done using our current renaming functions.
We can extend a context, but we cannot shrink it.

My approach is to modify the renaming functions to take an additional proof
that the given name is used within the current term. In the aforementioned case,
we know that M does not occur within D(a), and so we can use that information
when renaming.

In practice, our implementation is a little less refined. Rather than determining
whether a specific name is used within a term, we simply check whether any
variable within a binder is used. This is sufficient for our needs, and makes some
definitions a little simpler.
/-- Levels represent all names bound by a specific binder. -/
inductive level : context → Type
| zero {Γ} {n} : level (context.extend n Γ)
| extend {Γ} {n} : level Γ → level (context.extend n Γ)

Given the notion of levels, I can then define the notion of a level being “free” in
a name, prefix and species. The definitions of these are fairly obvious.
/-- Determine if a level is free within a prefix -/
def prefix_expr.free_in : ∀ {Γ} {f}, level Γ → prefix_expr ℍ Γ f → Prop
| ._ ._ l (a#(b; y)) := l ∈ a ∨ ∃ x ∈ b, l ∈ x
| ._ ._ l τ@_ := false

Now we have some notion of free variables, we are able to define a refined version
of renaming. Our renaming function ρ now takes a name a, and a witness that a
is used within the prefix to rename.
/-- Rename all names within a prefix expression, providing some witness that

this variable is free within it. -/
def prefix_expr.rename_with {Γ Δ} :
∀ {f} (π : prefix_expr ℍ Γ f)
, (∀ (a : name Γ), name.to_level a ∈ π → name Δ)



Chapter 3. The Continuous π-calculus 16

/-- Decrement the level of every variable. -/
def drop_var {Γ} {n}
(P : level (context.extend n Γ) → Prop) (p : (¬ P level.zero))
: Π a, P (name.to_level a) → name Γ

| (name.zero idx) q := by contradiction
| (name.extend a) _ := a

/- Optionally construct a restriction, only adding a binder if it is
needed. -/

example {Γ : context} (M : affinity ℍ)
(A : species ℍ ω (context.extend M.arity Γ))

: species ℍ ω Γ
:= if h : level.zero ∈ A then ν(M) A

else rename_with A (drop_var (λ l, l ∈ A) h)

Listing 3.4: Using our renaming functions to drop a binder.

A |0 ≡ A
A |B ≡ B |A

(A |B) |C ≡ A | (B |C)

Σn
i=0πi.Ai ≡ Σn

i=0πσi.Aσi where σ forms a permutation
(νM)(A |B)≡ A | (νM)B where M /∈ A

(νM)A ≡ A where M /∈ A
(νM)(νN)A ≡ (νN)(νM)A

Figure 3.1: The rules of structural congruence for species.

→ prefix_expr ℍ Δ f
/- ... -/

Given this, we can finally construct a function to remove binding levels (List-
ing 3.4). When given a proof that no variables in the closest binder are used,
we can decrease the level of all other variables. We make use of this function in
Section 5.2 when normalising terms.

3.3.3 Structural congruence
Continuous π defines a structural congruence relation over species. This forms
an equivalence class of species which are syntactically distinct, but have identical
semantics. While this relation is easy to express in writing, it requires a little
more care to formalise.

Structural congruence is defined in [4, §2.1] as the transitive closure of the rules
in Figure 3.1.

This can be expressed as an inductive type indexed by the species which are
structurally congruent. Each congruence rule then becomes a constructor within
this type.



Chapter 3. The Continuous π-calculus 17

inductive equivalent : ∀ {Γ} (A B : species ℍ ω Γ), Type

The first three rules, which declare that parallel composition forms a commutative
monoid, map relatively directly to Lean.
| parallel_nil₁ {Γ} {A : species ℍ ω Γ}
: equivalent (A |ₛ nil) A

| parallel_symm {Γ} {A B : species ℍ ω Γ}
: equivalent (A |ₛ B) (B |ₛ A)

| parallel_assoc₁ {Γ} {A B C : species ℍ ω Γ}
: equivalent ((A |ₛ B) |ₛ C) (A |ₛ (B |ₛ C))

It is worth noting that structural congruence, as it is an equivalence relation,
is symmetric. Thus, A ≡ A |0 is also true. While it would be possible to state
this using a symm constructor, this introduces difficulties later on. For instance,
we often need to prove A ≡ B → P(A) → P(B) for some property P. However,
symmetry requires that we must also show P(B)→ P(A), which complicates the
proof significantly. In order to avoid this, we additionally define a reversed version
of all rules.
| parallel_nil₂ {Γ} {A : species ℍ ω Γ}
: equivalent A (A |ₛ nil)

| parallel_assoc₂ {Γ} {A B C : species ℍ ω Γ}
: equivalent (A |ₛ (B |ₛ C)) ((A |ₛ B) |ₛ C)

Several of the congruence rules for restriction require that the affinity matrix is
not used within some species. While we could represent this with our previous
notion of free variables (or rather, free binders), we instead use rename to increase
the binding level of a term.
| ν_parallel₁ {Γ} (M : affinity ℍ)

{A : species ℍ ω Γ} {B : species ℍ ω (context.extend M.arity Γ)}
: equivalent (ν(M) (rename name.extend A |ₛ B)) (A |ₛ ν(M)B)

| ν_drop₁ {Γ} (M : affinity ℍ) {A : species ℍ ω Γ}
: equivalent (ν(M) (rename name.extend A)) A

| ν_swap₁ {Γ} (M N : affinity ℍ)
{A : species ℍ ω (context.extend N.arity (context.extend M.arity Γ))}

: equivalent (ν(M)ν(N) A) (ν(N)ν(M) rename name.swap A)

As before, we also have symmetric versions of these rules.

While our set of rules so far give us some form of relation, we must add a series
of additional constructors to have a complete definition of structural congruence.
We define a series of compatibility rules, which make our definition a congruence
relation. For instance, if A ≡ A′, then A |B ≡ A′ |B.
| ξ_parallel₁ {Γ} {A A' B : species ℍ ω Γ}
: equivalent A A' → equivalent (A |ₛ B) (A' |ₛ B)

| ξ_parallel₂ {Γ} {A B B' : species ℍ ω Γ}
: equivalent B B' → equivalent (A |ₛ B) (A |ₛ B')

| ξ_restriction {Γ} (M : affinity ℍ)
{A A' : species ℍ ω (context.extend (M.arity) Γ)}

: equivalent A A' → equivalent (ν(M) A) (ν(M) A')
| ξ_choice_here {Γ} {f} (π : prefix_expr ℍ Γ f)

{A A' : species ℍ ω (f.apply Γ)} {As : choices ℍ ω Γ}
: equivalent A A'



Chapter 3. The Continuous π-calculus 18

→ equivalent (Σ# (whole.cons π A As)) (Σ# (whole.cons π A' As))
| ξ_choice_there {Γ} {f} (π : prefix_expr ℍ Γ f)

{A : species ℍ ω (f.apply Γ)} {As As' : choices ℍ ω Γ}
: equivalent (Σ# As) (Σ# As')
→ equivalent (Σ# (whole.cons π A As)) (Σ# (whole.cons π A As'))

Finally, we provide reflectivity and transitivity explicitly.
| refl {Γ} {A : species ℍ ω Γ} : equivalent A A
| trans {Γ} {A B C : species ℍ ω Γ}
: equivalent A B → equivalent B C → equivalent A C

Our equivalent type now defines the smallest relation that contains structural
congruence. We then show that this relation is symmetric, transitive and reflexive,
which allows us to define a quotient type of species.
instance {Γ} : setoid (species ℍ ω Γ) := -- ...

/- A set of structurally congruent species. -/
def species' (ℍ : Type) (ω Γ : context) := quotient (@species.setoid ℍ ω Γ)

3.3.4 Prime species
When introducing the syntax of species in Section 2.1, we describe parallel com-
position as representing two species in a mixture. When reasoning about species
and their semantics, it is useful to be able to distinguish between those which are
mixtures of independent species, and those which are not.

Kwiatkowski et. all. [4, §2.2] defines a species A to be prime if it cannot be
decomposed into a parallel composition of non-trivial species. More precisely, A
is prime if A ̸≡ 0, and, if A ≡ B |C, then B or C is congruent to 0.
def prime (A : species ℍ ω Γ) : Prop
:= ¬ A ≈ nil ∧ ∀ B C, A ≈ (B |ₛ C) → B ≈ nil ∨ C ≈ nil

def prime_species (ℍ : Type) (ω Γ : context) : Type
:= { A : species ℍ ω Γ // prime A }

Referring back to our example in Section 2.1.1, we can that both S and E are
prime, but our intermediate product (νM)t.E | (u.S+ r.(P1 |P2)) is not.

Intuitively, we can see that it should be possible to ‘decompose’ any species into
a list of prime species. However, defining such a function proves problematic. For
now, we will assume it exists, and revisit this within Chapter 5.
constant prime_decompose {Γ} : species ℍ ω Γ → list (prime_species ℍ ω Γ)

3.4 Processes
While species can be viewed in isolation, ultimately we wish to model a solution
of multiple molecules, each with an initial concentration. For that purpose, we
define processes, a collection of species with some associated concentrations.



Chapter 3. The Continuous π-calculus 19

inductive process (ℂ ℍ : Type) (ω Γ: context) : Type
| one : ℂ → species ℍ ω Γ → process
| parallel : process → process → process

infix ` ◯ `:60 := process.one
infixr ` |ₚ `:50 := process.parallel

Listing 3.5: Our definition of processes in Lean.

P ∥ (c ·0)≡ P
P ∥ Q ≡ Q ∥ P

P ∥ (Q ∥ R)≡ (P ∥ Q) ∥ R
(c ·A) ∥ (d ·A)≡ (c+d) ·A

c ·A ≡ c ·B where A ≡ B
c · (A |B)≡ c ·A ∥ c ·B

Figure 3.2: The rules of structural congruence for processes.

Processes are defined by the following grammar, which translates to Lean incred-
ibly intuitively (Listing 3.5).

P ::= c ·A | P ∥ Q

Following from our intuition of processes, as a mixture of multiple species, it
makes sense to define a congruence relation over processes. Much like species,
this relation defines mixture composition (∥) as a commutative monoid, with sev-
eral additional properties relating parallel composition and concentrations (Fig-
ure 3.2). This can be expressed in Lean in much the same way that structural
congruence over species was (Listing 3.6).

With that, we have completed our mechanisation of cπ’s syntax.

inductive equiv : process ℂ ℍ ω Γ → process ℂ ℍ ω Γ → Prop
| refl {A} : equiv A A
| trans {A B C} : equiv A B → equiv B C → equiv A C
| symm {A B} : equiv A B → equiv B A

-- Compatibility and parallel rules as with species.

| join {A} {c d} : equiv (c ◯ A |ₚ d ◯ A) ((c + d) ◯ A)
| split {A B} {c : ℂ} : equiv2 (c ◯ (A |ₛ B)) (c ◯ A |ₚ c ◯ B)

Listing 3.6: Structural congruence of processes in Lean.



Chapter 4

Semantics of cπ

cπ’s semantics are defined in two states, discrete and continuous. The discrete
semantics are defined using a labelled transition system, which describes the be-
haviour of each process, and what it may evolve in to. The resulting transitions
are then used within the continuous semantics to compute a vector space which
describes how concentrations change over time, and from there compute the dif-
ferential equations for each process.

4.1 Concretions
When modelling the semantics, some transitions produce a concretion[13, §5.5][14,
§3.3.1]. A concretion can be viewed as a species which has the potential to take
part in a reaction, but what it will react with has not yet been determined.

At their core, concretions can be thought of as corresponding with the ‘communi-
cation’ prefix expression (Section 3.2). They are formed from a base ‘abstraction’
term (~b;~y)A. The abstraction communicates on some channel, sending the values
~b, and receiving another series of values, which are bound to ~y. This base term
is then contained within a context of other species.

F,G ::= (~b;~y)A | F |A | A |F | (νM)F

When we come to work with concretions, it is useful to know the arity of ~b and
~y, to ensure two concretions are ‘compatible’. To facilitate that, we encode the
two arities into the type signature of concretions (Listing 4.1).

As with species and processes, concretions also have a structural congruence
(Figure 4.1). As one might expect, this relation has very similar congruence rules
to that of species. This can be defined in Lean in much the same way as our
equivalence on species or processes was.

20



Chapter 4. Semantics of cπ 21

inductive concretion (ℍ : Type) (ω : context) : context → ℕ → ℕ → Type
| apply {Γ} {b} (bs : vector (name Γ) b) (y : ℕ)
: species ℍ ω (context.extend y Γ)
→ concretion Γ b y

| parallel₁ {Γ} {b y} : concretion Γ b y → species ℍ ω Γ → concretion Γ b y
| parallel₂ {Γ} {b y} : species ℍ ω Γ → concretion Γ b y → concretion Γ b y
| restriction {Γ} {b y} (M : affinity ℍ)
: concretion (context.extend M.arity Γ) b y
→ concretion Γ b y

notation `#(` b ` ; ` y `)` A := concretion.apply b y A

infixr ` |₁ ` := concretion.parallel₁
infixr ` |₂ ` := concretion.parallel₂

notation `ν'(` M `) ` A := concretion.restriction M A

inductive equiv : ∀ {Γ} {b y}, concretion ℍ ω Γ b y → concretion ℍ ω Γ b y → Prop

Listing 4.1: The definition of concretions in Lean.

F |0 ≡ F
F |A ≡ A |F

(F |A) |B ≡ F | (A |B)
(A |F) |F ≡ A | (F |B)

F |A ≡ F |B where A ≡ B

(νM)(A |F)≡ A | (νM)F where M /∈ A
(νM)(F |A)≡ F | (νM)A where M /∈ F

(νM)F ≡ F where M /∈ F
(νM)(νN)F ≡ (νN)(νM)F

(~b;~y)A ≡ (~b;~y)B where A ≡ B

(~b;~y)(A |B)≡ A | (~b;~y)B where ~y /∈ A

Figure 4.1: The rules of structural congruence for concretions.



Chapter 4. Semantics of cπ 22

private def pseudo_apply_app {a b} :
∀ {Γ}, vector (name Γ) a → species ℍ ω (context.extend b Γ)
→ concretion ℍ ω Γ b a → species ℍ ω Γ

| Γ as A (#(bs; y) B) :=
species.rename (name.mk_apply bs) A |ₛ species.rename (name.mk_apply as) B

| Γ as A (F |₁ B) := pseudo_apply_app as A F |ₛ B
| Γ as A (B |₂ F) := B |ₛ pseudo_apply_app as A F
| Γ as A (ν'(M) F) := ν(M) (pseudo_apply_app _ (species.rename _ A) F)

def pseudo_apply {a b} :
∀ {Γ}, concretion ℍ ω Γ a b → concretion ℍ ω Γ b a → species ℍ ω Γ

| Γ (#(bs; y) A) F' := pseudo_apply_app bs A F'
| Γ (F |₁ A) F' := pseudo_apply F F' |ₛ A
| Γ (A |₂ F) F' := A |ₛ pseudo_apply F F'
| Γ (ν'(M) F) F' := ν(M) (pseudo_apply F (rename name.extend F'))

Listing 4.2: Pseudo application in Lean, defined as two separate functions.

4.1.1 Pseudo-application
Recall that concretions represent a species which has the potential to react. When
two concretions react with each other, the resulting product is determined via
pseudo-application, denoted as F ◦G.

The base case of pseudo-application operates on two abstraction terms, (~a;~x)A◦
(~b;~y)B:

(~a;~x)A◦ (~b;~y)B def
= A{~b/~x} |B{~a/~y}

Such an application is only defined when |~a| = |~y| and |~b| = |~x|. However, as we
track the arity of concretions within the type signature, it is easy to enforce this
requirement.

All other cases are defined by induction over the structure of concretions.

(~a;~x)A◦ (F |B) def
= (((~a;~x)A◦F)) |B (A |F)◦G def

= A(F ◦G)

(~a;~x)A◦ (B |F)
def
= B | ((~a;~x)A◦F) (F |A)◦G def

= (F ◦G) |A

(~a;~x)A◦ (νM)F def
= (νM)((~a;~x)A◦F) (νM)(F)◦G def

= (νM)(F ◦G)

You can view this definition as first recurring over the left-hand concretion, until
the base case is reached, then recurring on the right-hand concretion. We choose
to make this explicit in our definition (Listing 4.2), splitting the work into two
functions. Doing so means the any recursion only operates on one concretion,
simplifying the work needed to show the recursion terminates.



Chapter 4. Semantics of cπ 23

| Γ (F |₁ A) (ν'(M) G) := begin
-- ...
... ≈ ((ν(M) pseudo_apply (rename name.extend F) G) |ₛ A)
... ≈ ((ν(M) pseudo_apply G (rename name.extend F)) |ₛ A)

: ξ_parallel₁ (ξ_restriction M (pseudo_apply.symm (rename name.extend F) G))
-- ...

end
| Γ (ν'(M) F) (G |₁ B) := begin
-- ...
... ≈ ((ν(M) pseudo_apply F (rename name.extend G)) |ₛ B)
... ≈ ((ν(M) pseudo_apply (rename name.extend G) F) |ₛ B)

: ξ_parallel₁ (ξ_restriction M (pseudo_apply.symm F (rename name.extend G)))
-- ...

end

Listing 4.3: Two cases in our proof that F ◦G ≡ G◦F .

I also show that pseudo-application commutes with renaming. In turn, this can
be used to show that pseudo application is commutative modulo congruence,
namely F ◦G ≡ G◦F .

As [4, §2.2] states, this can be shown by induction over the definition of F ◦G,
and thus by induction over F and G themselves. However, attempting to perform
induction on two concretions at once can prove troublesome.

As Lean is intended for theorem proving, it requires that every recursive func-
tion has a proof that it is well-founded, or rather that it terminates. If such a
requirement was not included, it would be possible to write a proof for ⊥ simply
by recurring forever.

Most of the time, Lean is able to show that a function is well-founded, as some
term will shrink. One peels away a single constructor at a time, and recurs on
the (smaller) child terms. However, this is not always the case. In our definitions
pseudo_apply and pseudo_apply_app from Listing 4.2, one concretion shrinks but, in
the presence of binders, the other species or concretion grows larger, as we must
rename it.

Lean allows you to define custom measures for your recursive function, as well as
tactics for showing such measures decrease on every recursive call. For instance,
in our definition of pseudo_apply_app, we can define our measure as the size of the
concretion.
using_well_founded {
rel_tac := λ _ _,
-- x is a tuple of our arguments (Γ, as, A, F). x.snd.snd.snd corresponds to F.
`[exact ⟨_, measure_wf (λ x, concretion.sizeof ℍ ω x.fst b a x.snd.snd.snd ) ⟩ ],
dec_tac := tactic.fst_dec_tac,

}

Such a measure is not suitable for our proof of commutativity. For instance,
consider the case where F is a parallel composition and G a µ binder. The proofs
for the two cases look relatively similar (Listing 4.3).



Chapter 4. Semantics of cπ 24

private def depth : ∀ {Γ} {b y}, concretion ℍ ω Γ b y → ℕ
| _ _ _ (#(_; _) _) := 1
| _ _ _ (F |₁ _) := depth F + 1
| _ _ _ (_ |₂ F) := depth F + 1
| _ _ _ (ν'(M) F) := depth F + 1

private lemma depth.over_rename :
∀ {Γ Δ} {b y} (ρ : name Γ → name Δ) (F : concretion ℍ ω Γ b y)
, depth F = depth (rename ρ F) := /- ... -/

Listing 4.4: A function to measure the depth of a concretion, along with a proof that
depth is preserved across renames,

However, in one case we recur using symm (rename name.extend F) G) and the other
using symm F (rename name.extend G). There is no built-in measure which allows us
to do this. While F or G may shrink, the other concretion grows.

The solution is to define a depth function (Listing 4.4), which describes how many
layers our concretion has until it reaches a species. We can then show that depth
is preserved over renaming. This function is then used to define a custom measure
for pseudo_app.symm, as the depth of G will always decrease.

Finally, we wish to show that pseudo application commutes with equivalence. Or
rather, if F ≡ F ′ and G ≡ G′ then F ◦G ≡ F ′ ◦G′.

It is sufficient to show this is true for only one side of the application (namely
F ≡ F ′ ⇒ F ◦G ≡ F ′ ◦G), and use commutativity of pseudo-application to show
the full lemma.

Finally, we define a type concretion', which is the quotient of concretions modulo
structural congruence. Given our previous lemma, we can define a version of
pseudo application which operates on equivalence classes of concretions, produc-
ing an equivalence classes of species.
def pseudo_apply.quotient {Γ a b}
: concretion' ℍ ω Γ a b → concretion' ℍ ω Γ b a
→ species' ℍ ω Γ

| F G := quotient.lift_on₂ F G
(λ F G, ⟦ pseudo_apply F G ⟧)
(λ F G F' G' eqF eqG, quot.sound (pseudo_apply.equiv eqF eqG))

4.2 Labels and Productions
Transitions describe how a species will evolve or react in a system. Each transition
is composed of three terms; a species, which describes the molecule which partakes
in this reaction, a label which describes the behaviour or rate of this transition,
and a production, which is the result of this transition.

Labels appear in three forms, communicate, spontaneous and affinity.



Chapter 4. Semantics of cπ 25

inductive kind
| species
| concretion

inductive label (ℍ : Type) : context → kind → Type
| apply {} {Γ} (a : name Γ) : label Γ kind.concretion
| spontaneous {Γ} (rate : ℍ) : label Γ kind.species
| of_affinity {} {Γ} (k : upair (name Γ)) : label Γ kind.species

inductive production (ℍ : Type) (ω : context) (Γ : context) : kind → Type
| species (A : species ℍ ω Γ) : production kind.species
| concretion {b y} (F : concretion ℍ ω Γ b y) : production kind.concretion

Listing 4.5: Our definition of labels and productions.

Communicate The communicate transition A a−→ F converts a species A to a
concretion F which will interact using channel a. For a specific concretion (~b;~y)B,
species A communicates on channel a, sending b and receiving y before evolving
into B.

Spontaneous A spontaneous transition A τ@k−→ B represents a species which
evolves from A to B at rate k, akin to the spontaneous prefix expression.

Of affinity An affinity transition A
τ⟨a,b⟩−→ B represents a species which evolves

from A to B, but where the rate of this reaction is determined by the affinity
between a and b. When this reaction occurs within (νM), this is replaced by an
equivalent transition with a τ@M(a,b) label.

As transitions may produce a species or concretion, we introduce a kind type,
indexing transitions using it. This is then used to determine a transition’s labels
and production, thus ensuring they are well formed.

As affinity networks are symmetric, we have that τ⟨a,b⟩ is equivalent to τ⟨b,a⟩.
We represent this by defining an unordered pair, and using it within the of_affinity

constructor (Listing 4.5). We discuss the construction of out upair type in more
detail within Appendix A.

4.3 Transitions
At this point, we have everything needed to describe the transitions a species
may undergo. Transitions are defined as a type indexed by their source species,
a lookup function, the transition’s label and the result of this transition.

The lookup function maps references to their corresponding species. We require
that any species invocation results in a guarded choice. This does not limit the
power of the calculus, but ensures it is possible to enumerate all transitions.
def lookup (ℍ : Type) (ω Γ : context) := ∀ n, reference n ω → species.choices ℍ ω

(context.extend n Γ)↪→



Chapter 4. Semantics of cπ 26

inductive transition :
Π {Γ} {k}
, species ℍ ω Γ → lookup ℍ ω Γ → label ℍ Γ k → production ℍ ω Γ k
→ Type

Guarded choice All transitions originate from guarded choice. Every element
of the choice produces a spontaneous or communication label, corresponding to
the prefix expression of that element.

0≤ j ≤ n π j = a j(~b j;~y j)

∑n
i=0π j.Ai

a j−→ (~b j;~y j)A j

Choice-1

0≤ j ≤ n π j = τ@k

∑n
i=0π j.Ai

τ@k−→ A j

Choice-2

These two rules translate to Lean fairly directly. We mirror the structure of
choices, defining constructors choice_1 and choice_2 which transition from a whole.cons

term to a production.

In order to enumerate all arms of a choice, the ξ_choice constructor extends the
list of choices that this transition operates from.
| choice₁ {Γ ℓ} (a : name Γ) {n} (b : list (name Γ)) (b_len : list.length b = n)

(y : ℕ) (A : species ℍ ω (context.extend y Γ)) (As : species.choices ℍ ω Γ)
: transition (Σ# species.whole.cons (a#(b; y)) A As)

ℓ (#a)
(production.concretion (#(⟨ b, b_len ⟩; y) A))

| choice₂ {Γ ℓ} (k : ℍ) (A : species ℍ ω Γ) (As : species.choices ℍ ω Γ)
: transition (Σ# species.whole.cons (τ@k) A As) ℓ τ@'k (production.species A)

| ξ_choice {Γ ℓ f} {π : prefix_expr ℍ Γ f}
{A : species ℍ ω (f.apply Γ)} {As : species.choices ℍ ω Γ}
{k} {l : label ℍ Γ k} {E : production ℍ ω Γ k}

: transition (Σ# As) ℓ l E
→ transition (Σ# species.whole.cons π A As) ℓ l E

For instance, the species a.A+ τ@k.B would produce transitions choice₁ a _ _ _ _

_ and ξ_choice (choice₂ k _ _).

‘Compatibility’ transitions Any transition from species A may be converted
into an equivalent transition from a larger species, such as A |B or (νM)A. When
doing so, both the input species and resulting production are wrapped in the
same constructor, while the label is preserved.



Chapter 4. Semantics of cπ 27

A α−→ E

A |B α−→ E |B
Par-Left

B α−→ E

A |B α−→ A |E
Par-Right

A α−→ E α /∈ M

(νM)A α−→ (νM)E
Res-1

All three rules span any label α and production E, meaning the constructs on the
right hand side (such as E |B) apply to both species and concretions. The easiest
way to implement this in Lean would be to have a function which either uses
species or concretion parallel composition (_ |ₛ _ and _ |₁ _) respectively, and
pass the production through that function. However, using a function application
as part of a type’s index causes problems (which we discuss in more detail in
Section 6.2).

The alternative solution is less elegant, but sufficient for our needs. We duplicate
all three rules, having species and concretion variants. While this does lead to
some code duplication, as we must now handle two near-identical constructors,
fortunately this is less than one might expect. As the kind of production is
often known, we can generally avoid having to match against both variants of the
constructor.
| parL_species {Γ ℓ A} B {l : label ℍ Γ kind.species} {E}
: transition A ℓ l (production.species E)
→ transition (A |ₛ B) ℓ l (production.species (E |ₛ B))

| parL_concretion
{Γ ℓ A} B {l : label ℍ Γ kind.concretion} {b y} {E : concretion ℍ ω Γ b y}

: transition A ℓ l (production.concretion E)
→ transition (A |ₛ B) ℓ l (production.concretion (E |₁ B))

| parR_species {Γ ℓ} A {B} {l : label ℍ Γ kind.species} {E}
: transition B ℓ l (production.species E)
→ transition (A |ₛ B) ℓ l (production.species (A |ₛ E))

| parR_concretion /- … -/ → transition (A |ₛ B) ℓ l (production.concretion (A |₂ E))

| ν₁_species
{Γ ℓ} (M : affinity ℍ) {A} {l : label ℍ Γ kind.species} {l' : label ℍ

(context.extend M.arity Γ) kind.species} {E}↪→

: l' = label.rename name.extend l
→ transition A (lookup.rename name.extend ℓ) l' (production.species E)
→ transition (ν(M) A) ℓ l (production.species (ν(M) E))

| ν₁_concretion /- … -/ → transition (ν(M) A) ℓ l (production.concretion (ν'(M) E))

The ν₁ rule defines two labels l and l' and an equality between them. It would be
possible to remove the second label, and use the right hand side of the equality
directly. However, doing so would result in a function application within the



Chapter 4. Semantics of cπ 28

type index which, as mentioned above, is something we want to avoid. We do
not have the same issue with the lookup function, as that is invariant between
all constructor cases, and so does not cause the same problems.

Species invocation We can view transitions from a species invocation term
in a similar manner. Instead of wrapping a transition from a sub-term, they look
up the species in the current environment.

B α−→ E D(~y) def
= B

D(~b) α−→ E{~b/~y}
Defn

The translation into Lean is surprisingly direct, though with several minor differ-
ences. As our environment maps species names to a list of choices, rather than a
full species, the input transition’s type is adjusted accordingly.

We also perform substitution before constructing the transition, rather than af-
terwards. This should1not change the set of allowed transitions, but does simplify
later proofs.
| defn

{Γ k n} {α : label ℍ Γ k} (ℓ : lookup ℍ ω Γ)
(D : reference n ω) (as : vector (name Γ) n)
(B : species.choices ℍ ω Γ) {E}

: B = species.rename (name.mk_apply as) (ℓ n D)
→ transition (Σ# B) ℓ α E
→ transition (species.apply D as) ℓ α E

Parallel species When two species are in a mixture together, they have the
potential to interact with each other. This is modelled by the Com-1 transition.

A a−→ F B b−→ G F ◦G ↓

A |B τ⟨a,b⟩−→ F ◦G
Com-1

Due to our encoding of a concretion’s arity within its type, we do not need
the additional constraint that F ◦G is defined. However, we do need a level of
indirection on both F ◦G and τ⟨a,b⟩ in order to avoid function applications on
an index.
| com₁

{Γ ℓ x y} {A B : species ℍ ω Γ} {a b : name Γ}
{F : concretion ℍ ω Γ x y} {G : concretion ℍ ω Γ y x}
{FG : species ℍ ω Γ} {α : label ℍ Γ kind.species}

: FG = concretion.pseudo_apply F G

1cπ requires that every recursive cycle of species involves a prefix guard. However, expressing
this requirement in Lean, and showing it is equivalent is a difficult task and was not attempted.



Chapter 4. Semantics of cπ 29

structure finset (α : Type*) :=
(val : multiset α)
(nodup : nodup val)

class fintype (α : Type*) :=
(elems : finset α)
(complete : ∀ x : α, x ∈ elems)

Listing 4.6: The definition if finite sets and enumerable types.

→ α = τ⟨ a, b ⟩
→ transition A ℓ (#a) (production.concretion F)
→ transition B ℓ (#b) (production.concretion G)
→ transition (A |ₛ B) ℓ α (production.species FG)

Binders and local behaviour Finally, as mentioned in Labels and Produc-
tions, a τ⟨a,b⟩ transition may be replaced by a τ@M(a,b) transition when within
a (νM) binder. This is handled by the Com-2 rule.

A
τ⟨a,b⟩−→ B a,b ∈ M M(a,b) ↓

(νM)A
τ@M(a,b)−→ (νM)B

Com-2

| com₂
{Γ ℓ} (M : affinity ℍ) {A B : species ℍ ω (context.extend M.arity Γ)}
{p : upair (fin M.arity)} {p' : upair (name (context.extend M.arity Γ))}
(k : ℍ)

: M.get p = some k
→ p' = p.map name.zero
→ transition A (lookup.rename name.extend ℓ) τ⟨ p' ⟩ (production.species B)
→ transition (ν(M) A) ℓ τ@'k (production.species (ν(M) B))

While the type of transitions explicitly state their output and label, we also find
it useful to describe any transition from a specific species.
def transition_from {Γ} (ℓ : lookup ℍ ω Γ) (A : species ℍ ω Γ) : Type
:= Σ k (α : label ℍ Γ k) E, A [ℓ, α]⟶ E

4.3.1 Enumerating transitions
In order to evaluate the behaviour of a species, we must have a way to enumerate
all transitions from it. Conceptually, this is quite simple, and is paid little heed
by [4]. However, building such a procedure in Lean is a non-trivial task.

In order to enumerate the transition set, we use mathlib’s fintype α class. We
construct such a type by providing a multiset of values of type α, along with a
proof that the multiset has no duplicates and all values appear within it.

In order to insert an element into a finset, one must provide a proof that the
element does not already occur within the set. Similarly, one may only map over



Chapter 4. Semantics of cπ 30

private def enumerate_parallel_ts {Γ} {ℓ : lookup ℍ ω Γ} (A B : species ℍ ω Γ)
: fintype (transition.transition_from ℓ A)
→ fintype (transition.transition_from ℓ B)
→ finset (transition.transition_from ℓ (A |ₛ B))
| As Bs :=
finset.union_disjoint
(finset.map
(com₁.embed ℓ A B)
((finset.product As.elems Bs.elems).subtype (com₁.is_compatible ℓ A B)))

(finset.union_disjoint
(As.elems.map (parL.embed A B))
(Bs.elems.map (parR.embed A B))
(λ x memL memR, begin show false, /- ... -/ end))
(λ x memL memR, begin show false, /- ... -/ end))

private lemma enumerate_parallel_complete {Γ} {ℓ : lookup ℍ ω Γ}
(A B : species ℍ ω Γ)
(As : fintype (transition.transition_from ℓ A))
(Bs : fintype (transition.transition_from ℓ B))

: ∀ x, x ∈ enumerate_parallel_ts A B As Bs
| ⟨ k, α, E, com₁ eqFG eqα tf tg ⟩ := /- ... -/
| ⟨ k, α, E, parL_species _ t ⟩ := /- ... -/
-- ...

Listing 4.7: Enumerating all transitions from species A |B.

finsets using injective functions, and perform unions on disjoint sets2.

How an instance of such a structure can be computed should be fairly clear.
We simply recur over the structure of a species, enumerating transitions for sub-
terms and then transforming those transitions using the appropriate constructors
for this species.

For instance, in order to enumerate the transition from the parallel composition
A |B, we take the union of:

• All transitions from A, wrapped using the Par-Left constructor.

• All transitions from B, wrapped using the Par-Right constructor.

• The cross product of transitions from A and B, restricted to those which
can be converted into a Com-1 transition.

The Lean translation of this union is incredibly verbose, due to the additional
proofs of non-intersection and non-membership required (Listing 4.7). We con-
tinue this process for all species constructors. Listing 4.8 gives an example of
enumerating the transitions of the parallel composition of two basic species.

2It is possible to avoid this restriction by defining a decision procedure for equality of ele-
ments. However, given the complex nature of transitions, writing such a function is frustrating.



Chapter 4. Semantics of cπ 31

def A := a# • nil |ₛ b# • nil
#eval (fintype.elems (transition_from ℓ A))
/-
{(0.0#.0 | 0.1#.0) [#0.0]⟶ (([];0)0 | 0.1#.0),
(0.0#.0 | 0.1#.0) [#0.1]⟶ (0.0#.0 | ([];0)0),
(0.0#.0 | 0.1#.0) [τ⟨ 0.0 , 0.1 ⟩]⟶ (0 | 0)}
-/

Listing 4.8: Enumerating all transitions of the species a.0 |b.0. The name 0.0 corre-
sponds to channel a, and 0.1 to b.

def equivalent_of :
∀ {Γ ℓ k} {A : species ℍ ω Γ} {B : species ℍ ω Γ} {α : label ℍ Γ k}

{E : production ℍ ω Γ k}
, species.equivalent A B → A [ℓ, α]⟶ E
→ Σ' (E' : production ℍ ω Γ k) (eq : E ≈ E'), B [ℓ, α]⟶ E'
:= /- ... -/

noncomputable def equivalent_of.map {Γ ℓ} {A B : species ℍ ω Γ} (h :
species.equivalent A B)↪→

{k} {α : label ℍ Γ k}
: (Σ (E : production ℍ ω Γ k), A [ℓ, α]⟶ E)
→ (Σ (E : production ℍ ω Γ k), B [ℓ, α]⟶ E)

| ⟨ E, t ⟩ :=
let ⟨ E', _, t' ⟩ := equivalent_of h t in
⟨ E', t' ⟩

Listing 4.9: Constructing an equivalent transition for structurally congruent species.

4.3.2 Transitions of structurally congruent species
In order to show that structural congruence is a behavioural equivalence, we must
show that the transition sets of two structurally congruent species are equivalent.

Theorem 9 [4, §2.2] states that if A≡B, then there is some bijection ϕ : Trans(A)→
TransB such that if ϕ(A α−→ E) = B α′

−→ E ′ then α = α′ and E ≡ E ′.

In order to show this we first provide a function which maps from one transition
to another with the same label and a structurally congruent production. This
can be used to show that such a function ϕ exists.

Both the functions from Listing 4.9 operate on species.equivalent A B rather than
the standard A ≈ B. As the relation _ ≈ _ is a proposition, it is erased at runtime,
and so we cannot use it to construct a value, such as a transition. However, the
main definition of congruence (Section 3.3.3) is a Type, and so may be used in a
computational context.

In order to show that equivalent_of.map is a bijection, it should be sufficient to
show that it is its own inverse. However, the definition of equivalent_of is a little
over 400 lines of code, and so such a proof will be similarly long. For now, we
axiomise this property (Listing 4.10).

One other complication arises when dealing with various congruence rules dealing



Chapter 4. Semantics of cπ 32

axiom equivalent_of.map_map {Γ ℓ} {A B : species ℍ ω Γ} (h : species.equivalent A B)
{k} {α : label ℍ Γ k} (t : Σ (E : production ℍ ω Γ k), A [ℓ, α]⟶ E)

: equivalent_of.map h.symm (equivalent_of.map h t) = t

/-- Show that two equivalent species's transition sets are isomorphic. -/
noncomputable def equivalent_of.is_equiv {Γ ℓ} {A B : species ℍ ω Γ}

(h : species.equivalent A B) {k} {α : label ℍ Γ k}
: (Σ (E : production ℍ ω Γ k), A [ℓ, α]⟶ E) ≃ (Σ (E : production ℍ ω Γ k), B [ℓ,

α]⟶ E)↪→

:= { to_fun := equivalent_of.map h,
inv_fun := equivalent_of.map h.symm,
left_inv := equivalent_of.map_map h,
right_inv := λ x, /- ... -/ }

Listing 4.10: An isomorphism between transition sets of congruent species. We
currently axiomise the fact that this function is a bijection.

with (νM) binders. For instance, consider the congruence (νM)A≡A. Given some
transition (νM)A α−→ E, we must find a suitable transition A α−→ E ′. This is easy
to do, however the resulting transition is in the wrong scope; it originates from
species.rename name.extend A, rather than A directly.

Thus we find we need a function to “undo” the renaming of a species, and yield
an equivalent transition. Such a function most likely exists, but for deriving it is
tricky. For now, we axiomatise it.
protected constant rename_from :
∀ {Γ Δ ℓ k}
{A : species ℍ ω Γ} {l : label ℍ Δ k} {E : production ℍ ω Δ k}
(ρ : name Γ → name Δ)

, species.rename ρ A [lookup.rename ρ ℓ, l]⟶ E
→ Σ'(l' : label ℍ Γ k) (E' : production ℍ ω Γ k)
, pprod (A [ℓ , l']⟶ E') (label.rename ρ l' = l ∧ production.rename ρ E' = E)

Regrettably, usage of this function makes equivalent_of non-computable. However,
this is not too serious, as this function is only used within proofs, which do not
require computability.

4.4 Continuous Semantics
4.4.1 Vector spaces
[14, §3.3.3] defines the semantics of species and processes as operating in two
vector spaces, the process space and interaction space.

The process space P is an infinite dimensional vector space RS#, where S#
is the set of prime species.
def process_space (ℂ ℍ : Type) (ω Γ : context) [add_monoid ℂ]
:= fin_fn (prime_species' ℍ ω Γ) ℂ

Like processes, this is parameterised over two types. C, the codomain of the vector



Chapter 4. Semantics of cπ 33

space, describes the concentration (or concentration gradient). H describes the
rate of reaction, such as that defined in affinity networks. Typically these may
both be instantiated to R (or some similar, computable type), though we leave
them generic.

Interaction space D is an infinite dimensional vector space RS#×C×N , where
C is the set of concretions. This is described in much the same way.
def interaction_space (ℂ ℍ : Type) (ω Γ : context) [add_monoid ℂ]
:= fin_fn
(prime_species' ℍ ω Γ × (Σ (b y), concretion' ℍ ω Γ b y) × name Γ)
ℂ

Both these definitions make use of a fin_fn α β type. This models vector spaces
in much the same way as [14, §3.3.3]. We define a function f : α → β and the
function’s support, such that x ∈ support( f ) ⇐⇒ f (x) ̸= 0.
structure fin_fn (α : Type*) (β : Type*) [has_zero β] :=
(space : α → β)
(support : finset α)
(support_iff : ∀ x, space x ≠ 0 ↔ x ∈ support)

Given such a definition, it is relatively easy to provide definitions for addition,
subtraction and scalar multiplication for our fin_fn, and so show it forms a semi-
module. From our definition of vector spaces, and some suitable function to
compute the prime decomposition of species, we can define the species embedding
⟨−⟩ : S → P.

⟨A⟩ def
= ∑

B∈primes(A)
1B

We use the notation 1B to denote a basis vector. This may be defined as a
function λ A. if A ≡ B then 1 else 0, or fin_fn.single B 1 within Lean.
def to_process_space {Γ} (A : species' ℍ ω Γ) : process_space ℂ ℍ ω Γ
:= (prime_decompose' A).sum' (λ A, fin_fn.single A 1)

Here prime_decompose' operates on quotients or equivalence classes of species in-
stead, mapping them to a multiset of quotients of prime species. Using the
properties of sum' and prime decomposition, it is simple to show the required
properties, such as ⟨A |B⟩= ⟨A⟩+ ⟨B⟩.
lemma to_process_space.parallel {Γ} (A B : species ℍ ω Γ)
: (to_process_space ⟦ A |ₛ B ⟧ : process_space ℂ ℍ ω Γ)
= to_process_space ⟦ A ⟧ + to_process_space ⟦ B ⟧
:= by simp only [to_process_space, prime_decompose_parallel', multiset.sum'_add]

It’s also useful to provide a similar embedding from processes to process spaces.
This does not have any meaning within the semantics, but proves useful when
operating with ODEs.



Chapter 4. Semantics of cπ 34

private def interaction_tensor_worker (conc : ℍ ↪ ℂ) : /- ... -/
| ⟨ A, ⟨ bF, yF, F ⟩, x ⟩ ⟨ B, ⟨ bG, yG, G ⟩, y ⟩ :=
option.cases_on (M.f x.to_idx y.to_idx) 0 (λ aff,
if h : bF = yG ∧ yF = bG then begin
rcases h with ⟨ ⟨ _ ⟩, ⟨ _ ⟩ ⟩,
from conc aff • ( to_process_space (pseudo_apply' F G)

- fin_fn.single A 1 - fin_fn.single B (1 : ℂ)),
end else 0)

def interaction_tensor (conc: ℍ ↪ ℂ)
: interaction_space ℂ ℍ ω (context.extend M.arity context.nil)
→ interaction_space ℂ ℍ ω (context.extend M.arity context.nil)
→ process_space ℂ ℍ ω (context.extend M.arity context.nil)

| x y := fin_fn.bind₂ x y (interaction_tensor_worker conc)

Listing 4.11: The interaction tensor defined in Lean. This is defined as a function
which operates on a single basis, which is then applied to the whole vector space.

def process.to_space {Γ} : process ℂ ℍ ω Γ → process_space ℂ ℍ ω Γ
| (c ◯ A) := c • to_process_space ⟦ A ⟧
| (P |ₚ Q) := process.to_space P + process.to_space Q

4.4.2 Interaction tensor
The interaction tensor −⊘− : D → D → P combines the potentials of two in-
teraction spaces. This behaves somewhat similarly to the two Com transitions,
taking some potential transitions A x−→ F and B

y−→ G and evolving into a new
species F ◦G.

The interaction tensor is defined in terms of a function operating on the basis
values.

1A,F,x ⊘1B,G,y
def
=

{
Aff(x,y)× (⟨F ◦G⟩−1A −1B) x,y ∈ Aff and F ◦G ↓
0 otherwise

This is relatively easy to define in Lean. We first define a worker, which operates
on a single basis. This checks the two preconditions, and then evaluates the
body appropriately. We then apply this function to the cross product of the
two vector spaces to obtain the resulting process spaceListing 4.11. Both these
functions take an embedding conc : ℍ ↪ ℂ, which converts rates of reactions to
concentration gradients within the process space.

Given pseudo application and the affinity network are commutative, it’s easy to
show that the interaction tensor is commutative. We can also show that it forms
a monoid homomorphism, distributing over addition.



Chapter 4. Semantics of cπ 35

∂(c ·A) def
= c · ∑

B∈primes(A)
∑

B x−→F

1B,F,x

∂(P ∥ Q)
def
= ∂Q+∂P

d(c ·A)
dt

def
= ∑

B∈primes(A)
∑

B τ@k−→F

(k× c× (⟨C⟩−1B))+
1

2
(∂(c ·A)⊘∂(c ·A))

d(P ∥ Q)

dt
def
=

P
dt

+
P
dt

+∂P⊘∂Q

Figure 4.2: The continuous semantics of cπ, defined by induction on processes.

def potential_interaction_space {Γ} {ℓ : lookup ℍ ω Γ} {A : prime_species ℍ ω Γ}
: transition.transition_from ℓ A.val → interaction_space ℂ ℍ ω Γ

| ⟨ _, # a , @production.concretion _ _ _ b y G, tr ⟩
:= fin_fn.single ⟨ ⟦ A ⟧, ⟨ b, y, ⟦ G ⟧ ⟩, a ⟩ 1

| ⟨ _, τ@'_, E, tr ⟩ := 0
| ⟨ _, τ⟨_⟩, E, tr ⟩ := 0

def immediate_process_space {Γ} {ℓ : lookup ℍ ω Γ} (conc : ℍ ↪ ℂ)
{A : prime_species ℍ ω Γ}

: transition.transition_from ℓ A.val → process_space ℂ ℍ ω Γ
| ⟨ _, # a , _, tr ⟩ := 0
| ⟨ _, τ@'k, production.species B, tr ⟩
:= conc k • (to_process_space ⟦ B ⟧ - fin_fn.single ⟦ A ⟧ 1)

| ⟨ _, τ⟨ n ⟩, _, tr ⟩ := 0

Listing 4.12: Computing the resulting vector and interaction space of single transition.

4.4.3 Process behaviour
Finally, we are ready to compute the behaviour of a process P. This is defined in
two steps, the interaction potential ∂P∈D, derived from the potential interactions
of a process, and the immediate behaviour dP

dt ∈ P, derived from the immediate
actions a process may undergo.

In order to convert the behaviour described in Figure 4.2 into Lean, we must
find a way to express the inner sum. Rather than summing a specific kind of
transition (such as B x−→ F or A τ@k−→ F), we operate on all transitions, returning
0 if it is not of the correct form (Listing 4.12.

We then map over all prime species and transitions, in order to obtain the se-
mantics for a single-species process. We also define a version of these semantics
which operates on quotients of species instead. This can be done fairly directly
given that the two transitions sets are isomorphic (as-per Section 4.3.2). From
there, it’s simple to define the complete potential and immediate behaviour of a
process.

Given our previous lemmas about how potential_interaction_space and immediate_process_space



Chapter 4. Semantics of cπ 36

/-- The vector space of potential interactions of a process (∂P). -/
def process_potential {Γ} (ℓ : lookup ℍ ω Γ)
: process ℂ ℍ ω Γ → interaction_space ℂ ℍ ω Γ
| (c ◯ A) := c • potential_interaction_space.from_species ℓ A
| (P |ₚ Q) := process_potential P + process_potential Q

/-- The vector space of immediate actions of a process (dP/dt)-/
def process_immediate (M : affinity ℍ) (conc : ℍ ↪ ℂ)

(ℓ : lookup ℍ ω (context.extend M.arity context.nil))
: process ℂ ℍ ω (context.extend M.arity context.nil)
→ process_space ℂ ℍ ω (context.extend M.arity context.nil)

| (c ◯ A)
:= c • immediate_process_space.from_species conc ℓ A
+ (½ : ℂ) • (process_potential ℓ (c ◯ A) ⊘[conc] process_potential ℓ (c ◯ A))

| (P |ₚ Q)
:= process_immediate P + process_immediate Q
+ (process_potential ℓ P ⊘[conc] process_potential ℓ Q)

Listing 4.13: Our continuous semantics from Figure 4.2, defined in Lean.

hold over structural congruence, it’s relatively trivial to show that the same is
true for the potential and immediate behaviour.

Some attention should be shown to the structural rules describing how mixtures
of processes are structurally congruent.

(c ·A) ∥ (d ·A)≡ (c+d) ·A
c · (A |B)≡ c ·A ∥ c ·B

While both of these are ‘obvious’ by inspecting the definitions of dP
dt and δP,

showing these in a theorem prover can be tricky due to the amount of arithmetic
manipulation required.

Thankfully, Lean includes an abel tactic, which is able to reason about abelian
groups and commutative monoids. This allows us to automate much of the tedious
legwork which would otherwise be required.
calc c • dA + c • dB + (iA + (½ : ℂ) • iAB + ((½ : ℂ) • iAB + iB))

= c • dA + c • dB + (iA + iB + ((½ : ℂ) • iAB + (½ : ℂ) • iAB)) : by abel
... = c • dA + c • dB + (iA + iB + iAB)

: by rw [← add_smul, ← half_ring.one_is_two_halves, one_smul]
... = c • dA + iA + (c • dB + iB) + iAB : by abel

4.4.4 Extraction of ODEs
Finally, we must be able to translate our cπ models into ODEs. This can be
done in much the same way as [14, §3.4]. As with the algorithm presented by
Kwiatkowski, first we provide a way to enumerate all possible species within the
system, and then execute it using a symbolic representation.



Chapter 4. Semantics of cπ 37

def all_species.finset (M : affinity ℍ)
(ℓ : lookup ℍ ω (context.extend M.arity context.nil))

: ℕ → finset (prime_species' ℍ ω (context.extend M.arity context.nil))
→ all_species M ℓ

| 0 As := all_species.incomplete As
| (nat.succ n) As :=
let As' := (process_immediate.quot M ℓ fin_poly.C.embed

(process.from_prime_multiset fin_poly.X As.val)).support in
if eq : As' ⊆ As then all_species.complete As eq
else all_species.finset n (As ∪ As')

/-- Get all species in the transition graph for a process. -/
def all_species.process (M : affinity ℍ)

(ℓ : lookup ℍ ω (context.extend M.arity context.nil))
: ℕ → process ℍ ℍ ω (context.extend M.arity context.nil) → all_species M ℓ

| fuel P := all_species.finset M ℓ fuel (process.to_space P).support

Listing 4.14: Enumerating the complete transition space of a process.

One thing to note is that the transition space of a system may not be finite. It
is possible to derive a term which may ‘diverge’, producing ever larger species.
In order to avoid this, we provide our function to enumerate the species with
an amount of fuel, which reduces after every iteration. The function may then
return a complete set or, if it runs out of fuel, a partial one.

Then given a complete set of prime species, we can convert them into a process
and execute them, producing a polynomial.
def as_ode (M : affinity ℍ) (ℓ : lookup ℍ ω (context.extend M.arity context.nil))
: finset (prime_species' ℍ ω (context.extend M.arity context.nil))
→ process_space

(fin_poly (prime_species' ℍ ω (context.extend M.arity context.nil)) ℍ)
ℍ ω (context.extend M.arity context.nil)

| As := process_immediate.quot M ℓ fin_poly.C.embed
(process.from_prime_multiset (λ x, fin_poly.X x) As.val)

For reasons we will explore in Chapter 5, we are currently unable to execute such
a function. However, if we provide the complete species space of system manually,
we can achieve the same result. We can do this for our example enzyme system
from Section 2.1.13.
def system : process ℂ ℍ ω Γ :=
(fin_poly.X (apply S ∅)) ◯ (apply S ∅) |ₚ
(fin_poly.X E'_) ◯ E'_ |ₚ
(fin_poly.X C'_) ◯ C'_ |ₚ
(fin_poly.X (apply P₁ ∅)) ◯ (apply P₁ ∅) |ₚ
(fin_poly.X (apply P₂ ∅)) ◯ (apply P₂ ∅)

#eval process_immediate aff ℓ conc system

With a little bit of post-processing in order to replace species with their names,
we receive the following ODEs.

3The complete Lean code for the enzyme system may be found in Appendix B.



Chapter 4. Semantics of cπ 38

dE
dt =−kbind ·E ·S+ kreact ·C+ kunbind ·C
dS
dt =−kbind ·E ·S+ kunbind ·C

dP1
dt =−kdecay ·P1+ kreact ·C

dP2
dt =−kdecay ·P2+ kreact ·C
dC
dt =−kreact ·C− kunbind ·C+ kbind ·E ·C

Figure 4.3: The expected ODEs for our enzyme system.

/-
((-1•(k_bind))•(E•S) + (1•(k_react) + 1•(k_unbind))•(S)) • E
((-1•(k_bind))•(E•S) + (1•(k_unbind))•(S)) • S
((-1•(k_degrade))•(P₁) + (1•(k_react))•(S)) • P₁
((-1•(k_degrade))•(P₂) + (1•(k_react))•(S)) • P₂
((-1•(k_react) + -1•(k_unbind))•(S) + (1•(k_bind))•(E•S)) • C

-/

While this result is somewhat confusing to read, due to the nature of our poly-
nomial representation, it is possible to see these are equal to the expected ODEs
from Figure 4.3.

At this point, we have completed our definition of cπs semantics, and shown most
of its main lemmas. As such, our main mechanisation of [4, 14] is complete.



Chapter 5

Alternative Equivalences

We now have a relatively complete formalisation of the continuous π-calculus,
and are theoretically able to complete an end-to-end translation from species and
processes to the resulting ODEs. However, there are several problems which make
actually computing the ODEs much harder than expected.

Recall our definition of process spaces and interaction spaces from Section 4.4.1.
Both of these are effectively defined as functions mapping from sets of structurally
congruent species to R (or some other concentration scalar). Thus, in order to
evaluate a function at a specific point, we need a way to determine if two species
are structurally congruent.

While it is possible to define a decision procedure for a single congruence rule,
doing so for the transitive closure proves much harder. We must be able to show,
or refute, the infinite number of proofs that two species are congruent.

Similar problems arise when working with prime species (Section 3.3.4). Kwiatkowski
[14, Appendix A] presents a ‘simple procedure’ to compute the prime decomposi-
tion of any species. While we are able to translate it into Lean (see Appendix C),
as it relies on classical logic, it cannot be executed. This makes it useless if we
wish to generate ODEs within Lean.

In this chapter, we explore alternatives to structural congruence. We determine
what properties an equivalence relation over species must have, and work with
one possible candidate.

5.1 Semantics using Alternative Equivalences
When we originally explored the continuous semantics of cπ in Section 4.4, all
definitions operated using equivalence classes of species and concretions under
structural congruence. We generalise our previous definitions, replacing structural
congruence with an abstract equivalence relation.

Let ≈ be a decidable equivalence relation over species and concretions. We use
[A] to represent the ≈-equivalence class of A (written as ⟦ A ⟧ in Lean).

39



Chapter 5. Alternative Equivalences 40

class cpi_equiv (ℍ : Type) (ω : context) :=
[species_equiv {} : ∀ Γ, setoid (species ℍ ω Γ)]
[concretion_equiv {} : ∀ Γ b y, setoid (concretion ℍ ω Γ b y)]
[decide_species {} : ∀ Γ, decidable_rel (species_equiv Γ).r]
[decide_concretion {} : ∀ Γ b y, decidable_rel (concretion_equiv Γ b y).r]

(prime_decompose {Γ} : species ℍ ω Γ → multiset (prime_species ℍ ω Γ))
( pseudo_apply {Γ} {a b : ℕ}
: concretion' ℍ ω Γ a b → concretion' ℍ ω Γ b a
→ species' ℍ ω Γ )
/- ... -/

Figure 5.1: An arbitrary equivalence relation for species and concretions, and the
properties it must have.

Given such an equivalence relation, we can redefine our previous definitions in
such a way that they work with our alternative equivalence.

Prime species ≈-prime species are defined in much the same way as ≡-prime
species. Namely, a species is prime if A ̸≈ 0∧∀BC.A ≈ (B |C)→ B ≈ 0∨C ≈ 0.

Prime decomposition We require some procedure P which maps a species
into a multiset of prime-species, such that:

• P(0) = /0

• P(A |B) = P(A)+P(B)

• For all prime species A, P(A) = {A}

• If A ≈ B, then P(A) = P(B) up to equivalence of species.

Pseudo-application While the definition of pseudo-application remains as
before, we require that F ◦G ≈ F ′ ◦G′ when F ≈ F ′ and G ≈ G′, in much the same
way that we do for structural congruence.

These requirements may easily be encoded into Lean as a typeclass (Figure 5.1).
While they are sufficient in order to define the semantics using arbitrary relations,
in order to show that the semantics are sound (namely, equivalent species yield
identical semantics), we require several additional properties. Pseudo-application
must be commutative up to equivalence, and equivalent species must have iso-
morphic transition sets. We define these requirements in a separate type class,
as this allows us to execute the semantics for potentially unsound systems, while
still allowing proofs about sound relations.

5.2 n-Equivalence
Now we have defined the necessary properties an equivalence relation must have,
we explore one possible candidate. Taking inspiration from [14, Appendix A],



Chapter 5. Alternative Equivalences 41

Parallel composition
within guarded choice σ ::= A∗

| A∗ |σ

Species within guarded choice τ ::= σ | 0

Species within (νM) binders γ ::= A∗ when M ∈ A∗

| A∗ | γ when M ∈ A∗

Atomic species A∗ ::= D(~a)
| Σn

i=0πi.τi

| (νM)γ

Figure 5.2: The definition of atomic species.

we define a procedure to normalise terms, and say two species are n-equivalent if
they normalise to a syntactically identical term.

Our normalisation procedure maps a single species, to a list of atomic species
which, when in parallel composition, are congruent to the original one. An atomic
species normalises to itself, and is defined using the grammar in Figure 5.2.

The language of atomic species enforces several invariants, which eliminates many
of the original structural congruence rules, such as A |0 ≡ A. Any species which
are congruent only using these eliminated rules, will be n-equivalent.

However, we do not impose any ordering on ν binders, guarded choice or parallel
composition. As a result, some species which are structurally congruent (such
as A |B ≡ B |A) are not n-equivalent. While it would be possible to enforce an
ordering on choice and parallel composition, dealing with ν exchange is much
harder.

Normalisation yields a list of species, which are congruent to the original species
and are all atomic. This may be used to define a simpler normalisation function,
which maps species to species. Finally, we may define n-equivalence (Listing 5.1).

The most useful property of this relation is that it is decidable, as normalisation
is a computable function. Given that normalised terms are congruent to their
original species, n-equivalence implies structural congruence, making it a strictly
weaker relation. Furthermore, all atomic species are also n-prime, meaning that
normalisation computes the prime decomposition of species.

Now we have an equivalence relation for species, we must also decide on an
relation for concretions. While it would be ideal to define a similar normalisation
function for concretions, due to time constraints, we settled on using syntactic



Chapter 5. Alternative Equivalences 42

inductive atom :
∀ {sk : kind} (k : kind' ℍ sk) {Γ : context}
, whole ℍ ω sk Γ → Prop

def equivalence_of : ∀ {k} {Γ}, whole ℍ ω k Γ → Type
| kind.species Γ A :=
Σ' (Bs : list (species ℍ ω Γ))
, A ≈ parallel.from_list Bs
∧ ∀ B ∈ Bs, normalise.atom normalise.kind'.atom B

| kind.choices Γ A := /- ... -/

def normalise_to : ∀ {k} {Γ} (A : whole ℍ ω k Γ), equivalence_of A
/- ... -/

def normalise : ∀ {k} {Γ}, whole ℍ ω k Γ → whole ℍ ω k Γ
| kind.species Γ A := parallel.from_list (normalise_to A).fst
| kind.choices Γ A := (normalise_to A).fst

def normalise.equiv {Γ : context} (A B : species ℍ ω Γ) : Prop := normalise A =
normalise B↪→

Listing 5.1: Atomic species and n-equivalence, as defined in Lean.

equality. Again, this is trivially computable and is sufficient for our requirements.

These relations and definitions are sufficient in order to execute cπ terms. How-
ever, in order to show that n-equivalence produces a sound semantics, we must
also show that pseudo-application is commutative up to n-equivalence, and n-
equivalent species have equivalent transition sets.

Unfortunately, this is not the case. Consider the pseudo-application of two con-
cretions F def

= (νM)(; )A and G def
= (νN)(; )B. Pseudo application of F and G yields

different terms, depending on the order of the operands. F ◦G = (νM)(νN)(A|B),
but G ◦ F = (νN)(νM)(B|A). As previously discussed, normalisation does not
handle ν exchange, and so these species are not n-equivalent.

This, in turn, means that parallel composition (and thus process mixtures) are
not symmetric, which is problematic. It would be possible to define an alternative
version of pseduo-application which sorts its arguments using some lexicographi-
cal ordering. This would be effective, though rather inelegant.

More troubling is that n-equivalence of species does not imply equivalence of their
transition sets. As we do not have a specialised equivalence relation on concre-
tions, transitions from A and normalise(A) will not have equivalent productions.
Defining a similar n-equivalence relation on concretions should be sufficient to
show this property, but due to time constraints no attempt has been made at
this.

As a result, extraction of ODEs is not possible directly. We do not have an
isomorphism between processes and process spaces, as mixtures are not commu-
titive, and so it is not possible to enumerate the entire transition space. Instead,
one can enumerate the transition space by hand, and then compute the ODEs



Chapter 5. Alternative Equivalences 43

from a ‘complete’ process. This is the technique we used to compute the examples
in Section 4.4.4.

Sadly, in its current state, n-equivalence is a workable, but unsound equivalence
relation. While this is still a useful counterpart to the unworkable but sound
structural congruence, it is not ideal.



Chapter 6

Evaluation

We have managed to derive an almost complete mechanisation of the continuous
π-calculus, and explored alternative equivalences which make it more practical
in a computational setting. This section discusses successes and failures in the
project, and provides some observations about where theorem proving can be a
help and hindrance.

6.1 Our Mechanisation of Continuous-π
Our mechanisation of the two cπ papers, [14] and [4] are largely complete. How-
ever, as discussed in Chapter 5, our implementation is imperfect, as it is not
computable. In this section, we review what could be done to improve the mech-
anisation, any remaining axioms which must be proven, and why one may en-
counter further obstacles when attempting to do so.

Axioms There are seven axioms remaining in our code base, though only a
few are directly relevant to the main work of the project. We provide a full list
in Appendix D, though a summary of the key axioms are as follows.

• Given a renaming function ρ, for any transition ρ(A) α−→ E, there exists
another transition A α′

−→ E ′, such that ρ(α′) = α and ρ(E ′) = E. More
informally, if we have a transition where the species, label and production
have been renamed, it should be possible to recover the original terms.

• The function ϕ which maps between transitions of congruent species (Sec-
tion 4.3.2) is a bijection.

• The classical version of prime decomposition (Chapter 5 and Appendix C)
obeys the properties we would expect of prime decomposition. Namely,
P(A |B) = P(A)+P(B) and P(A) = P(B) when A ≡ B.

• Similarly, if a species A is n-prime, its prime decomposition is a singleton
multiset {A}.

44



Chapter 6. Evaluation 45

The first of these axioms is especially concerning, as it is a much bigger statement
than the other axioms. However, work on a proof was considered impractical, as
discussed further in Section 6.2.1.

I believe the remaining axioms are true. However, little attempt has been made
to show them due to time constraints and their relative unimportance for the
main body of this work.

Progress The first few stages of the project were very productive, and I was
able to mechanise the syntax of species and concretions with few problems. How-
ever, as work continued throughout the first and second semester, there were
significant hurdles which slowed progress down dramatically.

Regrettably the second half of the project was very much dominated by working
with equivalence relations and prime species, and so I was unable to complete all
the work I had initially intended. I had planned to do some work with the Bond
Calculus [15], but as time was spent on other aspects of the project, this was not
attempted.

One interesting thing to note is that the difficulties I encountered were not where
my supervisor or I expected them to be. We thought that working with real
numbers and cπ’s vector semantics would be the most challenging. However,
they proved surprisingly straightforward, in part due to Lean’s extensive sup-
port for reasoning about monoids and modules (discussed in Section 6.2). While
working with real numbers in a theorem prover is often difficult, as they are
non-computable, we were able to avoid this problem by working with an abstract
commutative monoid instead of a concrete type.

Furthermore, the definition of cπ’s continuous semantics, as defined by [4, §2.2], is
flawed. This problem is identified and rectified within [14, §3.3.3]. However when
initially defining the semantics I had not realised this, and so implemented the
original (and unsound) version. As a result, I was unable to prove that equivalent
processes have identical semantics. This led to me identifying the same flaws that
Kwiatkowski and Stark had in 2010.

While this problem was found by hand by Kwiatkowski, I think it is still somewhat
compelling that my machine checked proof was able to identify the problem much
sooner.

Despite these problems, we were able to successfully build several cπ models
within Lean, and verify that it produced the expected ODEs. Aside from our
enzyme example (Section 2.1.1, model at Appendix B), we also translated sev-
eral simple signalling pathways from Stanely Wang’s work[16] (Appendix E, Ap-
pendix F, Appendix G)

6.2 Working with Lean
Our choice to use Lean for this project definitely influenced the progress made.
Its support for type classes and tactics, as well as the extensive standard library,



Chapter 6. Evaluation 46

significantly reduced the amount of work required to show various lemmas. How-
ever, it is not entirely clear whether Lean, or theorem provers in general, are
currently suited to tackle every task that this paper required.

6.2.1 Dependent types
Lean is a dependently typed language, and we made extensive use of this within
our mechanisation. This allows us to encode many invariants within the type
system, such as the arity of binding groups (Section 3.1) and concretions (Sec-
tion 4.1). In one sense, this was a success. However, there are times when this
can become a burden.

For instance, recall our definitions of prefix expressions (Section 3.2). Our original
implementation omitted the ‘telescope’ index, instead deriving it from the species
itself.
inductive prefix_expr (ℍ : Type) : context → Type
| communicate {} {Γ} (a : name Γ) (b : list (name Γ)) (y : ℕ)
: prefix_expr Γ

| spontaneous {} {Γ} (k : ℍ) : prefix_expr Γ

def prefix_expr.extend {Γ} : prefix_expr ℍ Γ → context → context
| (_(_ ; y)) Δ := context.extend y Δ
| (τ@_) Δ := Δ

However, one then requires a proof that a context within a prefix is the same
as that within a renamed prefix, namely π.extend Δ = (π.rename ρ).extend Δ. While
such a proof is simple, applying it while maintaining type safety becomes difficult.
Our use of telescopes sidesteps this issue, as they do not change across renames.

Secondly consider our formalisation of transitions, which is a relatively direct
translation of the original transition rules. This is a contrast to systems using
HOL, such as [17], which do not have such an intuitive inductive definition.
However, the complex definition of transitions is not without its problems.

For instance, in section Section 4.3 we try to avoid using the result of function
application within a type index, and instead introduce an additional variable
and equality. Our definition of Com-1 produces production.concretion FG, with the
additional equality FG = concretion.pseudo_apply F G, rather than the more intuitive
production.concretion (concretion.pseudo_apply F G).

This indirection is required in order to allow us to case-split on transitions. If we
have a transition A α−→ (νM)B, then in order to case split, we must introduce a
unification constraint concretion.pseudo_apply F G ~ (νM)A, which cannot be solved
by Lean.

One major problem with more complex types, such as transitions, is that Lean
takes an unreasonable amount of proof to type check some cases. For instance,
our proof that congruent species have equivalent transition setsSection 4.3.2 takes
over a minute to check, with several definitions taking 20 to 30 seconds. This



Chapter 6. Evaluation 47

poor performance is one of the reasons I did not attempt a proof to show the
function over transitions was a bijection.

6.2.2 Tactics
As mentioned in the background (Section 2.2), Lean supports tactics, in the style
of Coq or Isabelle. While we do not define our own tactics, we make heavy use
of three builtin ones; rw, simp and abel.

The first two of these tactics take proofs of equality, and apply them to the
goal. rw h takes a proposition h : a = b, and will rewrite the goal, replacing all
occurrences a with b. The tactic also accepts a list of propositions, applying each
of them in turn.

simp, is a natural extension of rw. Instead of accepting a single lemma, it searches
for any lemmas in scope with the @[simp] annotation. It then applies them repeat-
edly, until the term cannot be simplified any further. Many of our lemmas can
be dispatched with the simp tactic, or at least reduced to a goal which is easier to
manage.

One problem with the simplifier, is that it does not support commutativity lem-
mas, such as a+ b = b+ a, as this would result in a non-terminating rewrite
system. Sadly this means that the simplifier is not much use when working with
more complex arithmetic expressions, as it is unable to reorder terms. The abel

tactic is designed for this case, applying the rules of abelian groups in order to
prove an equality.

Lean’s tactic mode also supports case splitting, via the cases tactic. While this
is equivalent to pattern matching within a function definition, it allows us to
apply a tactic to every case. This can dramatically reduce the amount of work
required to show a proof. For instance, when showing that renaming of species
is injective, we case split on both input species, and then simplify and check for
contradictions on every case. This often means we only need to show one or two
goals of the remaining, rather than one for every case.
lemma rename.inj :
∀ {Γ Δ k} {ρ : name Γ → name Δ}
, function.injective ρ → function.injective (@rename ℍ ω Γ Δ k ρ)

| Γ Δ _ ρ inj nil B eq := begin
cases B;
simp only [rename.nil, rename.invoke, rename.parallel, rename.choice,

rename.restriction] at eq;
contradiction,

end



Chapter 7

Conclusion

Over the course of this project, I have built a largely complete mechanisation
of the continuous π-calculus, its semantics and generation of a process’s ODEs.
I have shown that the semantics are sound under structural congruence, and
started work on finding alternative equivalences which are easy to reason about
in a computational setting.

Several concepts from cπ, most specifically structural congruence, do not translate
well to a theorem prover. Many lemmas, which are easy to state, and are fairly
obvious are hard or infeasible to show under the rigorous requirements of Lean.

None the less, we were able to use our mechanisation to produce ODEs of several
examples, and verify that their behaviour was correct.

7.1 Future Work
While our mechanisation of cπ is mostly complete, there are still several area
where further work could be done.

The most obvious candidate is showing our remaining axioms, especially proving
that the function to map between transitions of congruent species truly is a
bijection. I do not believe the proofs for the remaining axioms would be especially
involved. However, they are most likely time consuming, due to complex nature
of structural congruence.

There is still much work which could be done with alternative equivalence rela-
tions. Firstly, it would be good to define a normalisation procedure for concre-
tions, and thus potentially show isomorphism of transition sets under n-equivalence.
Combining this with a variant of pseudo-application which sorts its arguments,
as discussed in Section 5.2, would allow us to show the semantics are sound under
n-equivalence.

An alternative avenue to explore would be to combine our normalisation proce-
dure with the auxiliary congruence, as defined in [14, Appendix A]. This relation-
ship is simpler to reason about, meaning it may be feasible to write a decision

48



Chapter 7. Conclusion 49

procedure for. However, it has the desirable property of being equivalent to
structural congruence.

While less related, it would be interesting to mechanize the closely related Bond
calculus[15]. It is not clear what techniques from my work would be applicable to
the Bond calculus, but I suspect there would be a reasonable amount of overlap.

7.2 Related Work
Much work has been done by on mechanising the π-calculus, and other derived
process calculi. However, most existing work has had very different goals to our
own.

To my knowledge, this work is the first to focus on producing an executable
semantics, rather than proving properties about the calculi.

“Proof-relevant π-calculus”[11] uses a very similar formalisation of its calculus to
this work. Using Agda, it formalises the π-calculus using a labelled transition
system. Names are defined using de Bruijn indices indexed on their context,
and as such we share several of their definitions and proofs relating to names
and renaming. They also encode transitions as an inductive data type, though
their definition is significantly simpler due to the lack of affinity networks and
concretions. However, they do not consider structural congruence, leaving that
for future work.

“A Full Formalisation of π-Calculus Theory in the Calculus of Constructions”[12]
also works with labelled transitions system. It shows that structural congruence
is a bisimulation, as well as many other classical properties of the π-calculus.

While most papers use de Bruijn indices, several [18, 19] use Isabelle’s ‘nominal’
package instead. This library provides utilities for dealing with syntax trees
involving binders, eliminating the need to write proofs relating to substitution
and renaming. It would be interesting to see if a similar package would be possible
to implement using Lean’s meta-programming capabilities.

“Multisets and Structural Congruence of the π-calculus with Replication”[20] dis-
cusses several of the same problems with structural congruence that we did in
Chapter 5. It shows that structural congruence is equivalent to multiset congru-
ence. Engelfriet and Gelsema show multiset congruence is decidable, meaning
that structural congruence also is.



Bibliography

[1] Jasmin Fisher and Thomas A. Henzinger. “Executable cell biology”. In:
Nature Biotechnology 25.11 (2007), pp. 1239–1249. issn: 1546-1696. doi:
10.1038/nbt1356. url: https://doi.org/10.1038/nbt1356.

[2] Vladimir Likić et al. “Systems Biology: The Next Frontier for Bioinfor-
matics”. In: Advances in bioinformatics 2010 (Nov. 2010), p. 268925. doi:
10.1155/2010/268925.

[3] Aviv Regev, William Silverman, and Ehud Shapiro. “Representation and
Simulation of Biochemical Processes using the π-calculus Process Algebra”.
In: Pacific Symposium on Biocomputing. Vol. 6. 2001, pp. 459–470.

[4] Marek Kwiatkowski and Ian Stark. “The Continuous �-Calculus: A Process
Algebra for Biochemical Modelling”. In: Oct. 2008, pp. 103–122. doi: 10.
1007/978-3-540-88562-7_11.

[5] Leonardo de Moura et al. “The Lean Theorem Prover (System Descrip-
tion)”. In: Automated Deduction - CADE-25. Ed. by Amy P. Felty and
Aart Middeldorp. Cham: Springer International Publishing, 2015, pp. 378–
388. isbn: 978-3-319-21401-6.

[6] Ian Stark, Marek Kwiatkowski, and Chris Banks. Exploring Variation in
Biochemical Pathways with Continuous pi. SynthSys: Synthetic and Sys-
tems Biology. June 14, 2012. url: http://homepages.inf.ed.ac.uk/stark/
evocpi-slides-sbm.pdf.

[7] Thierry Coquand and Gérard P. Huet. “The Calculus of Constructions”.
In: Inf. Comput. 76.2/3 (1988), pp. 95–120. doi: 10.1016/0890-5401(88)
90005-3. url: https://doi.org/10.1016/0890-5401(88)90005-3.

[8] Peter Dybjer. “Inductive families”. In: Formal Aspects of Computing 6 (Jan.
1994), pp. 440–465. doi: 10.1007/BF01211308.

[9] The Lean community. mathlib. url: https://github.com/leanprover-
community/mathlib.

[10] Leonardo de Moura aJeremy Avigad and Soonho Kong. Theorem Proving
in Lean. Oct. 13, 2019. url: https://leanprover.github.io/theorem_
proving_in_lean/index.html.

[11] Roly Perera and James Cheney. “Proof-relevant π-calculus”. In: CoRR abs/1604.04575
(2016). arXiv: 1604.04575. url: http://arxiv.org/abs/1604.04575.

[12] Daniel Hirschkoff. “A Full Formalisation of π-Calculus Theory in the Calcu-
lus of Constructions”. In: Theorem Proving in Higher Order Logics. Ed. by
Elsa L. Gunter and Amy Felty. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1997, pp. 153–169. isbn: 978-3-540-69526-4.

50

https://doi.org/10.1038/nbt1356
https://doi.org/10.1038/nbt1356
https://doi.org/10.1155/2010/268925
https://doi.org/10.1007/978-3-540-88562-7_11
https://doi.org/10.1007/978-3-540-88562-7_11
http://homepages.inf.ed.ac.uk/stark/evocpi-slides-sbm.pdf
http://homepages.inf.ed.ac.uk/stark/evocpi-slides-sbm.pdf
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/BF01211308
https://github.com/leanprover-community/mathlib
https://github.com/leanprover-community/mathlib
https://leanprover.github.io/theorem_proving_in_lean/index.html
https://leanprover.github.io/theorem_proving_in_lean/index.html
https://arxiv.org/abs/1604.04575
http://arxiv.org/abs/1604.04575


BIBLIOGRAPHY 51

[13] Joachim Parrow. “CHAPTER 8 - An Introduction to the π-Calculus”. In:
Handbook of Process Algebra. Ed. by J.A. Bergstra, A. Ponse, and S.A.
Smolka. Amsterdam: Elsevier Science, 2001, pp. 479–543. isbn: 978-0-444-
82830-9. doi: https://doi.org/10.1016/B978-044482830-9/50026-6. url:
http://www.sciencedirect.com/science/article/pii/B9780444828309500266.

[14] Marek Kwiatkowski. “Formal computational framework for the study of
molecular evolution”. In: (2010).

[15] Thomas Wright and Ian Stark. “The Bond-Calculus: A Process Algebra for
Complex Biological Interaction Dynamics”. In: arXiv preprint arXiv:1804.07603
(2018).

[16] Stanley Wang. “Modelling Biological Systems as Communicating Processes”.
In: (2016).

[17] Thomas F. Melham. “A Mechanized Theory of the Pi-Calculus in HOL.”
In: Nord. J. Comput. 1.1 (1994), pp. 50–76.

[18] Jesper Bengtson and Joachim Parrow. “A Completeness Proof for Bisimu-
lation in the π-calculus Using Isabelle”. In: Electronic Notes in Theoretical
Computer Science 192.1 (2007), pp. 61–75.

[19] Jesper Bengtson and Joachim Parrow. “Formalising the Pi-calculus Using
Nominal Logic”. In: arXiv preprint arXiv:0809.3960 (2008).

[20] Joost Engelfriet and Tjalling Gelsema. “Multisets and Structural Congru-
ence of the π-calculus with Replication”. In: Theoretical Computer Science
211.1-2 (1999), pp. 311–337.

https://doi.org/https://doi.org/10.1016/B978-044482830-9/50026-6
http://www.sciencedirect.com/science/article/pii/B9780444828309500266


Chapter 8

Appendices

A Unordered Pairs in Lean
Unordered pairs are surprisingly easy to represent in Lean, thanks to its imple-
mentation of quotients (see Section 2.2).

I mirror [10, §11] by defining a pair which stores two elements of the same type.
I then define a relation which states two pairs are equivalent if they have equal
elements in either order, namely (a,b) ≈ (a,b) and (a,b) ≈ (b,a). Showing that
this relation is an equivalence relation, allows us to define a setoid for pairs.
protected structure pair (α : Type*) := (fst snd : α)

protected def equiv : pair α → pair α → Prop
| ⟨ a₁, b₁ ⟩ ⟨ a₂, b₂ ⟩ := (a₁ = a₂ ∧ b₁ = b₂) ∨ (a₁ = b₂ ∧ a₂ = b₁)

instance : setoid (pair α) := setoid.mk upair.equiv /- ... -/

Using these definitions, one may then define the type of unordered pairs as the set
of pairs modulo our equivalence relation. This can be done using Lean’s quotient

type.
def upair (α : Type*) : Type* := quotient (@upair.setoid α)

protected def upair.mk (a b : α) : upair α := ⟦ ⟨ a, b ⟩ ⟧

Two unordered pairs are equal iff their underlying pairs are equivalent. This
means that upair.mk a b = upair.mk b a, as we might expect.

From the definition of unordered pairs, we can then write functions which operate
on them. For instance, given a symmetric function, one can extract a value out
of our pair.
protected def lift (f : α → α → β)
: (∀ a b, f a b = f b a) → upair α → β

| comm p := quot.lift_on p (λ p, f p.fst p.snd) (λ ⟨ a₁, b₁ ⟩ ⟨ a₂, b₂ ⟩ r, begin
rcases r with ⟨ ⟨ _ ⟩, ⟨ _ ⟩ ⟩ | ⟨ ⟨ _ ⟩, ⟨ _ ⟩ ⟩,
from rfl, from comm _ _,

end)

52



Chapter 8. Appendices 53

quot.lift_on takes the quotient to operate on, a function to apply, and a proof
that the function returns the same value for all equivalent pairs. As our function
is symmetric, this is easy to show.

B Example Enzyme System in Lean
This is the complete description of the example enzyme system (Section 2.1.1)
within Lean.

Rates of reaction (ℍ) are defined as a polynomial, with string ‘variables’. This
allows us to define the various rates (such as kbind) as variables, rather than using
concrete values.
open_locale normalise

def k_bind : ℍ := fin_poly.X "k_bind"
def k_degrade : ℍ := fin_poly.X "k_degrade"
def k_unbind : ℍ := fin_poly.X "k_unbind"
def k_react : ℍ := fin_poly.X "k_react"

def aff : affinity ℍ := affinity.mk_pair k_bind -- x, y

def M : affinity ℍ -- u, r, t
:= affinity.mk 3 0 2 k_unbind -- u - t
∘[] affinity.mk 3 1 2 k_react -- r - t

def ω : context := context.extend 0 (context.extend M.arity (context.extend 0
(context.extend 0 context.nil)))↪→

def Γ : context := context.extend aff.arity context.nil

def s : name Γ := name.zero ⟨ 0, nat.succ_pos 1 ⟩
def e : name Γ := name.zero ⟨ 1, lt_add_one 1 ⟩

@[pattern] def S : reference 0 ω := reference.zero 0
@[pattern] def E : reference M.arity ω := reference.extend $ reference.zero M.arity
@[pattern] def P₁ : reference 0 ω := reference.extend ∘ reference.extend $

reference.zero 0↪→

@[pattern] def P₂ : reference 0 ω := reference.extend ∘ reference.extend ∘
reference.extend $ reference.zero 0↪→

def x {Γ} : name (context.extend 2 Γ) := name.zero ⟨ 0, nat.succ_pos 1 ⟩
def y {Γ} : name (context.extend 2 Γ) := name.zero ⟨ 1, lt_add_one 1 ⟩

def u {Γ} : name (context.extend M.arity Γ) := name.zero ⟨ 0, nat.succ_pos 2 ⟩
def r {Γ} : name (context.extend M.arity Γ) := name.zero ⟨ 1, int.coe_nat_lt.mp

trivial ⟩↪→

def t {Γ} : name (context.extend M.arity Γ) := name.zero ⟨ 2, lt_add_one 2 ⟩

-- S = s(x, y). (x. S + y. (P|P'))
def S_ : choices ℍ ω Γ :=
s #( 2 ) •' Σ# ( whole.cons (x #) (apply S ∅)

∘ whole.cons (y #) (apply P₁ ∅ |ₛ apply P₂ ∅)
$ whole.empty )



Chapter 8. Appendices 54

-- E = ν(u, r, t : M) . e⟨u, r⟩. t. E)
def E_ : choices ℍ ω (context.extend M.arity Γ) :=
(name.extend e #⟨ [u, r] ⟩) •' (name.extend t # • ν(M) apply E (u :: r :: t :: ∅))

def P_ : choices ℍ ω Γ := τ@k_degrade •' nil

def ℓ : lookup ℍ ω Γ
| _ S := species.rename name.extend S_
| _ E := E_
| _ P₁ := species.rename name.extend P_
| _ P₂ := species.rename name.extend P_
| (nat.succ n) (reference.extend (reference.extend a))
:= by { cases a, cases a_a, cases a_a_a }

/- Various intermediates -/
def E'_ {Γ} : species ℍ ω Γ := ν(M) apply E (u :: r :: t :: ∅)
def C'_ : species ℍ ω Γ :=
ν(M) ( ( Σ# ( whole.cons (u#) (apply S ∅)

$ whole.cons (r#) (apply P₁ ∅ |ₛ apply P₂ ∅)
$ whole.empty ) )

|ₛ t# • E'_)

def ℂ : Type := fin_poly (species ℍ ω Γ) ℍ
instance : half_ring ℂ := fin_poly.half_ring _ _
instance : has_repr ℂ := fin_poly.has_repr _ _
def conc : ℍ ↪ ℂ := fin_poly.C.embed

def system : process ℂ ℍ ω Γ :=
fin_poly.X "S" ◯ (apply S ∅) |ₚ
fin_poly.X "E" ◯ E'_ |ₚ
fin_poly.X "S" ◯ C'_ |ₚ
fin_poly.X "P₁" ◯ (apply P₁ ∅) |ₚ
fin_poly.X "P₂" ◯ (apply P₂ ∅)

#eval process_immediate aff ℓ conc system

C Computing Prime Species
We define a Lean version for a classical procedure to compute primes, as given in
[14, Appendix A].

This uses a custom well-founded measure to prove termination, much like the
original proof. The proofs of have _ : depth _ < depth A scattered within the defi-
nition aid Lean in showing the function terminates.
noncomputable def do_prime_decompose {Γ} :
∀ (A : species ℍ ω Γ)
, Σ' (As : list (prime_species ℍ ω Γ))
, A ≈ parallel.from_list (list.map subtype.val As)

| A :=
if is_nil : A ≈ nil then
⟨ [], is_nil ⟩

else if has_decomp : ∃ B C, ¬ B ≈ nil ∧ ¬ C ≈ nil ∧ A ≈ (B |ₛ C) then
let B := classical.some has_decomp in



Chapter 8. Appendices 55

let C := classical.some (classical.some_spec has_decomp) in
have h : ¬B ≈ nil ∧ ¬C ≈ nil ∧ A ≈ (B |ₛ C) := classical.some_spec

(classical.some_spec has_decomp),↪→

have lB : depth B < depth A := begin
have : depth A = depth (B |ₛ C) := depth_eq h.2.2, rw this, unfold depth,
from lt_add_of_pos_right _ (nat.pos_of_ne_zero (λ x, h.2.1 (depth_nil_rev

x)))↪→

end,
have lC : depth C < depth A := begin

have : depth A = depth (B |ₛ C) := depth_eq h.2.2, rw this, unfold depth,
from lt_add_of_pos_left _ (nat.pos_of_ne_zero (λ x, h.1 (depth_nil_rev x)))

end,
let Bs := do_prime_decompose B in
let Cs := do_prime_decompose C in
suffices this : A ≈ parallel.from_list (list.map subtype.val (Bs.1 ++ Cs.1)),
from ⟨ Bs.1 ++ Cs.1, this ⟩,

calc A
≈ (B |ₛ C) : h.2.2

... ≈ (parallel.from_list (list.map subtype.val Bs.1) |ₛ parallel.from_list
(list.map subtype.val Cs.1))↪→

: trans (equiv.ξ_parallel₁ Bs.2) (equiv.ξ_parallel₂ Cs.2)
... ≈ parallel.from_list (list.map subtype.val Bs.1 ++ list.map subtype.val Cs.1)

: (parallel.from_append _ _).symm
... ≈ parallel.from_list (list.map subtype.val (Bs.1 ++ Cs.1)) : by rw

list.map_append↪→

else
suffices this : prime A, from ⟨ [ ⟨ A, this ⟩ ], refl _ ⟩,
⟨ is_nil, λ B C eq,
if nilB : B ≈ nil then or.inl nilB else
if nilC : C ≈ nil then or.inr nilC else
false.elim (has_decomp ⟨ B, C, nilB, nilC, eq ⟩) ⟩

using_well_founded {
rel_tac := λ _ _, `[exact ⟨_, measure_wf depth ⟩ ],
dec_tac := tactic.fst_dec_tac',

}

D Remaining axioms
These are the remaining axioms within our Lean code. We discuss these in more
detail in Section 6.1

Transition systems
axiom equivalent_of.map_map {Γ ℓ} {A B : species ℍ ω Γ} (h : species.equivalent A B)

{k} {α : label ℍ Γ k} (t : Σ (E : production ℍ ω Γ k), A [ℓ, α]⟶ E)
: equivalent_of.map h.symm (equivalent_of.map h t) = t

Prime decomposition for structural congruence
axiom prime_decompose_parallel {Γ} (A B : species ℍ ω Γ)
: prime_decompose (A |ₛ B)
= prime_decompose A + prime_decompose B

axiom prime_decompose_equiv {Γ} {A B : species ℍ ω Γ}
: A ≈ B



Chapter 8. Appendices 56

→ multiset.map quotient.mk (prime_decompose A)
= multiset.map quotient.mk (prime_decompose B)

Normalisation and n-equivalence
axiom drop_atom :

∀ {Γ} {sk} {k : kind' ℍ sk} {n} {A : whole ℍ ω sk (context.extend n Γ)}
(h : level.zero ∉ A)

, atom k A → atom k (drop h)

axiom normalise_to.prime {Γ} (A : species ℍ ω Γ)
: prime A → (normalise_to A).fst = [A]

Semantics This axiom shows that there is an embedding from process spaces
to processes, rather than a simple function. While we do not rely on it within
our work, I thought it would be an interesting property to show.
axiom process.from_inverse {Γ} :
function.left_inverse process.to_space' (@process.from_space ℍ ω _ ℂ _ Γ)

E Synthesis and Degradation in Lean
Synthesis and Degradation[16, §3.2.1], is a simple example of a common behaviour
within biochemical systems. A signal S promotes the generation of product R,
which happens at rate k1. R itself is produced at an ambient rate k2, and decays
at rate k2. This can translated to the following cπ system[16, §4.1], and the Lean
code given in Listing E.1.

A def
= τ@k0.(A |R)

S def
= τ@k1.(S |R)

R def
= τ@k2.0

This evaluates to (-1•(R•k₂) + 1•(S•k₁) + 1•(k₀)) • 2([]), where 2([]) refers to a
species invocation of R. This is equivalent to the differential equation dR

dt = k0+
k1S− k2R, which is correct.

F Phosphorylation and Dephosphorylation in Lean
Phosphorylation is the process of adding a phosphate group, via the signal S, to
a molecule R at rate k1, producing another molecule RP. This the decomposes
back to the original R molecule at rate k2[16, §3.2.2]. This can be translated into
cπ[16, §4.2] and then Lean, as seen in Listing F.1.



Chapter 8. Appendices 57

def k_ambient : ℍ := fin_poly.X "k₀"
def k_react : ℍ := fin_poly.X "k₁"
def k_degrade : ℍ := fin_poly.X "k₂"

def aff : affinity ℍ := ∅

@[pattern] def A : reference 0 ω := reference.zero 0
@[pattern] def S : reference 0 ω := reference.extend $ reference.zero 0
@[pattern] def R : reference 0 ω := reference.extend ∘ reference.extend $

reference.zero 0↪→

def A_ : choices ℍ ω Γ := τ@k_ambient •' (apply A ∅ |ₛ apply R ∅)
def S_ : choices ℍ ω Γ := τ@k_react •' (apply S ∅ |ₛ apply R ∅)
def R_ : choices ℍ ω Γ := τ@k_degrade •' nil

def ℓ : lookup ℍ ω Γ
| _ A := species.rename name.extend A_
| _ S := species.rename name.extend S_
| _ R := species.rename name.extend R_
| (nat.succ n) (reference.extend (reference.extend a)) := by { cases a, cases a_a }

def system : process ℂ ℍ ω Γ :=
1 ◯ (apply A ∅) |ₚ
fin_poly.X "S" ◯ (apply S ∅) |ₚ
fin_poly.X "R" ◯ (apply R ∅)

#eval process_immediate aff ℓ conc system

Listing E.1: Synthesis and Degradation in Lean.



Chapter 8. Appendices 58

def k_react : ℍ := fin_poly.X "k₁"
def k_degrade : ℍ := fin_poly.X "k₂"

def aff : affinity ℍ := affinity.mk_pair k_react

@[pattern] def R : reference 0 ω := reference.zero 0
@[pattern] def S : reference 0 ω := reference.extend $ reference.zero 0
@[pattern] def RP : reference 0 ω := reference.extend ∘ reference.extend $

reference.zero 0↪→

def a {Γ} : name (context.extend 2 Γ) := name.zero 0
def b {Γ} : name (context.extend 2 Γ) := name.zero 1

def R_ : choices ℍ ω Γ := a# •' apply RP ∅
def S_ : choices ℍ ω Γ := b# •' apply S ∅
def RP_ : choices ℍ ω Γ := τ@k_degrade •' apply R ∅

def ℓ : lookup ℍ ω Γ := λ n a, begin
cases a with _ _ _ _ _ a, from species.rename name.extend R_,
cases a with _ _ _ _ _ a, from species.rename name.extend S_,
cases a with _ _ _ _ _ a, from species.rename name.extend RP_,
cases a with _ _ _ _ _ a,

end

def system : process ℂ ℍ ω Γ :=
fin_poly.X "S" ◯ (apply S ∅) |ₚ
fin_poly.X "R" ◯ (apply R ∅) |ₚ
fin_poly.X "RP" ◯ (apply RP ∅)

#eval process_immediate aff ℓ conc system

Listing F.1: Phosphorylation in Lean.

R def
= a.RP

S def
= b.S

RP def
= τ@k2.R

This produces ODEs dRP
dt = k1S ·R− k2RP and dR

dt = k2RP− k1S ·R, as we might
expect. Wang also presents an alternative translation into cπ, as the above did not
work with original Cπ-IDE. Thankfully, our implementation behaves correctly, so
I did not require this alternative.

G Perfectly Adapted Response in Lean
This system extends the simple example of Appendix E, adding a second sig-
nalling pathway using an additional species X . A perfect adapation system has a
response element, which is independent from the initial signal S. Sudden changes
to the signal will produce a response, but after time this returns back to the
steady state.



Chapter 8. Appendices 59

The translation to cπ is more complex than the synthesis and degradation exam-
ple[16, p. 4.4]. Species R and X communicate on sites a and b, reacting at rate
k2. The signal S produces either R or X , at rates k1 and k3 respectively.

R def
= a.0

S def
= τ@k1(S |R)+ τ@k3(S |X)

X def
= τ@k40+b.X

The Lean translation (Listing G.1) produces two ODEs, dR
dt = k1S− k2X ·R and

dX
dt = k3S− k4X , which are identical to the expected behaviour.



Chapter 8. Appendices 60

def k1 : ℍ := fin_poly.X "k₁"
def k2 : ℍ := fin_poly.X "k₂"
def k3 : ℍ := fin_poly.X "k₃"
def k4 : ℍ := fin_poly.X "k₄"

def aff : affinity ℍ := affinity.mk_pair k2

@[pattern] def R : reference 0 ω := reference.zero 0
@[pattern] def S : reference 0 ω := reference.extend $ reference.zero 0
@[pattern] def X : reference 0 ω := reference.extend ∘ reference.extend $

reference.zero 0↪→

def a {Γ} : name (context.extend 2 Γ) := name.zero 0
def b {Γ} : name (context.extend 2 Γ) := name.zero 1

def R_ : choices ℍ ω Γ := a# •' nil
def S_ : choices ℍ ω Γ
:= whole.cons τ@k1 (apply S ∅ |ₛ apply R ∅)
∘ whole.cons τ@k3 (apply S ∅ |ₛ apply X ∅)
$ whole.empty

def X_ : choices ℍ ω Γ
:= whole.cons τ@k4 nil
∘ whole.cons (b#) (apply X ∅)
$ whole.empty

def ℓ : lookup ℍ ω Γ := λ n a, begin
cases a with _ _ _ _ _ a, from species.rename name.extend R_,
cases a with _ _ _ _ _ a, from species.rename name.extend S_,
cases a with _ _ _ _ _ a, from species.rename name.extend X_,
cases a with _ _ _ _ _ a,

end

def system : process ℍ ℍ ω Γ :=
fin_poly.X "S" ◯ (apply S ∅) |ₚ
fin_poly.X "R" ◯ (apply R ∅) |ₚ
fin_poly.X "X" ◯ (apply X ∅)

#eval process_immediate aff ℓ (function.embedding.refl _) system

Listing G.1: Perfectly Adapted Response in Lean.


	Introduction
	Contributions
	Overview

	Background
	Continuous π-calculus
	Example of an enzyme system

	The L∃∀N Theorem Prover

	The Continuous π-calculus
	Names
	Prefix Expressions
	Species
	Expressing our example in Lean
	Free variables and renaming
	Structural congruence
	Prime species

	Processes

	Semantics of cπ
	Concretions
	Pseudo-application

	Labels and Productions
	Transitions
	Enumerating transitions
	Transitions of structurally congruent species

	Continuous Semantics
	Vector spaces
	Interaction tensor
	Process behaviour
	Extraction of ODEs


	Alternative Equivalences
	Semantics using Alternative Equivalences
	n-Equivalence

	Evaluation
	Our Mechanisation of Continuous-π
	Working with Lean
	Dependent types
	Tactics


	Conclusion
	Future Work
	Related Work

	Appendices
	Unordered Pairs in Lean
	Example Enzyme System in Lean
	Computing Prime Species
	Remaining axioms
	Synthesis and Degradation in Lean
	Phosphorylation and Dephosphorylation in Lean
	Perfectly Adapted Response in Lean


