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Abstract
Estimating exposure-response relationships between air pollution exposure and health
effects is important for driving policies for improving environmental health. India’s
capital of Delhi is one of the most polluted areas in the world and vulnerable groups
such as asthmatic adolescents are particularly at risk of the detrimental effects of this
pollution. Existing literature investigates associations between exposure to fine partic-
ulate matter PM2.5 and poor health but does not reach conclusions of causality due to
potential confounders and unsuitable data. In this project, we use data for asthmatic
adolescents gathered in the DAPHNE study through the use of the AIRSpeck device to
measure personal PM2.5 exposure and the RESpeck device to measure respiratory rate
and activity level in order to estimate exposure-response relationships. Using statistical
methods of causal inference and causal discovery we demonstrate that PM2.5 directly
causes short-term (< 1 hour) changes in respiratory rate, adjusting for the confounders
of activity level, temperature and relative humidity. This is the first study of its kind to
demonstrate this direct dependence from observational data.
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Chapter 1

Introduction

The World Health Organisation (WHO) launched the ”Breathe Life” campaign in 2016
which asks cities across the planet to commit to achieving specific climate-related goals
by the year 2030. One of these goals is to meet the WHO recommended guideline
limit for average annual PM2.5: 10µg/m3. PM2.5 is known as fine particulate matter
and refers to particles suspended in air with diameter less than 2.5µm across (roughly
3% the diameter of a human hair). These exist naturally in the world in dust however
they are also a bi-product of sources of pollution such as vehicle exhausts, as are PM10
and PM1 which are defined similarly. Research such as [42] and [41] has shown that
long-term exposure to PM2.5 increases mortality and hospital admissions - the WHO
estimates in [35] that over 2 million people die every year due to complications caused
by breathing indoor and outdoor air pollution.

In 2017 London became the world’s first megacity to join the Breathe Life campaign
and since then many more across the globe have followed suit. Delhi however, lags far
behind. The city has infamously poor air quality with many parts of it reporting PM2.5
levels in the ”hazardous” range of > 250µg/m3. Such levels are a serious threat to
human health and Delhi is in desperate need of a push to implement aggressive strate-
gies to overcome this threat. The ongoing ”Delhi Air Pollution: Health aNd Effects”
(DAPHNE) project aims to drive such policies by providing scientific evidence of the
health effects of air pollution on vulnerable groups in the city such as pregnant mothers
and asthmatic adolescents ([48]). The project is funded jointly by the UK Medical Re-
search Council and the UK Natural Environment Research Council. A team of doctors
and scientists from both the UK and India, led by the Centre for Speckled Computing at
the University of Edinburgh, are working to estimate exposure-response relationships
which describe the immediate physiological response to PM2.5 exposure by monitoring
both air quality and respiratory rate using novel sensors developed at the Centre. These
sensors can comfortably be worn for observation periods and offer much more conve-
nient methods than current equipment used in similar studies such as nasal cannulas
([34]).

It is clear that statistical evidence of causal relationships could add to the ever growing
list of reasons to adopt better pollution-controlling policies. Knowledge of exposure-
response relationships could also lead to better prediction of asthma exacerbations trig-
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Chapter 1. Introduction 6

gered by exposure - this is important as young asthmatics are particularly susceptible
to detrimental health effects associated with air pollution exposure as shown in studies
such as [19].

1.1 Project Objectives

The aim of this project was to estimate exposure-response relationships between air
pollution exposure and changes in respiratory rate in asthmatic adolescents in Delhi
using the data gathered through the DAPHNE study. In this dissertation we employ
two methods of causal inference in time series in order to do so: Granger Causality
([29]) and the PCMCI algorithm ([15]). Granger Causality is a concept adapted from
the field of economics which asks whether one time series encodes unique and useful
information for predicting another. PCMCI is a causal discovery method which learns
causal relationships between variables in a multivariate system from data.

The DAPHNE study is in the middle of its data collection phase which began in 2018.
These data are examined in their current state and the respiratory health effects of
exposure to air pollution are explored using analytical methods. The following research
questions are posed to be answered in this dissertation:

1. Can any insights be drawn regarding trends in air quality in Delhi and associa-
tions with respiratory rate?

2. Using these insights, what statistical analysis can be carried out in order to esti-
mate exposure-response relationships from air pollution exposure to respiratory
rate changes?

3. Do such methods prove or disprove the existence of a reliable short-term respi-
ratory rate response in asthmatic adolescents to changes in PM2.5 exposure i.e. a
causal relationship?

4. If a relationship is found is it characterised by linear or non-linear dependencies?

1.2 Novel Contributions

This dissertation builds on previous work and introduces novel research by:

• being the first study of its kind to investigate a causal relationship between short-
term (< 1 hour) changes in PM2.5 and respiratory rate at the individual level.

• focusing on personal exposure by monitoring air quality levels at the most geo-
graphically precise level possible.

• examining the direct relationship between PM2.5 and respiratory rate by condi-
tioning on confounders such as activity level, temperature and relative humidity.

• estimating exposure-response relationships and how they evolve over time by
testing for effects of PM2.5 changes at a series of different delays.
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• carrying out an exhaustive search for both linear and non-linear causal relation-
ships between PM2.5 and respiratory rate using cutting-edge causal inference
methods.

1.3 Report Structure

The structure of this dissertation is as follows:

• Chapter 2 reviews similar studies to DAPHNE as well as work carried out in the
domain of estimating exposure-response relationships from observational data.
We clarify how this project builds on previous work.

• Chapter 3 explains the background of the DAPHNE study and its aims as well
as some technical basics of time series analysis used later in the report.

• Exploratory data analysis is carried out in Part I in order to understand trends
in both exposure (Chapter 4) and respiratory rate (Chapter 5) observed for asth-
matic adolescents in Delhi. This drives later decisions on data pre-processing
and statistical analysis. The extent to which the method of data collection ap-
proximates a fully random study is also discussed. This is because conclusions
of causality can only be drawn from unbiased results.

• A series of experiments are carried out in Part II to investigate exposure-response
relationships in the data. Chapter 6 explains how the data are pre-processed be-
fore these experiments.

• Chapter 7 begins with simple analysis to motivate further investigation. We use
partial dependence plots and regression analysis to look at associations between
PM2.5 and respiratory rate.

• Chapter 8 details the use of and results from tests for Granger Causality in the
data. We use both parametric and non-parametric tests to look for all possible
types of relationships and investigate the differences in results from different
subjects/trials.

• Chapter 9 uses a powerful causal discovery method called PCMCI to estimate
causal networks and model direct relationships between several variables mea-
sured in the data. It is paired with a linear and non-linear test for conditional
independence in order to carry out an exhaustive search of all causal links in the
data.

• Chapter 10 discusses the strengths and weaknesses of our approach and suggests
future directions and improvements.



Chapter 2

Related Work

2.1 Health Effects of Air Pollution Exposure

Modelling the health effects of air pollution exposure using exposure-response rela-
tionships is essential to understanding its threat and driving policies to improve envi-
ronmental health. In [23], the authors study the effects of air pollution on mortality
rates in the US by regressing mortality rate on measures of total suspended particu-
late matter, sulphur dioxide and nitrogen dioxide while controlling for several other
variables including age, sex and socio-economic status. The work found no significant
link however it also concluded that regression analysis is inappropriate when assessing
causal relationships - this contradicted many previous studies.

A decade later however the famous Harvard Six Cities Study ([13]) was published
which linked air pollution to mortality in six US cities using Cox proportional-hazards
regression modelling, a more complex non-linear model than the standard linear re-
gressions used in [23]. The theme of contradicting air pollution epidemiology results
from different studies has continued since then with conclusions usually depending
heavily on the methodology of the analysis. In [42] Schwartz reaches the same con-
clusion as the Six Cities Study and establishes a causal link between air pollution and
mortality using a Poisson regression model. He also uses a similar model to find an
association between air pollution exposure and respiratory-related hospital admissions
for the elderly in Detroit in [41].

In [28] Gamble argues that many conclusions reached in studies examining the effect
of PM2.5 exposure on mortality are spurious due to confounders such as activity level
or lung function: this is an important point as it is often impossible to account for
all potential confounders in an epidemiology study without significant domain knowl-
edge. For example in [17] the authors conclude that the relationship between short-
term exposure to PM2.5 and mortality is not causal due to confounding by temperature.
Examples like this are why randomisation across the study cohort is essential in order
to reduce bias from confounders which may not be included in the model.

Machine learning methods have also aided researchers in carrying out these statistical
analyses. In [11] the authors use target maximum likelihood estimation to establish a
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causal relationship between air pollution exposure and low birth weight. The advantage
of using a semi-parametric model like this is that fewer assumptions are made about
the underlying system. Random forests and Bayesian networks are used to evaluate the
relationship between short-term exposure to air pollution and cardiovascular-related
hospital admissions among older adults in [5]. Other studies such as [24] and [26]
report causal relationships between PM2.5 exposure and increased risk of stillbirth and
mortality. It should be noted however that the majority of these studies comment after
their conclusions that further investigation is needed to confirm the exact exposure-
response relationship being investigated. This is usually due to uncertainty in ruling
out all possible confounders in the system either through a fully randomised study or
through observation of them.

Epidemiology studies on observational data often analyse time series in order to draw
conclusions about the delay between exposure and response. For this reason many
techniques from economics research have been adapted and used. For example, both
[26] and [43] investigate the long-term effects of PM2.5 exposure on mortality using a
difference-in-difference approach and Granger Causality respectively. Such methods
are particularly applicable to the DAPHNE study as its data are large multivariate time
series. We use Granger Causality in Chapter 8.

One of the earliest studies of the effects of air pollution exposure on the health of
asthmatic patients is found in [16] where Schwartz finds a statistically significant asso-
ciation between short-term PM10 exposure and asthma-related hospital visits in Seattle.
The main drawback of this study is of course its restriction to a relation of association
from which no conclusions of causality can be inferred. The same is true of [20] where
a positive (but not significant) association between PM10 exposure and frequency of
asthma attacks is found. [20] improves on previous work by noting the problem of
averaging citywide exposure indicators when measuring air pollution - this is not an
accurate way of observing personal exposure. They instead use more geographically
precise estimates. In [19] proximity to sources of air pollution is assessed for its effect
on risk of asthma attacks in children. Among the study’s conclusions is the finding that
residence near a major source of air emissions is associated with an increased asthma
attack risk of 108%.

We improve on these studies by

• using sophisticated methods of causal inference in order to assess whether the
link between air pollution exposure and respiratory rate is causal or merely as-
sociative and/or driven by a confounder.

• carrying out multiple tests for causality for different delays in exposure in order
to better estimate the time taken for the body to respond. This is possible due to
the use of personal AIRSpeck and RESpeck monitors which are able to gather
data at regular minute intervals - previous work tends to average over longer
periods.

• measuring personal exposure at the most precise geographical level possible
through the use of the personal AIRSpeck monitor which is worn by the sub-
ject during observation periods.
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2.2 Deriving Exposure-Response Relationships

Exposure-response relationships describe the magnitude of the response of an organ-
ism as a function of exposure to a particular stimulus over time. Studying these within
the context of drug doses, pollutants and other stimulants is important in order to es-
tablish environments which can be potentially dangerous to humans. Hence, assessing
the health impacts due to any kind of environmental exposure is an important area of
research.

This will inevitably involve making statements of causality and carrying out causal
inference. In [7], [18] and [4] we find comparison and critique of various methods of
causal inference particularly within the domain of epidemiology studies like DAPHNE.
In [7] specifically Cox criticises the framework used by the United States Environ-
mental Protection Agency (US EPA) for evaluating the existence of exposure-response
relationships in studies as it is vague, relatively arbitrary and can easily be foiled with
realistic counterexamples. He instead favours a statistical approach of empirical test-
ing. Such tests can be evaluated using a variety of criteria including mutual information
(which follows the intuition that causes are informative about their effects), directed
dependence (which follows the intuition that information will flow from a cause to an
effect) and internal / external consistency among others. A larger list of criteria is given
in [6].

These criteria can be measured using many different methods. As mentioned in Sec-
tion 2.1 regression analysis cannot be used to draw conclusions of causality however it
can be used to understand potential directional associations: a useful initial step to take
before causal inference. The field of economics has provided us with causal inference
methods tailored to time series, the most well-known of these being Granger Causal-
ity. In addition, computationally intensive causal discovery methods learn a directed
acyclic graph of causal relationships from data. These methods are very new: current
literature is generally focused either on laying the theoretical groundwork for their
use or proof of correctness. For example [45] summarises the broad concepts under-
lying these methods and the direction research is moving in while [25] demonstrates
that causal discovery methods can learn the ”gold standard” of Alzheimer’s Disease
knowledge from observational data. We employ all three of these techniques in Part
II.



Chapter 3

Background

3.1 The DAPHNE Study

The DAPHNE study is a consortium of doctors and scientists from institutions both
in the United Kingdom and India to study the effects of air pollution in Delhi on the
health of pregnant mothers and their newborn children (MC cohort) as well as asth-
matic adolescents (AP cohort). This dissertation is limited to the latter group.

This is done by monitoring both the personal exposure and respiratory rate of partici-
pants using sensors developed at the Centre for Speckled Computing at the University
of Edinburgh.

3.1.1 The AIRSpeck Sensor

Air pollution data are gathered through the AIRSpeck sensor which comes in two
variants: stationary and personal. These are shown in Figures 3.1 and 3.2. Both use
an optical particle counter to monitor concentrations of PM1, PM2.5 and PM10 as well
as temperature and relative humidity. The stationary sensor reports observations at
5 minute intervals while the personal sensor does so every minute. These are time
stamped and tagged with GPS location, resulting in a spatiotemporal time series of
regular air quality measurements ([2]).

11



Chapter 3. Background 12

Figure 3.1: The stationary AIRSpeck sensor uses a solar panel for power and can be
affixed to common street furniture such as a pole or lamp post as shown.

(a) The sensor placed on a table. (b) The sensor is worn on the belt as
shown during observation periods.

Figure 3.2: The Personal AIRSpeck monitor used to measure exposure to polluted air
in the DAPHNE study.

3.1.2 The RESpeck Sensor

Respiratory rate is monitored with the RESpeck device. Measuring 4.5 x 3.7 x 1.3cm
and weighing only 17 grams this small lightweight sensor contains a tri-axial ac-



Chapter 3. Background 13

celerometer which can be used to calculate a respiratory rate signal. The method of
calculation and validation against a nasal cannula are provided in [3]. The sensor can
be worn on the skin and secured with medical tape as shown in Figure 3.3. When worn
as shown below the ribs on the left side of the chest it can measure both respiratory
rate as well as activity level due to close proximity to the centre of mass of the human
body, as explained in [14].

(a) The RESpeck device placed be-
side a 50p coin.

(b) The RESpeck device is worn on
the skin and secured with medical
tape for respiratory rate and activity
level monitoring.

Figure 3.3: The RESpeck device used to measure respiratory rate in the DAPHNE
study.

The combined use of personal AIRSpeck and RESpeck sensors allows for continuous
monitoring of air pollution intake and the resulting effect on respiratory rate ([1]).

3.1.3 Aims

The principle aim of the DAPHNE study is to estimate exposure-response relationships
of exposure to air pollution and health effects, particularly in vulnerable groups such as
asthmatic adolescents. Gaining a better understanding of these relationships can help
provide advice both on a personal level and policy-wide level on how best to mitigate
the detrimental effects of exposure.

The DAPHNE project began in 2016 and is funded to continue until 2021. Over this 5
year period, 240 asthmatic adolescents are expected to take part in the study; each will
complete three 48 hours observation periods (trials) during which their exposure to air
pollution and respiratory rate are observed using the AIRSpeck and RESpeck sensors.
Trials from the same subject are scheduled to take place during different seasons. At
the time of writing, data from 125 subjects (183 individual trials) has been collected
for the AP cohort; the earliest trial was conducted in September 2018 and the latest in
February 2020. Hereafter trials are referred to by their ID which follows the format:
DAP[subject number]([trial number]) e.g. DAP001(1) is subject 001’s first trial.

Details of data collection are found in Part I.
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3.2 Time Series Analysis

In Part II the DAPHNE data are analysed using statistical methods of causal infer-
ence developed for use with time series data. We now define some of the standard
terminology used.

3.2.1 Definitions

• Time Series: A time series X = (X1, . . . ,Xn) is a sequence of real values taken
at successive equally spaced intervals in time from t = 1 to t = n.

• Lag: Given a time series X and an observation xi, the observation p intervals
back xi−p is called the p-th lag of xi.

• Stochastic Process: A stochastic process is a family of indexed random vari-
ables defined on the same probability space. It is common to consider a time
series a realisation of a stochastic process.

• White Noise: A white noise process is an uncorrelated stochastic process with
zero mean and finite variance. If each variable in the process follows a normal
distribution we can refer to it as Gaussian white noise.

3.2.2 Stationarity

Stationarity is an important property which deserves careful explanation as it is often
a requirement for time series analysis. Indeed the Granger Causality tests used in
Chapter 8 require stationary data and this must be tested for.

Stationarity is essentially the idea that the statistical properties of a process generating
a time series do not change over time. Formally, a stochastic process X is said to be
stationary if for any finite sub-sequence {Xs : s ∈ S} the joint distributions of XS and a
time-shifted sequence XS+p are the same. In practice this is impossible to verify how-
ever a weaker similar property is often all that is needed for statistical tests. This is
referred to as weak stationarity; it requires that the process have constant mean and that
the covariance of any two observations only depends on the absolute distance (in time)
between them. Hereafter stationarity will mean weak stationarity when used with-
out comment 1. Figure 3.4, taken from [55], illustrates some of the clear differences
between plots of stationary and non-stationary processes.

It is common to pre-process a time series by removing trend and seasonality in order
to obtain stationary data. We do so in Chapter 6. Establishing whether it is necessary
to do so requires a test for stationarity - many of which have been developed. These
tests offer a more rigorous approach than just inspecting a plot of the series. Most are
parametric: certain assumptions are made about the data generating stochastic process
which allow us to test for properties which should hold should the process be station-
ary. Many have also been implemented in popular data-processing languages such as
Python or R.

1It should be noted that the original definition of stationarity does not imply weak stationarity, nor
does the converse hold.
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Figure 3.4: Stationary and non-stationary processes

In Section 8.1 we carry out VAR-based tests for Granger Causality which require us
to test for (and obtain if necessary) stationary data. The Augmented Dickey-Fuller test
([56]) was developed for this exact purpose: it assumes an autoregressive model and
tests for a unit root - the existence of which would imply non-stationarity. This test has
a convenient implementation in the Python statsmodels package ([54]).

Section 8.2 continues by exploring tests for non-linear Granger Causality. Ideally an
appropriate non-parametric test for stationarity should be paired with such analysis
however the reality is more complicated. To our knowledge, no applicable test exists
as current research has only achieved tests for specific types of data or processes. For
example [32] proposes a test applicable to univariate time-homogenous Markov pro-
cesses and [21] suggests a test for zero-mean discrete time random processes based on
local Fourier analysis. None of these tests offer implementations either, hence (unfor-
tunately) non-linear stationarity is assumed without proof in this section.



Part I

Exploratory Data Analysis
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Chapter 4

The AIRSpeck Data

Air pollution data for the DAPHNE study is collected through the use of stationary
and personal AIRSpeck sensors: these obtain geographically precise measurements
of exposure at minute intervals. Figure 4.1 plots the PM2.5 concentration for trial
DAP001(2) as measured by their personal AIRSpeck monitor.

Figure 4.1: An example of PM2.5 levels observed for one trial using the personal AIR-
Speck.

The AIRSpeck sensor gathers information on the local air quality. Table 4.1 lists the
different features of its reported data.

Table 4.1: Explanation of features measured by AIRSpeck sensors.

Feature Explanation
Timestamp UTC timestamp of current observation.
PM1 Particulate matter with diameter < 1µm (µg/m3).
PM2.5 Particulate matter with diameter < 2.5µm (µg/m3).
PM10 Particulate matter with diameter < 10µm (µg/m3).
Temperature Temperature of surrounding air (◦C).
Relative Humidity % moisture in air after adjusting for temperature.
Latitude GPS latitude coordinates.
Longitude GPS longitude coordinates.

17



Chapter 4. The AIRSpeck Data 18

Due to GPS location tagging on personal AIRSpecks, it is possible to paint a picture
of the air quality at different locations in Delhi at different points in time as shown
in Figure 4.2. This helps to provide an accurate measurement of personal exposure.
In addition, at least two stationary AIRSpeck sensors are set up to gather more infor-
mation during each trial: one inside the subject’s house and another set up outdoors
near their school. In some cases a third stationary AIRSpeck is set up in the subject’s
local community. Figure 4.3 shows the various locations of these static monitors. It is
important that the subjects live in different communities across Delhi - this increased
randomisation helps to avoid spurious results which can arise due to specific trends in
exposure in certain parts of the city. We ensure the same distribution across all subjects
and account for local variations in personal exposure to air pollution by standardising
all data. This is necessary as some subjects may be more used to higher levels of
PM2.5 exposure than others - we wish to examine the health effects of exposure at
the individual level so we must standardise to make results between different subjects
comparable. This is explained further in Chapter 6.

Figure 4.2: All personal AIRSpeck data collected at the time of this project. Observa-
tions are colour-coded to illustrate the variance in air pollution exposure, with darker
points signifying higher levels of PM2.5.

Part II examines the relationship between changes in PM2.5 measured by the personal
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Figure 4.3: All stationary AIRSpeck data collected at the time of this project. This
includes indoor sensors in the home and outdoor sensors at schools and in local com-
munities. Darker observations signify higher levels of exposure.

AIRSpeck monitors and respiratory rate, in order to focus on personal exposure.

The distribution of PM2.5 levels measured by personal AIRSpecks across all 183 tri-
als is shown in Figure 4.4. The plot peaks close to the lower end of its range: high
spikes in PM2.5 are generally rare as they occur only in specific situations e.g. prox-
imity to a source of great pollution such as a large industrial factory. A WHO study
conducted in 2013 reported the average PM2.5 levels in Delhi to be 153µg/m3. This
is higher than the mean of the DAPHNE data which sits around 100µg/m3, with the
peak of the distribution at an even lower value of roughly 45µg/m3. This discrepancy
can be explained by considering the nature of the data collected. All subjects are ado-
lescents and will therefore spend most of their day in school, returning home in the
evening. These indoor environments will shield them from the polluted outdoor air
reducing their overall exposure. Additionally, a Centre for Science and Environment
(CSE) study recently found that yearly average pollution levels in Delhi have been de-
creasing, indicating that the WHO-reported average of 153µg/m3 is likely outdated.
Nonetheless this distribution highlights that Delhi is still an extremely polluted city;
recall that the WHO guideline for healthy annual PM2.5 levels is 10µg/m3.
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Figure 4.4: Distribution of PM2.5 observations measured by personal AIRSpeck sensors
across all 183 trials. The plot includes a Gaussian kernel density estimate (line).

By the end of the DAPHNE study each subject will have taken part in a total of three
trials which must take place during different seasons of the year. This is done to mit-
igate the effects of seasonal trends in exposure which are very apparent in the data as
shown in Figure 4.5. This plots the varying distribution of PM2.5 (recorded on personal
AIRSpeck sensors) over the months of the calendar year. For Delhi, this can be divided
into five seasons. The months of December and January are considered winter. The
period from February to March is spring. Summer continues from April to June. The
monsoon season follows from July to September. Finally we consider the months of
October to November as the ”burning” season as this roughly coincides with the period
during which farmers burn their stubble after harvest, which undoubtedly has an effect
on local air quality.

Figure 4.5 shows that the air quality is generally poorer during the colder months from
November to February: the average PM2.5 level is at its highest and distribution is
at its flattest. This is partly due to the burning of biomass during the burning season
however it is further driven by a meteorological phenomenon known as an inversion
layer. Consider the rising of warm air in summer - this naturally carries away pollutants
from the Earth’s surface. During colder months (and at night on a smaller timescale)
cooler air closer to the ground becomes trapped underneath a layer of warmer air above
which acts as a lid. Pollutants produced also become trapped and continue to mix with
the air. The problem is exaggerated due to increased emissions in colder months for
reasons such as heating. These strong seasonal trends in the data have the potential to
bias statistical results should all trials be carried out during the same time of year.

As mentioned, inversion layers can also be observed at night. Figure 4.6 shows the
change in distribution of PM2.5 levels over the course of the 24 hours of the day as
measured only by outdoor stationary AIRSpecks. PM2.5 values are noticeably lower
and less varied during the afternoon i.e. the warmest part of the day. During the night
an inversion layer traps cold air along with airborne particulates close to the Earth’s
surface1.

The effects of the nightly decrease in air quality are mitigated to an extent by staying
indoors. Figure 4.7 plots the change in PM2.5 per hour as measured by indoor station-

1This is why citizens of large polluted cities are often advised against early morning walks or exercise
as this is when their potential exposure to air pollution is at its highest.
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Figure 4.5: The changing distribution of PM2.5 over the calendar year as measured by
personal AIRSpecks. There is a clear trend of higher exposure and variability during
colder months. It should be noted that no trials have been completed during the month
of May.

ary AIRSpecks. Here a peak both in trend and variability is observed around 9am - this
coincides roughly with the time when the house may have more particulate matter due
to cooking of meals. It may also be the case that traffic-related pollution increases and
enters the home through open windows or doors. A second smaller peak is observed
around 12 hours later which again could be caused by analogous reasons or particu-
late matter generated due to the heating of the house as it gets colder towards the night.
Levels are generally lower during the daytime when it is warmer. These plots highlight
that personal exposure to PM2.5 can vary considerably over the course of the day de-
pending on the environment the subject is in. For this reason each trial in the DAPHNE
study is conducted over a 48 hour period in order to provide more comparable results
across different subjects through increased randomisation of exposure.
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Figure 4.6: The changing distribution of PM2.5 over the 24 hours of the day as recorded
by outdoor stationary AIRSpecks.

Figure 4.7: The changing distribution of PM2.5 over the 24 hours of the day as recorded
by indoor stationary AIRSpecks.



Chapter 5

The RESpeck Data

The respiratory rate of asthmatic adolescents is observed in the DAPHNE study using
the RESpeck sensor, also at minute intervals. Figure 5.1 shows the respiratory rate
observations for trial DAP088(1) over the full period.

Figure 5.1: An example of respiratory rate observations for one trial.

Respiratory rate is not the only quantity observed by the RESpeck sensor. Table 5.1
lists the different features measured through the use of this device1.

Eupnea is defined informally as ”normal” breathing or breathing at rest. While the
exact figures vary depending on the source it is generally agreed that eupnea for a
teenager or young adult human should be around 12-20 breaths per minute. However
Figure 5.2, which plots the distribution of observed respiratory rate values across all

1For an explanation of activity level measurement see [14].

Table 5.1: Explanation of features measured by RESpeck sensors.

Feature Explanation
Timestamp UTC timestamp of current observation.
Respiratory Rate Minute-averaged breathing rate.
Respiratory Rate: ST.D. Standard deviation of breathing rate.
Activity Level Measurement of activity on a continuous scale.
Activity Type Discrete activity types inc. sitting/lying/walking/etc.
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trials from all subjects, disagrees with this range - eupnea for this cohort seems to be
between 15 and 25 breaths per minute. This higher average respiratory rate cannot be
attributed to asthma: while research such as [22] indicates that respiratory rate does
increase in naturally occurring acute asthma the consensus is that resting breathing
rate should still sit within the range of 12-20 bpm ([49]). The other commonality
between all subjects is their location in Delhi, one of the most polluted cities in the
world. It is possible that living in such conditions has caused a natural increase in their
resting respiratory rate however to our knowledge no research has been carried out to
investigate this.

Figure 5.2: Distribution of respiratory rate observations measured on RESpeck sensors
across all 183 trials. The plot includes a Gaussian kernel density estimate (line).

Figure 5.3 plots the distribution of recorded respiratory rate for a random subset of
50 subjects in the cohort. It shows clear and significant differences between subjects
which are likely driven by a variety of factors such as age, sex, weight, lung function
and general health. Aside from the commonality in adolescence and asthma, the cohort
is randomised across all these dimensions. However this analysis indicates that ”nor-
mal” breathing rate differs at the subject-level and this dictates the level at which any
statistical analysis must take place i.e. exposure-response relationships (should they
exist) should be estimated for each subject or possibly even each individual trial.

Figure 5.3: Distribution of respiratory rate observations for random subset of subjects
(N=50).

Working at the subject/trial level means working with multiple smaller datasets as
opposed to one large dataset. When using methods which learn from or fit to data the
sample size must be large enough to allow the method to generalise well to new unseen
data. Figure 5.4 shows the total number of minutes of respiratory rate observations for
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the same subset of subjects. While some variations in the plot are due to the asymmetry
in number of trials completed, it is also the case that many timestamps are missing.
This problem, its potential consequences and a partial solution are discussed in Chapter
6.

Figure 5.4: Number of minutes of observed respiratory rate values for the same subset
of subjects shown in Figure 5.3.

Activity level is suggested as a potential confounder in air pollution epidemiology stud-
ies in [28]. The RESpeck sensor can be used to measure this and also classify between
different types of activity e.g. lying/sitting/standing. Figure 5.5 plots both respiratory
rate and activity level for trial DAP026(1) - we see a clear association between the two
which is also seen in all other trials. The periods of lowest activity are during the night
when the subject is lying down and sleeping - respiratory rate during these hours is also
clearly lower both in trend and volatility. During the day when the subject is awake and
more active their respiratory rate becomes more varied and generally higher. In Chap-
ter 4 it is noted that the trend of PM2.5 increases at night due to an inversion layer in the
atmosphere. Therefore, since activity level is so closely associated with time of day, it
has a common association with both PM2.5 and respiratory rate and must be accounted
for when carrying out statistical analysis. This is done via local standardisation, further
explained in Chapter 6.

Figure 5.5: Respiratory rate (blue) and activity level (red/green) over the course of one
trial. Green activity level corresponds to periods during which the classified activity type
was ”lying down”; red is otherwise. An association in trend between activity level/type
and respiratory rate is observed.



Part II

Experiments and Results

26



Chapter 6

Data Pre-Processing

This dissertation aims to thoroughly examine the DAPHNE data for the existence of a
causal relationship between PM2.5 and respiratory rate. Partial dependence plots and
regression analysis motivate further investigation. Then techniques of causal inference
are employed: in particular the concept of Granger Causality which asks whether one
time series is useful in forecasting another. Standard VAR-based models and para-
metric tests investigate a possible linear relationship between the variables, while non-
parametric methods which impose fewer restrictions can uncover more complex re-
lationships. Both types of relationship may exist, hence both types of test should be
used. Finally cutting edge causal discovery methods are used to learn causal networks
from the data as these show much promise when it comes to identifying direct causal
relationships and controlling for false-positives. Statistical tests find significant causal
relationships (p < 0.05) between lags of PM2.5 and respiratory rate.

Before carrying out such analysis however, the data must be cleaned and pre-processed.

6.1 Calibration

The use of multiple AIRSpeck sensors to collect data on PM1, PM2.5 and PM10 data
can be problematic. Experimental error due to small differences between sensors is
controlled for by calibrating all sensors against a reference. This is done by testing
them before the study in a controlled environment such as a laboratory and comparing
the recorded data. Calibration factors can then be determined for each sensor in order
to calibrate its data by linear scaling - previous work at the Centre for Speckled Com-
puting at the University of Edinburgh has shown this can be done as long as the relative
humidity is below 80%. If this is not the case a more complex calibration method is
required - this is achieved through the use of a trained neural network. In order to
ensure accurate results in this project, AIRSpeck sensor data are calibrated before any
further cleaning, pre-processing or analysis is completed.
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6.2 Anomalous Observations

Anomaly detection in observational data is a difficult task: determining whether an
extreme value is an error or just a surprise is important as there is no need to correct
for values which are already correct. However there are some clearly unrealistic obser-
vations in the data - an example is shown in Figure 6.1 which plots personal exposure
to PM2.5 for trial DAP120(1) and shows a massive spike observed towards the end of
the trial. Ambient PM2.5 exposure does not reach heights of 28000µg/m3. When the
spike is ignored, PM2.5 values fall within a more realistic range as shown in Figure 6.2.

Figure 6.1: PM2.5 observations with a massive spike

Figure 6.2: PM2.5 observations ignoring the massive spike

A common technique used when dealing with observational data in statistics is called
winsorizing. This is a method of anomaly removal by limiting or clipping extreme
values in the data. For the DAPHNE data, a 90% winsorization is carried out: all
values below the 5th percentile are set to the 5th percentile and similarly all values
above the 95th percentile are set to the 95th percentile for features which have clear
anomalies like PM2.5. This is done on a per trial basis due to the large differences
observed in data distributions between subjects noted in Chapter 5.

6.3 Interpolation

As is often the case when it comes to observational data, many trials are incomplete
with missing values. Causes include subjects removing their wearable RESpeck at
night as seen in Figure 6.3, a sensor running out of battery power or even a sensor
malfunction. In addition, RESpeck recordings during periods of high activity level are
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dropped due to high inaccuracy in respiratory rate calculation. These problems are
inevitable but the handling of them is a crucially important task. We opt to interpolate
as much data as possible without significant loss of information.

Figure 6.3: Respiratory rate observations in this trial clearly indicate the subject re-
moved their RESpeck sensor during the night.

Interpolation must be carried out very carefully in order to avoid creating artificial
unrealistic results. Intuitively, interpolating power decreases the further into the future
we extrapolate i.e. for data observed at minute intervals, a gap of five minutes can
be imputed with greater accuracy than a gap of five hours. Hence it is logical to set
a threshold of time above which it no longer makes sense to impute missing values
due to large error. This threshold is tuned for both RESpeck and AIRSpeck data using
Algorithm 1.

Algorithm 1: Interpolation Threshold Tuning
input : max interpolate = maximum gap of missing data over which to

interpolate
output: Mean absolute percentage error of interpolation at this threshold

1 num iterations >> 1;
2 good trials = subset of trials with minimal missing data (e.g. < 10% missing

data);
3 data = data belonging to good trials;
4 for i← 1 to num iterations do
5 randomly remove chunks of data up to size max interpolate;
6 interpolate all gaps up to size max interpolate;
7 calculate mean absolute percentage error from original data;

8 calculate average mean absolute percentage error;
9 return average mean absolute percentage error;

Figure 6.4 plots the results of running Algorithm 1 using a linear interpolation method
for respiratory rate values recorded on RESpeck devices for thresholds from 1 to 60
minutes, while Figure 6.5 plots the same for AIRSpeck PM2.5 observations. A refer-
ence line is added to both plots at a percentage error of 0.1%, which is chosen as the
cutoff. The plots determine that the largest gaps over which RESpeck and AIRSpeck
data can be interpolated accurately are 8 minutes and 14 minutes respectively. This ex-
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Figure 6.4: Percentage error of interpolation of RESpeck values

Figure 6.5: Percentage error of interpolation of AIRSpeck values

periment was repeated using linear, cubic spline and quadratic interpolation methods
with linear interpolation performing best at all thresholds.

6.4 Standardising

Chapter 5 finds a strong association between respiratory rate and activity level during
a given trial. Specifically, both the trend and volatility of a subject’s respiratory rate
reduce during periods of low activity e.g. at night while sleeping indoors. A correlation
between personal exposure to PM2.5 and time of day is also observed in Chapter 4: an
increase in exposure in the morning is attributed to factors such as cooking in the house
and traffic-related pollution. During the night, outdoor PM2.5 levels increase due to an
inversion layer. Such hourly patterns in both sets of data must be removed before
performing any further statistical analysis as they can lead to biased results. This can
be done by estimating local trend and volatility and standardising the data. The residual
data would encode no information about activity level or time of day, leaving only other
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drivers of respiratory rate and PM2.5, with a possible causal relationship between the
two.

The process of standardising a series of respiratory rate observations for an example
trial (DAP022(2)) is now outlined. Standardising PM2.5 data or any other series of data
collected for a given trial is analogous1.

Figure 6.6 plots observed respiratory rate for the trial. Variations in both trend and
volatility over the change of day to night are clearly visible: around the hours of 23:30
to 05:30 on the first day of the trial and again around similar times on the second day
there is a lower trend in respiratory rate as well as a lower variance in values (this can
be identified by the plotted points appearing more bunched).

Figure 6.6: Respiratory rate observations for an example trial.

6.4.1 Local Trend Estimation

One of the simplest ways of estimating varying trend is through a moving average:
for each observation x, a mean x̂ is calculated as the average of the k nearest (in time)
observations for some k. For the DAPHNE data, a moving average which weights all
observations within a given window equally seems an oversimplification; a subject’s
respiratory rate should be closer in value to their respiratory rate in the next minute as
opposed to the next five minutes. A moving average can be thought of as a simple type
of local regression - one with a rectangular kernel. Some of the more standard types
of local regression offer better ways of smoothing data and estimating trend.

Locally estimated scatterplot smoothing (LOESS) and locally weighted scatterplot
smoothing (LOWESS) are two common and closely related local or moving regres-
sion techniques. This describes a family of non-parametric methods which combine
standard regression with a nearest-neighbour approach in order to obtained smoothed
series of data. LOESS is first discussed in [40] and has since been applied widely in
the context of scatterplots. However it offers an elegant and relatively simple method
for local trend estimation in time series. It is particularly applicable to settings with
relatively sparse or noisy data, or settings in which traditional regression methods will
fail.

1Analysis is carried out at the trial level therefore calculations for standardisation are made at the
trial level.
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Local regression fits a series of polynomials over windowed slices of a time series
creating a smoothed fit of the data. The fitting at any given point x is weighted towards
the data nearer to x. The size of window and degree of polynomial chosen introduce
a standard bias-variance trade-off and hence must be selected carefully depending on
the context. In addition it should be noted that the use of this technique assumes the
local mean of a given observation can be estimated using polynomial regression, and
that the estimation errors are white noise.

Python’s statsmodels package offers an implementation of LOESS which can be fit
to time series data. Figure 6.7 plots an estimated trend using a window size of 30
minutes and standard linear fits. The weighting function used in this implementation
is a tricube function applied to the absolute distance between points - this is the same
weighting function used in [40]. The differing trends from day to night are even more
apparent in this plot and they can now be adjusted for by subtracting them from the
original values. The adjusted respiratory rate values, now with zero mean, are shown
in Figure 6.8.

Figure 6.7: Respiratory rate estimated trend for trial DAP022(2) using LOESS

Figure 6.8: Trend-adjusted respiratory rate values for trial DAP022(2)

6.4.2 Volatility Estimation

The data in Figure 6.8 are stationary in mean but not in variance - the bunching of
observations is still apparent during the hours of the night. Volatility is estimated by
taking the standard deviation over a moving window - the chosen window size is 30
minutes in order to match the calculation of trend. The estimation of local volatility
for trial DAP022(2) is shown in Figure 6.9. The final residual values are obtained from
the adjusted series after dividing by volatility, these are shown in Figure 6.10.
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Figure 6.9: Estimated volatility of respiratory rate for trial DAP022(2)

Figure 6.10: Standardised respiratory rate for trial DAP022(2)

To summarise, for each observation x local trend x̂ and volatility σ̂x are estimated. A
residual x̃ is obtained by calculating x̃ = x−x̂

σ̂x
.

Recall Figure 5.3 which plots the widely varying distributions in respiratory rate for a
random subset of 50 trials. Figure 6.11 repeats the plot for a different random subset
who have all been standardised as explained. Notice now that the distributions are all
roughly the same - this makes future results comparable between subjects.

Figure 6.11: Distribution of respiratory rate observations for random subset of subjects
(N=50) after local standardisation of trials.

6.5 Remaining Missing Data

In Section 6.3 gaps in RESpeck data of length up to 8 minutes are interpolated. For
AIRSpeck data gaps of length up to 14 minutes are interpolated. Larger gaps in the data
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do still exist as observed in Figure 6.3. Many implementations of statistical methods
and tests do not offer masking of missing values and instead tend to drop them when
executing. This is not appropriate for estimating exposure-response relationships as
these depend on the absolute difference in time between observations - the lag. Drop-
ping gaps in the data could lead to spurious results as an algorithm would interpret the
observations on either side of the gap as occurring consecutively.

Remaining missing values are instead filled with the mean of the series. The standard-
ised data has constant mean 0, hence missing values are filled with 0 value observa-
tions. While this solution is not ideal it will result in less potential for incorrect causal
links to be identified than simply dropping the gaps altogether. Ideally, future trials
should be carried out with extra care taken to obtain data without large gaps. Alter-
natively, more sophisticated methods of imputing the data could be explored, such as
the use of recurrent neural networks for time series prediction, in order to increase the
maximum gap over which missing values can be predicted.



Chapter 7

Initial Experiments

7.1 Partial Dependence Plots

The United States Environmental Protection Agency uses a qualitative and categorical
system to evaluate causal relationships determined from observational data. This is
criticised in [7] which instead favours treating such relationships as quantitative and
continuous. In particular the use of partial dependence plots (PDP’s) calculated from
conditional probability tables is suggested as a much better alternative. These are used
within the context of trained regression models and show how each predictor variable
individually affects the model’s predictions. In this sense they can be interpreted in the
same way that the coefficients of a linear or logistic regression model are interpreted
- showing how a change of one unit in a predictor variable results in a change of c in
the prediction. A PDP plots this change in the prediction as a function of the change
in the predictor. The calculation also marginalises over other predictor variables in
the model - in this sense it isolates the effect of changing one variable. Existence
of exposure-response relationships can be inferred from these plots by looking for an
upward (or downward) trend. This section uses PDP’s to investigate the effect of a
change in personal PM2.5 exposure on observed respiratory rate.

The data from all 183 trials are first pre-processed as described in Chapter 6, however,
instead of filling large gaps with the mean these are dropped. This is because in the
supervised learning problem each input-output pair is treated as a separate observation
from the population being studied, hence the distance (in time) between different ob-
servations is not relevant and can be ignored. Any suitable regression model can be
used - a gradient boosting machine is selected for this experiment to regress respiratory
rate on PM2.5, temperature and relative humidity. The latter two features are added to
the model so they can be conditioned on when plotting the PDP as they are potential
confounders. The model is trained on the entire dataset of 183 trials - while each sub-
ject is likely to respond differently to PM2.5 exposure it is useful to first examine the
overall effect of variations - this also increases the sample size for the model.

It may be that a change in PM2.5 does not cause a change in respiratory rate immedi-
ately: there is a delay in the response. In order to observe how the underlying exposure-
response relationship evolves over time a series of models can be trained which regress
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respiratory rate on different lags (time shifted series) of the predictor variables. We
train models and plot PDP’s to investigate the immediate effect of changes in PM2.5 as
well as the delayed effect after 15, 30 and 60 minutes.

(a) Immediate response. (b) Response after 15 minutes.

(c) Response after 30 minutes. (d) Response after 60 minutes.

Figure 7.1: Partial dependence plots illustrating the response in predicted respiratory rate as a
function of the change in PM2.5 after different delays.

Figure 7.1 shows the 4 partial dependence plots illustrating the change in predicted
respiratory rate as a function of change in PM2.5 immediately and after periods of 15,
30 and 60 minutes (adjusted for temperature and humidity as well as activity level
due to standardisation). The plots indicate that increases in PM2.5 cause increases in
respiratory rate and that the magnitude of the response is greater after a longer delay
as the gradient of each plot in the interval 1.0-1.5 increases as the lag length increases.
This suggests that on average, a large increase in PM2.5 will cause an increase in a
subject’s respiratory rate and that this response will be most noticeable after a period
of at least 1 hour.

While these results are clear evidence of exposure-response relationships between
PM2.5 and respiratory rate, further analysis is required to model these relationships
accurately. Partial dependence plots are always produced in the context of a particular
model which can only provide an approximation to the system being studied. In addi-
tion, the plots in Figure 7.1 are produced from a model trained on the entire dataset of
183 trials hence they only indicate a typical or average response to changes in PM2.5.
It is likely that at the subject level (and possibly even the individual trial level) the
underlying exposure-response relationships will differ greatly.
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7.2 Regression

The idea that PM2.5 observations encode some information useful for predicting respi-
ratory rate is not a notion of causality unless this information is unique. It is however a
stronger idea than correlation alone which is symmetric: if X is correlated with Y then
the converse is also true whereas the establishment that X is useful for predicting Y
is a directional relationship (closer to causality). In this sense regression analysis can
support the hypothesis of an exposure-response relationship existing.

Regression analysis can be carried out on the time series data from the DAPHNE study
as follows: a model is constructed which regresses current respiratory rate observations
on lagged observations. A second model is then constructed which adds lagged obser-
vations of personal PM2.5 exposure to the input. If the second model improves on the
performance of the first it is likely that PM2.5 encodes useful information for predicting
respiratory rate.

One of the simplest models used when describing stochastic processes is the autore-
gressive model. Given a time series X this assumes the current observation of X de-
pends linearly on its own previous values and on one error term. An order p autore-
gressive process AR(p) is defined

Xt = c+
p

∑
i=1

ϕiXt−i + εt

where c is a constant, ϕ1, . . . ,ϕp are the parameters of the model and εt is a white noise
term.

Notice that the parameters of the AR(p) model can be fit using standard linear re-
gression making it an appropriate choice. This dissertation investigates the short-term
effect of changes in PM2.5 on respiratory rate and therefore we choose a relatively short
lag period: p = 60 minutes.

An autoregressive process is a univariate case of the more general vector autoregressive
(VAR) model which describes a multivariate time series dataset as a linear function of
its previous observations. A VAR(p) process with k variables is defined
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of the model and εi,t are white noise.
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A VAR(60) process is used to describe observations of respiratory rate as a linear
function of lagged observations of both itself and PM2.5.[
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where xt are respiratory rate values and yt are PM2.5 values. Again the parameters of
this model can easily be fit using linear regression.

In practice any regression model could be used to evaluate the predictive power of
PM2.5. We use the following 3 models in our analysis:

• Lasso Regression: Linear regression models are prone to overfitting and poor
generalisation. This manifests in needlessly large coefficients. L1 regularisation
is a technique to avoid this by adding the absolute coefficient values to the error
metric of the model (weighted by a free parameter) in order to restrict their mag-
nitude and thereby reduce overfitting. Use of L1 regularisation is called lasso
regression.

• Elastic Net Regression: L2 regularisation is similar to L1 in that it adds the
squared coefficients to the error metric of the regression model. An elastic net
combines both L1 and L2 regularisation.

• Decision Tree Regression: A decision tree used for regression seeks to break
the training dataset down into smaller and smaller subsets in order to reduce
the overall standard deviation of each subset. It is able to model a non-linear
function unlike lasso regression and elastic net regression.

All models are implemented using Python’s scikit-learn library ([53]). Using multiple
models for this analysis helps to overcome individual limitations of any one particular
model. For example both lasso regressors and elastic nets are unable to model non-
linear associations unlike decision trees. The analysis is performed for each trial i.e.
the two models, univariate and bivariate, are trained and evaluated for each trial. The
results of the analysis are shown in Figure 7.2.

The results are identical for both lasso regression and elastic net regression while there
are only a few instances of agreement with decision trees. There are large variations
between trials highlighting the idea that no one exposure-response relationship will be
able to describe every subject perfectly. It is now even more clear that investigating
both linear and non-linear dependencies is a worthwhile endeavour as it may be that
one exists but not the other. There are several trials for which none of the models
improved in performance after the added input of PM2.5. These should not be discarded
as it is still possible that a very weak association between exposure and respiratory rate
exists: one which is lost in the abstractions of the models used.
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Figure 7.2: The results of the regression analysis explained in Section 7.2. The three
models used are lasso regression (lasso), elastic net regression (en) and decision tree
regression (cart). Green indicates an improvement in predictive performance using the
bivariate model as opposed to the univariate model while red indicates a reduction in
performance. The performance metric used is mean squared error.



Chapter 8

Granger Causality

Consider the following idea: suppose we assess our ability to predict a stochastic pro-
cess Y given all the information in the universe. If we then construct a modified uni-
verse which excludes a stochastic process X and find our predictive power reduced,
then we can conclude that X encodes some unique information about Y . This is the
definition of Granger Causality as it is outlined in [29]. In the above example it is
said that X Granger causes Y . Granger himself notes the impractical nature of having
access to all the information in the universe, which is instead replaced by a set of ob-
served values of both processes. It is then said that X Granger causes Y with respect to
X although the latter phrase is usually omitted in literature, as is done hereafter.

Granger Causality has already been employed as a method of determining causal rela-
tionships in similar studies relating to air pollution. In [31] a standard parametric test
for Granger Causality is used to establish a bidirectional causal relationship between
the air quality in the cities of Beijing and Tianjin i.e. that pollution in neighbouring
cities provably spreads. In [12] a GARCH model is used to describe influenza data in
Taiwan, with a modified Granger Causality test based on this model finding that adult
and elderly groups are strongly affected by increased PM2.5 exposure.

8.1 Linear Granger Causality

8.1.1 The Experiment

Classical statistical methods of causal inference in time series data use parametric tests
for Granger Causality, many of which have been implemented in data-processing lan-
guages like Python and R.

In particular, VAR-based tests assume a linear model for the data and look for lin-
ear relationships between the variables. A time series of respiratory rate values X is
modelled as an AR(p) process:

Xt = c+
p

∑
i=1

ϕiXt−i + εt

40
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This is referred to as the restricted model as it assumes respiratory rate only depends
on past values of itself. The second model, referred to as the unrestricted model, is a
VAR(p) process given by

Xt = c+
p

∑
i=1

αiXt−i +
p

∑
i=1

βiYt−i + εt

where in addition to respiratory rate X , personal PM2.5 exposure Y is included. That
is, the unrestricted model assumes dependence on past values of PM2.5 as well as res-
piratory rate. The null hypothesis of the Granger Causality test is that the unrestricted
model does not improve the predictive power of the restricted model (with rejection
implying Y Granger causes X)→ H0: ∀i,βi = 0.

Under H0 the Wald test statistic as calculated in [33] (7.6.3) asymptotically follows a χ2

distribution, hence a standard χ2 test of exclusion restrictions is suggested for Granger
Causality. Unfortunately in practice the asymptotic distribution of the test statistic is
often a poor approximation to the actual distribution due to small sample size, so an
F-statistic is preferred (this can easily be calculated by dividing the Wald test statistic
by its degrees of freedom - given by the lag length p). Python’s statsmodels library
provides an implementation of this exact test.

Tests for Granger Causality usually require stationary data (for the VAR-based test
used here this is because the Wald test statistic only follows its usual asymptotic χ2

distribution for stationary data). The DAPHNE data are pre-processed in order to be
stationary in mean and variance using the methods described in Chapter 6. Stationarity
is then verified through the Augmented Dickey-Fuller test: for a description of this test
and further comments on stationarity refer to Section 3.2.2.

A linear relationship between observed respiratory rate values (measured by the RE-
Speck device) and observed exposure to PM2.5 levels (measured by the personal AIR-
Speck monitor) is tested for. A p-value is then calculated and checked for a rejection
of H0 at the 95% significance level. The test is carried out for each of the 183 trials and
repeated for a series of increasing lag lengths p up to 1 hour - we choose 1, 5, 10, 15,
30, 45 and 60 minutes. The intuition behind this is that a rejected null hypothesis at a
30 minute lag versus a failure to reject at shorter lags suggests a delay of half an hour
between exposure and response. Knowledge of such a delay can be useful in predicting
potential asthma exacerbations. The results are shown in Figure 8.2 with a full table of
p-values in Appendix A.

8.1.2 Results

Of the total 183 trials, 86 were found to show Granger Causality from PM2.5 to respi-
ratory rate at one or more of the lag lengths evaluated. This means 97 trials showed
no evidence of Granger Causality. This is a large proportion of the data and there are
many possible reasons for these results. Intuitively, it seems highly likely that both
the restricted and unrestricted models used for this test are far too simple. When in-
vestigating complex systems in the real world it is usually inevitable that restricting
assumptions will be made, however it is more reasonable to assume that relationships



Chapter 8. Granger Causality 42

between PM2.5 and respiratory rate changes would be non-linear. It is also possible
that some of the sample sizes of individual trials are too small - many are missing large
chunks of data (as shown in Chapter 5) and while some of it has been imputed accu-
rately, large gaps have to be filled with the mean (0) in order to carry out the test. This
causes loss of information and can consequently lead to vague results.

Trials such as DAP120(1) and DAP073(2) find evidence of Granger Causality at all
lag lengths tested. In fact there are 10 trials in total for which this is the case. Perhaps
these subjects are particularly sensitive in their condition: showing signs of the effects
of changes in PM2.5 straight away with these effects lasting a long time. It would be
beneficial to compare the general health of these 10 subjects and look for signs of poor
respiratory condition as this would further support the results found here.

The test failed to report some or all p-values for a few trials such as DAP055(1) and
DAP102(2). In the former case it was found that the ADF test failed to reject the null
hypothesis of non-stationarity, meaning the test could not be carried out. In the latter,
the implementation of the Granger Causality test failed to produce a result.

There is evidence of exposure-response relationships in trials such as DAP068(1),
DAP041(1) an DAP028(1). Each shows a different kind of relationship:

• DAP068(1): The p-values of the results of this trial are significant at lag lengths
of 15, 30, 45 an 60 minutes. This suggests a delay between exposure and re-
sponse during this trial of about 15 minutes.

• DAP041(1): The p-values for this trial are significant at lag lengths of 5, 10,
15 and 30 minutes. This not only suggests that the delay between exposure and
response during this trial for this subject is shorter than DAP068(1) (only around
5 minutes), it also suggests that the effects of exposure wear off over time and
by 45 minutes after exposure the subject has returned to their regular pattern of
breathing.

• DAP028(1): The data for this trial shows one significant p-value when testing
with a 1 minute lag length. This interesting result suggests that the subject feels
the effects of exposure almost immediately but these effects also diminish just
as quickly.

The above three examples illustrate the differences in response to PM2.5 exposure be-
tween subjects. However we do see consistency between trials of the same subject.
Figure 8.1 illustrates similar p-values observed in different trials from the same sub-
ject, indicating a consistency in their response to PM2.5 exposure regardless of the time
of year - this also indicates some consistency in health. A difference in results between
trials of the same subject would not be too surprising however. Since different trials are
sometimes months apart it is possible that the condition of a particular subject could
either improve or deteriorate in that time.

While the VAR-based test for Granger Causality has produced valuable results it cer-
tainly still has its limitations. As already pointed out, the linear model assumed for
the data is very restrictive and likely a poor fit. The experiment could be improved by
using a test which is able to uncover non-linear relationships between the variables in
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Figure 8.1: Consistent exposure-response relationships for different trials by the same
subject. Each column represents a Granger test at a different lag length (in minutes)
and the value obtained is a p-value for Granger Causality. Significant p-values (p <
0.05) are coloured green, p-values between 0.05 and 0.1 are coloured yellow and p-
values > 0.1 are coloured red.

the data. In addition, this test is unable to account for confounders: potential variables
which drive changes in both PM2.5 and respiratory rate. The results would be more
reliable if a multivariate approach was taken in order to condition on confounders. The
first of these issues is tackled in Section 8.2 and the second in Section 9.3.
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Figure 8.2: The results of the VAR-based tests for linear Granger Causality. Each trial
is evaluated at lag lengths of 1, 5, 10, 15, 30, 45 and 60 minutes and a p-value for
Granger Causality is obtained. Significant p-values (p < 0.05) are coloured green, p-
values between 0.05 and 0.2 are coloured yellow and p-values > 0.2 are coloured red.
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8.2 Non-Linear Granger Causality

8.2.1 The Experiment

In Section 8.1 the data are modelled by a VAR(p) process with linear relationships
between the variables - this is a very strong assumption especially when modelling
complex systems in the real world through observational data. The Granger Causality
test used is unable to detect some non-linear relationships should they exist. Consider
the following example model:

Xt = αXt−1Yt−1 + εt

where X and Y are i.i.d stochastic processes, ε is white noise and α is a parameter.
The parametric test used in Section 8.1 would incorrectly fail to identify causality as
all autocorrelations and cross-correlations are zero. Examples like this have motivated
research into non-parametric tests for Granger Causality which can identify non-linear
causal relationships.

General Granger Causality (sometimes referred to as non-linear Granger Causality) is
expressed as a test for conditional independence. Formally, a time series X is said to
Granger cause a time series Y if, for some p≥ 1

P(Xt+1|Xt , . . . ,Xt−p,Yt , . . . ,Yt−p) 6= P(Xt+1|Xt , . . . ,Xt−p)

Increased availability of greater computational power has made the task of testing this
condition easier over the years with many methods being developed and implemented.
The Hiemstra-Jones test, first applied in [30], is one of the most popular ones.

However in [8] the authors Diks and Panchenko illustrate how the test is unreliable.
The relationship tested in the Hiemstra-Jones method is not actually implied by the null
hypothesis of general Granger Causality, which can lead to the rejection rate tending
to one at large sample sizes i.e. an increased chance of a type 1 statistical error. In
[9], a modified test for non-linear Granger Causality is proposed and shown to be more
stable.

The Diks-Panchenko test works as follows: we wish to investigate the existence of
a causal relationship between two stochastic processes X and Y . As before we aim
to do this by looking at the information held in lags of X and lags of Y since we
cannot condition on the infinite past of the processes. Let X p

t = (Xt , . . . ,Xt−p+1) and
Y q

t = (Yt , . . . ,Yt−q+1). The null hypothesis is that information from Y does not help in
predicting X , which can be expressed as

H0 : P
(
Xt+1|X p

t ,Y
q

t
)
= P

(
Xt+1|X p

t
)

which, on the condition that X and Y are stationary, is a statement about the invariant
distribution of the (p+ q+ 1)-dimensional vector (X p

t ,Y
q

t ,Yt+1). The null hypothesis
describes conditional independence of the elements of this vector, therefore the joint
probability density function fX p

t ,Y
q

t ,Yt+1

(
xp

t ,y
q
t ,yt+1

)
and its marginals must satisfy

fX p
t ,Y

q
t ,Yt+1

(
xp

t ,y
q
t ,yt+1

)
fY q

t

(
yq

t
) =

fX p
t ,Y

q
t

(
xp

t ,y
q
t
)

fY q
t

(
yq

t
) fY q

t ,Yt+1

(
yq

t ,yt+1
)

fY q
t

(
yq

t
)
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for each realisation of
(
xp

t ,y
q
t ,yt+1

)
. For the sake of clarity let us drop the indices and

let Z = Yt+1 so we can re-write the above as

fX ,Y,Z(x,y,z)
fY (y)

=
fX ,Y (x,y)

fY (y)
fY,Z(y,z)

fY (y)

In [9] it is shown that H0 implies

qg ≡ E
[(

fX ,Y,Z(X ,Y,Z)
fY (Y )

−
fX ,Y (X ,Y ) fY,Z(Y,Z)

fY (Y )

)
g(X ,Y,Z)

]
= 0

where g(X ,Y,Z) is a positive weight function. The authors choose g(x,y,z) = f 2
Y (y)

and derive an estimator for qg:

Tn(ε) =
(n−1)

n(n−2)∑
i

(
f̂X ,Y,Z (Xi,Yi,Zi) f̂Y (Yi)− f̂X ,Y (Xi,Yi) f̂Y,Z (Yi,Zi)

)
where

f̂W (Wi) =
(2ε)−dW

n−1 ∑
j, j 6=i

IWi j

for W = (X ,Y,Z) and indicator function IWi j = I
(∥∥Wi−Wj

∥∥< ε
)
.

The bandwidth parameter ε is chosen such that it tends to zero at a rate proportional
to the sample size; this causes the estimator to be consistent and avoids the problems
of over-rejection which can occur with the Hiemstra-Jones test. For a sample size n
the authors suggest εn = max

(
Cn−2/7,1.5

)
for a specific constant C which can be

approximated by fitting two ARCH models to the series (in the bivariate case, for
which [9] tackles) and averaging their respective coefficients (α1).

Diks and Panchenko validate their test to prove its robust nature, making it a powerful
tool for investigating non-linear Granger Causality. An implementation in C can be
obtained from the authors on request and is used to investigate the existence of a non-
linear causal relationship between changes in personal PM2.5 exposure and changes in
respiratory rate.

The main advantage of using a non-parametric test for causality is the ability to avoid
making restricting assumptions on a particular model of our data. However, this test
does have some issues which must be addressed before interpreting any results. At
the time of writing, the C implementation can only be applied to a bivariate system
meaning it is unable to account for common drivers of both PM2.5 and respiratory
rate. A rejection of the null hypothesis through this test can still be considered strong
evidence for causality, but further analysis would be required before arriving at any
definite conclusions. In addition, [9] notes in its evaluation of the test that the results
are progressively conservative for increasing lag lengths. While not ideal, this is still
preferable to rejections under the null hypothesis particularly within our domain.

The Diks-Panchenko test requires stationary time series. As mentioned in Section
3.2.2, while some non-parametric tests for stationarity do exist in literature they cover
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a narrow range of situations and are not implemented. Hence non-linear stationarity is
assumed here without proof.

The experiment in Section 8.1 is modified to apply the Diks-Panchenko test. Each
of the 183 trials is tested for evidence of non-linear Granger Causality from PM2.5
exposure to respiratory rate changes using the Diks-Panchenko test at 7 different lag
lengths of 1, 5, 10, 15, 30, 45 and 60 minutes in order to uncover an exposure-response
relationship. A p-value for each individual test is calculated and checked for a rejection
of the null hypothesis of no causal relationship at the 95% significance level. The
results are shown in Figure 8.3 with a full table of p-values in Appendix B.

8.2.2 Results

The Diks-Panchenko test has produced similar results to the VAR-based test used in
Section 8.1. There are variations between subjects which indicate different sensitivity
to PM2.5 exposure and hence different exposure-response relationships. The differ-
ences between the two sets of results are now analysed.

The non-parametric test has highlighted new previously unidentified causal relation-
ships. Specifically, 130 of the 183 trials have evidence to support the hypothesis of
PM2.5 Granger causing respiratory rate while the VAR-based test found such evidence
in only 86 trials. This does still mean however that in 53 trials no evidence of a causal
relationship was found. Note that it may well be that such relationships do exist but
they are too weak for the test to identify them.

During 50 trials, tests for at least 6 of the 7 lag lengths chosen rejected the null hypoth-
esis and concluded that PM2.5 Granger causes respiratory rate, with 26 of these trials
doing so at all 7 lag lengths of 1, 5, 10, 15, 30, 45 and 60 minutes. This is a large
increase when compared with the figures from Section 8.1 and it shows the increased
power of the non-linear test. In fact a total of 358 new causal relationships were found
across all trials and all lag lengths. Trials such as DAP119(1) are particularly interest-
ing as we now see evidence of Granger Causality at all lag lengths when previously
none had been found whatsoever. This is an indication that while no linear relationship
between PM2.5 and respiratory rate exists for the data in this trial, a strong non-linear
relationship does exist and has been identified.

The results for trials such as DAP005(1), DAP024(1) and DAP001(2) among others
highlight something peculiar when compared to their counterpart figures in Section
8.1: the Diks-Panchenko test has failed to identify some causal relationships which
were identified by the linear test. It is difficult to pinpoint the exact reason for this as
there are multiple possibilities. One is that the relationship itself is linear and weak
i.e. a narrow domain in which the previous approach may be more suited. This seems
unlikely as there is no evidence to suggest that the Diks-Panchenko test lacks power
in identifying linear relationships as a consequence of its increased generality. A more
plausible reason for these changes is the conservative nature of the test under some
conditions, first observed in [9]. One of its most attractive properties is that it controls
for over-rejection of the null hypothesis; as a consequence it may sometimes under-
reject at large sample sizes and large lag lengths. On inspection the vast majority of
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instances where the test has failed to identify a linear relationship already discovered
all occur at lag lengths beyond 30 minutes.

This experiment has helped to expand on the results of Section 8.1 to uncover a series
of non-linear causal relationships between PM2.5 and respiratory rate changes for the
set of trials. However a key issue already brought up has not been dealt with: the
potential for confounders to affect the test. Unfortunately the Diks-Panchenko test has
only been implemented in the bivariate case - in Chapter 9 we make use of cutting-edge
causal discovery methods which condition on potential confounders to uncover direct
causal relationships.
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Figure 8.3: The results of the Diks-Panchenko tests for non-linear Granger Causality.
Each trial is evaluated at lag lengths of 1, 5, 10, 15, 30, 45 and 60 minutes and a p-value
for Granger Causality is obtained. Significant p-values (p < 0.05) are coloured green,
p-values between 0.05 and 0.2 are coloured yellow and p-values > 0.2 are coloured
red.



Chapter 9

Causal Discovery and
Exposure-Response Relationships

The state of the art in causal inference leverages the advantages of access to big data
and substantial computing power. PCMCI is a relatively new technique which achieves
this goal. It is grounded in the paradigm of graphical causal models and causal discov-
ery. In this chapter PCMCI is used to estimate exposure-response relationships from
personal PM2.5 exposure to respiratory rate.

9.1 Causal Networks

Graphical causal models construct a causal network: a directed acyclic graph (DAG)
of all variables in a system at all time lags with edges indicating causal relationships
between them. By nature they have no ambiguity between direct or indirect causal
links - a useful tool when studying multivariate systems.

Consider a time series dataset of N = 4 variables X = {X1,X2,X3,X4}. Figure 9.1
shows a possible causal network for the system underlying these data up to a maximum
lag length of τmax = 3. There are multiple direct causal links which can be identified.
Highlighted are:

• X1
t−2 and X2

t−2 directly cause Xt−1 (red).

• X2
t−2, X3

t−1 and X4
t−3 directly cause X3

t (blue).

Given a variable X i
t in a causal network, the direct predecessors of that variable are

referred to as causal parents, with the set of all causal parents denoted P
(
X i

t
)
. Suppose

an epidemiology study is investigating the effect of changes in a variable X2 on another
variable X1. The subset of P

(
X1

t
)

of lags of X2 could be used to model an exposure-
response relationship.

50
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Figure 9.1: A section of an example causal network.

9.2 Causal Discovery

Specific tests for causality including Granger Causality tests are vulnerable to con-
firmation bias. Causal discovery overcomes this problem by following a different
approach: the data are inspected ”at face value” and methods are employed to seek
and identify any and all causal relationships in the underlying system. Many of these
methods are also optimised for use with high-dimensional data - one of the issues with
the experiments in Chapter 8 is that the tests are limited to bivariate systems (Granger
Causality tests can quickly lose power at high dimensions - the curse of dimensional-
ity). Examining multivariate systems with bivariate tests causes spurious results due to
confounders.

The aim of causal discovery is to estimate all causal parents of each variable in a sys-
tem from data: to estimate a causal network. This is non-trivial as the search space
of possible DAGs is exponential in the number of variables, however it is usually rea-
sonable to assume a sparse graph and this has led to the development of estimation
methods which follow one of two paths:

• Initialise an empty causal network and recursively add edges.

• Initialise a fully connected undirected network and recursively remove edges.

The latter is the path taken in [44] where the authors Peter Spirtes and Clark Glymour
propose the PC algorithm for DAG estimation which runs in polynomial time if the
DAG to be estimated is sparse (exponential time in the worst case). Edges of the (ini-
tially) fully connected network are removed using a test for conditional independence
- the reason for this is elaborated in Section 9.3. This test is left unspecified meaning
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the algorithm can be used to search for both linear and non-linear dependencies by
choosing one appropriately. A modified PC algorithm is used in PCMCI.

Before formally introducing PCMCI however, it is important to outline the necessary
assumptions of causal discovery. [37] formally defines these assumptions along with
examples to illustrate how they can be violated.

The first (and strongest) assumption of causal discovery is that of Causal Sufficiency.
This requires that all common drivers (all variables which can cause two or more other
variables in the system) are observed. In reality it is often difficult to account for every
possible common driver without significant domain knowledge. In the context of the
DAPHNE data, the AIRSpeck device records temperature and humidity, both of which
are potential common drivers of PM2.5 and respiratory rate. Therefore we include them
in the system. This assumption also influences the maximum lag length evaluated and
the sampling frequency of observations - this is discussed further in Section 10.2.

The second assumption is the Causal Markov Condition which requires that separa-
tion in a causal network implies independence (or the contrapositive that dependence
implies an edge). This intuitively means that given the causal parents of a variable,
all other information in the system is irrelevant for prediction. To meet this condition
we assume that the internal conditions within the body which drive respiratory rate are
encoded in recent past observations of it, while external drivers are measured (PM2.5,
temperature, humidity).

The Faithfulness assumption is the reverse implication of the Causal Markov Condi-
tion: conditional independence (a causal relationship) in the system implies an edge in
the causal network. Together they imply that the causal network describes any and all
causal relationships in the system.

Stationarity is a requirement for all time series data when applying causal discovery
methods. Stationarity is discussed in Section 3.2.2 however it must be reiterated that
non-parametric tests at the time of writing this dissertation are still narrow and lack im-
plementations; they therefore cannot be carried out and stationarity is assumed without
proof.

Causal discovery methods such as PCMCI can pair with any test for conditional inde-
pendence. The test chosen may assume further qualities of the data e.g. only linear
dependencies. The should be taken into account.

9.3 PCMCI

PCMCI is a causal discovery method which scales well with large multivariate time
series and has strong false-positive control. Due to its use of the PC algorithm it can
be used to estimate both linear and non-linear causal relationships. This is done by
iterative testing for conditional independence. To see why, recall the practical defini-
tion of Granger Causality (Chapter 8): to say that X Granger causes Y means that past
values of X contain unique information for predicting Y which is not contained in past
values of Y alone. This is closely related to the more general concept of transfer en-
tropy which measures the directed transfer of information between two processes i.e.
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the reduced uncertainty in predicting Y given its past and the past of X . Formally,

TX→Y = H (Yt |Yt−1:t−p)−H (Yt |Yt−1:t−p,Xt−1:t−p)

Where TX→Y denotes the transfer entropy from X to Y , Yt denotes the current observa-
tion of Y , Yt−1:t−p and Xt−1:t−p are the respective histories of Y and X up to lag p and
H is Shannon’s entropy (a measure of information). Transfer entropy is also written as
conditional mutual information (CMI):

TX→Y = I (Yt ;Xt−1:t−p|Yt−1:t−p)

Testing for causality is therefore testing whether the CMI above is nonzero. On inspec-
tion of the definition of CMI we see how this is equivalent to testing for conditional
independence.

I(X ;Y |Z) =
∫∫∫

P(x,y,z) log
P(x,y|z)

P(x|z) ·P(y|z)
dxdydx = 0

⇐⇒ P(x,y|z) = P(x|z) ·P(y|z) ∀x, y, z
⇐⇒ X ⊥ Y |Z

With this understanding in place we can now formally define a causal relationship
in a causal network. A causal links exists from variables X i

t−p → X j
t if they are not

conditionally independent given the past of the whole system X. Note that instead of
conditioning on the past of the entire process, conditioning on the set P (X j

t )\{X i
t−p}

would be sufficient due to the Causal Markov Condition.

9.3.1 The Method

PCMCI is a two-stage process. The first stage (the PC stage) is a Markov set discovery
algorithm used to estimate a superset of the causal parents of every variable in the
system through a modified version of the PC algorithm. The pseudocode is given
in Algorithm 2 with a brief explanation below. For more detailed pseudocode and a
complete description refer to [15].

The intuitions motivating Algorithm 2 are as follows:

• The algorithm begins by initialising a superset of all possible causal parents of
X i

t .

• The outer loop repeats for all possible subset sizes of P̂
(
X i

t
)
. Note that |P̂

(
X i

t
)
|=

N· max lag.

• PCMCI is fast because it sorts P̂
(
X i

t
)

based on the chosen statistic and only tests
the q parents with strongest dependency instead of every possible subset S with
|S | = q. The test itself is for conditional independence - if the null hypothesis
cannot be rejected at an appropriate significance level the link can be removed
from P̂

(
X i

t
)
.

• In this sense the algorithm recursively removes links it is confident enough to
remove in order to obtain the superset P̂

(
X i

t
)

of the causal parents of X i
t .
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Algorithm 2: PCMCI: First Stage
The data are considered a time series dataset X =

(
X1,X2, . . . ,XN) of N vari-

ables.
input : variable X i

t to evaluate, maximum lag length max lag, conditional
independence test function

output: superset of causal parents of X i
t , P̂

(
X i

t
)

1 P̂
(
X i

t
)
= {Xt−1,Xt−2, . . . ,Xt−max lag};

2 for q← 0 to |P̂
(
X i

t
)
| do

3 sort P̂
(
X i

t
)

based on chosen test statistic;
4 S = first q parents in P̂

(
X i

t
)

based on sorting;
5 for X j

t−k ∈ P̂
(
X i

t
)

do
6 test H0 : X j

t−k 6⊥ X i
t |S ;

7 if H0 is not rejected then
8 P̂

(
X i

t
)
= P̂

(
X i

t
)
\{X j

t−k};

9 return P̂
(
X i

t
)
;

Algorithm 2 is repeated for every variable X i
t ∈ Xt .

In the second stage each remaining link is tested for momentary conditional indepen-
dence (MCI). This is an extension of the standard test for conditional independence
which conditions on the causal parents of both variables in the link. That is, for a link
X i

t−p→ X j
t the MCI test is

X i
t−p ⊥ X j

t |P̂
(

X j
t

)
\{X i

t−p}, P̂
(
X i

t−p
)
.

The additional conditioning controls for highly autocorrelated data and leads to much
lower false-positive rates than other commonly used causal discovery methods. The
significance of each link can finally be assessed from the p-values of this test.

PCMCI is used to uncover causal relationships in the multivariate system of respira-
tory rate, PM2.5, temperature and humidity for a subset of 59 of the original 183 trials.
This is done to reduce time taken running experiments as the method, while faster
than other causal discovery methods, is computationally expensive. The 59 trials are
chosen based on missing data - these are trials for which less than 40% of observa-
tions across all 4 observed time series are missing. The existence of both linear and
non-linear dependencies is investigated using two different tests for conditional inde-
pendence. The method (and tests) are implemented using the open-source Tigramite
([52]) Python package maintained by Runge himself. The data are pre-processed using
the techniques described in Chapter 6.

For linear dependencies the test for conditional independency X ⊥ Y |Z is carried out
using partial correlation. This is done by fitting two multivariate regression models
to predict both X and Y given Z. The correlation of the residuals is then evaluated,
with test assuming these residuals are approximately normally distributed. All linear



Chapter 9. Causal Discovery and Exposure-Response Relationships 55

dependencies up to a maximum lag length of 60 minutes are evaluated. In addition,
Tigramite offers methods for ignoring missing data and masking certain observations.
This is used to repeat the test for each trial at the maximum lag length possible while
ignoring all missing data and masking to isolate instances of increases in PM2.5 from
one minute to the next.

The test used for non-linear dependencies is a fully non-parametric test based on con-
ditional mutual information (recall that conditional independence implies this is zero).
The test is fully described in [38] and briefly explained here. The following estimator
for conditional mutual information is used:

Î(X ;Y |Z) = ψ(k)+
1
n

n

∑
i=1

[
ψ(kz

i )−ψ(kxz
i )−ψ

(
kyz

i
)]

where ψ is the Digamma function ψ(x) = d
dx lnΓ(x), n is the sample length and k is

a parameter specifying the number of nearest neighbours of each sample to be taken
from the joint sample space. The main advantage of this nearest-neighbour estimator
approach is that it can capture almost any non-linear dependency - in this sense the test
is fully non-parametric. Note however that three separate nearest-neighbour calcula-
tions have to be carried out for each sample. This drastically increases runtime to an
infeasible time-frame so the causal network is instead approximated using only lags
at lengths 1, 5, 10, 15, 30, 45 and 60 minutes (matching the lag lengths used in the
Granger Causality tests in Chapter 8).

9.3.2 Results

To reiterate, linear dependencies from PM2.5 to respiratory rate for the subset of 59 tri-
als are investigated using PCMCI with a partial correlation test - the results are shown
in Figure 9.4. For a full table of p-values see Appendix C. A total of only 186 signifi-
cant causal links are found across all trials, meaning each trial has an average of about
three. PCMCI is a powerful method with strong false-positive control, especially when
compared to other tests for linear dependencies such as the VAR-based test for Granger
Causality. With this in mind 186 causal links is a significant result as it is evidence that
the exposure-response relationships have linear components. In fact, there are only
two trials for which the method finds no linear dependencies whatsoever: DAP014(2)
and DAP056(3).

Figure 9.2 is a histogram of the number of linear causal relationships found at each
lag length (across all 59 trials). It approximates the distribution of causal relationships
with any peaks giving an indication of lag lengths for which a link is commonly found.
There is a clear peak around 15-25 minutes which shows that the typical delay between
exposure and response is quite short. There is a hint of a second smaller peak around
the 45 minute mark however this is difficult to verify without repeating the experiment
on a larger dataset. If this were to exist it might suggest that the body’s typical response
to exposure occurs in waves which may corresponding to the level of penetration of
the particulate matter into the respiratory system.

These results can be compared with those of Section 8.1 for the VAR-based test for
Granger Causality. It is clear that the results of PCMCI are much more conservative in
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Figure 9.2: Number of occurrences of causal links at each lag length across all trials
tested

their identification of causal links and this can be attributed to two main reasons. It is
likely that some of the evidence of Granger Causality found in Section 8.1 is incorrect
due to confounders such as temperature and humidity. The Granger test is applied
to the bivariate case whereas PCMCI works with multivariate systems, conditioning
direct links between PM2.5 and respiratory rate on the other variables. It is also possible
that false-positives due to strong autocorrelations in the variables occur in the results
from Section 8.1. The MCI stage of PCMCI controls for this and therefore the new
results are more trustworthy.

Many time series in the DAPHNE data have large gaps, sometimes hours long due to
subjects removing their sensors during the night (Section 6.5). The significant pro-
portion of missing data is problematic as most implementations of statistical tests and
methods for causal inference are unable to deal with gaps. Due to this we opt to inter-
polate as much missing data as possible. After local standardisation to zero mean and
unit variance, imputation of any remaining gaps simply uses the mean. While this is
a partial solution it results in loss of information and in cases where most of the data
are missing, potentially spurious results. The Tigramite library is able to consistently
handle missing values. It does this by dismissing all time slices where missing values
occur while still dealing with time lags correctly. Of course, this causes a reduction in
sample size which scales with increasingly sparse data and in some cases can restrict
the maximum lag length used in the test. We repeat the use of PCMCI assuming linear
dependencies for each of the 59 trials, running the algorithm for the largest possible
lag length which can be used without inaccuracy due to lack of samples.

Tigramite offers another powerful function: masking of values. This can be used to in-
clude or exclude samples depending on some conditions, for example when analysing
yearly climate data it is possible to focus on the causal parents of a target variable
only in winter months. In the context of the DAPHNE data, while we wish to investi-
gate exposure-response relationships from PM2.5 exposure to respiratory rate changes
it would be useful to isolate the effect of increases in PM2.5. This is done by marking
all PM2.5 observations which are an increase from the previous minute.

We carry out a modified experiment to examine linear dependencies from increases
in PM2.5 to respiratory rate, ignoring missing data. The results are shown in Figure
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9.5 with a table of p-values also in Appendix C. The p-values differ from the previous
experiment due to the examination of a different causal relationship (the effect of in-
creases in PM2.5 on respiratory rate). Adjusting for the number of samples available
in each trial when testing at a particular lag length, a new distribution of causal links is
plotted in Figure 9.3. Small sample size results in this distribution covering only half
the range of Figure 9.2 however the results are still interesting. There are two clear
peaks; one around 5 minutes which tapers off gently and another steeper peak around
25-30 minutes. This shows that increases in PM2.5 usually cause a very quick response
in respiratory rate (within 5 minutes) followed by another response after a longer pe-
riod of time (around 30 minutes), possibly after the particulate matter has had time to
enter deeper into the body1.

Figure 9.3: Distribution of linear causal links across all lag lengths and all trials

PCMCI is also used to investigate non-linear causal relationships in the data. This is
done with a fully non-parametric test which uses a nearest-neighbour-based estimator
for conditional mutual information and is therefore able to capture almost any type
of dependency. The results are shown in Figure 9.6 with a full table of p-values in
Appendix D. This test is considerably more computationally expensive than the linear
test and is therefore carried out for lags of 1, 5, 10, 15, 30, 45 and 60 minutes only.
The results from this test are overwhelmingly in favour of causality, in fact over half of
the p-values for causality in Figure 9.6 are significant: 237 of them. The mean number
of causal links for each trial evaluated at the 7 lag lengths chosen is 4 and only 7 trials
showed no evidence of causality at all. This shows that in the majority of cases, a
subject’s respiratory rate is affected by changes in PM2.5.

18 trials had direct causal links between PM2.5 and respiratory rate for at least 6 of
the 7 lag lengths tested. For these trials, response to changes in exposure is within
5 minutes if not immediate and persists for at least a full hour. This is motivation to
repeat the experiment with a longer maximum lag length in order to determine the full
length of the exposure-response relationship.

Table 9.1 shows the number of significant causal links found at each lag length tested
across all 59 trials. It is clear that it is more common to find causal dependencies at ear-
lier lags from around 5 minutes until somewhere just under half an hour. This roughly

1Note that these responses are characterised by linear dependencies. Non-linear relationships are
not examined in this analysis.
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Table 9.1: Number of trials with significant causal links at different lag lengths (test for
non-linear dependencies).

Delay in Minutes 1 5 10 15 30 45 60
# Causal Links (N=59) 22 47 45 42 32 28 21

coincides with the results from the tests for linear dependencies with the general result
being that the exposure-response relationship from PM2.5 to respiratory rate typically
peaks in that short timeframe.

For the most part, the results shown in Figure 9.6 differ very little from the results of the
Diks-Panchenko test for non-linear Granger Causality (Section 8.2). Figure 9.7 shows
any corresponding p-values which differ in their significance (p < 0.05) between the
tests. In general, the results show that where differences are found, new causal links
were more commonly discovered at earlier lags by PCMCI and discarded at later lags.
In the first situation it is likely that PCMCI is able to uncover more complex relation-
ships due to the flexibility of the nearest-neighbour-estimator for conditional mutual
information. This allows it to identify relationships in the data which remain hidden
from the Diks-Panchenko test. The latter case is particularly interesting as the Diks-
Panchenko test is known to be conservative at larger lag lengths. It is likely then that
the causal relationships misidentified by the Diks-Panchenko test are false-positives
due to confounding or residual autocorrelation, both of which have been controlled for
in PCMCI.
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Figure 9.4: Results from PCMCI test for linear dependencies from PM2.5 to respiratory
rate for each trial for lag lengths from 1 to 60 minutes. Values are p-values of the MCI
test. Significant p-values (p < 0.05) are coloured green, p-values between 0.05 and 0.2
are coloured yellow and p-values > 0.2 are coloured red.
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Figure 9.5: Results from PCMCI test for linear dependencies from PM2.5 increases to
respiratory rate for each trial. Missing values are ignored which limits the maximum lag
length which can be evaluated due to small sample size. Values are p-values of the
MCI test. Significant p-values (p < 0.05) are coloured green, p-values between 0.05
and 0.2 are coloured yellow and p-values > 0.2 are coloured red.
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Figure 9.6: Results from PCMCI test for non-linear dependencies from PM2.5 to respi-
ratory rate for each trial for lag lengths 1, 5, 10, 15, 30, 45 and 60 minutes. Values are
p-values of the MCI test. Significant p-values (p < 0.05) are coloured green, p-values
between 0.05 and 0.2 are coloured yellow and p-values > 0.2 are coloured red.
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Figure 9.7: Changes in the results from PCMCI versus the Diks-Panchenko Test for
non-linear Granger Causality. Green indicates a causal link identified by PCMCI which
was unidentified by Diks-Panchenko. Pink indicates a causal link identified by Diks-
Panchenko which was rejected by PCMCI.



Chapter 10

Conclusion

10.1 Discussion and Strengths

In this dissertation we analysed data from 183 trials of the DAPHNE study to under-
stand trends and associations in air pollution exposure and respiratory rate for asth-
matic adolescents in Delhi. We aimed to estimate exposure-response relationships
from personal PM2.5 exposure to changes in respiratory rate for each of these trials
using two methods of causal inference: Granger Causality and PCMCI. We chose to
focus on short-term (< 1 hour) effects as these have not been examined in great depth
before.

The data were first cleaned and pre-processed. After observing hourly trends in both
respiratory rate (due to activity level) and PM2.5 (due to nightly inversion layers in the
atmosphere) we locally standardised all trials to zero mean and unit standard deviation
in order to remove these trends and ensure that results between different subjects were
comparable.

10.1.1 Granger Causality

One of the key strengths of this project was the exhaustive search of all types of causal
relationships. We used both parametric and non-parametric tests for Granger Causality
to investigate both linear and non-linear relationships in the data. In the former case we
made use of the well-known VAR-based test for Granger Causality. Our approach of
testing at multiple lag lengths (up to a maximum of one hour) in order to better gauge
the delay between exposure and response was well thought out and new, although in
this particular case the results were mixed: the test found evidence of Granger causal-
ity in only a minority of trials such as DAP073(2) where significant causal links were
found at all lag lengths tested or DAP049(1) where Granger causality was observed
after 5 minutes (these results are seen in Figure 8.2). The low number of significant
results was attributed to the rather limiting linear model for the data. It seemed more
intuitive for the human body to have a non-linear relationship with air pollution expo-
sure. We tested for such a relationship using the more powerful Diks-Panchenko test -
this was chosen after careful consideration of the most common non-parametric tests
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for Granger Causality. We identified exposure-response relationships in several trials
as shown in Figure 8.3, including many new relationships unidentified in the linear
test; DAP119(1) is one example of this. For these trials, evidence of Granger causality
was found to be significant at the 95% level - often at multiple lag lengths. The results
not only suggested that response to exposure is rapid, they also hinted that the lasting
effects can have a longer duration than one hour, motivating future work to increase
the maximum lag length used in these analyses.

10.1.2 PCMCI

We sought to make use of computationally expensive causal discovery methods which
learn from big data. We specifically chose PCMCI, a new method proven to be very
powerful with sophisticated false-positive control and the ability to deal with multivari-
ate time series data accurately. This allowed us to account for potential confounders
such as temperature and relative humidity. We used PCMCI on a subset of 59 trials:
trials for which less than 40% of observations across all 4 observed time series (respi-
ratory rate, PM2.5, temperature and relative humidity) were missing. PCMCI was first
paired with a partial correlation test statistic to search for linear dependencies in the
DAPHNE data. We found infrequent yet significant causal relationships between lags
of PM2.5 and respiratory rate, with these relationships occurring more commonly at
earlier lags generally under half an hour (Figure 9.4).

Using a convenient feature of the implementation of PCMI in the Tigramite Python
package, we were able to repeat the test and mask missing values in the data instead
of imputing them with the mean - this was done for the same subset of 59 trials as
the modified experiment was unstable for trials with too much missing data. In this
experiment we also isolated the effects of increases in PM2.5, finding that these effects
can occur on an even shorter timescale: within 5 minutes of exposure as shown in
Figure 9.5.

Finally, we made use of a fully non-parametric test for causality which utilised a
nearest-neighbour based estimator of conditional mutual information. This flexible
test was able to discover almost any type of non-linear relationship in the data. The
test was run at a series of 7 lag lengths over the course of an hour as a full experiment
over all 60 minutes of lags as before would take weeks of CPU time to run. However,
as shown in Figure 9.6, we found evidence significant at the 95% level for non-linear
direct causal relationships between PM2.5 and respiratory rate for almost every trial
tested, with the results indicating that response most commonly occurs in the period
of 5-15 minutes after exposure. Thus we have shown that PM2.5 causes short-term
(< 1 hour) changes in respiratory rate, adjusting for the confounders of activity level,
temperature and relative humidity. This is the first study of its kind to demonstrate this
direct dependence from observational data. Since previous research such as [10], [27]
and [46] find positive associations between increases in PM2.5 exposure and increased
respiratory rate, our results suggest that increases in PM2.5 can directly cause increases
in respiratory rate.
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10.2 Limits, Improvements and Future Work

The significant gaps in the data caused problems in all experiments carried out in this
project. Our partial solution of interpolating as much data as possible and filling any
remaining gaps with the mean was not ideal as it resulted in loss of information. While
Tigramite’s functionality to mask missing values offered a complete solution, the re-
sulting loss in sample size was sometimes too great to run the algorithm. This problem
could be mitigated by improving the accuracy of imputation of missing values, perhaps
through the use of recurrent neural networks which have shown much promise in this
domain.

Our experiment using PCMCI to identify non-linear dependencies in the data has scope
for improvement. Due to time-constraints, the estimated causal network had to be sim-
plified by reducing the number of lags tested. This has the potential to miss relation-
ships in the data by violation of the assumption of Causal Sufficiency. Future work
could devote the significant time and resources required to test for all lag lengths up
to an hour or even beyond to a full day. The method could also be extended to learn
from multiple samples instead of one time series dataset, allowing it to estimate causal
networks for each subject by learning from multiple trials.

This dissertation has focused on the health effects of exposure to PM2.5 however this
is only one aspect of air pollution. Other pollutants such as nitrogen dioxide or ozone
have been measured by stationary AIRSpeck sensors in Delhi and the effects of expo-
sure to these compounds could also be investigated.

While PCMCI has tremendous power and potential it is just one example of a way to
use big data to carry out causal inference. Other examples already exist in literature
and may be worth exploring and implementing. [11] uses machine learning methods
to carry out targeted maximum likelihood estimation in order to quantify the effects of
air pollution (specifically traffic-related) on instances of low birth weight. This closely
relates to the use of ensemble learning and g-computation. It is also now possible to
use Monte Carlo methods to compute posterior distributions - this too can be applied
when examining complex systems for causal relationships.

As an aside, [47] argues that air pollution epidemiology studies based on observational
data are only providing half the solution: it goes on to suggest that these studies should
be augmented by investigating the effects of well-defined regulatory interventions in
order to get a clearer picture of the potential outcomes of a particular method of pol-
lution control. Such an investigation may well naturally arise in the DAPHNE study
as, at the time of writing, the ongoing COVID-19 pandemic has resulted in the ef-
fective lockdown of many countries across the globe including India. Air quality in
major cities has shown a dramatic improvement - satellite imaging of China and areas
of northern Italy in March 2020 indicates large reductions in nitrogen dioxide concen-
trations from 2019 ([51], [50]). If similar reductions have taken place in India they
may be apparent in the DAPHNE data, after which the health of the DAPHNE cohort
should be investigated again.

As a final point we address an ongoing research area which naturally flows from the
work in this project: estimating the strength of causal relationships. Once the existence



Chapter 10. Conclusion 66

of an exposure-response relationship has been proven using methods such as Granger
Causality or PCMCI it is important to quantify its strength. Relatively simple methods
of doing so have been discussed for a long time: in the case of linear dependencies
we can simply carry out a multivariate regression of a response on its causal parents,
interpreting the coefficients of the fit as a measure of the strength of the relationship.
More sophisticated measures of information transfer are being researched: in fact in
[36] it is argued that the MCI test statistic calculated in the second stage of PCMCI can
be used to rank causal parents in order of strength. PCMCI itself ranks links based on
the conditional independence test statistic in order to choose the strongest dependen-
cies. Other measures of causal strength take a more information theoretic approach,
for example [39] uses transfer entropy to motivate a new concept of momentary infor-
mation transfer. Applying these methods to the DAPHNE data can not only identify
which drivers of respiratory rate are strongest, they could also be used to determine the
delay before ”peak” response by evaluating the strength of causal links at different lag
lengths. This information could prove invaluable in the domain of response prediction.

It is clear from this dissertation that the DAPHNE study is already bearing fruit when it
comes to analysing the health effects of air pollution. We look forward to future results
of the project.
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Appendix A

Full Results of Parametric Granger
Tests

The following is a full table of p-values obtained from the VAR-based Granger Causal-
ity tests for linear relationships. Each row shows p-values (rounded to 5.d.p.) obtained
from Granger tests for a given trial at lag lengths of 1, 5, 10, 15, 30, 45 and 60 minutes.
P-values are also colour-coded as follows:

• p < 0.05: Green.

• 0.05≤ p < 0.1: Yellow.

• 0.1≤ p: Red.

NaN values are reported where the test failed or the ADF test for stationarity failed to
reject the null hypothesis of non-stationarity.
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Trial 1 5 10 15 30 45 60
DAP022(2) 0.25747 0.41189 0.37503 0.73599 0.81335 0.44814 0.15908
DAP001(1) 0.06099 0.00631 0.00802 0.06219 0.28704 0.11878 0.04021
DAP080(1) 0.27281 0.32515 0.04841 0.22312 0.27424 0.63057 0.79293
DAP040(2) 0.19166 0.13616 0.00131 2E-05 0.00053 0 1E-05
DAP075(2) 0.31745 0.64051 0.65206 0.70684 0.50122 0.28922 0.34637
DAP028(1) 0.02148 0.12011 0.40312 0.24933 0.47378 0.27721 0.22068
DAP038(1) 0.88978 0.33079 0.04333 0.04791 0.08755 0.00647 0.02015
DAP087(1) 0.82909 0.83726 0.84892 0.89331 0.92951 0.85024 0.7324
DAP101(1) 0.00184 0.06058 0.1979 0.02232 0.00138 0.00202 0.00209
DAP002(1) 0.19676 0.58457 0.58736 0.63025 0.88035 0.76303 0.63288
DAP125(1) 0.24635 0.42775 0.40951 0.22599 0.75683 0.90822 0.91912
DAP089(1) 0.35753 0.06105 0.13533 0.0803 0.44845 0.66659 0.47737
DAP016(1) 0.70335 0.91024 0.32401 0.29271 0.69438 0.86877 0.97107
DAP072(1) 0.75093 0.95178 0.9405 0.93188 0.66002 0.49612 0.19624
DAP055(1) nan nan nan nan nan nan nan
DAP060(1) 0.80006 0.67097 0.94552 0.83085 0.67729 0.55048 0.36951
DAP021(1) 0.64184 0.44308 0.56837 0.66362 0.67814 0.78415 0.29163
DAP025(1) 0.14071 0.68181 0.93516 0.68748 0.92057 0.93974 0.60272
DAP103(1) 0.00405 0.07058 0.1192 0.13838 0.0006 0.00012 0.00146
DAP006(3) 0.43724 0.69488 0.0624 0.17192 0.02089 0.01963 7E-05
DAP012(1) 0.85832 0.38547 0.04922 0.00522 1E-05 8E-05 0.00207
DAP072(2) 0.45917 0.3234 0.05243 0.15154 0.2324 0.16329 0.05946
DAP074(1) 0.0579 0.00185 0.01733 0.04834 0.00462 0.00556 0.02702
DAP015(1) 0.68953 0.02173 0.0262 0 0 0 0
DAP088(1) 0.9353 0.10539 0.03077 0.15917 0.25698 0.07111 0.15135
DAP078(2) 0.06363 0.70663 0.78793 0.19623 0.00096 0.0003 0
DAP102(1) 0.2606 0.15013 0.30455 0.66065 0.98838 nan nan
DAP001(3) 0.49075 0.86895 0.98346 0.23211 0.12434 0.2817 0.02701
DAP056(1) 0.67023 0.32626 0.32024 0.53819 0.38219 0.53525 0.28449
DAP026(1) 0.68147 0.90019 0.71382 0.94903 0.36926 0.74475 0.72632
DAP071(1) 0.98867 0.15166 0.05589 0.11249 0.21312 0.15516 0.20372
DAP111(1) 0.26952 0.21406 0.27002 0.33295 0.23178 0.206 0.3179
DAP052(1) 0.00224 0.01397 0.02079 0.03134 0.00674 0.00152 0.00058
DAP127(1) 0.21297 0.06657 0.43549 0.26415 0.17019 0.21929 0.28579
DAP126(1) 0.01165 0.10518 0.14709 0.29993 0.45401 0.83098 0.93978
DAP076(2) 0.84425 0.37569 0.29226 0.23706 0.52046 0.72845 0.83286
DAP006(1) 0.50301 0.46739 0.38671 0.69306 0.00187 1E-05 7E-05
DAP068(1) 0.94778 0.13499 0.16404 0.02429 0 0 0
DAP070(1) 0.01689 9E-05 0.00041 0.00491 3E-05 5E-05 0.00085
DAP108(1) 0.23994 0.74986 0.04009 0.10981 0.03766 0.01115 0.02205
DAP117(1) 0.82926 0.73205 0.86215 0.21901 0.32532 0.34421 0.42533
DAP055(3) 0.26559 0.04829 0.0243 6E-05 1E-05 0 3E-05
DAP095(2) 0.4144 0.49707 0.64892 0.18099 0.3564 0.51121 0.26754
DAP036(1) 0.66896 0.92789 0.45465 0.72339 0.3409 0.36917 0.2959
DAP039(1) 0.18239 0.09101 0.29323 0.22932 0.41526 0.77626 0.40598
DAP084(1) 0.34313 0.60323 0.01533 0.01775 0.10187 0.00295 0.00012
DAP081(1) 0.32075 0.64408 0.94508 0.99037 0.96115 0.95036 0.97003
DAP066(1) 0.72054 0.8769 0.87401 0.31337 0.50042 0.88272 0.84039
DAP075(1) 0.36944 0.85671 0.90478 0.72604 0.02851 0.01747 0.01561
DAP085(2) 0.24231 0.14162 0.07185 0.03222 0.00107 0.00047 0.00018
DAP062(1) 0.18608 0.03526 0.30888 0.18446 0.51883 0.30481 0.62527
DAP031(2) 0.97233 0.93097 0.48831 0.36219 0.2071 0.18566 0.18545
DAP054(1) 0.22843 0.80694 0.76834 0.74948 0.67652 0.4819 0.39694
DAP069(2) 0.29069 0.11764 0.19624 0.21948 0.24703 0.01586 0.17785
DAP091(1) 0.54197 0.71359 0.21927 0.32416 0.63856 0.79906 0.65629
DAP078(1) 0.17005 0.37154 0.63948 0.63069 0.8369 0.46403 0.51197
DAP011(1) 0.97785 0.72045 0.70111 0.9451 0.93658 0.99562 0.72549
DAP086(1) 0.15749 0.04405 0.00185 0.0102 0.00036 0 0
DAP047(1) 1 1 1 1 1 1 1
DAP037(2) 0.61015 0.56893 0.81943 0.6962 0.38117 0.36789 0.43261
DAP007(2) 0.29517 0.75743 0.43896 0.11993 0.31117 0.32667 0.37468
DAP033(2) 0.28036 0.60577 0.28732 0.11056 5E-05 0 0
DAP096(2) 0.90035 0.81825 0.86004 0.8123 0.62208 0.27955 0.08617
DAP090(1) 0.876 0.12582 0.06695 0.12837 0.22783 0.38699 0.19321
DAP012(2) 0.35405 0.67223 0.13342 0.03078 0.0726 0.09286 0.22906
DAP019(1) 0.5563 0.4436 0.591 0.48777 0.65289 0.62444 0.77308
DAP068(2) 0.63059 0 0 0 0 0 0
DAP055(2) 0.77813 0.00449 0.00211 1E-05 0.00016 8E-05 3E-05
DAP097(2) 0.43208 0.2456 0.2266 0.47944 0.08082 0.07706 0.13268
DAP115(1) 0.58709 0.88334 0.72155 0.81082 0.80225 0.9854 0.99629
DAP079(1) 0.29585 0.36981 0.00228 0.01469 0.0001 0.00015 0
DAP048(2) 0.58587 0.58536 0.93884 0.80145 0.4074 0.20609 0.16218
DAP109(1) 0.17654 0.03549 0.06626 0.25158 0.18163 0.23601 0.17205
DAP116(1) 0.4689 0.0296 0.07154 0.08398 0.00305 0.00425 0.00296
DAP008(1) 0.87716 0.00054 3E-05 0 0 0 0
DAP120(1) 0.01484 0.01512 0.0015 0.00264 0.0249 0.0359 0.01636
DAP029(1) 0.05795 0.54192 0.02818 0.06632 0.04851 0.02755 0.27904
DAP022(1) 0.41976 0.44527 0.55962 0.08611 0.08576 0.14039 0.24483
DAP031(1) 0.02171 7E-05 0.00458 0.00869 0.03648 0.0241 0.01013
DAP010(2) 0.00679 0.07879 0.03462 0.16113 0.02624 0.00488 0.02179
DAP080(2) 0.25007 0.55505 0.63521 0.55067 0.01863 0.00216 0.00033
DAP050(1) 0.08451 0.05731 0.23239 0.49871 0.31166 0.39122 0.1706
DAP043(1) 0.98554 0.49102 0.72214 0.71662 0.66253 0.26911 0.53981
DAP056(2) 0.16406 0.35497 0.18322 0.17749 0.17752 0.2607 0.62351
DAP022(3) 0.86703 0.0616 0.01427 0.02313 0.03066 0.00178 0.0004
DAP044(1) 0.51278 0.89137 0.87393 0.6067 0.17014 0.58588 0
DAP070(2) 0.00032 0.00489 0.00188 0.00101 0.00042 0.00209 1E-05
DAP050(2) 0.54824 0.89662 0.99806 0.58639 0.09605 0.00432 0.00865
DAP112(1) 0.95312 0.12639 0.31993 0.65078 0.58561 0.1322 0.18535
DAP048(1) 0.14135 0.00297 0.00146 0.00182 5E-05 0 0
DAP007(3) 0.90013 0.56788 0.19031 0.14501 0.01344 0.00021 0
DAP064(1) 0.93056 0.06698 0.26198 0.31072 0.06473 0.00498 1E-05
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DAP057(3) 0.13615 0.20765 0.71999 0.28789 0.49573 0.54564 0.6706
DAP047(2) 0.09042 0.38379 0.07809 0.0229 0.00701 0.06314 0.00656
DAP037(1) 0.7868 0.66667 0.44788 0.28433 0.22203 0.19075 0.30518
DAP095(1) 0.76628 0.78511 0.82056 0.83657 0.93651 0.94498 0.97668
DAP008(3) 0.70012 0.79186 0.87168 0.72285 0.92344 0.77122 0.8528
DAP020(1) 0.99106 0.93566 0.93624 0.9109 0.99977 1 1
DAP041(1) 0.33817 0.02431 0.02666 0.01187 0.00367 0.14485 0.16428
DAP118(1) 0.14003 0.24882 0.01823 0.00212 0 0 0
DAP067(1) 0.98808 0.54533 0.8058 0.69439 0.32239 0.57207 0.3218
DAP063(1) 0.22561 0.7666 0.15088 0.18867 0.2091 0.22493 0.47431
DAP057(1) 0.54539 0.62202 0.42947 0.22071 0.63083 0.66191 0.44424
DAP014(2) 0.03195 0.05167 0.00365 0.00184 0.00038 0.00191 0.01567
DAP073(2) 0.00461 0.02955 0.02493 0.00804 0.0059 0.03801 0.03343
DAP032(1) 0.92615 0.91248 0.33972 0.73061 0.55718 0.52736 0.84082
DAP123(1) 0.87341 0.6004 0.89962 0.84729 0.95046 0.8067 0.61413
DAP122(1) 0.63174 0.14051 0.09032 0.11678 0.46467 0.32339 0.0752
DAP067(2) 0.35929 0.1416 0.14737 0.32431 0.54084 0.62212 0.71693
DAP076(1) 0.03005 0.00826 9E-05 0 0 0 0
DAP119(1) 0.30861 0.69191 0.8588 0.71743 0.43989 0.63896 0.82618
DAP005(1) 0.07623 0.15793 0.21005 0.21165 0.00345 0.00572 0.00011
DAP121(1) 0.29697 0.16316 0.08794 0.18621 0.01407 0.02843 0.17526
DAP007(1) 0.24747 0.68936 0.49197 0.62971 0.68123 0.92235 0.59504
DAP114(1) 0.82079 0.99814 0.99973 0.76044 0.71876 0.80994 0.37486
DAP004(1) 0.40344 0.11371 0.27075 0.31323 0.655 0.76097 0.97971
DAP043(2) 0.47938 0.35047 0.64562 0.31318 0.60012 0.11115 0.12233
DAP018(1) 0.90282 0.445 0.80214 0.74604 0.31 0.53979 0.34648
DAP024(1) 0.3406 0.03638 0.00582 4E-05 0 0 0
DAP033(1) 0.66318 0.358 0.08343 0.06249 0.40436 0.90098 0.9811
DAP018(2) 0.56277 0.63064 0.04071 0.0002 0.00107 2E-05 2E-05
DAP094(1) 0.08725 0.0658 0.06612 0.22429 0.47862 0.44258 0.67587
DAP042(2) 0.81269 0.98783 0.77697 0.75588 0.23845 0.3676 0.60588
DAP065(1) 0.00705 0.00166 0.00653 0 nan nan nan
DAP098(2) 0.57148 0.12708 0.35985 0.63834 0.56644 0.05789 0.11768
DAP028(2) 0.87855 0.91129 0.68701 0.9388 0.97384 0.90064 0.92893
DAP009(1) 0.28601 0.11116 0.32884 0.67384 0.2376 0.09786 0.16164
DAP069(1) 0.38563 0.84232 0.27267 0.52295 0.15271 0.33695 0.16931
DAP061(1) 0.02429 0.00891 0.01632 0.0728 0.2566 0.37838 0.31465
DAP010(1) 0.27756 0.01082 0.00253 0.0003 8E-05 2E-05 0
DAP034(1) 0.17743 0.91327 0.62675 0.50504 0.19186 0.08916 0.03211
DAP013(2) 0.00221 0 0 0 0 0 0
DAP042(1) 0.02868 0.21071 0.15326 0.41629 0.67541 0.74514 0.75978
DAP036(2) 0.5617 0.12375 0.07921 0.02209 0.01698 0.02427 0.00181
DAP011(2) 0.04642 0.25366 0.01584 0.00043 0.0001 0.00019 0.00373
DAP092(1) 0.15049 0.55419 0.40761 0.52239 0.10341 0.12807 0.19758
DAP084(2) 0.83148 0.2995 0.45175 0.3004 0.58312 0.94016 0.86173
DAP113(1) 0.67519 0.16956 0.35936 0.4882 0.32635 0.16393 0.03088
DAP046(1) 0.83097 0.67349 0.12404 0.00816 0.00025 0.00024 1E-05
DAP105(1) 0.14319 0.84581 0.8698 0.9271 0.60034 0.87704 0.75954
DAP011(3) 0.82805 0.83089 0.8346 0.77817 0.92711 0.95689 0.8754
DAP051(1) 0.56544 0.59467 0.6036 0.88564 0.71012 0.6725 0.5132
DAP057(2) 0.27917 0.93686 0.90703 0.86708 0.8049 0.53763 0.45489
DAP008(2) 0 0 0 0 0 0 0
DAP110(1) 0.89594 0.14495 0.23629 0.23679 0.32839 0.15322 0.12019
DAP004(2) 0.2228 0.57723 0.84335 0.37811 0.04181 0.00033 0.00449
DAP023(1) 0.14394 0.33475 0.43515 0.00604 0.09514 0.17899 0.23144
DAP077(1) 0.501 0.29043 0.492 0.1101 0.11488 0.24096 0.32564
DAP001(2) 0.86726 0.57083 0.58214 0.05523 0.09759 0.00657 0.00125
DAP003(2) 0.76461 0.83218 0.1386 0.0004 0.00011 0 0
DAP049(1) 0.22544 0.73869 0.03626 0.00653 0.00063 1E-05 2E-05
DAP053(1) 0.92904 0.99718 0.68204 0.86279 0.8474 0.86418 0.80439
DAP058(1) 0.84074 0.7826 0.29421 0.30577 0.58342 0.82498 0.73077
DAP106(1) 0.98725 0.19797 0.41321 0.32246 0.61586 0.46372 0.59098
DAP083(1) 0.37026 0.31636 0.01742 0.00302 0.00043 5E-05 0.00013
DAP006(2) 0.22263 0.2297 0.43924 0.03748 0.04645 0.02792 0.00401
DAP056(3) 0.58189 0.16379 0.39333 0.21774 0.2237 0.44598 0.30305
DAP013(1) 0.26057 0.3985 0.87736 0.74195 0.73851 0.71774 0.87445
DAP002(2) nan nan nan nan nan nan nan
DAP035(1) 0.09297 0.42926 0.29519 0.05484 0.07076 0.04942 0.00794
DAP027(1) 0.17799 0.30611 0.16748 0.09063 0.21954 0.36901 0.55595
DAP005(2) 0.71745 0.73467 0.11923 0.01549 0.00281 0.00411 0.0001
DAP045(1) 0.63835 0.39574 0.25319 0.27718 0.15412 0.05313 0.23851
DAP017(1) 0.77626 0.65048 0.25539 0.16743 0.08293 0.10611 0.11225
DAP032(2) 0.26098 0.03964 0.0903 0.29586 0.18368 0.15519 0.05794
DAP085(1) 0.3519 0.2787 0.83211 0.84715 0.84645 0.07067 0.04668
DAP030(1) 0.57789 0.44381 0.49696 0.69306 0.47582 0.43696 0.29784
DAP093(1) 0.14576 0.3735 0.17229 0.30769 0.22997 0.25554 0.36411
DAP059(2) 0.52534 0.68737 0.35011 0.28422 0.14486 0.38754 0.67655
DAP096(1) 0.70325 0.50725 0.15356 0.05583 0.00029 0 0
DAP086(2) 0.33882 0.6852 0.72904 0.56941 0.70288 0.46458 0.69119
DAP124(1) 0.32467 0.52939 0.69829 0.23305 0.20797 0.11621 0.02335
DAP089(2) 0.99385 0.85293 0.99421 0.88564 0.12207 0.00803 0.00159
DAP107(1) 0.81291 0.70615 0.45019 0.81695 0.96588 0.86312 0.39663
DAP014(1) 0.39956 0.98142 0.93529 0.97662 0.78274 0.90257 0.5519
DAP003(1) 0.93073 0 0 0 0 0 0
DAP059(1) 0.13147 0.50233 0.88691 0.71835 0.68211 0.63809 0.53731
DAP074(2) 0.1438 0.00818 0.00017 1E-05 0 0 0
DAP021(2) 0.35189 0.05877 0.1326 0.11426 0.09558 0.01823 0.00122
DAP017(2) 0.59095 0.73746 0.92336 0.84788 0.79505 0.94313 0.48784
DAP104(1) 0.38431 0.50987 0.20111 0.10347 0.25477 0.42004 0.27871
DAP082(1) 0.3545 0.8986 0.9469 0.5808 0.61751 0.3734 0.5339
DAP040(1) 0 0 0 0 0 0 0
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Appendix B

Full Results of Non-Parametric
Granger Tests

The following is a full table of p-values obtained from the Diks-Panchenko tests for
non-linear Granger Causality. Each row shows p-values (rounded to 5.d.p.) obtained
from Granger tests for a given trial at lag lengths of 1, 5, 10, 15, 30, 45 and 60 minutes.
P-values are also colour-coded as follows:

• p < 0.05: Green.

• 0.05≤ p < 0.1: Yellow.

• 0.1≤ p: Red.

NaN values are reported where the test failed.
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Trial 1 5 10 15 30 45 60
DAP022(2) 0.99939 0.99936 0.99584 0.99158 0.82087 0.8349 0.87342
DAP001(1) 0.00177 3E-05 0.00029 0.00184 0.24891 0.42055 0.32208
DAP080(1) 0.35176 0.31558 0.16314 0.08526 0.16986 0.36783 0.62317
DAP040(2) 0.31036 0.18137 0.07563 0.156 0.15085 0.4065 0.59488
DAP075(2) 0.59822 0.45254 0.47276 0.50455 0.35401 0.46047 0.57993
DAP028(1) 0.33321 0.41019 0.38224 0.29529 0.06187 0.07146 0.12832
DAP038(1) 0.22644 0.241 0.18829 0.01933 0.04013 0.21274 0.45558
DAP087(1) 0.33883 0.02113 0.0008 0.00016 0.00032 0.00404 0.02236
DAP101(1) 0.46155 0.00552 0.00053 0.00198 0.0327 0.08083 0.02849
DAP002(1) 0.6133 0.15138 0.37617 0.64133 0.1654 0.15279 0.29918
DAP125(1) 0.68271 0.07376 0.00812 0.01208 0.16969 0.19563 0.40114
DAP089(1) 0.8904 0.93825 0.87149 0.53962 0.04549 0.0611 0.04064
DAP016(1) 0.13517 0.07464 0.18208 0.2401 0.51076 0.85845 0.86125
DAP072(1) 0.06523 0.03735 0.05795 0.05139 0.03323 0.00759 0.00617
DAP055(1) 0.84931 0.89694 0.71375 0.81021 0.47344 0.6259 0.5981
DAP060(1) 0.07821 0.08345 0.0099 0.0064 0.00235 0.01478 0.12325
DAP021(1) 0.61856 0.08803 0.0515 0.04029 0.04997 0.08621 0.06494
DAP025(1) 0.67994 0.82244 0.89154 0.83721 0.58293 0.23411 0.34747
DAP103(1) 0.07227 0.00564 0.00568 0.16097 0.01013 0.01231 0.1111
DAP006(3) 0.28654 0.04388 0.00439 0.00254 0.00194 0.00057 0.00438
DAP012(1) 0.38561 0.0033 0.00035 0.00097 0.00023 0.00036 0.00323
DAP072(2) 0.03339 0.00107 0.00095 0.00314 0.00015 0.00016 0.00065
DAP074(1) 0.00097 0 0 2E-05 0.01094 0.02226 0.00015
DAP015(1) 0.00031 0 0 0 0 0 6E-05
DAP088(1) 0.57723 0.1656 0.05203 0.4041 0.35633 0.32131 0.37345
DAP078(2) 0.01674 0.00267 0.02854 0.04112 0.23792 0.18155 0.1537
DAP102(1) 0.66854 0.44468 0.02298 0.15391 0.23392 nan nan
DAP001(3) 0.39879 0.15934 0.08497 0.03553 0.08566 0.30723 0.04751
DAP056(1) 0.42739 0.07323 0.23058 0.57415 0.75243 0.50117 0.3109
DAP026(1) 0.43953 0.7055 0.86504 0.95168 0.21496 0.11226 0.69375
DAP071(1) 0.00785 0.0001 0.0001 0.00012 8E-05 0.00011 0.00088
DAP111(1) 0.79645 0.13444 0.16206 0.0386 0.00864 0.16868 0.04844
DAP052(1) 0.02941 0.02011 0.03701 0.10028 0.05204 0.09409 0.06034
DAP127(1) 0.35807 0.09576 0.06846 0.05341 0.27535 0.22597 0.28465
DAP126(1) 0.94987 0.99335 0.97678 0.74438 0.21675 0.12246 0.29738
DAP076(2) 0.27956 0.15194 0.23731 0.4056 0.68756 0.93751 0.94493
DAP006(1) 0.10174 0.0342 0.07091 0.12055 0.02784 0.00493 0.00504
DAP068(1) 0.02696 0.00195 0.00526 0.00963 0.04946 0.06645 0.05056
DAP070(1) 0.03932 0.01062 0.00053 0.00027 0.00206 0.037 0.02565
DAP108(1) 0.19259 0.515 0.41176 0.14814 0.16713 0.01631 0.00631
DAP117(1) 0.59943 0.16291 0.24851 0.25635 0.27626 0.42427 0.16629
DAP055(3) 0.05403 0.00639 0.00533 0.00222 0.02618 0.08978 0.11523
DAP095(2) 0.45412 0.0797 0.14671 0.04572 0.0087 0.02625 0.1768
DAP036(1) 0.25249 0.21625 0.04817 0.02879 0.02102 0.00756 0.02072
DAP039(1) 0.11304 0.07703 0.0958 0.28344 0.10097 0.22482 0.23439
DAP084(1) 0.0223 7E-05 0 0 0.00015 0.01117 0.21362
DAP081(1) 0.84149 0.90478 0.35119 0.22672 0.15086 0.03106 0.09858
DAP066(1) 0.0017 0.00055 0.00461 0.00704 0.03897 0.04354 0.1252
DAP075(1) 0.62892 0.70432 0.75012 0.43946 0.4754 0.65483 0.7993
DAP085(2) 0.03899 0.00992 0.00147 0.00326 0.02415 0.19899 0.33871
DAP062(1) 0.02448 0.00203 0.00115 0.00425 0.00354 0.00331 0.00241
DAP031(2) 0.19788 0.10777 0.04137 0.01971 0.022 0.03047 0.06739
DAP054(1) 0.31065 0.16679 0.29398 0.0982 0.00338 0.04321 0.02839
DAP069(2) 0.33423 0.12057 0.45981 0.32189 0.27284 0.7406 nan
DAP091(1) 0.00329 0.00459 0.00483 0.00573 0.11295 0.16706 0.54536
DAP078(1) 0.9651 0.97146 0.99888 0.99932 0.99953 0.9997 0.99642
DAP011(1) 0.2758 0.53341 0.25925 0.45299 0.4926 0.41303 0.3002
DAP086(1) 0.02475 0.0009 0.00689 0.11097 0.08001 0.04864 0.02002
DAP047(1) 1 1 1 0 0 3E-05 0.00063
DAP037(2) 0.01689 0.00747 0.05693 0.18534 0.03936 0.02171 0.03893
DAP007(2) 0.69163 0.84929 0.87267 0.92157 0.65376 0.48011 0.65448
DAP033(2) 9E-05 0 0 0 0 0 0
DAP096(2) 0.13019 0.03412 0.00326 0.00476 0.02738 0.15748 0.36408
DAP090(1) 0.0307 0.05961 0.03307 0.00673 0 0 1E-05
DAP012(2) 0.00875 2E-05 3E-05 3E-05 0.00891 0.01057 0.09996
DAP019(1) 0.0996 0.06811 0.03465 0.03978 0.25555 0.28431 0.36812
DAP068(2) 0.00753 0.08796 0.09786 0.11118 0.07882 0.08663 0.03821
DAP055(2) 0.01428 0.02673 0.01226 0.00397 0.01464 0.0401 0.10646
DAP097(2) 0.67225 0.29674 0.0133 0.00506 0.00201 0.00234 0.01481
DAP115(1) 0.47574 0.74757 0.42664 0.65613 0.67888 0.75592 0.78999
DAP079(1) 0.00051 0 0.00379 0.02326 0.01634 0.00743 0.01265
DAP048(2) 0.93121 0.45614 0.29086 0.13662 0.13993 0.14192 0.07789
DAP109(1) 0.44267 0.55784 0.72691 0.62619 0.69285 0.53064 0.87005
DAP116(1) 0.01418 0.00028 0.00031 0.0012 0.00455 0.00286 0.0037
DAP008(1) 0.13272 0.16019 0.03847 0.03969 0.04047 0.07824 0.08062
DAP120(1) 0.01415 0.00501 0.00258 0.00025 0.00345 0.00032 0.00293
DAP029(1) 0.16635 0.04569 0.01943 0.04277 0.26946 0.36328 0.40371
DAP022(1) 0.93337 0.12986 0.04484 0.32024 0.87927 0.74182 0.87708
DAP031(1) 0.2021 0.06062 0.08706 0.04733 0.03495 0.02779 0.05196
DAP010(2) 0.09826 0.19259 0.38854 0.40457 0.15271 0.0222 0.12757
DAP080(2) 0.12394 0.08125 0.3577 0.12442 0.25828 0.04121 0.03312
DAP050(1) 0.03851 0.03143 0.02402 0.00809 0.01562 0.03138 0.10034
DAP043(1) 0.09838 0.04492 0.01671 0.01536 0.00451 0.00889 0.00901
DAP056(2) 0.08892 0.02311 0.10101 0.06127 0.01158 0.0853 0.38814
DAP022(3) 0.00013 0 0 3E-05 0.01916 0.01251 0.00258
DAP044(1) 0.86054 0.81585 0.96038 0.8458 0.9529 0.14319 0.54183
DAP070(2) 0.01144 0.00272 0.00054 0.00049 0.0083 0.0083 0.05881
DAP050(2) 0.0588 0.08984 0.00173 0.00133 0.01201 0.01568 0.11416
DAP112(1) 0.22249 0.2313 0.20982 0.14106 0.34066 0.55501 0.55968
DAP048(1) 0.12501 0.10769 0.06206 0.00968 0.04051 0.02681 0.05675
DAP007(3) 0.05599 0.00052 6E-05 0.0007 0.00702 0.00761 0.02466
DAP064(1) 0.39008 0.00326 0.00055 0.00237 0.00173 0.0018 0.00299
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DAP057(3) 0.32462 0.45508 0.08878 0.10806 0.34386 0.3202 0.78218
DAP047(2) 0.04602 0.00913 0.00036 0.00032 0.01593 0.00117 0.00387
DAP037(1) 0.18061 0.25887 0.24973 0.22719 0.19903 0.21005 0.08918
DAP095(1) 0.55043 0.52098 0.25697 0.0375 0.1514 0.23722 0.84193
DAP008(3) 0.41273 0.65162 0.7326 0.61335 0.72949 0.67871 0.77977
DAP020(1) 0.95116 0.91424 0.54281 0.7538 0.97396 0.99601 0.99713
DAP041(1) 0.14971 0.01081 0.00312 0.02772 0.22261 0.09536 0.00892
DAP118(1) 3E-05 0 3E-05 8E-05 0.00642 0.04185 0.01793
DAP067(1) 0.01575 0.01371 0.00453 0.00371 0.02552 0.15638 0.27125
DAP063(1) 0.07885 0.06762 0.00823 0.00238 0.00138 0.00022 0.0006
DAP057(1) 0.31302 0.40162 0.2194 0.23463 0.1423 0.14248 0.30034
DAP014(2) 0.09476 0.5602 0.16768 0.14892 0.04226 0.19474 0.20957
DAP073(2) 0.02585 0.00012 0 0 0 7E-05 0.00061
DAP032(1) 0.68565 0.53327 0.43427 0.46447 0.34676 0.40877 0.78133
DAP123(1) 0.10902 0.26761 0.06084 0.0221 0.04173 0.02275 0.08861
DAP122(1) 0.00032 0 0 0 0.01406 0.05059 0.01678
DAP067(2) 0.06987 0.0219 0.01165 0.00416 0.00772 0.01433 0.01413
DAP076(1) 0.14364 0.03887 0.01053 0.01153 0.01163 0.01105 0.02047
DAP119(1) 0.02862 0.00063 0.0009 0.00344 0.00473 0.0327 0.00734
DAP005(1) 0.08289 0.04663 0.0737 0.07364 0.1972 0.08822 0.05916
DAP121(1) 0.1186 0.00319 0.00268 0.00892 0.02123 0.06444 0.11641
DAP007(1) 0.06731 0.0046 0.0176 0.08408 0.21885 0.45427 0.9001
DAP114(1) 0.52022 0.00414 0 2E-05 0.00039 0.00059 0.00105
DAP004(1) 0.11567 0.30946 0.39291 0.23191 0.1135 0.35748 0.69399
DAP043(2) 0.43256 0.57279 0.40492 0.38978 0.08848 0.73331 0.07011
DAP018(1) 0.73655 0.48894 0.50835 0.49931 0.4904 0.17572 0.2508
DAP024(1) 0.00209 0.00059 0.01882 0.11018 0.05301 0.06375 0.05679
DAP033(1) 0.41057 0.18683 0.02048 0.01863 0.1732 0.15293 0.20009
DAP018(2) 0.04638 0.05244 0.00622 0.00072 0.00649 0.00749 0.02812
DAP094(1) 0.59503 0.73695 0.49103 0.44727 0.69354 0.14526 0.12675
DAP042(2) 0.10077 0.03205 0.16405 0.31901 0.04004 0.0872 0.04947
DAP065(1) 0.25783 0.1141 0.04298 0.00922 0.0535 0.22182 0.23816
DAP098(2) 0.96652 0.18493 0.17568 0.06922 0.02045 0.02071 0.06765
DAP028(2) 0.64401 0.38367 0.57771 0.55409 0.07156 0.1463 0.50848
DAP009(1) 0.11472 0.09556 0.41639 0.43496 0.44952 0.66672 0.89774
DAP069(1) 0.03609 0.00681 0.00058 8E-05 0.00688 0.01029 0.00838
DAP061(1) 0.03108 0.00217 0.0003 1E-05 6E-05 0.00016 0.00061
DAP010(1) 0.74008 0.00879 0.02032 0.0159 0.04779 0.01529 0.01099
DAP034(1) 0.18484 0.08497 0.02293 0.01602 0.00587 0.01068 0.0126
DAP013(2) 0.0625 0.0033 0.00117 0.00092 0.00171 0.00363 0.01403
DAP042(1) 0.71883 0.76803 0.70071 0.68608 0.56683 0.78017 0.41894
DAP036(2) 0.00175 0 0 0 9E-05 0.00028 0.00128
DAP011(2) 0.09625 0.03811 0.04433 0.03563 0.07268 0.01893 0.01407
DAP092(1) 0.06075 0.1526 0.15971 0.17669 0.51361 0.39272 0.70867
DAP084(2) 0.49128 0.21994 0.12521 0.00328 0.00712 0.04591 0.28403
DAP113(1) 0.04785 0.0063 0.00528 0.00206 0.00595 0.04488 0.0436
DAP046(1) 0.00041 0 0 0 0 0 0.00019
DAP105(1) 0.041 0.03507 0.07126 0.07736 0.11117 0.40046 0.73613
DAP011(3) 0.11914 0.12758 0.14135 0.07492 0.11504 0.02367 0.09336
DAP051(1) 0.92355 0.07222 0.00407 0.00093 0.00768 0.00047 0.00037
DAP057(2) 0.49792 0.26489 0.47213 0.67657 0.42146 0.48847 0.23152
DAP008(2) 0.04298 0.01294 0.00415 0.00232 0.00114 0.00264 0.00359
DAP110(1) 0.17401 0.00493 0.00543 0.00063 0.00372 0.00522 0.02026
DAP004(2) 0.0898 0.0661 0.03627 0.0572 0.07222 0.09393 0.17104
DAP023(1) 0.16916 0.60439 0.56808 0.4452 0.52248 0.68221 0.26676
DAP077(1) 0.02557 0.01888 0.03756 0.05611 0.07063 0.30008 0.54977
DAP001(2) 0.4238 0.08812 0.07643 0.12323 0.37385 0.69257 0.77932
DAP003(2) 0.09047 0.02965 0.06632 0.075 0.08356 0.17856 0.08006
DAP049(1) 0.88521 0.6017 0.22611 0.15984 0.03463 0.07959 0.1201
DAP053(1) 0.22011 0.12952 0.1104 0.195 0.58953 0.6578 0.26665
DAP058(1) 0.76793 0.35286 0.2568 0.04614 0.01414 0.16677 0.24828
DAP106(1) 0.10791 0.03131 0.01026 0.01307 0.13762 0.42779 0.35906
DAP083(1) 0.00012 0 0 0 0 0 6E-05
DAP006(2) 0.02422 0.01177 0.03978 0.08095 0.21263 0.32607 0.08131
DAP056(3) 0.99601 0.33075 0.49692 0.52188 0.04219 0.05497 0.1463
DAP013(1) 0.97777 0.80064 0.80183 0.86536 0.85853 0.93685 0.94918
DAP002(2) 1 0 1 1 1 0.00443 0.28288
DAP035(1) 0.10311 0.09456 0.04329 0.03466 0.23294 0.70612 0.79427
DAP027(1) 0.5503 0.87838 0.64752 0.62991 0.98581 0.99371 0.99625
DAP005(2) 0.14179 0.08072 0.02718 0.00912 0.02016 0.02609 0.12096
DAP045(1) 0.88023 0.15758 0.05533 0.00566 0.01291 0.0401 0.07086
DAP017(1) 0.30198 0.55494 0.26375 0.05659 0.16655 0.2125 0.24242
DAP032(2) 0.03268 0 0 0 0.0001 0.00026 0.00142
DAP085(1) 0.02643 0.03062 0.02528 0.00722 0.00426 0.0015 0.00384
DAP030(1) 0.2125 0.75459 0.46541 0.65317 0.3723 0.78769 0.55391
DAP093(1) 0.35789 0.07417 0.00526 0.00028 0.00093 0.00166 0.00122
DAP059(2) 0.01538 0.01327 0 0 7E-05 0.00389 0.00869
DAP096(1) 0.54336 0.22331 0.12451 0.04292 0.03375 0.05603 0.05516
DAP086(2) 0.04452 0.00011 9E-05 3E-05 0.0033 0.01369 0.02362
DAP124(1) 0.05672 0.00314 5E-05 1E-05 2E-05 0.00242 0.00102
DAP089(2) 0.04456 0.00017 0.0001 0.00145 0.05241 0.06323 0.11321
DAP107(1) 0.06152 0.0017 0.00046 0.0022 0.01401 0.01534 0.02048
DAP014(1) 0.83858 0.84005 0.94628 0.85518 0.30558 0.16418 0.3019
DAP003(1) 0.85558 0.16018 0.16001 0.08573 0.07908 0.08422 0.08227
DAP059(1) 0.8097 0.11272 0.19874 0.27334 0.05282 0.09185 0.06209
DAP074(2) 0.00241 0.00026 3E-05 0.01176 0.04702 0.09316 0.1301
DAP021(2) 0.10203 0.16145 0.23371 0.1087 0.02733 0.02139 0.01972
DAP017(2) 0.15148 0.00028 9E-05 0.0003 0.008 0.02623 0.22264
DAP104(1) 0.06401 0.01751 0.01374 0.00609 0.00601 0.00873 0.01254
DAP082(1) 0.25605 0.31194 0.31076 0.10722 0.2077 0.12323 0.19271
DAP040(1) 0.05403 0.0264 0.14003 0.45948 0.88904 0.87171 0.92424
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Appendix C

Full Results of PCMCI for Linear
Dependencies

The following is a full table of p-values obtained from running PCMCI with a partial
correlation test for linear dependencies. Each row shows p-values (rounded to 3.d.p.)
obtained from tests at all lag lengths up to 60 minutes for a given trial. P-values are
also colour-coded as follows:

• p < 0.05: Green.

• 0.05≤ p < 0.1: Yellow.

• 0.1≤ p: Red.
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Appendix C. Full Results of PCMCI for Linear Dependencies 77

The following is a full table of p-values obtained from running the modified experi-
ment to test for linear dependencies using PCMCI. This modified experiment ignores
missing data (which restricts the maximum lag length tested for each trial depending
on sample size) and isolates the effects of increases in PM2.5. Each row shows p-
values (rounded to 3.d.p.) for a given trial obtained from tests at all lag lengths up to
the maximum possible lag length. P-values are also colour-coded as follows:

• p < 0.05: Green.

• 0.05≤ p < 0.1: Yellow.

• 0.1≤ p: Red.
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Appendix D

Full Results of PCMCI for Non-Linear
Dependencies

The following is a full table of p-values obtained from running PCMCI with a nearest-
neighbour based estimator for conditional mutual information to identify non-linear
dependencies. Each row shows p-values (rounded to 3.d.p.) for a given trial obtained
from tests at lag lengths of 1, 5, 10, 15, 30, 45 and 60 minutes. P-values are also
colour-coded as follows:

• p < 0.05: Green.

• 0.05≤ p < 0.1: Yellow.

• 0.1≤ p: Red.
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Trial 1 5 10 15 30 45 60
DAP001(3) 0.008 0.608 0.669 0 0 0.403 0.738
DAP011(3) 0 0 0 0 0 0.02 0.029
DAP014(2) 0.295 0 0 0.029 0.076 0.007 0.289
DAP016(1) 0.025 0 0 0 0.143 0.064 0.02
DAP018(1) 0.777 0.073 0.294 0.996 0.837 0.572 0.27
DAP022(2) 0.059 0.003 0.139 0.471 0.514 0.097 0.37
DAP022(2) 0.095 0.003 0.139 0.471 0.514 0.097 0.37
DAP028(2) 0.035 0.093 0 0 0.055 0.343 0.415
DAP030(1) 0.724 0.035 0.002 0 0.091 0.162 0.131
DAP031(2) 0.943 1 0.293 0.992 0.03 0 0
DAP042(2) 0.015 0 0 0 0.001 0 0.162
DAP043(2) 0.097 0.001 0.061 0.177 0.675 0.961 0.703
DAP048(2) 0.654 0 0 0.037 0.028 0.098 0.061
DAP050(1) 0.004 0 0 0 0.188 0.377 0.769
DAP051(1) 0.254 0 0 0 0 0 0
DAP053(1) 0.968 0.948 0.697 0.985 0.963 0.442 0.321
DAP054(1) 1 0 0 0 0.003 0 0.571
DAP056(3) 1 0 0 0 0 0 0
DAP057(3) 0.03 0.02 0.016 0.147 0.321 0.629 0.798
DAP058(1) 0.516 0.004 0.012 0.001 0 0.493 0.072
DAP059(2) 0 0 0 0 0 0.011 0
DAP060(1) 0.055 0 0 0.001 0.753 0.594 0.855
DAP065(1) 0.071 0 0.01 0.02 0.027 0.418 0.351
DAP067(1) 0.209 0.291 0.197 0.65 0.8 0.36 0.729
DAP067(2) 0.063 0 0 0 0 0.015 0.021
DAP069(2) 0.15 0.113 0.603 0.285 0.073 0.251 0.382
DAP072(1) 0.256 0 0 0 0.036 0.005 0.01
DAP075(1) 0.933 0 0 0 0 0.027 0.774
DAP075(2) 1 0.175 0.045 0.002 0.496 0.824 0.654
DAP077(1) 0.053 0 0 0.013 0 0.002 0.457
DAP080(1) 0.34 0.001 0 0.013 0.888 0 0.197
DAP081(1) 0.018 0 0 0 0.018 0.009 0
DAP082(1) 0.108 0 0 0.015 0.262 0.093 0.054
DAP084(1) 0 0 0 0 0 0 0
DAP084(2) 0.025 0 0 0 0 0.045 0.022
DAP086(2) 0 0 0 0 0 0.16 0.359
DAP087(1) 0 0.039 0 0.024 0.006 0.355 0.223
DAP088(1) 0.087 0.837 0.537 0.158 0.185 0.776 0.727
DAP090(1) 0.54 0 0 0 0 0 0
DAP091(1) 0 0 0.017 0.102 0.727 0.887 0.742
DAP092(1) 0.094 0 0 0 0.222 0.079 0.021
DAP093(1) 0.024 0 0 0 0.001 0.031 0.474
DAP094(1) 0.395 0.002 0 0 0.207 0.063 0
DAP095(1) 0.011 0.003 0.003 0.137 0.204 0.231 0.41
DAP095(2) 0.02 0.863 0.845 0.306 0.804 0.305 0.13
DAP096(2) 0.035 0 0 0 0.018 0 0.001
DAP097(2) 0 0 0 0 0.024 0.018 0
DAP101(1) 0 0.003 0 0.006 0.015 0 0
DAP102(1) 0.38 0.912 0.72 0.935 0.691 0.932 0.744
DAP104(1) 0.612 0.015 0 0.002 0 0 0
DAP105(1) 0.014 0.042 0.142 0.244 0.537 0.497 0.321
DAP106(1) 0.114 0.795 0.069 1 0.568 0.191 0.644
DAP108(1) 1 0.004 0.006 0.182 0.002 0.594 0.647
DAP109(1) 0.824 0.002 0.413 0.072 0.077 0.048 0.593
DAP110(1) 0.1 0 0 0 0.057 0 0
DAP114(1) 0.002 0 0 0 0 0 0
DAP121(1) 0.141 0.001 0 0 0 0 0.926
DAP123(1) 0.233 0 0.003 0 0.003 0.002 0.612
DAP125(1) 0.116 0 0 0 0 0 0
DAP126(1) 0.997 0.551 0 0.025 0 0.573 0.648
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