
Implementation and Evaluation of
the MQTT-TLS profile for

Authentication and Authorization
in Constrained Environments

Michael Michaelides

Fourth Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2020

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H





Abstract
With the advent of the Internet of Things, many devices with little computational power
and energy constraints are being connected to the internet at scale. For the sake of en-
ergy and computational efficiency, many of these devices incorporate limited security
provisions which makes them vulnerable to online attacks, and threatens to compro-
mise both their operation and user data privacy. In this project, we focus on securing
MQTT, a popular publish/subscribe messaging protocol that has rudimentary support
for security. We implement the Authentication and Authorization in Constrained Envi-
ronments (ACE) MQTT-TLS profile specified by the Internet Engineering Task Force,
to add an OAuth2 security layer on top of MQTT. We evaluate experimentally our
secure ACE-MQTT implementation versus plain MQTT systems in realistic settings
in both unconstrained and constrained environments. To assess the cost of security,
we measure the CPU, memory, and network usage, as well as energy consumption.
The results obtained confirm that the ACE solution matches the capabilities of moder-
ately constrained devices, hence providing an affordable mechanism to secure MQTT
systems.

iii



Acknowledgements

I would like to express my gratitude to my two supervisors, Dr. Paul Patras and Dr.
Cigdem Sengul, who proposed this project, provided invaluable feedback and con-
tributed in various ways until the very end. Without them I would have not been able
to get involved and eventually complete this project.

iv



Table of Contents

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Roadmap of the project . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Prior art 5
2.1 Security in the MQTT protocol . . . . . . . . . . . . . . . . . . . . . 5
2.2 ACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 IoT security performance evaluation . . . . . . . . . . . . . . . . . . 6

3 Background 7
3.1 The MQTT protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 MQTT security considerations . . . . . . . . . . . . . . . . . 9
3.2 The MQTT-TLS profile for ACE . . . . . . . . . . . . . . . . . . . . 10

4 Design 13
4.1 Authorization Server . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 ACE MQTT broker . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 ACE MQTT client . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Implementation 19
5.1 Client initialization and registration . . . . . . . . . . . . . . . . . . 19
5.2 Authorization Server discovery . . . . . . . . . . . . . . . . . . . . . 20
5.3 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3.1 Access Token request . . . . . . . . . . . . . . . . . . . . . . 21
5.3.2 Client authentication request . . . . . . . . . . . . . . . . . . 22
5.3.3 Connect packet validation and Access Token introspection . . 22
5.3.4 Proof of Possession . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.5 Authentication request response . . . . . . . . . . . . . . . . 25

5.4 Client Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Additional features . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.5.1 Automation and monitoring . . . . . . . . . . . . . . . . . . 27
5.5.2 HiveMQ broker modifications . . . . . . . . . . . . . . . . . 28
5.5.3 HiveMQ broker contributions . . . . . . . . . . . . . . . . . 29

5.6 TLS Exporter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Evaluation 31

v



6.1 Energy consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Resource utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Standard compliance and interoperability . . . . . . . . . . . . . . . 37

6.3.1 Simple authentication with client version 3.1.1 . . . . . . . . 37
6.3.2 Simple authentication with client version 5 . . . . . . . . . . 38
6.3.3 Challenge authentication . . . . . . . . . . . . . . . . . . . . 39

7 Conclusions 41
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 43

vi



Chapter 1

Introduction

Internet of Things (IoT) deployments usually consist of multiple resource-constrained
devices that collect data and transmit them to cloud-based services over the public
Internet. Such deployments can be used to improve home automation[26], provide
better home care of patients[20], optimize and improve visibility of manufacturing
procedures[34] and reduce costs in smart cities by streamlining procedures such as
waste collection[1]. IoT devices usually have few computational resources and a small
energy budget to keep the costs down, but they are still expected to last a significant
amount of time without a battery replacement or a recharge. As a consequence, they
tend to have limited or no support for features that are not part of the core functionality.
Even security features that are usually a requirement for modern devices connected to
the public internet, such as authentication, data integrity, and confidentiality, remain
an afterthought.

Security is critical in the IoT and trading it in favor of resource efficiency can harm
much more than just the application functionality[21]. Attackers are taking control of
insecure IoT devices and use them to create large botnets able to launch distributed
denial of service attacks[3]. Personal fitness trackers are abused to leak personal user
information[10, 35]. In other cases, a network of insecure high wattage devices could
be used to disrupt the power grid[31]. This is a real threat introduced by the scale of
IoT and its lack of security standards.

Currently few IoT security standards exist to mitigate this risk, thus paving the way
for proprietary implementations which are not publicly scrutinized. MQTT[23] is one
such IoT protocol with rudimentary security support. It is a lightweight publish/sub-
scribe messaging protocol by OASIS currently used in 42% of all IoT deployments[15].
Its standard form is largely insecure and exploitable, as demonstrated by Andy et al[2],
thus making Transport Layer Security (TLS) strongly recommended. However, ac-
cording to Shodan[30], at least 45,000 MQTT deployments worldwide are not using
TLS and accept unauthenticated connections.

In an attempt to fill this gap, the Internet Engineering Task Force (IETF) Authenti-
cation and Authorization in Constrained Environments (ACE) MQTT-TLS profile[29]
proposes an OAuth2-based authentication and authorization layer on top of MQTT.

1



2 Chapter 1. Introduction

The ACE MQTT-TLS profile (referred to as ”the profile” from now on) is currently
lacking of a complete implementation and performance evaluation, which is an impor-
tant part to defend its feasibility. In this project we implement the complete profile
and we comprehensively evaluate our solution, in terms of resource utilization (CPU,
memory and network input and output) and energy consumption. The results confirm
the viability of deploying our ACE-MQTT implementation on moderately constrained
devices. Finally we author a paper with our findings, which to the best of our knowl-
edge is the first piece of work to evaluate the upcoming profile. In the next section we
present our contributions in detail.

1.1 Contributions

Throughout the course of this project, the following milestones were achieved:

• Implementation of an ACE-MQTT compliant client extension with the following
features:

– Initiation using a configuration file

– Registration with the Authorization Server (AS)

– Access Token (AT) request prior to the authentication phase

– Proof of Possession (PoP) via Message Authentication Codes

– Version 5, version 3.1.1 and challenge authentication support

– Transport Layer Security (TLS) configuration

• Implementation of an ACE-MQTT compliant broker extension with the follow-
ing features:

– Initiation using a configuration file

– Access Token (AT) introspection with the Authorization Server (AS)

– Version 3, version 5 and challenge authentication support

– Publish and subscribe request authorization

– Transport Layer Security (TLS) configuration

• Automation and orchestration of deployment through containerization and Docker
Compose setups

• Contributions in the form of bug reports and fixes to the broker library we based
our broker extension on

• Standard contingency and interoperability testing of our implementation against
the profile specification

• Resource utilization evaluation, based on CPU, memory and network input and
output traffic



1.2. Roadmap of the project 3

• Energy efficiency evaluation, based on instantaneous power but also cumulative
energy consumption during the authentication and authorization phase

• A real time resource monitoring and visualization solution to simplify future
evaluations and comparisons

Apart from implementation and evaluation, we also wrote a research paper with the
name An Experimental Evaluation of MQTT Authentication and Authorization in IoT
Environments which was submitted to the ACM Transactions on Internet of Things
journal1 and is currently under review. The paper summarizes the design and imple-
mentation of the profile and also presents a detailed resource utilization and energy
consumption overhead, similar to the one in chapter 6. The significance of this paper
is that it is the first ever detailed performance analysis of the profile. First, the re-
sults make it easier to decide whether an existing insecure MQTT client could handle
the additional overhead of ACE-MQTT and thus whether an insecure MQTT deploy-
ment could be upgraded to ACE-MQTT. Second, the results clearly identify which of
the profile requirements are the most resource and energy expensive, thus it sets a clear
path for future work to optimize them. Finally, as an upcoming IETF specification, and
assuming that it will become a RFC, the profile will need to be thoroughly evaluated
before being adopted and this paper makes the first step towards that path.

The original objective of this project was ”A working and tested implementation of an
IoT authorization solution”, as dictated by the project proposal2. Based on the above,
I claim that the project was successfully completed, given that the implementation
covers all the hard requirements of the profile, along with most of the soft requirements
as well. The solution was thoroughly tested and evaluated, as detailed in chapter 6.

1.2 Roadmap of the project

The rest of the report is organized as follows. In chapter 2 we discuss existing relevant
work around MQTT and ACE. Then in chapter 3 we give an overview of the MQTT
protocol and we briefly explain how the profile builds on top of it to achieve security
guarantees. Chapter 4 presents the design of the three components of an ACE-MQTT
domain; the Authorization Server (AS) is described in 4.1, the broker in 4.2 and the
client in 4.3. Chapter 5 presents the implementation details of the major features im-
plemented during the project; client initialization is at 5.1, AS discovery at 5.2, the
authentication phase and authorization phase at 5.3 and 5.4 respectively, additional
features are described at 5.5 and finally a deviation we had to make from the profile
is at 5.6 . Chapter 6 presents a test plan and a comparative performance evaluation
of our implementation; energy efficiency is at section 6.1, resource efficiency at 6.2
and standard contingency testing at 6.3. In chapter 7 we conclude by summarizing the
project key points and indicating potential directions for future work.

1https://dl.acm.org/journal/tiot
2https://dpmt.inf.ed.ac.uk/ug4/project/3568





Chapter 2

Prior art

2.1 Security in the MQTT protocol

In its plain form, MQTT is largely insecure[18] but a lot of work is being done to im-
prove it. A solution for protecting MQTT topics based on the Augmented Password-
Authenticated Key Agreement protocol is proposed by Calabretta et al[8], yet no ev-
idence of performance is given. Esfahani et al[14] propose a lightweight mutual au-
thentication method suitable for MQTT, however their solution provides no means
to authorize client actions. Ramos et al[19] propose a way to test an implementation
against malformed input vulnerabilities through fuzzing, however their work is focused
on testing and does not provide any security guarantees.

Token-based authentication in MQTT has gained a lot of focus recently. Bhawiyuga
et al[6] implement token-based MQTT authentication in constrained devices, but their
evaluation is limited to usability and response time. Collina et al[11] propose QEST,
a RESTful MQTT broker, and explore the idea of incorporating OAuth. An imple-
mentation is not provided though, and evaluation is missing. Aimaschana et al[22]
introduce an OAuth1a-based system with insecure communication channels which re-
quires clients to generate new signatures on every request. This increases complexity
and requires one extra round trip during authentication, which is resource-expensive.

The work of Fremantle et al is related to ours as their design uses OAuth2 tokens
for authentication and authorization[16]. However, they are using a single embedded
token and insecure communication channels which makes the solution vulnerable to
replay attacks and eavesdropping, as the authors acknowledge. Many other solutions
consider devices constrained enough to not support SSL/TLS where communication
happens over insecure channels[16, 22, 8]. These are not complete solutions, since
they provide no data confidentiality or integrity. Also, solutions that rely on tokens
hard-coded in the device firmware[16, 22] are not very flexible, as the device firmware
must be flashed in order to change the token if compromised or if the device is moved
to a different authorization domain.

Lastly, to the best of our knowledge, there are no implementations that take advantage
of MQTT version 5 features to provide enhanced security. We use them to provide

5



6 Chapter 2. Prior art

useful features such as the discovery of the AS location and challenge-based authenti-
cation.

2.2 ACE

The IETF ACE work-group is working on other protocol specifications in addition to
the MQTT-TLS profile. First, the profile is based on the ACE-OAuth framework[28]
which specifies the public API and the functionality of the AS using the OAuth2.0 pro-
tocol. The Pub-Sub Profile for ACE[25] is similar to the MQTT-TLS profile; they both
use an OAuth2.0 based AS to provide authentication and authorization for a messaging
protocol based on a publish-subscribe architecture, however they differ on the messag-
ing protocol used. The MQTT-TLS profile uses MQTT whereas the other one uses
Constrained Application Protocol (CoAP). Finally, the Datagram Transport Layer Se-
curity (DTLS) Profile for ACE[17] defines a lightweight protocol to allow constrained
servers to delegate management of authorization information to a non-constrained AS.
In our case the broker is not constrained, and we are using TCP at the transport layer
thus TLS replaces DTLS, which is based on UDP transport instead.

2.3 IoT security performance evaluation

We could not find many papers that evaluate overall energy consumption of IoT secure
solutions. Baranauskas et al[4] evaluate the impact that different Quality of Service
levels have on energy consumption of the MQTT protocol over TLS. This is helpful
to determine the cost of reliability of message delivery, however they do not compare
against a plain MQTT deployment thus it is difficult to make conclusions about the
cost of TLS. Tae et al[9] research how to choose the TLS cipher suite to optimize for
security level, residual energy and message length. This provides useful insight and
can be used as an optimization technique to our solution as well, i.e. it is orthogonal
with our efforts.



Chapter 3

Background

For the sake of completeness, in this chapter we outline the MQTT protocol and we
briefly explain how the profile builds on top of it to provide security. Where appropri-
ate, we cite to the MQTT specification or the profile for more details.

3.1 The MQTT protocol

MQTT, short for Message Queuing Telemetry Transport, is a client-server protocol
developed by IBM in 1999 and made public under a royalty free license in 2010. It is
a lightweight publish/subscribe messaging protocol that can be used for near real time
communication between clients, which are usually IoT devices. MQTT has seen wide
adoption due to its efficiency and simplicity and became the most commonly used IoT
messaging protocol, after HTTP[15]. Unlike HTTP, MQTT does not have a secure
version, even though it is widely adopted. It mainly relies on external protocols, such
as TLS, to provide security.

MQTT uses persistent TCP connections, and two standardized versions exist, namely
3.1.1[23] and 5[24]. The protocol operation is governed by a central server, called
broker, which is responsible for relaying messages between clients as shown in Fig-
ure 3.1. Clients connect to the broker using a CONNECT packet, optionally followed
by an authentication phase. The broker responds with a CONNACK packet, accepting
or refusing the request.

Clients transmit data to a certain audience by sending PUBLISH messages to the bro-
ker specifying a topic name. The broker then forwards the message to all the clients
subscribed to that topic. A topic is a resource on the broker used by clients to exchange
messages and it is represented by a string of hierarchical structure, such as factoryA/-
groundfloor/temperature.

A client can subscribe to topics by sending a SUBSCRIBE message, specifying a topic
filter. The topic filter may match multiple individual topics managed by the broker.
The broker will then subscribe the client to each matching topic, and it will forward
messages published to these topics. A topic filter is a string in the hierarchical form of

7



8 Chapter 3. Background

Figure 3.1: The different components and procedures of an MQTT system. Messages
are delivered with publish messages through a central broker using topics subscriptions.
Source: Axway developer blog[7]

a topic that allows the use of two wildcards, ’+’ and ’#’. The wildcard ’+’ matches any
subtopic found one level below the specified topic, whereas # matches any subtopic
irrelevantly from how many levels below. For example, the filter metric/+ matches
the topic metric/humidity but not metric/humidity/Edinburgh, which is matched by the
filter metric/#.

Finally, subscribe and publish requests also specify a Quality of Service (QoS) level.
Three levels are possible:

• At most once (QoS 0). This is the lightest and fastest option and provides no more
guarantees that the underlying TCP session does. The receiver of the message
does not acknowledge it on the application layer. Thus, a subscriber with an un-
reliable connection which frequently drops might not receive published packets
and a publisher might fail to successfully deliver its message to the broker.

• At least once (QoS 1). This level guarantees that the message will be delivered
but duplicates may be sent as well if a confirmation does not arrive in time. There
is additional overhead on both the sending and receiving side since caching of
the packet is necessary and an acknowledgement is expected.

• Exactly once (QoS 2). This is the slowest and heaviest option but also the most
reliable since it guarantees that the message will be delivered exactly once. Apart
from caching the packet, the acknowledgement procedure consists of two round
trips.

Currently MQTT is used in various domains. Facebook messenger uses it to achieve
fast communication without draining the phone’s battery life[33]. Cloud service plat-
forms, such as the Google Cloud Platform, Microsoft Azure and Amazon Web Services
use it to either transport telemetry or messages as part of their IoT solution[13, 5, 12].



3.1. The MQTT protocol 9

3.1.1 MQTT security considerations

In both MQTT version 3.1.1 and 5 specifications, the security section is brief and non
normative. It outlines the security that MQTT is capable to support and recommends
adopting it, but no security measures are enabled by default.

Version 3.1.1 allows only username/password-based authentication through a User-
name and a Password field in the CONNECT packet. Thus, if any other authentication
mechanism is implemented over 3.1.1 then it has to overload these fields.

Version 5 addresses a set of limitations of version 3.1.1, one of them being more sup-
port for security. Two new authentication fields are introduced in the CONNECT
packet: Authentication Method and Authentication Data. With these, a client can
signal to the broker the method being used to authenticate and it can use arbitrary
format authentication data. These additions are flexible enough to allow the broker to
support multiple authentication methods, varying from username/password-based to
token-based and more. Additionally, version 5 supports a new AUTH packet which
can be used to extend the authentication phase, such as to add a challenge, or to re-
authenticate. However, the standard does not prescribe how these new features should
be used nor does it recommended an authentication mechanism over them.

Given the level of security MQTT natively supports, the following concerns are raised:

1. Authentication of clients by the broker. The only concrete method natively
provided by MQTT is username and password, while a custom authentication
method can be implemented on top of version 5 if needed. All the problems of
username and password authentication arise, such as weak passwords. Authen-
tication is also optional and not enabled by default.

2. Authentication of the broker by the clients. There is no native support for this
feature. Where TLS is being used, the certificate of the broker can be used to ver-
ify its identity. In version 5, implementing appropriate enhanced authentication
methods can achieve this as well.

3. Authorization of client requests by the broker. The MQTT protocol does
not describe authorization techniques. An authorization mechanism can be built
based on the authentication data provided during the authentication phase.

4. Integrity of messages. There is no native support for this in the MQTT protocol.
TLS can be used to provide integrity on the transport layer.

5. Confidentiality of messages. There is no native support in the MQTT protocol.
One can either encrypt the application message payload manually or use TLS.
Any data stored on disk should also be considered.

It is clear that the MQTT protocol heavily depends on the underlying protocols to
provide security, mainly through TLS/SSL. While TLS/SSL can provide some guaran-
tees, it is not complete since it can not always provide client authentication and client
request authorization. Next we describe the profile which aims to do just that.



10 Chapter 3. Background

3.2 The MQTT-TLS profile for ACE

The profile[29] adds a complete layer of security on top of MQTT, covering data confi-
dentiality, integrity and broker authentication using TLS, and client authentication and
authorization using OAuth2 Access Tokens (ATs). In order to provide these guaran-
tees, a set of additional requirements to a typical MQTT deployment are introduced.
The components of an ACE-MQTT domain consist of the following:

• ACE Authorization Server (AS) responsible for registering clients, maintaining
authorization policies for publishing and subscribing to topics and granting ATs
to clients

• ACE MQTT broker responsible for authenticating clients and authorizing pub-
lish and subscribe requests

• ACE MQTT client that communicates with other clients while adhering to the
new security requirements

All three entities communicate over pairwise secure channels, as shown in Figure 3.2.
The clients and the broker communicate with the AS over HTTPS, and between them
using MQTT over TLS. Both the broker and the AS use their TLS certificates to au-
thenticate to the clients.

Figure 3.2: The different components of an ACE-MQTT system and the communication
channels between them: AS and broker communicate over HTTPS; clients communi-
cate with the broker using MQTT over TLS, and with the AS using HTTPS.

Clients do not necessarily have TLS certificates. They authenticate with the AS using
a client id and a secret, obtained by registering to the AS. On the other hand, they
authenticate with the broker using OAuth2 ATs which are issued by the AS and are
accepted by the broker as a valid form of authentication. An AT is a string which is



3.2. The MQTT-TLS profile for ACE 11

associated with additional data, such as the id of the client requesting it, an expiry date,
a scope which specifies the permissions of the client and a Proof of Possession (PoP)
key and algorithm necessary to prove ownership of the AT.

The ACE-MQTT broker needs to validate the AT presented by an authenticating client.
To do this, the broker introspects it with the AS to check if it is valid and to obtain the
associated data. If it is valid and not expired, the broker requests a PoP to ensure that
the client is the legal owner of the AT, in order to prevent leaked or eavesdropped ATs
from being used to impersonate clients. The default PoP method is through Message
Authentication Code (MAC), where the client uses the symmetric PoP key to compute
an authentication tag. Digital Signature PoP is also possible but only if the client has
its own public key first. Section 2.1.3 of the profile details the AT validation phase for
more details.

The profile defines different authentication methods for clients of different MQTT ver-
sions. Version 3.1.1 clients have to fill the username and password fields with the AT
and PoP respectively, while version 5 clients can make use of the new Authentication
Data field instead. Version 5 clients can also choose between simple or challenge-based
PoP, whereas version 3.1.1 clients can only perform the simple method. In challenge-
based, both the client and the broker contribute to create a nonce used for the PoP. In
the simple version, the nonce created during the TLS handshake is used, thus the client
can compute the PoP before sending the CONNECT packet. See Sections 2.1.2 and
2.1.4 of the profile[29] for more details of the authentication phase.

Upon successful authentication, the topics authorised to publish or subscribe to are de-
termined by the scope associated with the client’s AT. The scope is a space separated
set of permissions, which follow a particular format, e.g., the scope ”publish topic1
subscribe topic2/#” allows publishing under topic1 and subscribing under any subtopic
below topic2. Note that the each scope entry defines a topic filter that can match mul-
tiple topics. The scope defines a white-list, thus any action not defined in a scope entry
is not authorized by default.

To authorize a publish request, the broker needs to check the scope associated with the
client’s AT. This check is simply finding a scope entry that matches the topic in the
publish packet. If the broker finds such entry, then it authorizes the request otherwise
it rejects it. Next, before forwarding the message to each subscriber under that topic,
the broker has to make sure that the subscriber AT is not expired. Authorization of
publish messages is detailed in section 2.2 of the profile[29].

Subscribe request authorization may be more involved, because both the AT scope and
the subscribe packet include topic filters that may contain wildcards. Therefore, for
each topic filter in the request, the broker has to check that the AT scope contains an
entry that is a super-set of that topic filter.

Being able to report authorization errors also depends on the MQTT version being
used. Specifically, version 3.1.1 does not allow the broker to indicate a publish or sub-
scribe authorization failure, nor does it allow sending a server-side disconnect. Thus,
the broker drops the TCP connection if an unauthorized request is received. In con-
trast, version 5 provides better error reporting, allowing the broker to send a negative



12 Chapter 3. Background

publish or subscribe acknowledgement, indicating an authorization failure. As such,
the client can proceed to re-authenticate by obtaining a new AT and providing it to the
broker, without reconnecting. This is resource efficient, since TLS session initiation
is expensive as we’ll see in chapter 6. Finally, a broker can also gracefully disconnect
a version 5 client by sending a server-side disconnect if needed. Section 3.2 of the
profile[29] details the authorization error handling.



Chapter 4

Design

In this section we present the design of the broker and the client extensions developed
during this project. We also give a brief overview of the AS design, which was pro-
vided by Dr. Cigdem Sengul, one of the authors of the profile and my co-supervisor.
The component architecture is shown in Figure 4.1 and described in detail in the next
sections.

Figure 4.1: Architecture of ACE-MQTT a) AS b) broker c) client

4.1 Authorization Server

The Authorization Server (AS) is a Node.js1 HTTPS server with OAuth2 support,
which acts as a trusted third party between clients and the broker. The source code
is publicly available on GitHub2. It provides the following public API to the ACE-
MQTT broker and clients:

• Client registration. Unauthenticated endpoint that allows new clients to regis-
ter. The client provides their unique name and URI and the AS responds with

1https://nodejs.org/en/
2https://github.com/ciseng/ace-mqtt-mosquitto

13



14 Chapter 4. Design

a unique client id and secret, which can then be used to access authenticated
endpoints.

• AT request. Authenticated endpoint accessed by clients to request ATs. The
client provides the desired scope and the AS responds with an AT along with
associated data, as shown in Table 4.1. The AT is valid until the time specified
by the Expiry Date field. The PoP key is a secret which provides message au-
thentication during the authentication phase, to ensure that the token can not be
used by anyone else apart from the client who requested it.

• AT Introspection. Authenticated endpoint accessed by the broker to introspect
client ATs to obtain the associated data. The input is the AT and the output is
identical to the AT request endpoint, shown in Table 4.1.

• Policy management. Authenticated endpoint accessed by resource owners to
manage client authorization policies. New policies can be created and existing
ones can be updated or deleted. A single policy dictates that a client can publish
or subscribe to a set of topics defined by a topic filter. Resource owners are
entities that can authoritatively decide permissions of access to an MQTT topic.

Field Interpretation

Access Token Credential of the client to the broker
Expiry Date Token lifetime
Scope Authorization permissions associated with this AT.
PoP Algorithm MAC or Digital Signature algorithm
PoP Key Symmetric or asymmetric key used with the PoP algorithm

Table 4.1: AS Token Response

The AS uses Express3, a minimal and flexible web application framework, to support
the HTTPS server. A MongoDB4 database is used to store the registered clients,
policies over each client’s authorization permissions and active Access Tokens. The
Mongoose object data modelling library5 is the interface between the server and the
database, defining the schema and performing the read and write operations. The
OAuth2 authorization framework is implemented using OAuth2orize6 and Passport7.

3https://expressjs.com/
4https://www.mongodb.com/
5https://mongoosejs.com/
6https://github.com/jaredhanson/oauth2orize
7http://www.passportjs.org/



4.2. ACE MQTT broker 15

4.2 ACE MQTT broker

Our broker is a Java extension to the HiveMQ Broker Community Edition8. The source
code is publicly available in GitHub9. The extension enhances the base broker with the
following additional capabilities:

1. TLS and HTTPS support, to secure communications with ACE-MQTT clients
and the AS, respectively

2. Authentication for version 3.1.1 and version 5 clients supporting both simple and
challenge-based.

3. PoP verification of authenticating clients

4. AT Introspection to obtain AT associated data during the authentication phase

5. Token caching and periodic validation, to spot expiring ATs and disconnect/re-
authenticate clients

6. Authorization of publish and subscribe requests

7. AS Discovery, to inform version 5 clients of the AS location

We decided to use the HiveMQ broker because of simplicity and existing support of
desired features. At the beginning of the project, we researched different open source
broker implementations that could be used for the project. We found out that both
HiveMQ and Mosquitto10 were suitable and could fulfill the requirements at that time.
We compared the profile specification with each of these implementations and both
had their pros and cons; HiveMQ has a simple extension Software Development Kit
(SDK) that can be used to easily extend the broker without modifying the source code.
It is written in Java which is already familiar to me thus we could have a head start
with the project. Mosquitto is more popular and written in C, which is not as familiar
to me. It does not support an extension SDK thus a plugin would have to be a patch
over the library source code, which would make the plugin dependent on the broker
implementation details and more complicated to understand and deploy. Since both of
them were adequate back then, we chose HiveMQ for simplicity but new requirements
that came along the way (described in section 5.6) made it more clear that Mosquitto
might have been a better choice.

It is easy to incorporate our extension to the HiveMQ broker. The maven11 build phase
packages it into a zip archive that can be extracted under the extensions directory inside
a HiveMQ broker installation. However, the HiveMQ broker also needs to be config-
ured externally to support TLS. We automate this procedure by providing a container
image that includes the whole setup and is ready to run out of the box. More details
for the automation can be found in section 5.5.1.

8https://www.hivemq.com/developers/community/
9https://github.com/michaelg9/HiveMQACEextension

10https://mosquitto.org/
11https://maven.apache.org/



16 Chapter 4. Design

The major components of our extension are shown in Figure 4.2. The two authenti-
cators, AuthenticatorV3 and AuthenticatorV5 handle the authentication of clients ver-
sion 3.1.1 and 5 respectively. They inherit from the AceAuthenticator base class which
provides common functionality such as requesting AT introspection through the Http-
sClient class, validating PoPs through the MacCalculator class and recording authen-
ticated clients and their ATs in the ClientRegistry class. MacCalculator verifies MAC
PoPs using the Nimbus JOSE/JWT library12. ClientRegistry is queried by the autho-
rization class AceAuthorizer to check client ATs for expiry and to enforce permissions
of publishers and subscribers. It is also equipped with an instance of a PublishOut-
boundInterceptor class which checks the expiry date of the AT of subscribers before
the broker forwards them a publish message.

<<create>> <<create>>

addAceAuthenticator

extend

AuthenticatorV3

extend

AuthenticatorV5

MacCalculatorHttpsClient ClientRegistration

ClientRegistry retrieve AceAuthorizer

PublishOutboundInterceptor

1

*

1

*

Figure 4.2: Major components of the ACE broker extension used for authentication
(AceAuthenticator with sub-classes AuthenticatorV3 and AuthenticatorV5 and with de-
pendencies HttpsClient and MacCalculator), authorization (AceAuthorizer and Pub-
lishOutboundAuthorizer) and AT tracking (ClientRegistry and ClientRegistration)

4.3 ACE MQTT client

Our client is a Java extension of the HiveMQ MQTT client13. The source code is
publicly available in GitHub14. The extension enhances the HiveMQ client with the
following additional capabilities:

1. TLS and HTTPS protocol support used to securely communicate with the broker
and the AS respectively

2. Client bootstrapping. Support for initial client configuration via a config file
and functionality to complete missing information, such as client registration to
obtain client id and secret, or AS discovery to figure out the location of the AS

12https://connect2id.com/products/nimbus-jose-jwt
13https://github.com/hivemq/hivemq-mqtt-client
14https://github.com/michaelg9/HiveACEclient



4.3. ACE MQTT client 17

3. Simple public API that allows the user to easily instantiate an ACE-MQTT client
and to choose between different options, such as authentication type

4. Proof of Possession calculation

5. Authentication with the broker through the simple and challenge-based method

6. AS discovery to request the location of the AS from the broker, if needed

7. Re-authentication to renew an expired AT without terminating the MQTT ses-
sion

We chose the HiveMQ client for its simplicity and feature support. The available
options for a base library were limited because most implementations were lacking
complete MQTT version 5 support by that time, which has been released recently. We
identified HiveMQ and Paho15 as potential options that could support all the profile
requirements back then. The advantage of using HiveMQ was simplicity, since it al-
lows extending it without modifying the source code. On the other hand, it is written
in Java which is not usually supported by embedded devices. Paho is written in C,
which is the language usually supported by embedded devices but it is not extensible.
We chose HiveMQ for its simplicity and because our focus was not specifically on
embedded devices but on moderately constrained devices instead that can support TLS
and source languages apart from C. Looking back at it, Paho might have been a better
choice since it could have covered new requirements that came along the way (more
details in section 5.6).

The architectural structure of our extension is shown in Figure 4.3. The public API is
provided by the ClientBuilder sub-classes, i.e. Ace3ClientBuilder and Ace5ClientBuilder
which build version 3.1.1 and version 5 clients respectively. They extend from the base
ClientBuilder which provides common functionality such as loading the initial config-
uration into the ClientConfig class, registering with the AS and requesting ATs us-
ing the HttpsClient. Furthermore, three different authentication mechanisms (Discov-
eryAuthMechanism, SimpleV5AuthMechanism, ChallengeAuthMechanism) allow a
version five client to perform AS discovery, simple and challenge authentication. Sim-
ple authentication for version 3.1.1 clients has built in support into the HiveMQ library
thus there were no additional classes needed. Finally, an instance of the MacCalculator
helps the different version 5 authenticators and the version 3 client builder to perform
PoP.

Our extension is very simple to use and acts as a wrapper over the HiveMQ client. The
two ClientBuilder sub-classes shown in Figure 4.4 make up the public API with two
public methods each; withAuthentication and connect. The method withAuthentication
allows the user to select the authentication method. A version 3.1.1 client has a choice
between simple authentication, which is the default, and no authentication at all, to
create a regular MQTT client. On the other hand, a version 5 client has the choice
between simple, challenge-based and no authentication, by passing the appropriate
AuthMechanism subclass as a parameter. Any additional actions or settings required
to make the client comply with the profile, such as AS discovery, client registration, AT

15https://github.com/eclipse/paho.mqtt.c



18 Chapter 4. Design

<<create>>
ClientBuilder

<<create>> <<create>> <<create>>

extend

Ace5ClientBuilder

extend

<<create>>
Ace3ClientBuilder

ClientConfig
HttpsClient

AuthMechanism

extend

DiscoveryAuthMechanism

1
1

extend

<<create>>

ChallengeAuthMechanism

extend

<<create>>

SimpleV5AuthMechanism

MacCalculator

Figure 4.3: UML class diagram of client showing the base ClientBuilder class on top,
along with its dependencies (HttpsClient, ClientConfig), the version 3 and 5 client
builder sub-classes (Ace3ClientBuilder, Ace5ClientBuilder), the three version 5 au-
thentication mechanisms (DiscoveryAuthMechanism, SimpleV5AuthMechanism, Chal-
lengeAuthMechanism) and the MacCalculator used to calculate the PoP

request and transport protocol settings are performed internally by the ClientBuilder
class, with no user interaction. Finally, the connect method sends an authentication
request to the broker. If successful, a connected HiveMQ client instance of the appro-
priate version is returned with the only difference being that if the client attempts to
perform an unauthorized action then it is refused by the broker.

ClientBuilder
#initClient(ClientConfig)

#register(name: String, uri: String):RegistrationResponse
#requestAT(scope: String):ATResponse

#withSSL(boolean)

Ace3ClientBuilder
+withAuthentication(boolean):Ace3ClientBuilder

+connect():Mqtt3Client

Ace5ClientBuilder
+withAuthentication(AuthMechanism):Ace5ClientBuilder

+connect():Mqtt5Client

CREATED WITH YUML

Figure 4.4: Client builder classes forming the public API of our client. On the left it
is the base abstract ClientBuilder class that provides common functionality (load initial
configuration, register client, request AT, configure transport protocol) and on the right
the builders for version 3.1.1 and 5 clients. Public methods are indicated with the plus
symbol while private methods with the hash



Chapter 5

Implementation

In this section we describe the different features implemented during the project, em-
phasizing on the client and broker side. As noted before, the AS implementation was
provided by my external supervisor, Dr. Cigdem Sengul, and only minor modifications
were made to it.

5.1 Client initialization and registration

A client instance requires initial configuration before it can execute. The client takes
a single required command line argument specifying the location of a Java properties
configuration file. The configuration file contains key-value pairs, with the keys being
parameters shown in Table 5.1.

Parameter Required

Broker IP address Yes
Broker port Default if missing
AS IP address Yes, unless discovery is possible
AS port Default if missing
TLS key & trust store location Yes, if TLS is used
Transport Protocol Defaults to TLS
Client Username Yes, unless already registered
Client URI Yes, unless already registered
Client ID Unless no Username and URI is provided
Client Secret Unless no Username and URI is provided
Scope Yes

Table 5.1: Client initial configuration parameters

Upon execution, the ClientBuilder class parses the configuration file into an instance
of a ClientConfig and performs initialization steps. First, it looks up the AS IP ad-
dress in the configuration. If found then it checks if the client is registered, i.e. if the
configuration includes a Client ID and Client Secret. If that is not the case, then the

19



20 Chapter 5. Implementation

HttpsClient sends a HTTPS POST request to the AS registration endpoint, providing
the Client Username and Client URI obtained from the configuration. Upon success-
ful registration, the client retrieves the Client ID and Client Secret and persists them
in the configuration file in order to avoid the registration phase next time. Then, the
ClientBuilder class configures the transport layer of the MQTT session according to
the Transport Protocol configuration parameter; the default value is ”TLS”, according
to the profile, however the user may set it to ”TCP” instead if the client will not be
using ACE. Finally, if the AS IP address is not found, the ClientBuilder proceeds to
discover it if possible. The discovery procedure is described next.

5.2 Authorization Server discovery

The client needs the DNS name or the IP address of the AS to register and request
ATs. If not found in the configuration file, a version 5 client can request it from the
broker, thus simplifying the initial configuration and allowing a non-static AS loca-
tion. If ClientBuilder does not find the AS IP address parameter in the configuration,
it will create a new version 5 client instance with an instance of DiscoveryAuthMech-
anism passed to the withAuthentication method. The DiscoveryAuthMechanism is
responsible for forming a CONNECT packet with empty Authentication Data and an
”ace” Authentication Method, which signals a discovery request. Then the CONNECT
packet is sent and the client receives back a CONNACK response refusing the request
but containing the AS absolute URI as a user property field in the packet. Finally the
ClientBuilder persists the location in the configuration file to avoid this procedure next
time.

5.3 Authentication

In this section we explain the authentication phase. The ClientBuilder sub-classes al-
low the user to select the authentication method through the withAuthentication method.
When the connect method is called, the client goes through the following steps:

1. Access Token (AT) request

2. Client authentication request

3. Access Token (AT) introspection

4. Proof of Possession (PoP)

5. Authentication request response

These steps are shown in Figure 5.1 and Figure 5.2 for simple and challenge based
authentication. In the next sections we see each of these in more detail.



5.3. Authentication 21

Figure 5.1: Simple authentication
showing the AT request, authentication
request, AT introspection, PoP valida-
tion and finally the authentication re-
sponse

Figure 5.2: Challenge authentication
showing the AT request, authentica-
tion request, AT introspection, the chal-
lenge PoP based on a nonce created
jointly by the broker and the client and
finally the authentication response

5.3.1 Access Token request

First, the client needs to obtain an AT from the AS. The ClientBuilder class creates an
instance of a HttpsClient and sends a POST request to the AT request endpoint. The
parameters of the request are as follows:

• A bearer authorization header. The client authenticates with the AS through a
bearer token containing the client id and secret.

• A JSON body containing the requested scope, retrieved from the client configu-
ration.

The AS verifies the client credentials and permissions and then it issues an AT along
with associated data (see Table 4.1). Then the ClientBuilder initializes the appropriate
AceAuthenticator subclass, according to the user choice of authentication. The AS
response is forwarded to the authenticator, which will be used during the authentication
phase described next.



22 Chapter 5. Implementation

5.3.2 Client authentication request

Given a valid AT, the client creates and sends an authentication request to the broker
via a CONNECT packet. The ClientBuilder and AceAuthenticator create the CON-
NECT packet whose format depends on MQTT version and authentication type. The
AceAuthenticator is responsible for populating the authentication related fields, and
the builder for everything else. Version 3.1.1 connect packets are an exception to this;
the whole packet is created by the builder which has enough built in support by the
HiveMQ client library.

Simple authentication is supported by both MQTT version 3.1.1 and 5 clients and it
takes a single round trip to complete, like a regular MQTT connection request. For
version 3.1.1 clients, ClientBuilder puts the AT inside the Username field and the PoP
inside the Password field, as shown in Table 5.2. Additionally, the Clean Session
flag is set to true as required by the profile. For version 5 CONNECT packets, the
AceAuthenticator puts both the AT and the PoP inside the Authentication Data field,
as length prefixed binary values. The Authentication Method field is set to ’ace’, to
indicate the protocol the client is authenticating against. Finally, the ClientBuilder
leaves the username and password fields empty and sets the Clean Session Flag to true
and the Session Expiry Interval to 0, as shown in Table 5.3.

Field Value

Username Access Token
Password PoP
Clean Session Flag True

Table 5.2: Simple authentication ver-
sion 3 connect packet

Field Value

MQTT Version 5
Authentication Method ace
Authentication Data AT,PoP
Username empty
Password empty
Session Expiry Interval 0
Clean Session Flat True

Table 5.3: Simple authentication ver-
sion 5 connect packet

Challenge authentication is supported only by version 5 clients and it takes an addi-
tional round trip to complete. The CONNECT packet is identical to the case of simple
authentication for version 5, apart from that the Authentication Data field does not
contain the PoP, which is exchanged in the second round trip.

5.3.3 Connect packet validation and Access Token introspection

Upon receiving the authentication request, the broker has to validate the format of the
CONNECT packet and check that the AT is valid. The request is forwarded to an ACE
extension authenticator, either AuthenticatorV3 or AuthenticatorV5, according to the
client version. Since the CONNECT packet does not contain the AT associated data,
the authenticator introspects it with the AS to retrieve them.



5.3. Authentication 23

For a version 5 CONNECT packet, AuthenticatorV5 goes through the following pro-
cedure to validate a version 5 CONNECT packet and introspect the AT:

1. Ensure that the Authentication Method is set to ’ace’. If not, the authenticator
ignores the packet and takes no decisive action. The HiveMQ broker forwards
the packet to other authenticators if they exist. If no authenticator handles the
request, the broker refuses the request with a CONNACK packet with reason
code BAD AUTHENTICATION METHOD. This allows the broker to provide
different authentication mechanisms.

2. Extract the AT from the Authentication Data field as a UTF-8 encoded string.
If it is missing then the request is treated as an AS discovery request described
in section 5.2 and the authenticator refuses the request replying back with the
location of the AS.

3. Introspect the AT using the HttpsClient class to obtain AT associated data (see
Table 4.1). If the provided AT is invalid, then the introspection request fails and
the authentication request is refused with error code NOT AUTHORIZED.

4. Check the AT expiry date and refuse the request with error code NOT AUTHO-
RIZED if expired.

The procedure is similar for a version 3.1.1 request. Step 1 is skipped since there
is no Authentication Method field, thus the authenticator assumes that the client is
authenticating using ACE. This does not allow the broker to support more than one
authentication methods for version 3.1.1 clients. In step 2, the AT is retrieved from the
Username field instead and the rest of the procedure is the same.

If the authentication phase reached this far successfully, then the broker continues to
the PoP phase described next.

5.3.4 Proof of Possession

After successful AT validation, the broker makes sure that the client is the rightful
owner of that token through a Proof of Possession (PoP). The PoP procedure depends
on the type of authentication being used, i.e. either simple or challenge-based. A
challenge-based PoP is performed as follows:

1. The broker AuthenticatorV5 initiates the PoP procedure as follows:

(a) It generates a secure cryptographic nonce using the Java SecureRandom
API and caches it so it can be retrieved after the client response arrives.

(b) It creates an AUTH packet with the broker nonce contribution in the Au-
thentication Data field, the string ’ace’ in the Authentication Method field
and the value CONTINUE AUTHENTICATION as Reason Code. The
AUTH packet is sent to the client.

2. The client ChallengeAuthMechanism receives the AUTH packet and proceeds
to perform PoP as follows:



24 Chapter 5. Implementation

(a) ChallengeAuthMechanism generates the client nonce contribution using
the SecureRandom Java API and concatenates it with the received nonce
to form the final nonce

(b) ChallengeAuthMechanism creates an instance of MacCalculator and passes
the final nonce and the PoP algorithm and key as parameters

(c) MacCalculator uses the Nimbus library to calculate the PoP by instantiating
a JWSSigner with the algorithm and key and signing the final nonce with it

(d) MacCalculator returns the PoP to the ChallengeAuthMechanism which
creates an AUTH packet with Authentication Data field set to the client
nonce contribution and the PoP as a length prefixed binary array, the Rea-
son Code field to CONTINUE AUTHENTICATION and the Authentica-
tion Method field to the string ’ace’

(e) The ChallengeAuthMechanism sends the AUTH packet to the broker

3. The broker AuthenticatorV5 receives the AUTH packet and validates the PoP as
follows:

(a) It extracts the client nonce contribution and the PoP from the packet

(b) It concatenates the client nonce contribution with the cached broker nonce
contribution to form the final nonce

(c) It creates an instance of MacCalculator and parameterizes it with the PoP
key and algorithm and the final nonce

(d) MacCalculator calculates the expected PoP following the same procedure
as at the client side

(e) The client PoP is validated if it is identical to the expected one.

4. If the client PoP is not validated, the broker AuthenticatorV5 refuses the request
with a CONNACK with error code NOT AUTHORIZED, otherwise, the client
is authenticated as shown in the next section.

For simple authentication, the process is simpler and consists of a single round trip,
rather than two, because the client defines the nonce. The client calculates the PoP
before sending the CONNECT packet but after receiving the AT from the AS. The
contents of the CONNECT packet are used as a nonce instead. The PoP is calculated
using the MacCalculator in the same way as in challenge authentication. When the
broker receives the authentication request and finds the PoP already included in the
packet, it proceeds to validate it the same way as it does in challenge authentication.
We note that how we perform PoP during simple authentication is a deviation from the
latest profile specification. Instead of the CONNECT packet contents, the nonce should
have been the TLS handshake client nonce. This deviation is explained in section 5.6.

We also note that Digital Signature PoP is not supported by our implementation. This
would require extending the AS to support binding an AT to a client public key and it
would also require that clients had their own SSL/TLS certificates. This increases the



5.4. Client Authorization 25

complexity and overhead and it is not the default way to perform PoP thus, due to time
constraints we left this as part of future work.

5.3.5 Authentication request response

If the AT and PoP are valid, the broker authenticates a client by sending a CONNACK
packet with a SUCCESS reason code. Additionally, it has to cache the client AT and
its associated data in order to authorize future publish and subscribe requests from the
client.

First the authenticator registers the client AT and its associated data in the ClientReg-
istry. The ClientRegistry holds an in memory map with key being the client id and
value being a ClientRegistration class instance holding the client AT and its associated
data. The map is used to periodically check AT expiry.

Second, the scope of the client is enforced at this stage. The authenticator uses the
HiveMQ native authorization framework to create an Access Control List (ACL) which
represents the scope of the client AT during run-time. The ACL is a white-list, which
means any request not covered by a rule in this list is not authorized. Each rule in the
ACL covers a scope entry by defining a topic filter and an associated action (subscribe
or publish).

5.4 Client Authorization

Client authorization requires the broker to cover the following requirements, according
to the profile; 1) ensure clients can only access topics defined in their scope and only
for the allowed action (publish or subscribe); 2) check AT expiration for each publish
or subscribe request; 3) provide error reporting when the AT is expired or when the
request is not authorized. Next we describe how each of these features is implemented
in the broker extension.

The scope of the client is enforced with the help of the HiveMQ native authorization
framework as described in subsection 5.3.5. We implement the scope using ACLs
during the authentication phase. To authorize publish requests, the topic name in the
packet needs to match with the topic filter of at least one rule in the ACL that permits
publishing. This is shown in Figure 5.3, via the call to isTopicInScope method. On the
other hand, to authorize subscribe requests, each topic filter in the request is compared
to all the rules in the ACL until a match is found. A match here means that there
is a rule with a topic filter of equal or broader scope than the filter in the request.
For example, a rule with a topic filter metric/humidity/# authorizes a request with a
topic filter metric/humidity/+. After all the requested topic filters are checked, the
broker authorizes the subscription request only for the topic filters that were authorized
and refuses the rest. An acknowledgement is sent to the client for each request filter,
indicating success or failure. These checks are handled natively by the HiveMQ broker
library, given the ACL we create after authentication.



26 Chapter 5. Implementation

Figure 5.3: Publish message authorization

Checking for an expired AT is done by the AceAuthorizer class. The AceAuthorizer
is executed before the ACL is applied and it refuses authorization if the AT is ex-
pired. When a publish or subscribe request is received, the AceAuthorizer retrieves
the client AT from the ClientRegistry and then it checks that the expiry date is in the
future. If not, then the request is refused and AceAuthorizer either drops the connec-
tion (for version 3.1.1 clients), or sends a server side disconnect message or a negative
acknowledgement (version 5 clients). If it is in the future, then the AT is valid and
AceAuthorizer lets the request be handled according to the ACL rules.

Finally, before sending a publish message to a subscriber, the subscriber’s ATs must
be validated. This happens each time a publish message arrives, in order to ensure
that a subscriber with an expired AT does not receive the message. To check this,
AceAuthorizer has an instance of an OutboundPublishInterceptor which is invoked
every time the broker sends a publish message to a subscriber. The interceptor checks
the validity of the subscriber’s AT in the same way as described above and lets the
packet go through if found valid. Otherwise, it drops the packet and disconnects the
client, either by dropping the TCP connection, for a version 3.1.1 client, or by sending
a server side disconnect, for a version 5 client.

5.5 Additional features

In this section we describe additional work that we made during this project but it either
did not make it into the final version or it is a side feature which was not explained
anywhere else.



5.5. Additional features 27

5.5.1 Automation and monitoring

We automated the deployment of all the server side components, to improve usability
and decrease management effort. When we started working on the project, the compo-
nents had to be set up manually and in the correct order; first, the MongoDB database
instance should be created, then the AS should be configured with the location of the
database and then launched and finally the broker should be configured with the loca-
tion of the AS and then launched. This process was time consuming thus we automated
it using a Docker-Compose setup that deploys the system automatically. For this, we
used the official Docker image of the MongoDB database. We modified slightly the
AS implementation to receive the database location through command line arguments
rather than a hard-coded location, which was necessary for the setup to work. Then we
created a Docker image of the AS implementation that accepts the location of the Mon-
goDB instance through command line arguments. Finally, we created an ACE-MQTT
broker container image by building on top of the image of the HiveMQ CE broker
and providing the essential configurations for TLS and embedding our extension. At
the end, we created a Docker compose setup that puts all the components in the same
network to allow inter-communication between them. Deploying our setup is a matter
of a single command.

Furthermore, we improved visibility into the system by providing a real time resource
utilization monitoring platform, to allow us to collect data about how each component
is coping during different tasks. The setup monitors each component in real time and
collects resource utilization statistics such as CPU, memory utilization and network
inbound and outbound traffic. Finally, the information is presented in a real time up-
dating dashboard. The monitoring platform is also easily deployed using a Docker
Compose setup and it consists of the following services:

• Google Container Advisor1 to query the CPU, memory and network input and
output utilization from each container and make them available for querying

• Prometheus node exporter2 to query the Google Container Advisor and store the
data in Prometheus time series database

• Prometheus3 time series database to store the readings according to the time they
were observed and make them available for querying.

• Grafana4 visualization platform to visualize all the real time or history metrics.
We created our own dashboard, shown in shown in Figure 5.4, to present each
piece of information in an appropriate format.

This setup can easily be used to evaluate different implementation versions, to quantify
optimizations and to compare our implementation’s efficiency against others.

1https://github.com/google/cadvisor
2https://github.com/prometheus/node exporter
3https://prometheus.io/
4https://grafana.com/



28 Chapter 5. Implementation

Figure 5.4: Our Grafana visualization dashboard, showing resource utilization for the
AS; from top left to bottom right: a) Received Network traffic b) Sent Network traffic d)
CPU usage f) Memory utilization

5.5.2 HiveMQ broker modifications

MQTT version 5 is relatively new thus the HiveMQ broker extension SDK did not fully
support it when we started working on the project. Specifically, there was no support
for extended authentication using AUTH packets, thus we could not easily implement
challenge-based authentication. We got in touch with the HiveMQ team to find out that
this feature was being worked on but we did not get a clear timeline of when it would be
released, thus we worked around it. We created our own fork of the HiveMQ broker5

and modified the source code of both the base library and the SDK in order to add
the missing support. Then we based our ACE extension on top of this modified SDK.
Fortunately, there was partial support in the HiveMQ broker implementation to handle
extended authentication but it had not been exposed to the SDK, thus we did not have
to implement the whole feature from scratch. Specifically, we had to do the following
changes (full details can be found in the corresponding GitHub Pull Request6):

• Modify the HiveMQ broker to forward AUTH packets to and from the extension
SDK authenticators. To do this, we figured out that a Netty7 ChannelHandler
class responsible for handling AUTH packets was not yet implemented thus we
provided our own implementation of it.

• Extend the SDK API to allow extensions to make use of our new feature without
further modifications to the base library. We added support for an ExtendedAu-
thenticator class which could send and receive AUTH packets.

Even though our implementation was working, having a modified base library was
increasing the complexity of our components because we could not use the official
release of the broker, instead we had to package the whole base library along with the
extension. Fortunately, HiveMQ version 4.3 was released recently with support for

5https://github.com/michaelg9/hivemq-community-edition
6https://github.com/michaelg9/hivemq-community-edition/pull/2
7https://netty.io/



5.6. TLS Exporter 29

extended authentication. We easily migrated our code to the new version because the
interface we created was not much different than the one officially released. Apart from
source code modifications, we also contributed to the HiveMQ broker as explained in
the next section.

5.5.3 HiveMQ broker contributions

Throughout the course of the project we identified three bugs in the HiveMQ broker
and raised them up with the official development team. The first one was a minor bug
in the authentication error reporting mechanism, providing the client with the wrong
error message why the request was refused. We raised an issue8 and a bugfix9 that
has been accepted. Then another one was found where the broker was not following
the MQTT version 5 specification during the authentication phase. The specification
requires the broker to respond to a CONNECT packet with a CONNACK with iden-
tical Authentication Method value, however the HiveMQ broker was leaving the field
empty. This resulted in the client refusing connection establishment, even if authenti-
cation was successful. We raised a bug report10 for this issue but since the HiveMQ
implementation was not fully supporting version 5 yet, they did not take our bug fix11

we implemented for our own fork of the broker. Finally, we reported a severe bug12

where a client using TLS was always disconnected seconds after successfully authen-
ticating. We identified and included the root cause analysis in our report; a timer
was used to terminate unfinished stale connection requests but it was terminating all
sessions indiscriminately because it was not being stopped after the client was success-
fully authenticated. We proposed a solution but the development team informed us that
they are already working on a fix.

5.6 TLS Exporter

In this section we describe why our implementation of simple authentication PoP de-
viates from the profile with respect to the choice of nonce. The profile is a draft which
was actively being modified during the project. The original proposal was to use the
CONNECT packet as a nonce which is how we implemented it. However, the IETF
review team noted that the CONNECT packet might not contain enough randomness
and they suggested using a nonce generated during the TLS handshake instead, which
could be retrieved using a TLS exporter as described in RFC-5705[27]. Unfortunately,
unlike the OpenSSL13 library, Java does not support this feature. The OpenSSL library
is used by lower level broker and client implementations, such as the Mosquitto broker

8https://github.com/hivemq/hivemq-community-edition/issues/119
9https://github.com/hivemq/hivemq-community-edition/pull/120

10https://github.com/hivemq/hivemq-community-edition/issues/110
11https://github.com/michaelg9/hivemq-community-edition/pull/1
12https://github.com/hivemq/hivemq-community-edition/issues/149
13https://www.openssl.org/docs/man1.1.1/man3/SSL export keying material.html



30 Chapter 5. Implementation

and the Paho client, however we could not switch to them halfway through project.
Thus we searched for alternative solutions.

One potential solution we found was BouncyCastle14 which is an extended cryptogra-
phy API supporting Java. BouncyCastle supports a TLS Exporter through the TlsCon-
text API15 and specifically through the exportKeyingMaterial method. Unfortunately
we could not easily implement BouncyCastle in our project because all the crypto-
graphic functions are handled internally by the HiveMQ broker implementation which
uses the native Java cryptographic API. We decided not to attempt to heavily modify
the broker source code to migrate to BouncyCastle because that would require a lot
of changes and effort for a far from ideal solution which would be prone to bugs and
would make our extensions dependent on the modified version of the base library.

Another potential solution we found involved using reflection to access attributes not
provided by the Java cryptography public API. Specifically, TLS keying material such
as the master secret and nonces are stored in memory in private fields by the SSLSes-
sionImpl implementation class of the SSLSession16 Java API. We found a StackOver-
flow post17 describing a way to use reflection to access this information. However,
even this way, we still had to modify the HiveMQ source code to obtain the instance of
the MQTT SSL session which is internally handled by HiveMQ and not publicly ac-
cessible. We decided not to pursue this solution either because accessing private fields
through reflection meant that our solution would be dependent on the Java version and
platform.

Given these options, we decided that putting time to achieve a bad quality workaround
could prevent us from achieving higher priority goals, such as comprehensively eval-
uating our solution. We decided to stay with the solution that was originally stated
in the profile which is less secure but it is a clean solution and it bears a very similar
overhead to the TLS exporter idea, thus allowing us to evaluate the solution and argue
about the overhead of the profile.

14https://www.bouncycastle.org/
15https://www.bouncycastle.org/docs/tlsdocs1.5on/org/bouncycastle/tls/TlsContext.html
16https://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSLSession.html
17https://stackoverflow.com/questions/15566480/how-do-i-get-master-key-in-ssl-session-in-java



Chapter 6

Evaluation

In this section, we evaluate our ACE-MQTT implementation and compare the per-
formance of different authentication mechanisms against that of MQTT systems with
plain insecure clients that do not use TLS nor any kind of authentication. We consid-
ered metrics identified as most relevant for a constrained IoT device, which are power
demand, overall energy consumption, and resource utilization in terms of memory,
CPU, and network load. Energy consumption is relevant because IoT devices are usu-
ally battery-powered and expected to last a significant amount of time without a bat-
tery replacement. Resource utilization is also relevant because IoT devices are usually
constrained and connect over low-bandwidth networking infrastructure, thus cannot
tolerate large overheads. Finally, we evaluate the implementation against compliance
to the profile specification, in order to make sure our solution will be interoperable
with different implementations of ACE-MQTT brokers or clients.

6.1 Energy consumption

We use a Raspberry Pi (RPi) 3 Model B+ device running the Raspbian Stretch Linux
distribution, to measure the energy consumption overhead. We employ a UM34C USB
power meter, which we place between the RPi and the power source, measuring volt-
age and current drain per second, and the power consumed by the device as a whole.
There is no straightforward way to isolate the MQTT-related power consumption from
the overall of the RPi thus we measure the whole consumption while reducing mea-
surement noise, by disabling all the unnecessary features and peripherals of the RPi,
including the USB controller, the Graphical User Interface and the video interface, and
we operate the device via SSH.

We use the ACE-MQTT executable jar to launch ACE-MQTT and plain MQTT clients
separately, and we measure the difference in the power consumption of the device
when operating with each of these. To put things into perspective, we also examine the
power footprint of the RPi when idle. We run multiple experiments and monitor a client
repeatedly performing the following actions with a short sleep interval in-between:

31



32 Chapter 6. Evaluation

Parameter Value

Authentication repeat interval 2 seconds
Publish repeat interval 2 seconds
Pub/Sub QoS At least once
Publish message length 17 bytes
Plain client MQTT client version 5
Authentication PoP HS256
Pub/Sub client version 5
Client connectivity Wi-Fi
Environment RPi 3 B+
Client library Executable jar
TLS cipher suite TLS ECDHE RSA WITH

AES 128 GCM SHA256
AS & broker network location Same LAN as client

Table 6.1: Energy consumption experiment settings

• Complete authentication phase with AT request and broker authentication for
both simple and challenge based.

• Publish request

• Subscribe request

The experiment settings are summarized in Table 6.1.

We first examine the power consumed over a 60-second interval, during which different
types of authentications are performed, and messages are published and received by
clients. We summarize the results in Figure 6.1. The first 4 sub-plots at the top show
the power cost associated with challenge-based and simple authentication using MQTT
version 3.1.1 and 5 respectively, and the footprint of plain MQTT unauthenticated
CONNECT requests. Unsurprisingly, the insecure approach bears the smallest power
cost, but it is interesting to observe that the power budget of all the authentication
methods considered is very similar.

The ACE-MQTT client has an average power consumption of 1.2W per second during
authentication, which is however only 10% higher than the average of a plain MQTT
client and corresponds to a 15% increase from the idle state. This means that a sys-
tem designer would only need to worry about the capabilities of the device and the
most suitable authentication scheme for their deployment. We also measure the power
consumption of plain MQTT and ACE-MQTT publishers and subscribers when send-
ing/receiving messages on a certain topic, which is illustrated in the next 4 sub-plots in
Figure 6.1. Clearly, the messaging costs are nearly the same for all approaches; once
the connection has been established, the security guarantees of ACE-MQTT are the
only thing that remains.

We then compute the average amount of time needed to establish a connection, and the
associated power and energy consumption for the different authentication methods.



6.1. Energy consumption 33

1.0
1.1
1.2
1.3

Challenge authentication Simple v3 authentication

1.0
1.1
1.2
1.3

Simple v5 authentication Plain MQTT Connect

1.0
1.1
1.2
1.3

MQTT publisher ACE Publisher

1.0
1.1
1.2
1.3

MQTT subscriber ACE subscriber

0 20 40 60
1.0
1.1
1.2
1.3

Idle PI 3 B+

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r (
W

)

Energy consumption

START event
STOP event

Figure 6.1: Power consumption during authentication (top 4 sub-plots), publish/sub-
scribe actions (4 sub-plots in the middle), and during idle operation (bottom).

Cha
llen

ge

Vers
ion

 3

Vers
ion

 5

Pla
in 

MQTT
0

1

2

3

4

5

6

Ti
m

e(
s)

4.9 4.6 4.6

1.1

Duration

Cha
llen

ge

Vers
ion

 3

Vers
ion

 5

Pla
in 

MQTT
0.00

0.25

0.50

0.75

1.00

1.25

Po
we

r(W
)

1.2 1.2 1.2 1.1

Power

Cha
llen

ge

Vers
ion

 3

Vers
ion

 5

Pla
in 

MQTT
0

2

4

6

En
er

gy
(J)

6.1 5.8 5.7

1.2

Energy
Authentication averages

Figure 6.2: Average cost of authentication with the challenge-based authentication,
MQTT v3 and v5 simple authentication, and plain MQTT, in terms of duration (left),
power utilization (middle), and energy consumption (right).



34 Chapter 6. Evaluation

90%

8%
2%

Simple authentication duration break down

TLS
AT request
Client authentication

Figure 6.3: Break-down of version 5 simple authentication duration into a) TLS over-
head b) AT request c) client authentication

We report the results obtained in Figure 6.2. As expected, since it involves the largest
number of messages, the challenge-based authentication method takes the longest to
complete, but the length is comparable to that of simple authentication in MQTT ver-
sion 3.1.1 and 5. The insecure MQTT variant completes the connection establishment
more than 4 times faster. In terms of instant power utilization, all methods are compa-
rable. Thus, the overall energy consumption of each strictly depends on the duration
of the authentication/connection phase. The challenge-based authentication requires
around 5% more energy than simple authentication, due to the fact that it involves one
extra round trip time. The plain MQTT method consumes around 5 times less energy
to complete the connection.

We examine closely the duration of simple authentication(version 5), by breaking down
the procedure into its different constituent parts and quantifying the contribution of
each from a time requirement perspective. We remove a single component of the au-
thentication phase in each test and measure the average time that a client needs to
complete the authentication phase. First, we remove TLS and measure only the the AT
request and the broker’s authentication of the client. Without the time associated with
the TLS handshake and data encryption of the CONNECT and CONNACK messages,
the average time required to complete authentication comes down to half a second on
average. Then, to deduct the overhead of the AT request, we reuse the same AT among
different authentication requests and measure the new duration. The average time mea-
sured is 4.3 seconds corresponding to the TLS overhead and the client authentication.
Finally, to quantify the overhead incurred by the client authentication, which includes
AT introspection and PoP, the client request is authenticated automatically, as if the
broker allowed unauthenticated requests. In this case, the average authentication time,
including only the AT request and TLS overhead, is approximately 4.5 seconds. The
breakdown of the time consumed by each component is summarized in Figure 6.3.
Note that the AS was in the same Local Area Network as the broker and the client
during the experiment, thus we would expect the AT request and client authentication
to be slightly higher in reality, due to internet latency. We conclude that the TLS ses-
sion overhead bears by far the highest overhead, which is not surprising, since our RPi



6.2. Resource utilization 35

does not support hardware cryptographic extensions, and thus, all the computations are
dealt with directly in software.

6.2 Resource utilization

Next, we measure the computing resources used by ACE-MQTT and insecure MQTT
clients to assess the additional overhead that comes with security. For this purpose, we
ran simultaneously inside containers a secure ACE-MQTT client and a plain MQTT
one, using the Docker compose setup. We measure the CPU, memory, and network
utilization per second, for each container using our monitoring setup described in sub-
section 5.5.1. The only notable difference is that memory is measured using JMX1

instead, in order to observe the usage of the Java process and not that of the whole
JVM. The settings of these experiments were almost identical to those in the energy
consumption measurement campaign, apart from the differences that the host environ-
ment is MacOS and the client library is an executable jar in a Docker container.

We test the different authentication methods against a plain MQTT client connect-
ing with no authentication nor TLS and we report the results obtained over a 2-min
window in Figure 6.4. Again, it comes at no surprise that plain MQTT bears the small-
est demand. All ACE authentication methods incur significant overhead during the
authentication phase, but require the same amount of resources in terms of memory,
CPU, and network bandwidth. In particular, when compared to a plain MQTT client,
an ACE client requires 10× more network resources, 3× more CPU cycles and 1.2×
more memory to complete the authentication phase.

We also examine the overhead incurred by an ACE-MQTT client during normal opera-
tions, such as when publishing or receiving messages on subscribed topics. The results
are shown in Figure 6.5. An ACE-MQTT publisher requires identical amount of CPU
cycles and inbound network resources, but carries 15% more outbound network traffic
and and 25% more memory. Meanwhile an ACE-MQTT subscriber requires almost
identical amount of CPU cycles and inbound network resources, but around 15% more
outbound network and memory resources.

We conclude that our ACE-MQTT implementation incurs a notable cost in terms of en-
ergy and resources only during the authentication phase, whereas the footprint of the
different variants is on par with that of plain MQTT during publish/subscribe opera-
tions. This confirms the viability of the solution implemented to secure IoT ecosystem
using MQTT.

1https://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html



36 Chapter 6. Evaluation

0
200
400
600

TX
(B

)

Challenge Simplev3 Simplev5 Plain MQTT

0
200
400
600

RX
(B

)

0
1
2
3
4

CP
U(

%
)

0 50 100
0

20
40
60
80

M
em

or
y(

M
B)

0 50 100 0 50 100 0 50 1000.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Authentication resource utilization

Figure 6.4: Resource utilization of ACE-MQTT with different authentication methods vs
plain MQTT connection set-up. Rows present different resources (Network outbound,
inbound, CPU utilization, memory) and columns different authentication methods.

0
10
20
30
40

TX
(B

)

ACE Publisher MQTT Publisher ACE Subscriber MQTT Subscriber

0
20
40
60
80

RX
(B

)

0.0
0.2
0.4
0.6
0.8

CP
U(

%
)

0 50 100
0

20
40
60
80

M
em

or
y(

M
B)

0 50 100 0 50 100 0 50 1000.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Normal Operations resource utilization

Figure 6.5: Resource utilization during normal operations. Rows present different re-
sources (Network outbound, inbound, CPU utilization, memory) and columns contrast
an ACE against an MQTT publisher and subscriber.



6.3. Standard compliance and interoperability 37

6.3 Standard compliance and interoperability

Finally we make sure that our implementation follows the profile specification, to en-
sure interoperability with other ACE-MQTT implementations that will arise in the
future. There is no other public complete implementation yet to be used as a point
of reference, thus we test compliance by capturing a trace of messages exchanged be-
tween the client and the broker and we contrast them with the specification.

To capture messages we use verbose logging in both the client and broker libraries. We
could not use a packet sniffer because of TLS encryption. We initialized a client with
the AT seen below, indicating a HMAC PoP based on the algorithm SHA-512. Both
the AT and PoP key are base 64 encoded binary strings.

Access Token: 8pqr26vpucvx2fnyadcuhge18uzz3mywmfmx9pp11
d20uneafba846vnv46ztbxt9pu8ntw2t7t8gbm7dd69kavjjknv1ymmy3rmufgtw
0cpe24v5ym3bthq21nzcpyp87k19h969hct7wt0tx8udb8cwyantqwm84jr46hud
aggaynp8dbxnfz6xqmh6x3q40g8jeyp5ja73wf2bx27h49kz5ujkf8b859hqtv27
35nh8w7xfhm8rkcz1nt2qmd5q8d3r82z1v05akd7dzj4hh4tj1rx7w7p5tpw9wrk
x12hprx8td928kb461rq43cgq27c1qvdy2zb9ex2k3ymeejv8br6x84ttq332wzm
3mz7fuxkxbvk1m5djh9pehzzhyrqgnymuk4kkgauf26qpjakw,
PoP algorithm: HS512,
PoP key: g6ZBouHXtecOba3YNT5y8FY90lPLxb8GgN6bSghSx6ucAcqgxtDQsaGuc
V+xfgXDlW9kJ6nNCy2S0iuGgOypihj85SlEGrwClLWD8Cah3UU4SuTEn9HMNzfK
h4Sg6v4XwHKXs+tdCBtME+8jUduDMxqii628S2J6lmgnHCpvs58=

Next we present a trace of the authentication phase messages between the client and
the broker and we contrast them with the profile specification.

6.3.1 Simple authentication with client version 3.1.1

First we captured a CONNECT packet sent from a version 3.1.1 ACE client to the
broker which can be seen below. Observe that the Clean Start flag is set to true, the
Username is set to the AT and the Password is set to the PoP. Note that the password
value is the hexadecimal representation of the PoP length (0x0040 in hexadecimal
equals 64 to decimal, the length of a SHA-512 hash in bytes) and the PoP, which is the
HMAC of the whole packet under SHA-512.

Protocol version: V_3_1_1,
Clean Start: true,
Keep Alive: 60,
Maximum Packet Size: 268435460,
Receive Maximum: 65535,
Topic Alias Maximum: 0,
Request Problem Information: true,
Request Response Information: false,
Username: 8pqr26vpucvx2fnyadcuhge18uzz3mywmfmx9pp11d20uneafba84
6vnv46ztbxt9pu8ntw2t7t8gbm7dd69kavjjknv1ymmy3rmufgtw0cpe24v5ym3b
thq21nzcpyp87k19h969hct7wt0tx8udb8cwyantqwm84jr46hudaggaynp8dbxn
fz6xqmh6x3q40g8jeyp5ja73wf2bx27h49kz5ujkf8b859hqtv2735nh8w7xfhm8



38 Chapter 6. Evaluation

rkcz1nt2qmd5q8d3r82z1v05akd7dzj4hh4tj1rx7w7p5tpw9wrkx12hprx8td92
8kb461rq43cgq27c1qvdy2zb9ex2k3ymeejv8br6x84ttq332wzm3mz7fuxkxbvk
1m5djh9pehzzhyrqgnymuk4kkgauf26qpjakw,
Password (hex):
0040
1a87bf5bcbb628850ae29212f3d4b727f44cdc7de97bfb3be63f02270bb523fd
abe6c531a0fa45fecf057674401ea59bd642241447b9c8d6ce640a8a349eff58,

6.3.2 Simple authentication with client version 5

We captured a CONNECT packet sent from a version 5 client to the broker which can
be seen below. Note that the Clean Start flag is set to true, the Session Expiry Interval
is set to 0, the Username and Password are empty and finally Authentication Method
is set to ’ace’ while Authentication Data contains both the AT and the PoP as length
prefixed values. The first four hexadecimal characters represent the length of the AT,
which is 312 in decimal, then the AT itself follows, and finally the PoP prefixed by its
length.

Protocol version: V_5,
Clean Start: true,
Session Expiry Interval: 0,
Keep Alive: 60,
Maximum Packet Size: 268435460,
Receive Maximum: 65535,
Topic Alias Maximum: 0,
Request Problem Information: true,
Request Response Information: false,
Username: null,
Password: null,
Auth Method: ace,
Auth Data (hex):
0138
f29aabdbabe9b9cbf1d9f9f269d72e8607b5f2ecf3de6cb099f9b1f69a75d5dd
b4ba779a7db6bce3abe7bf8eb3b5bc6df69bbc9edc36b7bb7c81b9bb75debd91
abe38e49efd729a6cb7ae6b9f82dc347297b6e2fe729b76ed86adb59f3729ca9
f3b935f61f7af6172def0b74b71f2e75bf1cc326a7b6ac26f388ebe3a86e75a8
206b29e9f1d6f19dfcfac6a9a1eb1deae3483c8deca9e636bbdf07f66f1dbb87
8f64cf9ba391ff1bf39f61aadbf6ef7e6787cc3bc5f866f2b91ccf59eddaa99d
e6af1ddebf36cf5bf4e5a91deddce3e21878b63d6bc7bc3ba79b69c3dc2b931d
76869af1f2d77ddbc91be3ad6bab8ddc82adbb735aaf772db36fd7b1da4df299
e7a3bfc6ebeb1f38b6dab7df6c339b79b3edfbb19316ef9359b976387da5e873
ce1cabaa09f29ae93892481ab9fdbaaa98da93
0040
1a87bf5bcbb628850ae29212f3d4b727f44cdc7de97bfb3be63f02270bb523fd
abe6c531a0fa45fecf057674401ea59bd642241447b9c8d6ce640a8a349eff58,
User Properties: null



6.3. Standard compliance and interoperability 39

6.3.3 Challenge authentication

We captured the CONNECT packet of a challenge authentication request shown below.
Note that the only difference is the Authentication Data field contains only the AT
prefixed with its length.

Protocol version: V_5,
Clean Start: true,
Session Expiry Interval: 0,
Keep Alive: 60,
Maximum Packet Size: 268435460,
Receive Maximum: 65535,
Topic Alias Maximum: 0,
Request Problem Information: true,
Request Response Information: false,
Username: null,
Password: null,
Auth Method: ace,
Auth Data (hex):
0138
f29aabdbabe9b9cbf1d9f9f269d72e8607b5f2ecf3de6cb099f9b1f69a75d5dd
b4ba779a7db6bce3abe7bf8eb3b5bc6df69bbc9edc36b7bb7c81b9bb75debd91
abe38e49efd729a6cb7ae6b9f82dc347297b6e2fe729b76ed86adb59f3729ca9
f3b935f61f7af6172def0b74b71f2e75bf1cc326a7b6ac26f388ebe3a86e75a8
206b29e9f1d6f19dfcfac6a9a1eb1deae3483c8deca9e636bbdf07f66f1dbb87
8f64cf9ba391ff1bf39f61aadbf6ef7e6787cc3bc5f866f2b91ccf59eddaa99d
e6af1ddebf36cf5bf4e5a91deddce3e21878b63d6bc7bc3ba79b69c3dc2b931d
76869af1f2d77ddbc91be3ad6bab8ddc82adbb735aaf772db36fd7b1da4df299
e7a3bfc6ebeb1f38b6dab7df6c339b79b3edfbb19316ef9359b976387da5e873
ce1cabaa09f29ae93892481ab9fdbaaa98da93,
User Properties: null

The broker responds with an AUTH packet with the Authentication Method set to ’ace’,
Reason Code set to CONTINUE AUTHENTICATION, and Authentication Data set to
the broker’s 8 byte long nonce contribution prefixed by its length.

Reason Code: CONTINUE_AUTHENTICATION
Auth Method: ace
Auth Data (hex):
0008
3E54178F52F93F82

Finally the client responds with a similar AUTH packet that contains both the 8 byte
length prefixed client nonce contribution and the PoP over the final nonce, which is the
concatenation of the broker and client nonce contributions in that order.

Reason Code: CONTINUE_AUTHENTICATION
Auth Method: ace
Auth Data (hex):
0008
3BB3A47049F27E58



40 Chapter 6. Evaluation

0040
9b4ed0d8aed3359145c11aa51c21f87a73e659649595d11af7e72505e5f9ac94
d7e9e03261e22483437f1e1f51288191ff2d649c736e864ae0fe63faa5d085ec



Chapter 7

Conclusions

7.1 Summary

The aim of this project was to secure MQTT, a popular IoT messaging protocol, by
providing an implementation of the complete MQTT-TLS profile of ACE which adds
a layer of authentication, authorization, data integrity, and confidentiality. We built on
top of the HiveMQ client to create an ACE-MQTT client library that is easy to use and
simple to migrate to from existing insecure deployments. We also created an extension
to allow the HiveMQ CE broker to support the profile by authenticating and authoriz-
ing clients according to tokens provided by the Authorization Server (AS). We then
employ automation mechanisms through containers to simplify the deployment of the
system. Finally, we measure and provide a comparative upper bounded performance
evaluation of resource utilization and energy consumption. The results show that de-
ploying our implementations on constrained devices is viable and overhead is mainly
incurred during the authentication phase. Since MQTT is based on persistent TCP
connections, the additional resources and energy costs are easily amortized throughout
sessions.

7.2 Future Work

There is a number of aspects worth exploring in future projects, in order to improve the
implementation performance, increase the security level, optimize the code footprint
and provide a more detailed evaluation.

First, future work can focus on profiling the different operations involved in the ACE-
MQTT authentication process, to understand better at what stage improvements can be
made. Our evaluation considers the authentication process as a whole, even though it
consists of the TLS session establishment, AT request, connection request, AT intro-
spection and finally PoP. Each of these steps can be evaluated separately to gain better
insights about the cost of each and consequently what part to optimize.

41



42 Chapter 7. Conclusions

Second, it is worth remembering that our implementation runs in user space and as
such there is scope to investigate the use of hardware acceleration for cryptography,
which is increasingly present in Arm and x86 processors that offer, e.g., specialized
AES and SHA instructions. The Raspberry Pi (RPi) we used during the constrained
device evaluation does not support hardware cryptography extensions. However, other
moderately constrained devices, such as the Freedom Development Platfrom1, have
such support which could be a major factor in optimizing the authentication phase
overhead.

Third, optimizing the choice and parameters of the TLS cipher suite has the potential
to decrease the initial overhead of session establishment further. We did not greatly
explore this option due to constrains from the Java environment, as well as due to time
constraints. For example, Raw Public Keys[32] could be used if the broker is using a
self signed certificate, which would also decrease the network overhead as a benefit.
Unfortunately Java does not provide great flexibility in terms of cryptographic support,
thus exploring lower level programming languages will be advantageous.

The choice of a lower level language could scale down the resources needed and de-
crease the code footprint as well. During the evaluation phase, we observed that the
Java Virtual Machine adds significant overhead in terms of memory consumption. Our
client implementation as a Java process uses less the 80MB as shown in the evaluation
phase. However, the memory utilization of the whole JVM was consistently above
100MB. Assuming that we are running a single client process on each constrained
device, then this is a significant amount of overhead.

Finally, we note that the client has to store sensitive information on board which needs
to be properly secured. The client secret, if stolen, could be used to impersonate the
client. Secure storage could be achieved with the help of a permission oriented oper-
ating system running on top of the client application, or with hardware support in the
case of embedded devices. For example we could use Zymbit,2 which provides an en-
crypted filesystem and key management support to secure Raspberry Pi (RPi) devices,
as those we used for testing.

1https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-
boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F

2https://www.zymbit.com/blog-security-module-raspberry-pi/



Bibliography

[1] T. Anagnostopoulos, A. Zaslavsky, and A. Medvedev. Robust waste collection
exploiting cost efficiency of iot potentiality in smart cities. In 2015 International
Conference on Recent Advances in Internet of Things (RIoT), pages 1–6, 2015.

[2] S. Andy, B. Rahardjo, and B. Hanindhito. Attack scenarios and security analysis
of mqtt communication protocol in iot system. In 2017 4th International Con-
ference on Electrical Engineering, Computer Science and Informatics (EECSI),
pages 1–6, 2017.

[3] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Men-
scher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding
the mirai botnet. In 26th USENIX Security Symposium (USENIX Security 17),
pages 1093–1110, Vancouver, BC, August 2017. USENIX Association.

[4] Edgaras Baranauskas, Jevgenijus Toldinas, and Borisas Lozinskis. Evaluation of
the impact on energy consumption of mqtt protocol over tls. 2019.

[5] Jeff Barr. AWS IoT Cloud Services for Con-
nected Devices. https://aws.amazon.com/blogs/aws/
aws-iot-cloud-services-for-connected-devices/, 2015.

[6] A. Bhawiyuga, M. Data, and A. Warda. Architectural design of token based
authentication of mqtt protocol in constrained iot device. In 2017 11th Inter-
national Conference on Telecommunication Systems Services and Applications
(TSSA), pages 1–4, 2017.

[7] Leor Brenman. API Builder and MQTT for IoT. https://devblog.axway.
com/apis/api-builder-and-mqtt-for-iot-part-1/, 2018.

[8] M. Calabretta, R. Pecori, and L. Veltri. A token-based protocol for securing mqtt
communications. In 2018 26th International Conference on Software, Telecom-
munications and Computer Networks (SoftCOM), pages 1–6, 2018.

[9] Tae Ho Cho and Jin Hee Chung. Adaptive energy-efficient ssl/tls method us-
ing fuzzy logic for the mqtt-based internet of things. International Journal of
Engineering and Computer Science, 5(12), Nov. 2016.

43

https://aws.amazon.com/blogs/aws/aws-iot-cloud-services-for-connected-devices/
https://aws.amazon.com/blogs/aws/aws-iot-cloud-services-for-connected-devices/
https://devblog.axway.com/apis/api-builder-and-mqtt-for-iot-part-1/
https://devblog.axway.com/apis/api-builder-and-mqtt-for-iot-part-1/


44 Bibliography

[10] Jiska Classen, Daniel Wegemer, Paul Patras, Tom Spink, and Matthias Hollick.
Anatomy of a vulnerable fitness tracking system: Dissecting the fitbit cloud, app,
and firmware. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2(1),
March 2018.

[11] M. Collina, G. E. Corazza, and A. Vanelli-Coralli. Introducing the qest bro-
ker: Scaling the iot by bridging mqtt and rest. In 2012 IEEE 23rd International
Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC),
pages 36–41, 2012.

[12] Google Cloud IoT Platform Documentation. Publishing over the MQTT bridge.
https://cloud.google.com/iot/docs/how-tos/mqtt-bridge.

[13] Microsoft Azure Documentation. Communicate with your IoT hub using the
MQTT protocol. https://docs.microsoft.com/en-us/azure/iot-hub/
iot-hub-mqtt-support, 2018.

[14] A. Esfahani, G. Mantas, R. Matischek, F. B. Saghezchi, J. Rodriguez, A. Bicaku,
S. Maksuti, M. G. Tauber, C. Schmittner, and J. Bastos. A lightweight authenti-
cation mechanism for m2m communications in industrial iot environment. IEEE
Internet of Things Journal, 6(1):288–296, 2019.

[15] Eclipse Foundation. IoT Developer Survey 2019. https://
iot.eclipse.org/community/resources/iot-surveys/assets/
iot-developer-survey-2019.pdf, 2019. Protocol specification for
MQTTv3.1.1.

[16] P. Fremantle, B. Aziz, J. Kopeck, and P. Scott. Federated identity and access
management for the internet of things. In 2014 International Workshop on Secure
Internet of Things, pages 10–17, 2014.

[17] S. Gerdes, O. Bergmann, C. Bormann, G. Selander, and L. Seitz. Datagram
Transport Layer Security (DTLS) Profile for Authentication and Authorization
for Constrained Environments (ACE). Internet Draft, RFC Editor, December
2019.

[18] M. S. Harsha, B. M. Bhavani, and K. R. Kundhavai. Analysis of vulnerabilities
in mqtt security using shodan api and implementation of its countermeasures via
authentication and acls. In 2018 International Conference on Advances in Com-
puting, Communications and Informatics (ICACCI), pages 2244–2250, 2018.

[19] Santiago Hernández Ramos, M Teresa Villalba, and Raquel Lacuesta. Mqtt se-
curity: A novel fuzzing approach. Wireless Communications and Mobile Com-
puting, 2018, 2018.

[20] Y. Liu, J. Niu, L. Yang, and L. Shu. ebplatform: An iot-based system for ncd
patients homecare in china. In 2014 IEEE Global Communications Conference,
pages 2448–2453, 2014.

[21] Trend Micro. Silex Malware Bricks IoT Devices with
Weak Passwords. https://www.trendmicro.com/vinfo/

https://cloud.google.com/iot/docs/how-tos/mqtt-bridge
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2019.pdf
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2019.pdf
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2019.pdf
https://www.trendmicro.com/vinfo/fr/security/news/cybercrime-and-digital-threats/-silex-malware-bricks-iot-devices-with-weak-passwords


Bibliography 45

fr/security/news/cybercrime-and-digital-threats/
-silex-malware-bricks-iot-devices-with-weak-passwords, 2019.

[22] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesublak, P. Aium-
supucgul, and A. Panya. Authorization mechanism for mqtt-based internet of
things. In 2016 IEEE International Conference on Communications Workshops
(ICC), pages 290–295, 2016.

[23] OASIS. Mqtt version 3.1.1. https://docs.oasis-open.org/mqtt/mqtt/v3.
1.1/os/mqtt-v3.1.1-os.html, 2014. Protocol specification for MQTTv3.1.1.

[24] OASIS. Mqtt version 5. https://docs.oasis-open.org/mqtt/mqtt/v5.0/
mqtt-v5.0.html, 2019. Protocol specification for MQTTv5.

[25] F. Palombini. Pub-Sub Profile for Authentication and Authorization for Con-
strained Environments. Internet Draft, RFC Editor, January 2020.

[26] D. Pavithra and R. Balakrishnan. Iot based monitoring and control system for
home automation. In 2015 Global Conference on Communication Technologies
(GCCT), pages 169–173, 2015.

[27] E. Rescorla. Keying Material Exporters for Transport Layer Security (TLS).
RFC, RFC Editor, March 2010.

[28] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig. Authenti-
cation and Authorization for Constrained Environments (ACE) using the OAuth
2.0 Framework (ACE-OAuth). Internet Draft, RFC Editor, February 2020.

[29] Kirby A. Fremantle P. Sengul, C. MQTT-TLS profile of ACE (draft-ietf-ace-
mqtt-tls-profile-04). Internet Requests for Comments, 2020. Internet Draft.

[30] Shodan. Insecure MQTT deployments report. https://www.shodan.io/
report/G0y5T1eD, 2020. MQTT deployments worldwide with no TLS trans-
port security nor client authentication.

[31] Saleh Soltan, Prateek Mittal, and H. Vincent Poor. Blackiot: Iot botnet of high
wattage devices can disrupt the power grid. In 27th USENIX Security Symposium
(USENIX Security 18), pages 15–32, Baltimore, MD, August 2018. USENIX
Association.

[32] P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, and T. Kivinen. Using Raw
Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer
Security (DTLS). RFC 7250, RFC Editor, June 2014.

[33] Lucy Zhang. Building Facebook Messenger. https://www.facebook.
com/notes/facebook-engineering/building-facebook-messenger/
10150259350998920, 2011.

[34] Ray Y. Zhong, Xun Xu, and Lihui Wang. Iot-enabled smart factory visibility and
traceability using laser-scanners. Procedia Manufacturing, 10:1 – 14, 2017. 45th
SME North American Manufacturing Research Conference, NAMRC 45, LA,
USA.

https://www.trendmicro.com/vinfo/fr/security/news/cybercrime-and-digital-threats/-silex-malware-bricks-iot-devices-with-weak-passwords
https://www.trendmicro.com/vinfo/fr/security/news/cybercrime-and-digital-threats/-silex-malware-bricks-iot-devices-with-weak-passwords
https://www.trendmicro.com/vinfo/fr/security/news/cybercrime-and-digital-threats/-silex-malware-bricks-iot-devices-with-weak-passwords
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.shodan.io/report/G0y5T1eD
https://www.shodan.io/report/G0y5T1eD
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920


46 Bibliography

[35] W. Zhou and S. Piramuthu. Security/privacy of wearable fitness tracking iot de-
vices. In 2014 9th Iberian Conference on Information Systems and Technologies
(CISTI), pages 1–5, 2014.


	Introduction
	Contributions
	Roadmap of the project

	Prior art
	Security in the MQTT protocol
	ACE
	IoT security performance evaluation

	Background
	The MQTT protocol
	MQTT security considerations

	The MQTT-TLS profile for ACE

	Design
	Authorization Server
	ACE MQTT broker
	ACE MQTT client

	Implementation
	Client initialization and registration
	Authorization Server discovery
	Authentication
	Access Token request
	Client authentication request
	Connect packet validation and Access Token introspection
	Proof of Possession
	Authentication request response

	Client Authorization
	Additional features
	Automation and monitoring
	HiveMQ broker modifications
	HiveMQ broker contributions

	TLS Exporter

	Evaluation
	Energy consumption
	Resource utilization
	Standard compliance and interoperability
	Simple authentication with client version 3.1.1
	Simple authentication with client version 5
	Challenge authentication


	Conclusions
	Summary
	Future Work

	Bibliography

