Experimental study of the growth
rate of network reliability

Diana-Andreea Tanase

MInf Project (Part 2) Report
Master of Informatics
School of Informatics

University of Edinburgh

2020

Abstract

This paper presents the all-terminal network reliability of square grids. This #P-hard
problem was solved using a polynomial-time approximation scheme based on sam-
pling root-connected spanning subgraphs from sequential contractions of the input
graph. The algorithm, to the best of our knowledge, has not been practically imple-
mented before and the reliability polynomial of grids is known only for graphs of up
to 5 x 5 nodes.

Comprehensive focus is devoted to presenting the individual modules of the approxi-
mation algorithm: contraction, sampling and expansion. This paper describes an itera-
tive implementation of the recursive algorithm for sampling root-connected subgraphs,
which allowed a performance analysis of the Sampling Module for grids of up to 100
x 100 vertices with 5 different failure probabilities on edges. This paper also provides
an approach to generate the samples required by the estimation algorithm in parallel.

The work was mostly devoted to computing the reliability of grids with edges failure
probability p = 0.5, of up to 15 x 15 nodes. However, estimation of the reliability was
also possible for smaller grids with failure probability in the set {0.1,0.25,0.75,0.9}.
In our analysis, we look at the approximated reliability and the logarithmic reliabil-
ity growth rate of grids, as well as of some family of graphs with known reliability
polynomial or recursive expressions: paths, pans, ladders and complete graphs. The
behaviour of these values, varying the size of the graph and the failure probability, and
the distance from the estimations to their upper bounds is investigated. In addition,
the reliability for p = 0.5 enables us to approximate the total number of connected
spanning subgraphs of square grids.

Acknowledgements

I would like to sincerely thank my project supervisor, Dr. Heng Guo, for his valuable
guidance on my MInf I and MInf II projects. I would thank him as well for proposing
a project on a topic I found very interesting. I would also like to express my gratitude
to my family and friends for believing in me and for showing me their moral support
throughout my academic years.

Table of Contents

1 Introduction

1.1 Motivation o v e e e e e e e e e
1.2 Goals and achievements
1.3 Structureof thereport L.

MInf Project Part I - Overview

MInf Project Part II - Background

3.1 Introductory graphtheory

3.2 Network reliability
3.2.1 Different expressions for the reliability polynomial
3.2.2 General properties of the reliability polynomial
3.2.3 Reliability growth rate and logarithmic reliability
3.2.4 Reliability of square grids
3.2.5 Known reliability polynomials for some family graphs

3.3 Network reachability

3.4 From network reachability to network reliability

3.5 Network reachability approximation

3.5.1 Logarithmic reliability using the reachability approximations .
Algorithms and Implementation Decisions
4.1 Programming language
4.2 Graphdatastructureo

4.2.1 Graphrepresentation
422 Graphgeneration oo

4.2.3 Graph manipulation
424 Graphvisualisation
43 ContractionModuleo

4.3.1 Algorithmoverview
432 Complexity analysis

433 Example
4.4 Sampling
4.4.1 Samplingset-up

4.42 Recursive Sampling L Lo
4.4.3 Tterative Sampling Lo
444 Sampling Module testing

AN N D =

11
11
12
12
14
14
15
16
18
18
19
21

Vi

7

TABLE OF CONTENTS

4.4.5 Complexity analysis
446 Example e

4.5 ExpansionModule oL L.

4.5.1 Algorithm overview
452 Complexity analysis
453 Example

4.6 Reliability Module

4.6.1 Algorithmoverview
4.6.2 Reachability Module testing
4.6.3 Complexity analysis
4.6.4 Parallel Reliability
4.6.5 Example

477 CouplingModule

47.1 Algorithm overview

472 Example
Experiments Running Environment
Results

6.1 Sampling runningtime
6.1.1 Sampling running time forgrids
6.1.2 Sampling running time for contractions
6.2 Resamplingcount
6.2.1 Arcs resampled and minimal clusters for grids
6.2.2 Arcs resampled and minimal clusters for contractions
6.3 Reliabilityresults oL
6.3.1 Reliability of graphs with known polynomials
6.3.2 Reliabilityof grids

Conclusion

Bibliography

Appendices

A

T a W«

=

Reliability polynomials for grids with n <5

Reliability polynomials for complete graphs with n < 6

Proof of minimum constant in the number of samples expression
Number of samples for a grid

Recursive and Iterative Sampling time

Exact and approximated reliability for path, pan, star, cycle and ladder
and complete graphs

63

65

71

73

74

75

76

77

78

TABLE OF CONTENTS

G

H

]

2z & R =

Sampling running time on grids

Number arcs resampled on grids

Reliability and growth rate of path, pan, ladder and complete graphs
Reliability results on grids

Plots for reliability and logarithmic growth rate

Distance from reliability to upper bound

Percentage of average connected expansions out of number of samples

Vii

80

81

84

85

87

88

Chapter 1

Introduction

In the first part of the MInf project, we analysed the roots of graph polynomials re-
sulted from applying the b-matching constraint to regular graphs of up to 20 vertices
and degree up to 11. The project was motivated by the work on finding fully polyno-
mial randomised approximation schemes for counting constraint satisfaction problems
that are #P-hard, such as counting the number of b-matchings. The existence of ap-
proximation algorithms for such hard problems depends on the absence of zeros of
graph polynomials in a disk centred at the origin [PR17] or in a strip containing the
[0, 1] interval [GLLZ]. Hence, we were interested in the distribution of the roots around
the unit circle, to establish the possibility of existing approximation algorithms for the
b-matching constraint problem. An overview of MInf - Part I project is provided in
Section 2.

For the second part of the MInf project, we shifted our focus from establishing the exis-
tence of approximation schemes to the practical aspects of implementing and analysing
the results of an approximation algorithm for the all-terminal network reliability prob-
lem. With a polynomial randomised approximation scheme already existing for this
#P-hard problem, we were not interested anymore in the behaviour of the roots of the
reliability polynomial. In addition, the location of the roots of the reliability polyno-
mials has been studied before, with research providing upper bounds for the modulus
of the roots [BM17], finding the graphs with roots of smallest modulus [BD19] and
disproving the conjecture that the roots lie inside the unit circle [RSO04].

2 Chapter 1. Introduction

1.1 Motivation

The study of network reliability began in 1956 when E.F. Moore and C.E. Shannon,
inspired by John von Neumann’s problem of designing reliable computing circuits, in-
troduced a probabilistic model to describe the reliability of relays [MS56]. By their
model, the nodes of a network are perfectly reliable (they do not fail) and the links
between them may fail independently with certain probabilities. Under these circum-
stances, the problem under consideration is finding the probability that the network is
still connected, with a path of edges between any two nodes, which is normally referred
to as the network reliability.

Much research interest has been devoted during the years to understanding and effi-
ciently computing the network reliability. Usually modelled with the helps of graphs
that represent relations between instances (nodes), its importance has been established
in many areas of study, such as in the field of communication networks that analyses
the connections between computers or internet routers ((HMW74], [SE71], [RKP86]).
Nonetheless, its great significance has been recognised in other areas such as engineer-
ing (for modelling high-reliable networks) or, in particular, electrical engineering (for
instance, as in the analysis of redundancy networks in electric circuits with parameters
such are impedances, currents and voltages, ([Mos58] and [Min59]), statistics (for ex-
ample, in epidemiology for the effect of network structure on the spread of diseases
[YKE13]) and mathematical graph theory (for instance, for assigning a partial ordering
of the edges in the graph according to reliability importance [PP94]).

The reliability measure could also be defined as the probability that given source and
sink nodes are connected (for the 2-terminal reliability) or as the probability that all
vertices (nodes) in a subset of size K, belonging to a subgraph of the initial network, are
connected with each other by operational edges. In this case, it is known as K-terminal
reliability. When the subset includes all vertices of the graph, the network reliability
is called all-terminal reliability, which we were concerned with in this paper. If edges
have an equal probability of independently failing, the all-terminal reliability can be
computed with an associated reliability polynomial. The reliability polynomial is a
graph invariant, an expression describing the dependence of the graph’s reliability on
the failure probability. A graph invariant is a function that depends only on the structure
of the graph and not on its various representations.

The reliability polynomial is given by summing over the connected spanning subgraphs
of the graph G = (V,E) that models the network. A spanning subgraph is a graph
G = (V,E’), with E' C E and the same vertex set as G. The reliability polynomial
weights the edges of the connected subgraph (operational with probability 1 — p) and
those failing, outside the spanning set:

Zrel(Gap) = Z (1_p)\5\p\E\—|S\,
SCE (V,S) connected

where p is the probability of each edge failing independently and E is the set of edges
of the graph G.

1.1. Motivation 3

The reliability expression can also be written using the number of path-sets (subset of
edges that makes the graph is operational) or cut-sets (subset of edges without which
the graph is not operational) [PR18]. In addition, the reliability polynomial is ex-
pressible in terms of the Tutte polynomial [EMM11], a fundamental invariant in graph
theory with many applications. For example, it is related to the number of spanning
trees, acyclic edge subsets or the chromatic polynomial which gives the number of
vertex colourings [WWO93]. These representations are also discussed in Section 3.2.1.

With some exceptions, the network reliability belongs to the #P-hard class of problems
[PB83], introduced by Valiant [Val79] to express the computational complexity of NP-
hard counting problems, meaning that the time to calculate the reliability of a generic
graph grows exponentially. There is no polynomial-time algorithms for computing all
the spanning (connected) subgraphs of a graph, required by the reliability polynomial
expression. Moreover, the problem of computing the coefficients of the Tutte polyno-
mial is #P-hard as well for planar graphs (which can be drawn in the two-dimensional
space without edges crossing each other) ([VerO5], [EMM11]) . Hence, extensive work
has been focused towards finding more efficient solutions for the network reliability.

For some restricted families of graphs, the existence of exact reliability polynomials or
recursive relations based on increasing the size of a graph in the same family have been
shown. For example, [CS03] provides an exact solution for the reliability polynomials
for lattice strips L, x Ly of fixed widths, with L, < 4, and arbitrarily length L., using
calculations of the Tutte polynomials for these graphs (such as the Tutte polynomials
for recursive family of graphs in [CS04]). The known reliability polynomials, as func-
tions of the failure probability and the size of the graph, have been established for some
well-known type of graphs, such as ladder (an L, x L, lattice) [Tan06], cycle [CS03],
pan, path and star graphs [Wei08]. Some of these graphs and their polynomials are
presented in Section 3.2.5. In addition, a recursive expression for the reliability poly-
nomial of the complete graph has been derived in [SI98] (using Tutte’s polynomial)
and [Tit99] (using partitions of the vertex set). [SI98] introduces a recursive reliability
relation according to a deletion-contraction approach, where the reliability of a graph
G depends on the reliability of the graph resulted by deleting an edge, contracting its
vertices and keeping all the other edges incident to them, which can be computed in
0(2°V") time for planar graph with n vertices. This technique, known as the factor-
ization method, can be improved in the average case with appropriate edge selection
([PS86]). Other algorithms, based on enumeration of spanning trees ([BN79]), acyclic
subgraphs ([SH81]) or node partitions ([Buz80]) have been developed, but their com-
plexity grows exponentially with the size of the graphs.

To solve the problem of computing the reliability of general graphs with no known so-
lutions, approaches that provide approximations of the real values have been proposed,
including determining the lower and upper bounds (first noticed in [Kel65], for fail-
ure probabilities close to 0 and 1, and improved by Van Slyke and Frank in [VSF71])
or using Markov Chain Monte Carlo evaluations (for example, presented in [KL85],
[Fis86] and [GS16]). Approximating the Tutte polynomial is a difficult task as well,
with Goldberg and Jerrum proving in [GJO8] that fully polynomial randomised approx-
imation scheme (FPRAS) exists for polynomials 7' (G,x,y) only for a limited region in
the xy plane. [EMM11] provides a good summary on the work on Tutte polynomials.

4 Chapter 1. Introduction

The problem of finding a polynomial-time randomised approximation scheme for the
network reliability was still unresolved before the first efficient approximation algo-
rithm was recently given in [GJ19], using the equivalence of reliability with reacha-
bility in bi-directed graphs. Reachability, introduced by Ball and Provan in [BP83], is
defined for directed graphs with a node chosen as a distinguished root. It measures the
probability that if each arc independently fails with a probability, there still is a path
in the remaining graph from each node to the root (the graph is root-connected). In
[Bal80], Ball showed that reliability is equivalent to reachability in bi-directed graphs,
obtained by replacing every undirected edge with a pair of anti-parallel arcs with the
same failure probability in either direction and choosing the root arbitrarily. However,
computing the reachability is also a #P-hard for most general graphs [BP83], with ex-
act polynomial-time algorithms known acyclic graphs [PB83] or with a small number
of cycles [Hag91].

In [GJ19], reliability is approximated with a FPRAS for reachability, that uses the
cluster-popping algorithm introduced by Gorodezky and Pak in [GP14], to sample
root-connected subgraphs with probability proportional to their weights (depending
on the operational/failure probability of each edge) for a sequence of contractions of
the bi-directed graph, similar to the deletion-contraction technique of the factoriza-
tion method. The efficiency of the approximation scheme in [GJ19] is highly influ-
enced by the cluster-popping algorithm, which belongs to the partial rejection sam-
pling framework [GJL19], an approach to sampling from a product distribution by
gradually eliminating “bad” events. For this algorithm, “bad” events have been iden-
tified as clusters - subset of vertices not including the root and without any out-going
arc. Although the cluster-popping has exponential complexity in general, the algo-
rithm runs in polynomial-time for bi-directed graph [GP14] (conjecture proven in
[GJ19]). The polynomial bounds of the cluster-popping algorithm have been improved
in [GH18], by finding an upper bound for the expected number of resampled variables
on bi-directed graphs and providing an efficient implementation, the cluster-popping
with Tarjan’s algorithm (based on Tarjan’s recursive algorithm to find strongly con-
nected components [Tar72]). This approach results in a faster implementation of the
all-terminal reliability approximation in [GJ19], from O(mn?) to O(mnlog(n)) time
complexity (with m number of edges and » number of nodes), assuming constant fail-
ure probability. The approximation scheme is described in Section 3.5.

So far, the work on the new reliability approximation algorithm has only been the-
oretical. Thus, in this project, we approached the practical aspects of the algorithm
proposed in [GJ19], with the cluster-popping optimisation in [GH18], aiming to anal-
yse the real running time of the sampling algorithm and compute the reliability of a
certain family of graphs. We decided to work with square grid graphs (L, x L, lattice
graphs). Apart from the reliability of lattice graphs of width up to 4 [CSO3] and the
reliability polynomials of square grids of size up to 5 x 5 presented in [SI98], we are
not aware of other results on the reliability of square grid graphs.

1.2. Goals and achievements 5

1.2 Goals and achievements

Motivated by the introduction of a polynomial-time approximation scheme for the all-
terminal network reliability, the project aimed to compute the reliability of square grid
graphs. For the reliability approximation algorithm, we implemented 3 main modules:
Contraction (Section 4.3), Sampling (Section 4.4) and Expansion (Section 4.5). One
of the additional contributions of this project is presenting an iterative implementation
of the cluster-popping algorithm, which was only recursively define in [GH18]. In
addition, we described the Coupling method (Section 4.7) to generate the equivalent
subgraph of a directed graph in its original undirected graph.

In the end, we managed to generate the reliability of grids of size up to 15 x 15 with a
failure probability on edges of p = 0.5. In addition, we extended our results with the
reliability of grids of size up to 14 x 14 with failure probabilities

p €4{0.1,0.25,0.75,0.9}. To improve the real running time, we parallelised the pro-
cesses involved in the sampling (cluster-popping) algorithm. We run the reliability sys-
tem on three platforms with different performance specifications, including the Google
Cloud Platform, to maximise the data collected. We tested the accuracy of our system
against the reliability of graphs with known polynomials and with the exact reliability
of square grids of size up to 5 x 5.

We also looked at the logarithmic growth rate of the reliability values and noticed
the convergence towards a small constant. Using the average number of connected
expansions, we established upper bounds for the reliability and analysed the distance to
these bounds. In addition, for p = 0.5, we used the computed reliability to determine an
approximation of the number of spanning subgraphs of the grid, an NP-hard problem
in itself.

Furthermore, apart from computing and analysing the reliability value, we defined the
auxiliary goals presented below:

* Analysis of the sampling algorithm. The cluster-popping with Tarjan’s algorithm
[GH18] is the main ingredient of the efficient implementation of the approxima-
tion scheme. Since the algorithm has only been theoretically analysed before,
we also focused on the its real running time.

* Analysis of the number of arcs resampled in the cluster-popping algorithm,
which influences the running time of the sampling module and, consequently,
of the approximation algorithm. Together with the number of arcs resampled,
we also looked at the number of minimal clusters found during the generation of
root-connected subgraphs by the sampling module.

The results for these two goals were generated from the contractions (with the edge-
deletion technique) of each grid involved in the approximation scheme, of size up to
15 x 15, with failure probabilities in {0.1,0.25,0.5,0.75,0.9}. In addition, we obtained
the relevant values from sampling from grid graphs of size up to 100 x 100, using the
same range of failure probability.

6 Chapter 1. Introduction

1.3 Structure of the report

This reports follows the development of the project, with extensive focus on the im-
plementation of the individual modules involved in the reliability algorithm. For com-
pleteness, the next chapter provides an overview of the work and results of the MInf
Project - Part I. Introductory notions on graph theory and examples of graphs with
known reliability polynomials are then provided in Chapter 3. Chapter 3 also presents
a detailed description of the reliability approximation algorithm. Chapter 4 explains
the decisions on programming language and libraries used and discusses the imple-
mentation of each module of the reliability algorithm. Chapter 5 describes the envi-
ronment that system was run on to generate the results presented in Chapter 6. In the
end, Chapter 7 summarises the work undertaken in this project.

Chapter 2

Minf Project Part | - Overview

In the first part of the MInf project (available at [Tan19]), our focus was devoted to
analysing the distribution of the roots of graph polynomials from the b-matchings of
regular graphs, aiming to acknowledge the existence of a zero-free region containing
the [0, 1] interval.

Graph polynomials (a type of graph invariants) are functions that depend only on the
abstract structure of graphs and not on their representations, mapping graphs to poly-
nomials. The polynomials are associated with the signature function of a counting
problem, like the b-matching constraint which counts the size of subsets of edges
such that every vertex has at most b edges of the subset incident with it. A sym-
metric function f : {0,1}" — {0,1} with d arguments is associated with a signature
f="1fo,f1,/2-., fal, where f; = f(x) if |x| =i [GLLZ]. The signature function f for
a b-matching is f = [1,1,..,1,0,0,..,0], with b+ 1 1s. For i < b, f; = 1 because the
constraint permits a vertex v to be matched to at most i edges. Otherwise, f; = 0.

We applied the constraint to (n,d) regular graph, in which each of the n vertices has
the same number d of neighbours. Three examples of regular graphs are provided in
Figures 2.1, 2.2 and 2.3.

' oo
o O ™

Figure 2.3: 6-4 regular

Figure 2.1: 3-2 regular Figure 2.2: 4-3 regular

The graph polynomials are known as special cases of Holant Problems [CGW 16], par-
tition functions on graphs, represented as a sum of products, where edges are vari-
ables and vertices are constraint functions. Holant is a generalization of counting
constraint satisfaction problems [CLX09], in which variables must satisfy a number
of constraints. The graph polynomial evaluated at 1 expresses a Holant problem. In
[GLLZ], the Holant of a graph G = (V,E) with w: V — F an assignment from the set of

7

8 Chapter 2. Minf Project Part I - Overview

vertices V to a set of functions F and f, = m(v) a constraint function {0, 1}4¢¢(") — C
associated with the vertex v is defined as:

Z(G,TE) = Z va(G|E(v))7

oe{0.1)/El VeV
where E(v) is the set of adjacent edges of v, G|g(,)is the restriction of 6 on E(v) and
deg(v) = |E(v)] is the degree of vertex v.
The polynomial of a graph G = (V, E) with signature f is:

E|
PG(X) = ZZ,‘XI,
i=0

where

Zi= Z Hf\GE(v)\’

cc{0,1}El and |o|=i V€V

E(v) is the set of edges adjacent to vertex v and ’GE(V)| counts the number of 1s of the
substring of G restricted on E(v).

To illustrate the relation between the graph polynomial and the Holant expression on
a short example, consider the 3-2 regular graph in Figure 2.4. Let V = {1,2,3} be the
set of vertices and f : {0,1}?> — {0, 1} a symmetric binary function such that:

n(v) = f, forevery v € V.

As f is symmetric,

f(01) = f(10).
If E(v) = (ei,e;j) is the set of edges of vertex v, with i # j and i, € {0,1,2}, and
6 =060010; € {0,1}, then:

G‘E(v) =0,0; € {0, 1}2.
The Holant value is:

Z(Gm)= Y. f(Olg©)f(olen)f(Olea) =

ce{0,1}3

Z(G,m) = £(000] ()£ (000]g(1)).£(000| (1)) +) f(0lg0)f(olem)f(olep)+
6€{001,010,100}

+) F(©lg©)f(0le)f(Ole@) + (111 ge) f(11T|gq) f(1T11]g0)) =
6€{011,101,110}

Z(G,m) = £(00) +37(00)2£(01)+3£(01)2F(11) + f(11)3.

For a 2-matching with f = [1,1,0], f(00) = fo =1, f(01) = fi =1, f(11) = fo,=0.
Thus, the Holant value is:

Z(Gm) =14+3-1>-14+3-12.0+0° = 4.

Using the same graph and signature function, we now compute its graph polynomial.
We need to find the value of the Z; coefficients, for i € {0, 1,2,3}.

The vertices of the graph are {1,2,3} with the following set of edges:

E(l) = {e07€2}7 ’
E(Z) = {60761}7 2 qeo
E(3) = {er,e2}. @/T@

6 € {000,001,010,
Figure 2.4: 4-3 regular
100,011,101,110,111}.

i=0, c€{000}, Zo= fox foxfo=2Zo=1.

i=1, 66{001,010,100}, Z1=foxfixfi+ fixfoxfi+ fixfixfo=2Z =3.
i=2, 6€{011,101,110}, Zo = fo* fix fi+ fix fox fi+ fi*x fix fo=Z=0.
i=3, 6 {111}, Zy=frx o fo= Z3 =0.

The graph polynomial of the 3-2 regular graph with a 2-matching constraint is:
Pg(x) =14 3x.

Indeed, P;(1) = 4, the Holant value.

The project was motivated by the work towards finding efficient approximation al-
gorithms for solving hard constraint satisfaction problems, with no known efficient
(polynomial-time) algorithm. For problems that are #P-hard, the associated Holant is,
in general, #P-hard to compute as well, where the complexity class denoted by #P was
introduced by Valiant in [Val79] for expressing the computational complexity of com-
puting the number of solutions of a counting problem associated with an NP search
problem. Papers such as [GLLZ] and [PR17] present polynomial-time algorithms that
approximate Boolean Holant problems for a various constraints, such as matchings,
even subgraphs and edge covers. The existence of these approximation algorithms de-
pends on the absence of zeros of graph polynomials in a certain disk centred at the
origin [PR17]. If the graph polynomial is zero-free in a strip containing [0, 1], then, by
[GLLZ], a series of transformations can be applied to obtain the necessary polynomial
that is zero-free in an origin-centred disk, implying the existence of an approximation
algorithm for the Holant problem it represents. Hence, we decided to analyse the dis-
tribution of roots of b-matchings graph polynomials of regular graphs and decide if
they suggest the existence of the corresponding approximation algorithm.

There was no knowledge of any previous experimental studies to generate the poly-
nomials and analyse their roots. In the project, comprehensive focus was devoted to
the algorithms to generate regular graphs and the algorithms to compute graph poly-
nomials. One of the main contributions of the projects was a recursive algorithm for
generating graph polynomials. The roots of polynomials of regular graphs of up to 20
vertices of degree at most 11 have been generated for up to 8-matchings and empirical

10 Chapter 2. Minf Project Part I - Overview

observations have been made on the pattern of the distribution of the roots. In order to
achieve the goal of analysing the roots of polynomials, the following major steps were
completed:

* Generate random regular graphs: 4 different approaches, based on Bollobés
pairing model [BolO1] and Steger and Wormald’s faster refinements [SW99]
were implemented and compared to decide which approach is the most efficient.
In the end, the polynomials of 295 non-isomorphic graphs have been generated
and analysed.

* Generate global polynomials: 4 algorithms were implemented and compared,
including a contraction of multivariate polynomials based on Kronecker substi-
tution [Pan94]. In the end, we found a more efficient approach with a recursive
relation on the coefficients of the polynomial, which was used to generate a total
of 800 different polynomials.

Analysis of the generated global polynomials confirmed the existence of a zero-free
region, by comparing their real arguments with the bounds suggested by Lebowitz,
Pittel, Ruelle and Speer in [LPRS16] (such as the 0 angle in Figure 2.5), proving the
existence of deterministic polynomial-time approximation algorithms for these Holant
problems. We found examples of polynomials with complex roots in the right-half
plane, disproving Lebowitz, Pittel, Ruelle and Speer’s assumption that the roots lie
in the left plane only. We discovered as well non-isomorphic (n,d) regular graphs
having the same associated global polynomials and polynomials with roots outside
the unit circle. We also noticed that the degrees of the polynomial comply with a
general expression. In Figure 2.5, we provide an example of the distribution of roots
for 5-matchings. Figure 2.6 presents the distribution for the same graph, with different
constraints.

Imagl(z)
Imagliz)

s (9,8)-graph, 5-matching

s+ (10,8)-graph, 5-matching

= (11,8)-graph, 5-matching
(12,8)-graph, 5-matching

s+ 12-6 graph, 2-matching 0.9
s+ 12-6 graph, 3-matching
= 12-6 graph, 4-matching 0.7 1

12-6 graph, 5-matching

®

T T + T
—2.5 -2.0 -1.5 -1.0

Figure 2.5: Roots of global polynomials for Figure 2.6: Roots of global polynomials for
the same (d, b) configuration the same graph, increasing the constraint

Real(z)

Chapter 3

Minf Project Part Il - Background

3.1 Introductory graph theory

Graphs represent a widely researched topic of high importance in many areas, due
to their ability to model relationships between objects. In technology, in particular,
graphs are applied to a variety of tasks, such as resource allocation in Operating Sys-
tems [MCODO6] or nodes communication in Computer Networks [Kur0S5]. This sec-
tion presents some definitions related to the graph data structure known in Computer
Science.

Definition 3.1.1. A graph G is a pair (V, E), where V is a finite set and E is a binary
relation on V. The set V is called the vertex set of G, and its elements are called vertices
(singular: vertex). The set E is called the edge set of G, and its elements are called

edges [RS02].

In this paper, we refer to both undirected and directed graphs. Hence, it is necessary to
clearly differentiate between the two notions.

Definition 3.1.2. In an undirected graph G = (V, E), the edge set E consists of un-
ordered pairs of vertices. That is, an edge is a set {u, v}, where u, v € Vand u # v
[RSO2]. An undirected graph is a graph in which edges have no orientation.

Definition 3.1.3. A directed graph (or digraph) G=(V, E) is a graph in which edges
have orientations. An arrow (u,v) is considered to be a directed edge from u to v.

Definition 3.1.4. If (u, v) is an edge in a graph G = (V, E), then the vertex v is adjacent
to vertex u and u and v are neighbours [RS02]. When the graph is undirected, the
adjacency relation is symmetric.

Note that the terms vertex and node can be used interchangeably. By convention, the
pair notation (u,v) is used for an edge, rather than the set notation {u,v}, and (u,v) and
(v,u) are considered to be the same edge in the case of undirected graphs. Moreover,
the term arc is usually applied when referring to the edges of a directed graph. Lastly,
to describe the size of the two sets V and E, the notations |V| = n and |E| = m have
been generally adopted.

11

12 Chapter 3. Minf Project Part Il - Background

3.2 Network reliability

The term network is often associated with the academic fields of telecommunication
networks [LGWO3], computer networks [KurO5] or social networks [WelO1]. It is
strongly connected with the study of graph theory, considering distinct elements or
actors represented by nodes and the connections between them as links (or edges),
sometimes with certain properties. An area of particular research interest is the network
reliability.

Definition 3.2.1. The reliability Z,.;(G, p) of an undirected graph G = (V,E) is the
probability that G is connected, given that each edge e is independently operational
with probability 1 — p, and fails with probability p, [BC92], where p = {pe}ecE-

Before we give the expression of the network reliability polynomial, we should firstly
understand what it means for a graph to be connected.

Definition 3.2.2. A path of length k from a vertex u to a vertex u’ in a graph G = (V, E)
is a sequence < v(,V1,Vy, ...,V > of vertices such that u = vy, u’ = vy and (vi_1,v;) €E
fori=1,2,..,k [RS02].

Definition 3.2.3. An pair of vertices {x, y} of a graph is called connected (opera-
tional) if there exists a path that leads from x to y.

Definition 3.2.4. An undirected graph is connected (operational) if every pair of ver-
tices is connected by a path.

3.2.1 Different expressions for the reliability polynomial
3.2.1.1 Reliability with subsets of connected edges

Assuming that edges’ failure probability is p for each edge, then the reliability poly-
nomial is obtained summing over the probability of all subsets of connected edges:

Zrel(G>p) = Z (1—p)‘s‘p‘E‘*|S\,
SCE,(V,S) connected

where E is the set of edges of the graph G.

Other expressions have been adopted for the reliability polynomial, with coefficients
depending on different attributes of the graphs.

3.2. Network reliability 13

3.2.1.2 Reliability with the number of path-sets

Definition 3.2.5. For a graph G = (V,E), a path-set is a subset E' C E of edges, such
that G' = (V,E’) is an operational graph.

Since for the all-terminal reliability we are interested in the graph’s connectivity, a path
set is any connected spanning subgraph of G.

Definition 3.2.6. A subgraph of a graph G = (V,E) is a graph G' = (V' E') with
V' CVand E' CE.

Definition 3.2.7. A spanning subgraph is a subgraph that contains all the vertices of
the original graph.

If we denote with N; the number of path-sets with i edges, the probability of obtaining
a set of i operational edges is (1 — p)'p™~*, with p edges’ failure probability. Hence,
the reliability polynomial is:

m

Z(G,p) =Y Ni(1—p)'p"~" [PRIS].
i=0

3.2.1.3 Reliability with the number of cut-sets

Definition 3.2.8. For a graph G = (V,E), a cut-set is a subset E' C E of edges such
that G' = (V,E — E') is not an operational graph.

If we denote with C; the number of cut-sets with i edges and |E| = m, the reliability
polynomial is:

m
Zr1(G,p) =1=Y Cip'(1—p)"~" [PRI18].
i=0

3.2.1.4 Reliability with the Tutte polynomial

The Tutte polynomial is a graph polynomial in two variables with an important role in
graph theory, giving information about how the graph is connected.

Definition 3.2.9. For a graph G = (V,E), with k the number of connected components
of G, k(E') the number of connected components of the subgraph on (V,E'), with
E' CE, and n(E') the number of vertices induced by E', the Tutte polynomial is:

T(Gxy)= Y (x— DEH(y— FEIHEME (1aes].
E'CE

The reliability polynomial is a well-known application of the Tutte polynomial. For
a graph G = (V,E), with |V| = n, |E| = m and p failure probability, the reliability
polynomial is:

1
Zet(G,p) = (1 —p)" 1 p"I7(G, 1, 1—) [EMM11].

14 Chapter 3. Minf Project Part Il - Background

3.2.2 General properties of the reliability polynomial

* If edges fail with p = 0 (all edges are perfectly operational) and the graph is
connected, then Z,;(G,0) = 1.

o If edges fail with p = 1 (no edges are operational), then Z,.;(G,1) = 0.
» For p€(0,1), Z,,;(G,p) € (0,1).
e If p=0.5,

Z,e1(G,0.5) =) 0.515(1 —0.5)FI-1S =
SCE (V,S) connected

1
2lEl"

= Z 0.51510.5E1-IS| — Z 0.5E = Z

SCE,(V,S) connected SCE (V,S) connected SCE (V,S) connected

Thus, if K is the total number of connected spanning subgraphs of G = (V,E),
then Z,,;(G,0.5) =K - ﬁ Similarly, using the reliability expression with the
number of cut-sets, Z,,;(G,0.5) =1—-C- ﬁ, where C is the total number of

cut-sets of G.

o It is easy to see Z,;(G,0.5) as a function on the number of edges of the graph
with constant vertices is monotonically decreasing with the increase in the num-
ber of edges.

The observations for p = 0.5 allow us to introduce a useful application of the reliability.
With p = 0.5, if we can approximate Z,, it is easy to compute K = 2IE |Z,el and

C =2/El (14+Z,;) as approximations for other well-known #P-hard problems: the total
number of connected spanning subgraphs and the total number of cut-sets.

3.2.3 Reliability growth rate and logarithmic reliability
In this project, we were interested in two reliability-related values:

* The behaviour of the network reliability with the increase in the size of the graph
and its convergence. For example, for most graphs with known polynomials
(with some presented in Section 3.2.5), it is easy to prove that

,}glzozrel<Gn7p> =0,

where n denotes the vertex size of the graph and p the failure probability of
edges.

* The behaviour of the logarithmic reliability and its convergence. For a graph
G = (V,E), with |V| = n, we define the logarithmic reliability for an edges’
failure probability p with the following relation:

1
Lrel(Gnap) = ; logzzrel(Gmp)'

3.2. Network reliability 15

An interesting topic is its convergence to a constant ¢, with the increase in the size of
the graph:

. 1
c= I}I_I)?OLrel(Gmp) = r}g{}ozlogzzrel(Gnap)-

For p = 0.5, an observation can be made:

c= r}l_rgLrel(Gn,P) = ,}1_{{;;10%2 SIE[~ r}g{}oT
When |E| is a function of n, we can define a constant = ‘5—' and hence:
log, K
"=c—c = lim Ry
n—eo n

For large enough n, the last relation allows us to approximate K, the total number of
. /!
connected spanning subgraphs as K — 2" ..

3.2.4 Reliability of square grids

For the experiments presented in this paper, we decided to compute and analyse the
reliability growth rate and logarithmic reliability of square grid graphs.

Definition 3.2.10. A square grid graph (or an n x n rectangular grid graph) is the
graph whose vertices correspond to the points in the plane with integer coordinates,
with both x-coordinates and y-coordinates being in the range 1,..., n, and two vertices
connected by an edge whenever the corresponding points are at distance 1. In other
words, it is a unit distance graph for the described point set [Wei].

Observation 3.2.1. An n x n rectangular grid graph has n? nodes.

Observation 3.2.2. The number of edges of an undirected square grid
graph with n x n nodes is

|E| =2n(n—1).

The first observation follows trivially from the definition of the square grid. The second
observation can be easily proven. If we picture the grid on the 2-dimensional space
with vertical and horizontal edges, it is easy to see that there are n vertical sets of
nodes, each consisting of n nodes and n — 1 edges. This gives n(n — 1) vertical edges.
Similarly, we have n(n — 1) horizontal edges. Hence, the total isn(n— 1) +n(n—1) =
2n(n—1) edges.

For simplicity, the nodes of the grid graphs used in this papers have been notated with
integers from 1 to n>.

In the rest of the paper, the short notation n — grid refers to an n x n grid graph. Three
examples of square graphs are provided in Figures 3.1, 3.2 and 3.3.

16 Chapter 3. Minf Project Part Il - Background

* The first graph is a 2 x 2 grid, with 4 nodes and 4 edges.
* The second graph is a 3 x 3 grid, with 9 nodes and 12 edges.
* The third graph is a 4 x 4 grid, with 16 nodes and 24 edges.

Figure 3.1: 2 x 2 grid @‘@‘
Figure 3.2: 3 x 3 grid

Figure 3.3: 4 x 4 grid

The reliability polynomials for square grid graphs have been computed in [SI98] for
n < 5. For convenience, we provide them in Appendix A. We have no knowledge of
other results on reliability of square grid graphs.

3.2.5 Known reliability polynomials for some family graphs

The study on network reliability resulted in exact expressions for the polynomial of
some graphs. For testing the reliability system implemented in this paper, we used the
known polynomials of the following graphs:

* The path graph, a non-square grid of width 1, with n nodes and n — 1 edges, as
in Figure 3.4 for n = 4.

* The pan graph, with n main nodes and 1 auxiliary node and n edges, as in Figure
3.5 forn=4.

* The ladder graph, a non-square grid of width 2, with 2nnodes and2(n—1)+n =
3n —2 edges, as in Figure 3.6 for n = 4.

* The cycle graph, with n edges and n nodes, each connected with 2 other nodes,
as in Figure 3.7 for n = 4.

* The star graph, with 1 central node connected with n — 1 nodes, using a total of
n— 1 edges, as in Figure 3.8 for n = 4.

Figure 3.5: 4-Pan

Figure 3.4: 4-Path Figure 3.6: 4-Ladder

3.2. Network reliability 17

Figure 3.7: 4-Cycle
Figure 3.8: 4-Star

Their polynomials are presented in Table 3.1. Notice that the path and star graphs
have the same polynomial. Moreover, Z,.;(Pan,,p) = p - Z..;(Cycley, p). Due to these
equivalences, we used only the growth rate of the reliability of path, pan and star graphs

as comparisons with the behaviour of the reliability of grids. The polynomials of three
other type of graphs are presented in [Wei0O8].

graph polynomial

path Zyel = (1 _p)n—l
pan _ Zer=(1=p)"[1+(n—1)p]

ladder | Zyo = ﬁ%[@l’— VPP +2) 141" — Bp++/pOp+2) + 14 1)1]
Siar T = (=)

cycle Zrer = (1=p)" 14 (n—1)p]

Table 3.1: Known reliability polynomials

In addition, a recurrence relation for the reliability of complete graphs has been estab-
lished in [Tit99]. A complete graph has n nodes, with an edge between any two nodes,
hence a total of @ nodes. An example is provided in Figure 3.9, for n = 4. Since
it is the only graph for which we have an exact relation that has the number of edges
a square function of the number of nodes, as similar to the grid graphs, we also used
the complete graph to test our system and compare the results. For a complete graph

with 7 nodes, the reliability relation is defined below. In Appendix B, we provided the

polynomial for n < 6, as computed in [SI98].
'« (n—1 k(n—k)

Zyel(Completen, p)=1=3 | | |P"" "/ Zyi(Completey, p), @
k= -

1

Zye1(Completey,p) = 1. Figure 3.9: 4-
Complete

18 Chapter 3. Minf Project Part Il - Background

3.3 Network reachability

Despite research in the area, there is still no efficient algorithm to find all connected
spanning subgraphs of a graph, therefore, directly computing the reliability through the
expressions previously presented cannot be done in polynomial time. Hence, we aim
to approximate the reliability value through the reachability measure. Before we give
the relation between reliability and reachability in Section 3.4, we define and explain
an estimation for the reachability of a directed graph.

Definition 3.3.1. A directed graph is root-connected if there exists a path from any
vertex (excluding the root) to the root, where the root is a previously selected node of
the graph.

Definition 3.3.2. The reachability Z,...;,(G,r, p) of directed graph G = (V, A) with a
root r is the probability that, if each arc e fails with probability p. independently, the
remaining graph is still root-connected in v, where p = {p, }eca [GP14].

If the failure probability of an arc e if p,, we can define the weight of a subgraph S of
G as:
WZ(S) = H(l _pe) Hpe-

ecS e¢S

Then, the reachability of the directed graph can be found using the weights of the
following root-connected subgraphs, with the following expression:

Zreach(Gvrap) = Z Wl(S)7
SCA
(V.S)root—connected

where p = {pe}eca if the vector of failure probabilities [GJ19].

However, it can be noticed that the above expression needs to find all root-connected
subgraphs of the graph as well, making the problem again generally #P-hard [GP14].
However, as presented in [GJ19] and detailed in Section 3.5, there is a polynomial-time
approximation scheme for the network reachability.

3.4 From network reachability to network reliability

By [Bal80], if G’ is the digraph obtained from G, with the same failure probability in
either direction, then:

Zrel(Ga p) = Zreach(Glyrap)a

where p is the set of failure probability for each arc, r is the root chosen arbitrarily and
the value Z,.41(G, 1, p) can be approximated using the algorithm described in Section
3.5.

Definition 3.4.1. The digraph G' of an n-grid G is obtained by adding to G’ two arcs
(u,v) and (v,u) for each edge {u,v} of G.

3.5. Network reachability approximation

An example of a digraph obtained from a 3 x 3 grid is provided in Figure 3.11.

-G Q%Z@Z@
5
0%s Eaw

Figure 3.10: Undirected grid Figure 3.11: Digraph grid

3.5 Network reachability approximation

19

The reachability is a hard problem, but a sequence of steps can be applied to esti-
mate the value in polynomial time, using an approximate counting algorithm presented
in [GJ19] and based on Gorodezky and Pak’s [GP14] observation on sampling root-
connected subgraphs for bi-directed graphs. The result is generated such that it is in

the (14 ¢€) interval deviation from the real value, based on confidence given as an input

to the system.

The steps of the algorithm are presented below, adapted to our experiments, where we

have assumed that edges fail independently with the same probability p.

1. Starting with an initial bi-directed graph G = (V,A) and a randomly selected root

r € V, construct a sequence of graphs Gy, ..,G,_1, where n = |V| and Gy = G.
Each G; = (V;,A;), i > 0, is obtained by choosing two arbitrary adjacent vertices
u,v € V;_1, removing all arcs between them and adding a new contracted vertex.
The approach keeps parallel arcs (multiple arcs), but not self-loops.

Definition 3.5.1. If (u, v) is an edge in a directed graph G=(V, E), then (u, v) is
incident from or leaves vertex u and is incident to or enters vertex v [RS02].

Definition 3.5.2. Multiple edges are two or more edges that are incident to the
same two vertices.

Definition 3.5.3. A loop is an edge that connects a vertex to it

The root r is updated if one of the selected nodes was the root. The last contrac-
tion will results in G,_1 having no arcs and the root as the only vertex. For a
graph with |V| = n vertices, then the algorithm does n — 1 iterations. These steps
are applied by the Contraction Module, explained in detail in Section 4.3.

. For each contracted graph with i > 0, choose a number s root-connected samples
drawn from the distribution 7g;(+).

Definition 3.5.4. For the bi-directed graph G = (V, A), ng() is the distribution
resulting from choosing each arc ec A independently with probability 1-p,, and
conditioning on the resulting graph being root-connected..

Hence, ni(-) represents the collection of all root-connected subgraphs, and the
probability of each subgraph S is proportional to its weight wt(S). The sam-

20 Chapter 3. Minf Project Part Il - Background

pling algorithm is described in Section 4.4. Its implementation is based on
[GH18], which introduced the polynomial cluster-popping with Tarjan’s algo-
rithm to sample root-connected subgraph from the ng(-) distribution.

3. For each sample, expand back the corresponding contracted nodes and add the
arcs between them independently with probability 1 — p. This step is realised by
the Expansion Module, described in Section 4.5.

4. For each expansion of each sample S; of iteration i, define a random variable
R; j, such that R; ; = 1 if the expansion is root-connected. By [GJ19], for one
iteration,

Zreach(Gi—lvr;p)

ER;| = .
[l] Zreach<Gi>rap)

However, we can estimate ER; by the empirical mean R} of the s independent
samples for each contracted graph:

5. In the end,

Zreach(Ga r7p) = H E[R/i]
can be estimated using the empirical means R!:

n—1 nlE]1

Z uen(G 1, p) = HR’ H

In [GJ19], the suggested number of samples for a graph with |V| = n vertices and
failure probability p, such that the approximation is in the (1 +¢€) interval from the
exact value, with 0 < € < 1 should be:

- (5(1 —p)fz(n— 1)872]

By, [GP14] this number s of samples gives a confidence interval of 75%, or a proba-
bility that the results is outside the (1 +¢) interval is § = 0.25:
1
Pr(|Zreach(Garap) _Z;/feach(G7 rap)l > SZreach(Ga r>p)) < Z
However, we were interested in having a system with a better accuracy, by increasing
the constant in the number of samples. According to the analysis in [GP14], % scales
roughly linearly with the number of samples. Thus, for 8 = 0.05, we would need
8(2)§s = S5s samples. Due to the fact that the time complexity of the entire system

highly depends on the performance of the Sampling Module, it is in our advantage to
tighten the constant as much as possible.

3.5. Network reachability approximation 21

To calculate the number of samples for & = 0.25, Gorodezky and Pak [GP14] used the
following inequality:

1
e~ < +4,

for x € [0,1]. To find the constant in the number of samples expression for & = 0.05,
we are looking for the lowest possible positive integer ¢ such that:

1
)C c
/e <1+ T
for x € [0,1]. An analysis of this inequality, provided in Appendix C, reaches the
conclusion that the minimum constant is ¢ = 21. Since the an n x n grid has, in fact, n?
vertices, the numbers of samples we need in Step 2 of the approximation algorithm for
the reachability (and implicitly reliability) of a square grid, with a failure probability
on edges p and a confidence interval of 95% for an error rate € is:

— [21(1— p) 22— 1)e 2.

In Appendix D, we provide a table with the exact values for s for different (n, p) con-
figurations for estimating the reliability of a square grid. For example, if n = 10 and
p =0,5, then s = 831600.

3.5.1 Logarithmic reliability using the reachability approximations

We conclude the background chapter with an observation on the logarithmic reacha-
bility and its convergence, using the value of approximated value of reachability (and
implicitly reliability). For a general graph, with n vertices, we know that:

Zré’l(Gvr’p) :Z;each(lenp) = HRZ

By the inequality of geometric and arithmetic mean,

R < o R <1 # n—1 _,
Z:l llR 1 n—1 , 1 Z;’l 1IR/
k’gz,U“ (= ioga (5,770 = ;“’gzg“ P
_10g2Zrel(G7r7p) < = log (Zl 11):Lrel(Gﬂ’ap) 10g (Zl 11)$
n —
Z Zl’l lR/

n—1
. <1
I}gl;loLrel(Garap)—r}grolo 10g2(n—

- 1) = 11m N Lyei(G,r,p) < hm 10g2(—1)~

n—1

1
Thus, (%)” !'is an upper bound for Z,,;(G,r,p) and hmn%oologz(u) is an
upper bound for lim,, . L, (G, 1, p). These properties have been experimentally ob-
served in the results of our experiments, presented in Section 6.

Chapter 4

Algorithms and Implementation
Decisions

This chapter presents the tools, libraries, algorithms and implementation decisions in-
volved in creating the system to run the experiments described in Chapter 6. Estimat-
ing the reliability was done by implementing the Contraction (Section 4.3), Sampling
(Section 4.4) and Expansion (Section 4.5) Modules, following suggestions presented
in [GJ19]. Of particular interest are the approaches taken to sample root-connected
subgraphs, detailing in Section 4.4.3 an iterative solution. Each module description is
extended with an example on a grid graph. This chapter highlights as well in Section
4.6.4 the attempts to improve the real running time of the system by generating the
sequences of samples with a parallel implementation.

4.1 Programming language

Similarly to the implementation of the MInf Project Part I, the programming language
used was Python 3.7.0 ([LLCa]). Python is a free and open-source programming lan-
guage, whose portability enabled us to easily build and run the programs both on the
Dice machines provided by the School of Informatics and on a personal device. Due
to its object-oriented features, the code could be organised in data objects, especially
for a better representation of the graph structures described in Section 4.2.

One Python library used in the implementation of the algorithms to sample and ex-
pand graphs, described in Section 4.4 and 4.5, is random [LLCc], a module that im-
plements pseudo-random number generators. In particular, random.choice returns a
random element from the non-empty sequence. In addition, we used Python’s time
library [LLCd] to save the running time of the Sampling and Reliability Modules, for
efficiency comparison of different approaches and results analysis. Lastly, we used
matplotlib [HJ07], a Python plotting library, for generating the plots presented in Re-
sults (Section 6).

23

24 Chapter 4. Algorithms and Implementation Decisions

4.2 Graph data structure

For the MInf Project Part I, the NetworkX Python package [HSSCO08] was exclusively
used to represent, work with and manipulate graphs. The package, “for the creation,
manipulation and study of the structure, dynamics and functions of complex networks”
[HSSCO08], provides data structures for graphs and many standard graph algorithms,
which were extensively helpful for the required operations. Although a MultiDiGraph
object for directed graphs with multiple edges is available through the NetworkX pack-
age, the need to efficiently access the multiplicity of an arc or store its original source if
involved in a contraction made it necessary to construct our own data structure. Hence,
we also introduced a custom MultiDiGraph object.

4.2.1 Graph representation

The implemented MultiDiGraph object is in many aspects similar to the well-known
implementations of graphs. It provides access to the list of nodes and edges (or arcs),
stored in a set and, respectively, a dictionary, for efficient look-up operations. The
arcs dictionary maps each directed arc with its multiplicity. In addition, we considered
it essential to keep a neighbours dictionary associating each vertex to the nodes it
connects to.

Moreover, a previous_sources is the dictionary that allows the retrieval of previous
vertices of an arc and its respective multiplicity. An arc has previous sources if the
graph is the result of a contraction. Take, for example, the graph in Figure 4.1, whose
contraction on the nodes 1 and 2 results in the graph in Figure 4.2. For such examples,
it is useful to record the original sources of the the two arcs. Hence, the corresponding
MultiDiGraph would retrieve that the two arcs (“1 —2” — 3 (multiplicity 2) come from
exactly one arc 1 — 3 and one arc 1 — 2. Lastly, the MultiDiGraph class provides
access to standard operations such as adding and removing arcs.

Figure 4.1: Initial graph G Figure 4.2: Contraction of G

4.2.2 Graph generation

To construct the required undirected and their bi-directed graphs of type MultiDi-
Graph, we introduced a GraphsGenerator helper class. The generator is used to
return the required grids. A grid of order n has n> nodes, enumerated from 1 to n?.

The helper class can also construct path, pan, star, cycle, ladder and complete graphs
(exemplified in Section 3.2.5), whose known reliability polynomial was used for test-
ing the system, as described in Section 4.6.2.

4.3. Contraction Module 25

4.2.3 Graph manipulation

In addition to the methods to access elements of a graph provided by the MultiDiGraph
structure, we added a class GraphHelper to support the following operations:

* Given adirected graph and a root node, check whether the graph is root-connected,
by establishing the existence of a path from each other node to the root, using
the breath-first search traversal algorithm. This method is used by the Reliabil-
ity Module, the establish the value of the random variables associated to each
contraction step.

* Check whether two graphs are equal: they have the same nodes and arcs, and
eventually the same mapping from the current arcs to their previous sources.
This method used for testing purposes, by comparing the output of the recursive
and iterative sampling algorithms, as presented in Section 4.4.4.

4.2.4 Graph visualisation

NetworkX provides the function to plot directed graphs, but it does not allow visual-
isation of multiple arcs. Hence, we found the graphviz [gra] package useful for this
task. This package facilitates the creation, rendering and drawing of graphs using the
DOT language [DOT] in Python. The package enables the user to save the source code
to a file and view its plot. While testing and using the system, all the figures of graphs
were generated with graphviz. The graphs in these report, however, were drawn using
LaTeX’s tikz library [Hac17]. Although graphviz can display multiple directed arcs, it
does not draw the arcs in a grid-like structure, making it difficult for the eye to visualise
the examples.

4.3 Contraction Module

In Section 3.5, we explained that reachability (and the equivalent reliability) is approx-
imated by sampling root-connected subgraphs from a sequence of contractions. The
approximation counting algorithm does a number of iterations (contractions), starting
with a digraph, until the last contraction result has only one node, namely the root.
Hence, the first step of each iteration is computing the contraction of the current graph.
Algorithm 4.3.1 summarises the steps taken in the implementation of the Contraction
Module. The Algorithm was implemented following the high-level description of the
faster algorithm for network reliability estimation in [GJ19]. This section continues
with its complexity analysis and provides an example at the end.

4.3.1 Algorithm overview

The algorithm takes a digraph, named G for convenience, represented using the custom
MultiDiGraph object, and returns its random contraction.

The algorithm starts by choosing two arbitrary adjacent vertices u and v. A new node
is created for the contracted graph using the two randomly selected vertices. If one of u
or v was the input graph’s root, then the root must be updated with the new node. Next,

Chapter 4. Algorithms and Implementation Decisions

it is important to decide what happens to each arc in G. Since contraction does not pre-
serve self-loops, the arcs between u and v, in any direction, are discarded. Otherwise,
an arc can be in one of the three cases:

1. An arc leaves from u or v to another vertex b, (b # u and b # v). For all such

arcs, new arcs from the new node to b are added to the new graph, with the same
multiplicity as the original arc. The original (source,destination) pair is saved
for the new arc (in previous_sources) with the corresponding multiplicity.

. An arc leaves from a vertex a (a # u and a # v) to u or v. For all such arcs,

new arcs from a to the new node are added to the new graph with the same
multiplicity as the original arc. The original (source,destination) pair is saved
for the new arc (in previous_sources) with the corresponding multiplicity.

. An arc leaves from a vertex a (a # u and a # v) to another vertex b, (b # u and
b # v). In this case, for all such arcs (considering the multiplicity of the original
arc), the arcs from a to b are added to the new graph, with the same multiplicity.

i def contract_graph (G, root):

contraction = MultiDiGraph ()
pick adjacent nodes u, v from G.arcs;

create new_node = u + '—' + v
add new_node to contraction.nodes

if uw == root or v == root:

root = new_node

for arc (a,b) in G.arcs:

If arc would not give a self—loop a self—loop.
if (a,b) is not (u,v) and (a,b) is not (v,u):
m = multiplicity of (a,b) in G. arcs
if a ==u or a == v:
add arc (new_node, b) with mult. m to contraction.arcs
save (a,b) with mult. m for new arc in contraction.previous
else if b == u or b == v:
add arc (b, new_node) with mult. m to contraction.arcs
save (a,b) with mult. m for new arc in contraction.previous
else:
add (a,b) with mult. m to contraction.arcs

return contraction , root, (u, v)

Algorithm 4.3.1: Graph contraction

The correctness of the system depends on meeting two important requirements:

* Adding the arcs with the correct multiplicity. This ensures the sampling algo-
rithm (Section 4.4) considers all possible arcs between two nodes. Through the
many iterations of the complete system, the new arcs multiplicity might increase.
For example, if a graph has 1 arc 1 =2 and 2 arcs 1—3, with contracted nodes 2
and 3, the resulting graph has 3 arcs 1—2-3".

* Storing the previous (source,destination) pairs, with the correct multiplicity, for
each new arc. Both the sampling and expansion (Section 4.5) algorithms needs

4.3. Contraction Module 27

to differentiate between the arcs to and from the same vertices. For example,
assume again that a graph has 1 arc 1—2 and 2 arcs 1—3. If the contracted
nodes are 2 and 3, then the resulting graph has 3 arcs 1 —*2-3", but they represent
different instances, having different origins.

The algorithm returns the contracted graph, the updated root and the two vertices
picked for contraction, to be used by the other modules.

4.3.2 Complexity analysis

Accessing any information from the input graph G, such as multiplicity, takes constant
time, due to the use of dictionary data structures in the graph’s implementation. Each
update to the new graph, such as addition of arcs, takes also constant time. Hence, the
running time of the contraction algorithm is mostly influenced by the need to iterate
through all arcs of the input G = (V,A). A square grid of order n has initially 2n(n —
1) edges. Hence, its digraph has 4n(n — 1) arcs, each with multiplicity 1, and each
contraction of an iteration keeps almost all arcs, excluding loops. If A is the set of arcs
for the n x n grid, then the expected running time is O(|A|) = O(4n(n—1)) = O(n?).

4.3.3 Example

We provide a complete example of the sequence Gy, G1,..G,2_; of contracted graphs,
starting with a 3x3 digraph, with 9 vertices and 24 arcs, where G is the first input

graph. The root is initially the node 4. The algorithm does 8 iterations.

1. Iteration 1. The graph in Figure 4.4 is the result of contracting vertices 4 and 5.
The root comes from the vertices resulting from the contraction.

2. Iteration 2. The graph in Figure 4.5 is the result of contracting vertices 2 and 3.

3. Iteration 3. The graph in Figure 4.6 is the result of contracting vertices 1 and
“4-5”. Notice the existence of multiple arcs and the update of the root.

4. Iteration 4. The graph in Figure 4.7 is the result of contracting vertices “3-2” and
“1-4-5”. The root is updated again.

5. Iteration 5. The graph in Figure 4.8 is the result of contracting vertices 8 and 7.
The root does not change.

6. Iteration 6. The graph in Fig.4.9 is the result of contracting vertices 9 and “8-7".

7. Iteration 7. The graph in Figure 4.10 is the result of contracting vertices 6 and
“8-7-9”. Notice the existence of multiple arcs and the update of the root.

8. Iteration 8. The graph in Figure 4.11 is the result of contracting vertices “3-2-1-
4-5” and “6-8-7-9”. The root is updated again. The resulting graph has only the
root-vertex and no arcs.

28 Chapter 4. Algorithms and Implementation Decisions

T R R

S G &

Figure 4.3: Gy Figure 4.4: Gy Figure 4.5: G»
Figure 4.6: G3 Figure 4.7: G4 Figure 4.8: G5

=0

6-7-8-9 Figure 4.11: Gg

Figure 4.9: G Figure 4.10: G;

1

2

4.4. Sampling 29

4.4 Sampling

The approximation approach presented in this paper is based on generating a sequence
of independent root-connected subgraphs of the current contracted graph G; of the iter-
ation i, with each subgraph drawn from the 7g;(-) distribution (defined in Section 3.5).
[GH18] introduces the Cluster-popping with Tarjan’s algorithm, a recursive depth-
first strategy for retrieving root-connected subgraphs drawn from a distribution. The
algorithm, under the partial rejection sampling framework, randomises all arcs inde-
pendently and repeatedly resamples arcs from minimal clusters until no clusters exist
(subset of vertices not including the root and without any out-going arc).

However, recursive algorithms often face the risk of reaching the stack limit of the
system they are running on. Indeed, the implemented recursive sampling algorithm,
reaches a stack limit of 1000 calls for an n as small as 38 (with 1444 vertices). While
the stack limit can be increased, we considered it beneficial to address this issue with an
iterative implementation, guaranteeing a more robust Reliability Module. Hence, in the
following sections, after presenting the sampling set-up common to both approaches,
we detail and compare the recursive and iterative implementations.

4.4.1 Sampling set-up

Before we introduce the recursive or iterative steps in the sampling algorithm, we
present in Algorithm 4.4.1a the set-up which is common to both implementations. The
set-up consists in assigning the (initially empty) sample a subset of arcs independently
drawn from the input graph G with probability 1 — p, where p is the failure probability
(lines 3-7). For correctness, the addition must keep track of the multiplicity and, if
existing, source of the arc in the un-contracted graph. These checks are highlighted
in Algorithm 4.4.1b. Hence, the sample is now a subgraph drawn from the mg(-)
distribution, not necessarily root-connected.

def set_up (G, root, p):
Construct subgraph of G with arcs independently drawn.
sample = MultiDiGraph ()
for node in G.nodes:
add node to sample.nodes
for arc in G.arcs:
add_arc(arc, G, sample,p)

Set—up algorithm dictionaries.
index_dict = dict() with None initially for each node
root_dict = dict() with None initially for each node

index_dict[root] = 1
root_dict[root] =1
index = 2

stack = [root]

Algorithm 4.4.1a: Sampling set-up

1

30 Chapter 4. Algorithms and Implementation Decisions

def add_arc(arc, from_G, to.G, p):
if arc has previous_sources:
previous_sources = from_G.get_previous_sources (arc)
for source in previous_sources:
m = multiplicity of source
for i from 1 to m:
if should_accept_with_prob(l — p):
add arc to to_G.arcs
save source of arc to to_G.previous_sources
else:
m = multiplicity of arc in from_G.arcs
for i from 1 to m:
if should_accept_with_prob(l — p):
add arc to to_G.arcs

Algorithm 4.4.1b: Drawing arcs from a graph

Following Tarjan’s algorithm for finding the strongly connected components [Tar72],
the graph traversal implementation of the sampling algorithm keeps track of the visited
node, assigning to each v an unique integer index id (in index_dict), corresponding to a
visiting level. The index id numbers the nodes in the increasing order in which they are
discovered. It also maintains root id (in root_dict), representing the smallest index of
any node known to be reachable from v in a depth-first search traversal (cluster’s root).
These values are initialised in the set-up part, lines 10-19. Lastly, nodes are added on a
stack in the order in which they are visited. Initially, the stack contains only the graph’s
root, the first node to be traversed.

In terms of the complexity of the set-up, it is straightforward to see that the nodes and
arcs iterations imply the algorithm runs in at most O(|A| + |V |) = O(n?) time, for
an n x n grid.

4.4.2 Recursive Sampling

We continue with the main part of the recursive sampling algorithm described in
[GH18], adapting the arcs resampling strategy to consider the multiplicity and pre-
vious sources of the arcs as well. We emphasize that these conditions are essential for
correctly determining the root-connectivity in the expanded graph.

The algorithm, presented in Algorithm 4.4.2, is based on finding minimal clusters
and, if found, resampling arcs, until all nodes have been traversed and no clusters
are present. The sample computed in the set-up step, the source graph (called G), the
probability failure p and the index _dict, root_dict and the stack variable must be known.

The algorithm updates the index and root dictionaries, used to determine the existence
of minimal clusters, by traversing nodes in a depth-first-search style. Given the current
node v, lines 11-16 visit its never-seen neighbours and update v's index and root ids.

The existence check of clusters with vertices that cannot reach the graph’s root is done
in line 18. Intuitively, all vertices w that have been added to the stack after the current
v (call this subset of the stack W), by the Dynamic-DFS calls (in line 13 and their

1

4.4. Sampling 31

resulting recursive calls), must be reached by v. hence index_dict|v] < index_dict[w]
and root dict[v] < root_dict|w|. If root_dict[v]| = index_dict[v], then root_dict|w| >
index_dict|v] (otherwise root _dict[v] < index_dict[v], which contradicts the fact that we
considered them equal). Thus, index_dict|v] < root_dict|w] < index_dict[w|. Assume
that there is a w' € W that cannot reach v. If more such nodes exists, pick the w’ with
the minimum index. Because index_dict[v] < root_dict|w'] < index_dict[w'], then v
can reach the root r of w' (since it was indexed after v). But w was the node with
minimum index that cannot reach v, hence r must reach v. By transitivity, w reaches
v, which is a contradiction. Hence, all w € W reach v and W U {v} forms a strongly
connected subset of nodes. Furthermore, this cluster is minimal, since no arc can go
out of it, with the index of its destination lower than v’s index, without contradicting
index_dict|v] < root_dict|w] < index_dict[w]. Lines 20-29 remove the nodes in W U {v}
of the cluster from the visited stack and resample all the arcs leaving from these nodes.

When the algorithm returns, there is no other cluster and all nodes can reach the graph’s
root, hence the sample is root-connected.

def get_sample ():
while there exists a node v with index None:
Dynamic_DFS (v)
return sample

def Dynamic_DFS(v):

index_dict[v] = index
root_dict[v] = index_dict[V]
index = index + 1

stack . append(v)
for w in sample. get_neighbours(v):
if index_dict[w] is undefinded:
Dynamic_DFS (w)

root_dict[v] = min(root_dict[v], root_dict[w])
else:
root_dict[v] = min(root_dict[v], index_dict[w])
If minimal cluster is found.
if root_dict[v] == index_dict[v]:
w = None
while w != v:
w = stack.pop()
index_dict[w] = None
root_dict[w] = None
index = index — 1

remove all arcs leaving from w from sample
Resampling arcs.
for neighbour in G.get_neighbours(w):
arc = (w, neighbour)
add_arc(arc, G, sample, p)
Dynamic_DFS (v)

Algorithm 4.4.2: Recursive Sampling

1

32 Chapter 4. Algorithms and Implementation Decisions

4.4.3 Iterative Sampling

The iterative approach is very similar to the recursive implementation. The logic be-
hind the sampling does not change and minimal cluster check and resampling opera-
tions are the same for both implementations.

def get_sample():
v = node with index None
queue = []
queue . append ((v, 0, None))
while queue is not empty
(v, step, w) = queue.pop()
if step == 0:
if w != None and index_dict[v] != None:
continue
index_dict[v] = index
root_dict[v] = index_dict[V]
index = index + 1
stack . append (V)
for w in sample. get_neighbours(v):
if index_dict[w] == None:
if nothing was added to the queue in this loop:
queue . append ((v, 2, w))
else:
queue . append ((v, 1, w))
queue . append ((w, 0, v))
else:
root_dict[v] = min(root_dict[v], index_dict[w])
if the queue was updated:
jump to the loop in line 5

if step == 1 or step ==
root_dict[v] = min(root_dict[v], root_dict[w])
if step == 0 or step ==
If minimal cluster is found.
if root_dict[v] == index_dict[v]:
w = None
while w != v:
w = stack.pop()
index_dict[w] = None
root_dict[w] = None
index = index — 1

remove all arcs leaving from w from sample
Resampling arcs.
for neighbour in G.get_neighbours (w):
arc = (w, neighbour)
add_arc(arc, G, sample, p)
queue . append ((v, 0, None))
if queue is empty:
if exists node v with index None:
queue . append ((v, None))
return sample

Algorithm 4.4.3: Iterative Sampling

4.4. Sampling 33

The algorithm keeps a list (queue) of vertices to be traversed. The challenge comes
from correctly assigning the order in which vertices are traversed. In particular, we
ensured that the Dynamic-DFS calls in lines 3, 13 and 30 in Algorithm 4.4.2 have a
corresponding element in the traversal queue, in the right order:

* Line 3 of Algorithm 4.4.2 corresponds to the queue update in lines 4 and 46 of
Algorithm 4.4.3.

* Line 13 of Algorithm 4.4.2 corresponds to the queue updates in lines 18-22 of
Algorithm 4.4.3.

* Line 30 of Algorithm 4.4.2 corresponds to the queue update in line 43 of Algo-
rithm 4.4.3.

An entry in the queue is a tuple (v,step,w), where v is the vertex to be traversed and
w one of its neighbours. The value of step plays a decisive role in deciding the correct
order of operations:

 step = 0 corresponds to either entering the Dynamic-DFS or checking for mini-
mal clustering with resampling after visiting the neighbours of the current node.
Note that by the time the vertex v of an entry in the queue is considered, its value
might have already been updated by previous calls, which implies the need of
the check in line 8 of Algorithm 4.4.3.

» step = 1 corresponds to the update in line 14 of Algorithm 4.4.2. after visiting
the neighbours of a node.

» step = 2 signals that all neighbours of the vertex have been visited and the only
operations left are the update in line 13 of Algorithm 4.4.2 and the the cluster
check.

4.4.4 Sampling Module testing

The first test to apply to the output of both algorithms is to check for root-connectivity.
Once we ensured the output of each module is root-connected, we wanted to check the
equivalence between the two models. Comparison of the outputs of both approaches,
however, was not a straightforward task since the algorithms are randomised. To check
that the two implementations produce the same output, we used a testing strategy
that forces deterministic sampling. Each arc in the input graph was attached a pre-
computed list of random variables (probabilities). For drawing arcs with probability p,
instead of generating a random probability every time, the algorithms picked the same
variable from the arc’s computed list of probabilities to decide whether it is added to
the sample or not. If the algorithms visit the nodes in the same order, the resulting
samples have the same arcs with equal multiplicities. Thus, for testing the iterative
sampling, we modified the independent arcs sampling of Algorithm 4.4.1b using the
described deterministic strategy and asserted that the vertices are visited in the same
order and the sample outputs are equal graphs (using the graph equality comparison
method implemented in GraphHelper, described in Section 4.2.3).

In addition, by running the algorithms with the same input, we empirically established
that there are not any differences in their actual running time. In support of this claim,

34 Chapter 4. Algorithms and Implementation Decisions

we conducted a two-tailed z-test on the real running time of the two implementations.
The data was generated by averaging the time to sample 10 root-connected subgraphs
for n x n grids, with 2 < n < 30. The test value of 0.78, clearly greater then a p-value of
0.05, fails to reject the null hypothesis that the running times have statistically different
(expected) average values. Appendix E provides the complete list of values used in this
test.

4.4.5 Complexity analysis

The time complexity of both algorithms depends on the number of arcs resampled due

to the occurrence of minimal clusters. Paper [GH18] proves that the expected running

time of the recursive algorithm is O(|A| + IJ‘IAT‘LDV'). The resampling rules are the same

for iterative algorithm, with identical orders of arcs resampling and identical ﬁna1|stHat‘e.
P|A|lV

)

This claim implies that the time complexity of the iterative sampling is O(]A| + T

as well. For an n x n grid, |JA| = 4n(n— 1) and |V| = n?, the complexity of a sampling

3 —_ . .
from a complete graph becomes O(4n(n— 1)+ w) = O(n*), disregarding the
lf;p constant. In our implementation, the size of the graph decreases with each con-
traction, influencing the real running time. In Section 6.1, we present the real running

time of the sampling and its decreasing rate when the graph contracts.

4.4.6 Example

Figure 4.13 and Figure 4.14 are two root-connected subgraphs of the graph in Figure
4.12, resulted in the fifth contraction step of an 3 x 3 grid, where each arc had prob-
ability p = 0.5 of failing. Notice that for each node in the sampled graph, there is a
path to the root “3-2-1-4-5". For example, Sample I has the path “8 = 7" —9 — 6 —
“3—2—1—4—-5"and Sample 2 has the path6 -9 —“8 -7 = “3—-2—-1—-4-5".

Figure 4.12: Sampling in-

out Figure 4.13: Sample 1 Figure 4.14: Sample 2

1

4.5. Expansion Module 35

4.5 Expansion Module

For each root-connected subgraph of a contraction, the system needs to check for root-
connectivity in the previous un-contracted graph, the input of the Contraction Module
of the current iteration. We have called this step expansion, as it consists of identifying
the contracted nodes and expanding them back, keeping the arcs returned from sam-
pling. The algorithm is detailed in Algorithm 4.5.1 and its time complexity is analysed
in Section 4.5.2.

4.5.1 Algorithm overview

The algorithm starts with the sampled graph S that needs expansion. It also gets as
input the initial digraph G of the current iteration (the input of the contraction). The
expanded graph output is a subgraph of G. In addition to the failure probability p, for
convenience, the vertices contracted _u and contracted_v which have been selected for
contraction in this iteration are provided.

def expand_graph(G, S, new_node, contracted_u, contracted,_v p):
expansion = MultiDiGraph ()
for node in G.nodes:
add node to expansion.nodes

for arc (a,b) in S.arcs:
if a != new_node and b != new_node:
m = multiplicity of (a,b) in S.arcs
add (a,b) with multiplicity m to expansion.arcs
else:
prev_sources = previous sources of (a,b) in S
for (x,y) in prev_sources:
m = mult. of (a,b) with source (x,y) in S.arcs
add (x, y) with mult. m to expansion.arcs

m = multiplicity of (u,v) in G.arcs
for i from 1 to m:
if should_accept_with_prob(l — p):
add arc (u,v) to expansion.arcs

m = multiplicity of (v, u) in G.arcs
for i from 1 to m:
if should_accept_with_prob(l — p):
add arc (v,u) to expansion.arcs

return expansion

Algorithm 4.5.1: Graph expansion

The expanded graph must have all the nodes of the graph G, although the output might
not be a connected graph. Each arc from the sample S must be added to the output
following one of the two rules:

1. The arc does not leave from or enter the contracted node. In this case, the sam-
pling has preserved the arc from the initial graph G, with the same source and
target vertices from G. The sampling might have reduced the multiplicity of the

36 Chapter 4. Algorithms and Implementation Decisions

arc, hence it is important to add it back to the expansion with the the multiplicity
of the arc in the sample and not in the initial graph.

2. The arc (a,b) leaves from or enters the contracted vertex (resulting from the
contraction of G on u and v), hence a = “u—v” or b = “u —v”. This scenario
highlights the importance of correctly storing the original (source, target) pairs
during the contraction (Section 4.3) and sampling step (Section 4.4). Using these
values, the algorithm can correctly associate the arcs in S with its original cor-
responding arcs in G, keeping the multiplicity of the sampling. Hence, the ex-
panded graph will either have the arcs (a,u) or (a,v) or both (or respectively

(u,b), (v,D)).

Lastly, the expansion module needs to add the arcs between the contracted vertices
u and v with probability 1 — p. Given the failure probability p, then the acceptance
probability is 1 — p. Therefore, we need to get existence and the multiplicity of these
arcs from the original G.

4.5.2 Complexity analysis

The algorithm must ensure all nodes in G = (V,A) are added to the expanded graph.
Given a bi-directed grid with maximum »? nodes and the efficient use of dictionaries
with amortised constant time, the first for loop takes at most O(|V|) = 0(n?) time.
The next for loops deal with the addition of arcs from the sampling. In the worst
case scenario, the sampling keeps all arcs in the contraction of G, with a worst case
multiplicity of 1. Since addition takes (amortised) constant time and the contraction
can have at most O(|E|) = 0(4n(n— 1)) = O(n?) arcs, then adding these to the expanded
graph takes at most O(|E|) = 0(4n(n— 1)) = 0(n?) time. In total, the Expansion Module
takes O(|V |+ |E|) = 0(n?) time.

4.5.3 Example

We provide two examples for the Expansion Module, based on the contraction exam-
ples provided in Section 4.3.3.

* Example 1. The input graph G in given in Figure 4.15. Contraction chooses ver-
tices 8 and 7, removing the arcs between them. As seen in Figure 4.16, sampling
reduces the multiplicity of the rest of the arcs. The expanded graph in Figure
4.17 separated the contracted vertices 7 and 8. In this example, the module does
not add any arcs between these two vertices. The arcs originating from or di-
rected to the contracted vertex “8-7” are separated to the correct (source, target)
pairs. For example, the arc 9—“8-7” becomes 9—8 (as it can be seen in the
input graph of Figure 4.17, there were no arcs 9—7 originally in G). The expan-
sion also suggests that the sampling has kept only the arcs between root (vertex
“3-2-1-4-5") and 7 and none between the root and vertex 8. The rest of the arcs
are preserved according to the sampling result.

4.5. Expansion Module 37

Figure 4.15: lteration in- Figure 4.16: Sample ex- Figure 4.17: Expansion
put example1 ample 1 example 1

* Example 2. The input graph G in given in Figure 4.18. Contraction chooses
vertices 6 and “8-7-9”, removing the arcs between them. As seen in Figure 4.19,
sampling reduces the multiplicity of the rest of the arcs. The expanded graph
in Figure 4.20 separated the contracted vertices 6 and “8-7-9”. In this example,
the module adds the arc “8-7-9”—6 between them. The arcs originating from
or directed to the contracted vertex are separated to the correct (source, target)
pairs, according to the distribution decided by the sampling algorithm. For ex-
ample, notice the the expanded graph of Figure 4.20 shows us that the 2 arcs
“3-2-1-4-5"— “6-8-7-9” in Figure 4.18 were a result of sampling 1 out of the 2
arcs “3-2-1-4-5"—6 and 1 out of the 2 arcs “3-2-1-4-5"—*“8-7-9” in Figure 4.18.

=0 =0
/

@ 6-7-8-9 @

Figure 4.18: lteration in-
put example 2

Figure 4.20: Expansion

Figure 4.19: Sample ex-
example 2

ample 2

1

38 Chapter 4. Algorithms and Implementation Decisions

4.6 Reliability Module

In Section 3.5, we explained that the reliability of an n-grid is computed by approxi-
mating the reachability of its digraph. The approximate counting algorithm uses the
product of the empirical mean of s random variables depending on the samples of con-
tractions of the original graph. Therefore, we built a main system that connects all the
individual modules explained in the previous sections.

4.6.1 Algorithm overview

In Algorithm 4.6.1 we enumerate the sequence of operations applied to compute the
desired reliability given a failure probability p for each edge of the n x n grid graph.
The algorithm constructs the square graph and its digraph using the MultiDiGraph

object (Section 4.2.1) and the GraphsGenerator class (Section 4.2.2). It proceeds with

n? — 1 iterations, each consisting of:

* Contraction phase, described in Section 4.3.
» Sampling, described in Section 4.4.
* Expansion phase, described in Section 4.5.

The number s of samples is computed using the expression in Section 3.5, given the
desired error €. The expanded graph of each iteration is checked for root-connectivity,
given the initial root of the current iteration and the result is updated by following the
equation in Section 3.5. At the end of each iteration, it is essential to ensure that the
last contracted graph becomes the input for the next iteration. This update also keeps
track of the corresponding root.

def get_reliability(n, p, eps):
construct the n—grid graph G
construct the bi—directd graph DG
get number of samples s given n%n nodes, prob. p, error eps
choose a random root r from DG.nodes
initialize estimated_reachability = 1
contracted_graph = first contraction of DG

while contracted_graph is not the root:
number_root_connected_samples = 0
for i from 1 to s:
get sample_graph of contracted_graph
get extension_graph of sample_graph
if (extension_graph is root—connected):
number_root_connected_samples++
estimated_reachability %= number_root_connected_samples / s
contract contracted_graph again
return estimated_reachability

Algorithm 4.6.1: Reliability Module

4.6. Reliability Module 39

4.6.2 Reachability Module testing

We could not test the correctness of the implementation by comparing the results with
the real reliability value of n-grids for n > 4, due to the difficulty in computing the
exact value imposed by the exponential generation of subgraphs. For n € {2,3,4} and
p{0.1,0.25,0.5,0.75,0.9}, we generated the reliability of the grids with a naive imple-
mentation and compared these values with the results of the our Reliability Module.
These values were also compared with the polynomials found in [SI98] and presented
in Appendix A. The naive approach generated all subgraphs of the undirected grid
and followed the reliability expression in 3.2.1.1. All the results were in the (1£0.1)
interval of the real value. Table 4.1 provides an examples for p = 0.5.

n | exact Z,,; | approximated Z,,;
2 | 0.31250 0.31224
3| 0.10523 0.10526
4 1 0.03309 0.03299

Table 4.1: Approximated and exact reliability for an n x n grid, p = 0.5

In addition, we extended GraphsGenerator (Section 4.2.2) with methods to generate
6 graphs whose reliability polynomial is already known: path, pan, cycle, star, ladder
and complete. Their structure and reliability polynomials were discussed in Section
3.2.5. We applied the reliability estimations to these graphs for2 <n <8 and p =0.5
and concluded that our system output is not significantly different from the real value
given by corresponding polynomial evaluation. We provided exact and approximated
reliability values for this test in Appendix F.

4.6.3 Complexity analysis

According to [GJ19], the expected running time of the bi-directed reachability estima-
tion algorithm is O(e~2(1 — p)~1|A||V|*log(|V]) log(lflp)) for an (1 £¢) estimations.

With |A| = 4n(n— 1) and |V| = n?, we have an algorithm that for an z x n grid runs in

O(e (1 —p)~'(4n(n—1))(n*)*log(n*)log(1;)) = O(8e*(1—p)~'n’log(n) log(11;))
time complexity.

In conclusion, we presented an algorithm that can estimate the NP-hard problem of
reliability in polynomial time. Compared to the exponential naive implementation
that generates 0(22”(”_1)) subgraphs of the undirected grid, our algorithm is faster for
n > 5, but slightly slower for n € {2,3,4} due to the sampling overhead. For example,
for p = 0.5, the naive approach for n = 3 takes 2 seconds, compared to the 72 seconds
of the approximation implementation. For n = 4 with p = 0.5, the naive algorithm
takes around 4 minutes to complete, while the approximation algorithm runs for only
7.5 minutes. However, for n = 5, the naive approach did not finish running in 12 hours,
while the approximation system takes around 25 minutes for p = 0.5.

1
2

40 Chapter 4. Algorithms and Implementation Decisions

4.6.4 Parallel Reliability

With a polynomial time complexity of order 6, the real running time of the reliability
module grows fast as we increase the size of the grid. The complexity is highly influ-
enced by the number of samples required for a contraction (provided in Appendix D).
The number of samples itself could not be decreased, as we already picked the most
optimal value for a 95% confidence level that the result lies in a (1 +0.1) accuracy
interval (Section 3.5). However, root-connected subgraphs are independently gener-
ated. Hence, we tried to optimise the polynomial constant by updating our system
to generate the s samples in parallel runs. Line 10 to 17 of the sequential Algorithm
4.6.1 were updated with a parallel version detailed in Algorithm 4.6.4, using Python’s
multiprocessing library [LLCb].

def sequential_sampling(contracted_graph, p, samples_per_process):
current_number_root_connected = 0

for i from 1 to samples_per_process:
get sample_graph of contracted_graph
get extension_graph of sample_graph
if (extension_graph is root_connected):
current_number_root_connected++

return current_number_root_connected

» def get_reliability (n, p, samples_per_process):

s = total_number_samples
while contracted_graph is not empty:
number_root_connected = 0
number_processes = s/samples_per_process
create multiprocessing pools on 4 CPUs for number_processes
processes .
map pools with sequential_sampling function
wait for pools to finish
results = list of pools results
number_root_connected = sum elements of results
estimated_result %= number_root_connected / number_samples

Algorithm 4.6.4: Parallel Reachability

For p = 0.5, for each grid, g;5; processes were created and spread over 4 (for n €
{9,10, 11,12} or 8 (for n € {13,14,15}) CPU cores. Each processes generated 8400
samples and their expansion, computing the root-connectivity Booleans. The results
were collected at the end to generated the required random variables for estimating the
reachability.

The choice of sequential computations for a process played an important role in dealing
with the overhead resulted from the setup and scheduling of processes. Given the
expression for s in 3.5, the value 8400 is the least common divisor of the number of
samples for each n, for p = 0.5 and € = 0.1. Similarly, for the rest of the probabilities,
we assigned s, = [21(1 — p)~2e~2] = [2100(1 — p)~2] samples to é processes, with
e=0.1.

4.6. Reliability Module

41

The efficiency of the parallel implementation was tested by comparing its running time
for 2 <n <7 and p = 0.5 with the running time of the sequential algorithm. Table 4.2
suggests that the time (in seconds) has considerably decreased, by 44% to 80%, mea-
sured on 4 CPUs. This test also helps us assert the correctness of the implementation,
by ensuring that the returned results for the two implementations are similar.

n | time_sequential (s) | time_parallel (s)
2 4.24 1.81

3 72.33 33.71

4 450.17 212.39

5 1465.84 812.65

6 15085.5983 3352.55

7 50151.9478 9059.7858

Table 4.2: Time in seconds to compute the reliability for an n x n grid

4.6.5 Example

For a better understanding of the sequence of steps explained in the previous section,
we provide a complete example with one sample for each iteration.

Iteration 1.

* We start with the bi-directed graph in Figure 4.21, with the random root 2.

* The first contraction gives in the graph in Figure 4.22, with the nodes 1 and 3
chosen. Notice how the arcs between 1 and 3 in the initial graph have been

removed. The root does not change.

* The sampling algorithm returns the graph in Figure 4.23, which is indeed root-

connected for the root 2.

* The contracted nodes are expanded in Figure 4.24, keeping the arcs selected
by the sampling algorithm. Both arcs between 1 and 3 have been added. The
expanded graph is root-connected for the root 2. The approximated result after

this iteration is 1.

Figure 4.21: Gg Figure 4.22: G

Iteration 2.

Figure
Expansion 1

& =

Figure 4.23:
Sample 1

80

4.24.

* We start with the graph in Figure 4.25, with the root 2. Notice that for the second
iteration, the input graph is exactly the contraction result of the first iteration.

42 Chapter 4. Algorithms and Implementation Decisions

* The second contraction gives is the graph in Figure 4.26, with the nodes 2 and
4 chosen. The arcs between 2 and 4 in the initial graph have been removed and
the root updated. The examples highlights the existence of multiple arcs.

* The sampling algorithm returns the graph in Figure 4.27, which is indeed root-
connected for the root 2.

* The contracted nodes are expanded in Figure 4.28, keeping the arcs selected
by the sampling algorithm. No arcs between 2 and 4 have been added. The
expanded graph is not root-connected for the root 2. The approximated results
after this iterationis 1-0 = 0.

R cep @O o

Figure 4.27:

Sample 2 Figure 4.28:
Expansion 2

Figure 4.26: G,
Figure 4.25: G

Iteration 3.

* We start with the graph in Figure 4.29, with the root “4-2”. Notice that for the
third iteration, the input graph is exactly the contraction result of the second
iteration.

* The third and last contraction gives is the graph in Figure 4.30, with the root as
the only node.

* The sampling algorithm does not have any arcs to sample from. Hence, the
sampled graph in Figure 4.31 is the same as the contracted graph.

* The contracted nodes are expanded in Figure 4.32, adding some of the arcs be-
tween the two contracted vertices 4-2 and “1-3”. The expanded graph is root-
connected for the “4-2” root. The approximated results after this iteration is

0-1=0.
- 129 G ‘ - 31 Figure 4.32:
igure 4.29: G, Figure 4.30: G 'gure " Expansion 3

Sample 3

4.7 Coupling Module

A question that arises from the algorithm we described is how to represent the equiv-
alent of a directed subgraph in the initial undirected graph. In [GJ19], the coupling
between reliability and bi-directed reachability approach is presented, explaining how
to construct a directed graph given a subset of the arcs of an undirected graph and
vice-versa. We are only interested in the directed to undirected direction, detailed in

1

4.7. Coupling Module 43

the next section. While the Coupling Module is not essential for estimating the relia-
bility, we considered it as a good extra feature of the complete system, mainly as a way
to visualise the generated subgraphs.

4.7.1 Algorithm overview

The algorithm presented in Algorithm 4.7.1 explores all vertices that can reach the
root in a breadth-first search order, with the difference that traversal does not go from
a parent to a child node, but rather in the opposite direction. Arcs from the subgraph
that belong to a directed path to the root are added to the undirected equivalent. The
algorithm keeps a set of active and explored nodes. The active list corresponds to the
nodes that have not been traversed yet, starting with the root. A vertex is added to the
active list when there is an arc from it to the node that is currently explored. When
the exploration of the current node is finished (all its incoming neighbours have been
considered), the vertex is moved to the explored list. Since we construct a subgraph of
the undirected graph, we are not interested in the multiplicity of an arc. If it belongs
to a path to the root, it must be added only once. Similarly, if arcs in both directions
exist for two nodes u and v (u — v and v — u), it is clear that only one corresponding
edge is added to the directed graph, due to the check in line 10. Once the arc u — v
was added and v moved to the expanded list, v will not be considered as the incoming
neighbour of u. No arc may be added if one of the vertices does not have a path to the
root. If there is no path from a node to the root, than it is impossible to reach it during
the graph traversal. Thus, the undirected graph is connected if and only if the directed
graph is root-connected.

def get_coupling_graph (directed_graph, root):
active_nodes = stack ()
active_nodes .push(root)
expanded_nodes = []
undirected_graph = new undirected graph
add the nodes of directed_graph to undirected_graph.nodes
while there are active nodes:
v = active_nodes .pop()
for each node u such that (u,v) is an arc:
if u not in expanded_-nodes:
add edge (u,v) to undirected_graph.edges
if u not in active_nodes:
active_nodes .add(u)
expanded_nodes .push(v)
return undirected_graph

Algorithm 4.7.2: Coupling between directed subgraph and undirected graph

4.7.2 Example

In the example we provide, the graph in Figure 4.38 is the equivalent of the expansion
result in Figure 4.37 of 3 x 3 grid. Since the expanded graph is root-connected (with
the node 4 as the root), the equivalent undirected subgraph is connected as well.

N

oed

Chapter 4. Algorithms and Implementation Decisions

e
-0
gheRs
e
() 6i:
s

Figure 4.33: Undirected Figure 4.34: Bi-directed

grid grid Figure 4.35: Contraction

@ﬂe@
bl;

i
@::@cq
98

i
O-0-0

7YY
OO

Figure 4.36: Root- .) . Figure 4.38: Coupling of
connected subgraph Figure 4.37: Expansion undirected grid

Chapter 5

Experiments Running Environment

To generate the results presented in Section 6, we run the Reliability Module, some-
times referred to as the system, with different parameters:

* The type of the graph. We were mainly interested in the reliability of grid
graphs, but we have also tested the system with path, pan, star, cycle ladder and
complete graphs.

* The size n of the graph, with the number of nodes and edges a function of n.

* The failure probability p. Although the experiments were aimed at p = 0.5,
we also run the system for p € {0.1,0.25,0.75,0.9} for some values of n, as
described later in Section 6.

The three values, together with the choice between the Serial and the Parallel Relia-
bility Module (discussed in Section 4.6.4), highly influenced the running time of the
system. With the objective of computing as much data as possible, we also varied the
platforms the system run on. This approach allowed us to generate different data at the
same time, maximising the set of results. The platforms are presented below:

* Personal device with processor Intel Core i5-6200U CPU 2.30GHz x 4, used
for developing the system and comparing the performance of the Parallel Reli-
ability Module with the serial implementation. The reliability of grids of size
n < 8 with probability p = 0.5 was generated using this platform. However, this
resource was not sustainable for larger graphs, due to the increasing computa-
tional demands. The platform was also used for the number of arcs resampling
of the Sampling Module on grids with size n < 100 and for the reliability of the
six auxiliary graphs (path, pan, star, cycle, ladder and complete), for system test-
ing. Results forn =11 and p € {0.1,0.25},n € {9,10} and p=0.75and n = 8
and p = 0.9 were also generated using this platform with the parallel version of
the system. Taking into account that this platform is used for various other tasks
unrelated to the project, we decided to also use other environments that would
allow continuous runs of the system.

* student.compute servers of the School of Informatics, with processor Intel(R)
Xeon(R) CPU E5-2690 CPU 3.00GHz x 10. The School’s clusters are available

45

46

Chapter 5. Experiments Running Environment

for extensive computational jobs. They were used for the computing the reliabil-
ity of grids with 9 < n < 15 with p = 0.5, using the parallel implementation on
4 cores (for n € {9,10,11,12} and 8 cores (for n € {13,14,15}). The running
time of a process on these clusters depends on the scheduling time and number of
requests. Unfortunately, the platform became a less reliable environment when
its demand increased, with different computational jobs unrelated to this project,
resulting in a substantial increase in the running time of the experiments. In par-
ticular, the process of generating the reliability for n = 14 was on the scheduling
queue in the middle of the 15th contraction for 5 days, making no computational
progress. These unexpected circumstances, together with the undeniable com-
plexity of the system, affected the possibility of generating results for n > 15.
Hence, we decided to rely on a different environment for p # 0.5.

Google Cloud Platform (GCP). Although not initially part of the goals of this
project, the time resources allowed us to compute the reliability of grid graphs
for different failure probabilities. However, we needed a reliable platform for
continuously running the experiments. The Google Cloud Platform ([gcp] for
the official page) provides cloud computing services on reliable infrastructure.
A virtual machine with 2 instances were set. Their first option of 1 virtual CPU
and 614 MB memory RAM proved to be powerful enough only for n < 7 with
maximum failure probability p = 0.25. Thus, we increased it to 1 virtual CPU
with 1.7GB memory RAM for 8 < n < 10 and p = 0.25. However, due to the
limited RAM memory, the first instance was slow and for p =0.75 and p = 0.9,
we invested in a second instance with 1 vCPU with 3.65GB memory RAM.
The costs of running on the Google Cloud Platform allowed us to buy a virtual
instance with 4 CPUs only for a limited amount of time. Thus, we could use the
parallel implementation on this platform to improve the running time only for a
small subset of the experiments: for n > 12 and p € {0.1,0.25}.

Table 5.1 summarises the parameters configurations that were provided to the system
on each of the presented environments.

platform n P system version
personal device 2<n<8 p=0.5 serial and parallel
student.compute clusters 9<n<15 p=0.5 parallel
GCP 2<n<10 p€{0.1,0.25} serial
personal device n=11 p € {0.1,0.25} parallel
GCP ne{12,13,14} | p € {0.1,0.25} parallel
GCP 2<n<8 p=0.75 serial
personal device ne€{9,10} p=0.75 parallel
GCP 2<n<7 p=0.9 serial
personal device n=3_8 p=0.9 parallel

Table 5.1: Parameters variations on different running platforms

Chapter 6

Results

This chapter presents the results of the reliability system described in Section 4.6. The
main aim of this project was to analyse the reliability of grid graphs for failure proba-
bility of p =0.5. We defined auxiliary goals related to the performance of the Sampling
Module, presented in Section 4.4. The following list summarises the accomplishments
for each task.

e Sampling running time. We did not have any previous knowledge of an im-
plementation of the Cluster popping with Tarjan’s algorithm (Section 4.4) and
we were aware of the theoretical bounds of the running complexity of the algo-
rithm. As part of this project, we analysed the real running time of the Sampling
Module for each contraction of the n x n grids, for each (n, p) configuration of
parameters of the Reliability Module. In addition, we computed the running time
for sampling root-connected subgraphs from complete grid graphs (not contrac-
tions) with 2 <n <100 for p € {0.1,0.25,0.5,0.75} and 2 < n < 82 for p =0.9.
The results are presented in Section 6.1.

* Resampling count. We saved the number of arcs resampled and minimal clus-
ters found by the Sampling Module, which influence the running time of the
algorithm. Section 6.2 provides the results for each run of the Reliability Mod-
ule and for sampling root-connected subgraphs from complete grid graphs with
2 <n <100 for p € {0.1,0.25,0.5,0.75} and with 2 < n < 82 for p = 0.9.

* Network reliability and logarithmic growth rate. Running the Reliability
Module on different platforms, as presented in Section 5, we computed the net-
work reliability and the logarithmic growth rate for grids of size up to 15 x 15 for
5 failure probabilities, with 95% confidence of being in the (140.1) interval:

-2<n<l14and p=0.1;

2<n<14and p=0.25;

2<n<15and p=0.5;

2 <n<10and p =0.75, results for n > 8 with 75% confidence;
2 <n<8and p=0.9, results for n > 6 with 75% confidence.

47

48 Chapter 6. Results

In addition, we compared the reliability behaviour with the values for path, pan,
ladder and complete graphs of size n < 100 with known polynomials. The results
are discussed in Section 6.3. We also compared the estimated reliability of grids
with the exact value for n < 5.

6.1 Sampling running time

One of the goals of this project was to analyse the practical efficiency of the sampling
algorithm with Cluster popping with Tarjan’s algorithm. We remind the reader that the

time complexity of the sampling algorithm is O(|A|+ p‘lAT‘L)V'). For the n x n grid graphs
we worked with, O(JA|) = O(|V|) = n?. Hence, the theoretical analysis suggests that
the time complexity is bounded by a function of n*.

6.1.1 Sampling running time for grids

We run the algorithm to sample root-connected subgraphs on grids of size up to

100 x 100 using the iterative implementation. The iterative approach allowed us to test
with graphs of larger size, as the recursive algorithm provided in [GH18] reached the
system’s stack limit for n = 38 (tested on the personal device, as described in Section
5). The results were computed by averaging the real running time of 1000 runs for
each grid-size, using the personal device.

As suggested in Figure 6.1, the average sampling time (in milliseconds) generally in-
creases with the size of the grid, with the exception of a few outliers that results in
spikes of a few milliseconds in the running time, that may be caused by the perfor-
mance and demand of the platform used. In addition, the plot highlights that an in-
creasing failure probabilities on the edges increases the sampling time. This observa-
tion is expected, as a higher failure probability results in more arcs resampled (Section
6.2). Results for the sampling time on grids are also provided in Appendix G.

2000 A

1800 ~

1600 A

1400 A

1200 A

1000 A

800 A

sampling time

600 A

400 A

Figure 6.1: Average sampling time (ms)

6.1. Sampling running time 49

In addition, we tried to analyse the growth rate of the sampling time by comparing it
with a function of n. While it is clear from Figure 6.1 that the time (in milliseconds) is
less than n2, for n < 100, it would be incorrect to generalize this statement, as we do
not have data for n approaching infinity. However, we notice that Sampl;w is a (gen-
erally) decreasing and converging functions, as seen in Figure 6.3. Our analysis has
shown that this fact is not true if the time is divided by smaller polynomial functions,

such as n, n® or n*log(n) (Figure 6.2).
0.06 0.025
— p=01
p=025
A —hlers
%1 zn — p=09
~ 0.04 <
¢ < 0015
< E
o 003 £
'g g 0.010 1
5 5
E 0.005
T 0.01 4
0.00 4 - e - 0.000 4 } . — -
(I) l‘D 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 B‘O 9‘0 160 6 lID Z‘D 3‘0 4‘0 5‘0 6‘0 '."0 8‘0 920 160
n
Figure 6.2: Sampling time / n”log(n) Figure 6.3: Sampling time / n>

Lastly, we notice that logZ(mm’Z ing-time) ;s rapidly converging towards 0 for all proba-

bilities, as displayed in Figure 6.5, which implies that the same convergence is true
for the logarithmic growth rate given n?, the number nodes: logz(mms lingtime) " poy
completeness, the behaviour of log, (sampling time) is provided in Figure 6.4.

0.5
10.0 A

e
=]
L

7.5 1

[=
E — -0.5
[+
S 504 £
o = 10
£ o
E 2.5 £
Q 1.5
@ £
a o
~ 00 b
o ~ 20
o ga — p=01
2.5 =2 =
25] p=0.25
— p=05
-5.0 — p=075
-3.0 — p=09

T T
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Figure 6.4: log,(sampling time) Figure 6.5: log,(sampling time)/n

50 Chapter 6. Results

6.1.2 Sampling running time for contractions

The reliability approximation algorithm samples root-connected subgraphs from se-
quential contractions of the initial grid. Intuitively, it was expected to see a decrease
in the sampling time for consecutive iterations (contractions), as each time the number
of edges in the graph decreases. This assumption was validated experimentally, with
a few exceptions on iterations whose running was influenced by the platform being
unavailable for the current task. For example, the behaviour of the sampling algorithm
on consecutive contractions can be seen in Figure 6.6 and Figure 6.7, for the failure
probability on edges p = 0.5 and p = 0.75. The time was measured in milliseconds.

12
10 4
10 4

@
L

8

@
L

[R TR T T]

3335333333

[C- RN T R NN

-~
L
-
L

sampling time
39 3 3 33333
sampling time
L | | | R | O | | B 1}
=0 ® N s W

N

’ Then
0 g—‘t%\w“\—\ T 0 &

T T T T T T T T T T T T T T
o 25 50 75 100 125 150 175 o 20 40 60 80 100
n n

Figure 6.6: Sampling time for p = 0.5 Figure 6.7: Sampling time for p = 0.75

6.2 Resampling count

The algorithm for sampling root-connected subgraphs, described in Section 4.4, is
based on finding minimal clusters and resampling their arcs: removing them from the
current graph and independently adding them back with 1 — p probability, where p is
the failure probability on edges. It is clear that the time complexity of this approach
depends on the number of arcs resampled before the algorithm returns. Hence, to gain
a better understanding of the cluster-popping algorithm, we saved the total number of
arcs resampled and minimal clusters found for returning one root-connected subgraph.

6.2.1 Arcs resampled and minimal clusters for grids

We run the sampling algorithm on grids of size up to 100 x 100 for failure probabilities
in {0.1,0.25,0.5,0.75,0.9}, 1000 times for each (n, p) configuration. Some of the data
obtained is provided in Appendix H.

We noticed that, for the same failure probability p, the increase of the two values
follow similar behaviours, as it can be seen in Figure 6.8 and Figure 6.9. Naturally,
there are always more arcs resampled and minimal clusters found for the same graphs
with a higher failure probability. In addition, these numbers increase substantially for
p € {0.75,0.9}, while the differences for p € {0.1,0.25} are harder to observe. For a
better visualisation of the differences for various probabilities, we also plotted the log,
values of the data, as it can be seen in Figure 6.10 and Figure 6.11.

6.2. Resampling count 51

400000 - 80000 -
o £ 70000
g 350000 5
g b
£ 300000 | = 60000 -
[0 [
wn —_
¢ 250000 g 50000 1
g 200000 £ 40000 1
o £
.
8 150000 T 30000 4
E Qo
S 100000 E 20000 A
c c
50000 1 10000 - M
0 04
| ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! | ! | ! ! !
O 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Figure 6.8: Avg. number arcs resampled Figure 6.9: Avg. number minimal clusters

— p=01 — p=01
p=1025 15 p=025
he] — p=05 n — p=05
L 151 — p=07s 2 - =075
o P r w P F
£ — p=09 = — p=03
[¥) 4
[Y10
o ©
g 107 £
2 %
M
. o 51
v I}
aQ o
E 5] I
2 S
< c
o~ 04
2)
L2 4l o
51
T T T T . T T T T T T T . T . T T T T T T T
0 10 20 30 40 50 60 70 80 9 100 0 10 20 30 4 50 60 70 80 9 100
n n

Figure 6.10: log, (avg_arcs_resampled) Figure 6.11: log,(avg_minimal clusters)

Figures 6.12 and 6.13 suggest that umber-ares-resampled g number-minimal_clusters gep
n?log,(n) n*log,(n)
to be in an interval around a constant, implying that that number_arcs_resampled and

number_minimal _clusters are in an interval around constant - n*log,(n). This observa-
tion suggests a O(nlog,(n)) complexity of the arcs resampling step. In the analysis of
the sampling time, we noticed a clearer convergence for a division over n>. Indeed, the

. . . . b _ led
data is less noisy and the values are more obviously decreasing for === =R
and number_arcs_resampled)

. Figure 6.14 and Figure 6.15 clearly show that the last two
values are decreasing with the increase in the size of the grid, approaching 0.

number arcs resampled / n~2log2(n)

AANA
o
(‘) lll) 2‘0 3'0 4‘0 5'0 6‘0 7‘0 HID 9‘0 l[I)O
n
Figure 6.12:
avg_arcs_resampled | (n*1og,(n))
— p=0.1
71 —— p=025
— p=05
61 — p=075
— p=09

number arcs resampled / n°3

= = =
) IS =)
L L L

-
o
L

@
L

p=01
p=025
p=0.5
p=075
p=109

T
90

Figure 6.14: avg_arcs_resampled /n’

Chapter 6. Results

= — p=01
‘,% 57 —_— S: 0.25
g‘ — p=05
~ — p=075
<4 — p=09
3
£
£
£
“ 14
2
g 04 L

(I) 1‘0 2b 3‘0 4b 5‘0 ﬁb 7‘0 BID 9‘0 160

n

Figure 6.13:

avg_minimal clusters/(n*1og,(n)

number minimal clusters / n™3

~—

2.59

2.0

1.5

1.0

0.0

Figure 6.15: avg_minimal _clusters /n’

The last observation we make is that, similarly to the behaviour of the sampling time,

log, (avg-arcs_resampled)

increases, as shown in Figure 6.16 a

log2 number arcs resampled / n

Figure 6.16: log, (avg_arc_resampled) /n

n

— p=01

2.5 — p=0.25

—— p=05

2.0 — p=075

— p=009
154
1.0
0.5 A
0.0
—0.5 4
~1.04

T T
90 100

and log, (avg_minimal _cluster)

log2 number minimal clusters / n

o converge to 0 as the size of the grid
nd Figure 6.17.

p=01
p=025
p=0.5

T T
90 100

Figure 6.17: log, (avg_min_clusters) /n

6.2. Resampling count 53

6.2.2 Arcs resampled and minimal clusters for contractions

Analysis of the number of arcs resampled and minimal clusters found for sampling
root-connected subgraphs from each contraction, averaged for the s runs, has shown
that, for the same failure probability p, these two values decrease with every contrac-
tion. This observation was expected, as the graph decreases in size for each iteration.
In fact, we noticed that the number of arcs decreases by an average of 2 per contrac-
tion, for at least %nz iterations. Figure 6.18 and 6.19 exemplify for p = 0.5 how the
two values decrease for each contraction, for 2 < n < 15. Moreover, the number of
arcs resampled or minimal clusters found at the same iteration are usually bigger for a
larger graph. In addition, Figure 6.20 and Figure 6.21show that increasing the failure
probability on edges results in a higher number of arcs resampled and minimal clusters
found, with p = 0.9 having the biggest impact.

500

w
G

3
=1
=1
w
S
L

)
o
L

w
=]
=3

)

=1

L

number arcs resampled
N
(=]
o
.

number minimal clusters

o
o
S

0 50 100 150 200 50 100 150 200
contraction contraction

Figure 6.18: Arcs resampled for p =0.5 Figure 6.19: Minimal clusters for p = 0.5

1400]
1200 4 200 4
o w
L} @
- 1000 A]
]
£ 5 1501
E [%]
£ 800 =
" £
8 —_
[= 4
5 600 = 100
o L
(7]
2 400 a
E £
5 S 504
< c
200 1
04 i 0
0 20 40 60 80 100 0 20 40 60 80 100
contraction contraction

Figure 6.20: Arcs resampled for n = 10 Figure 6.21: Minimal clusters for n = 10

53 3333333
L | [| R
VW omNe UL hWwN

+ p=01,n=10

p=0.25,n=10

« p=05n=10
+ p=0J5n=10

54 Chapter 6. Results

6.3 Reliability results

6.3.1 Reliability of graphs with known polynomials

For a better understanding of the behaviour of the reliability value, we will firstly look
at the all-terminal reliability and logarithmic growth rate of some graphs with known
polynomials: paths, pans, ladder and complete. While the number of nodes and edges
of the path, pan and ladder are O(n), for the complete graph they are O(nz), as for the
grids. However, we will notice in the next section and the behaviour of the reliability
and logarithmic reliability of the grids is more similar to those of the ladder (which is
also a lattice graph). Figures 3.4, 3.5, 3.6 and 3.9 show that the reliability decreases
and approaches 0 with the increase in the size of the graph, for any failure probability
p- This is also true for the ladder graph with p = 0.9, however the convergence is more
obvious for n > 200. However, the reliability of the complete graph follows a different
pattern, increasing with the size of the graph (but still decreases with the increase in
the failure probability).

0.8 0.8

o

)
L

e

o
L

o
=
L

reliability path
o
£

reliability pan

=]
(N
o
4]

0.09 0.04 =

T T T T T
20 40 60 80 100
n n

o
~
o
-
[=]
o |
=]
@
=]
=
=]
(=]
=}

Figure 6.22: Reliability of path graphs Figure 6.23: Reliability of pan graphs

=
=]

| 7

0.8

e
o

0.6

o
o

0.4+

0.2 \
1\
0

reliability ladder
o
)

reliability complete

o
)

0.0

o
o

T T T T T T T T T T T
20 40 60 80 100 0 20 40 60 80 100
n n

Figure 6.24: Reliability of ladder graphs Figure 6.25: Reliability of complete graphs

Figures 6.26 to 6.29 show the logarithmic reliability (%) of the four graphs.

For the ladder graph, the logarithmic reliability is also increasing for p < 0.5. What

6.3. Reliability results 55

these plots prove is that the value is indeed converging to a constant, as we had ex-
pected. In particular, given the known polynomial presented in Section 3.2.5, it can
be trivially derived that the constant for the path graphs is log,(1 — p). The computed
reliability and growth rate for n = 100 for these graphs are provided in Appendix I.

009 00

-0.5 L -0.5
c 1 C | ,\-'--—-_,___.F
© g ~10
o aQ
> >
= 151 £ 15
4 2 A\\-‘__‘_
oy m©
o —2.01 ¢ 2.0

o

g 8
= 254 —2.57

-3.0 1 —3.0 ._‘

0 20 40 60 80 100 0 20 40 60 80 100
n n

Figure 6.26: Log reliability of path graphs Figure 6.27: Log reliability of pan graphs

|
=] o
n o
|
4 o
[N} 5}
. L

log reliability ladder
|
log reliability complete
b
S

|
-
n

|
~
=}

—2.54

T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
n n

Figure 6.28: Log reliability of ladder graphs Figure 6.29: Log rel. of complete graphs

6.3.2 Reliability of grids

We computed the reliability of grids for different failure probabilities and sizes of the
graph. Due to the complexity of the naive implementation, we could compare the re-
sults with the exact values only for n < 4. Indeed, our approximated reliability values
were in the (0.9,1.1) interval around the result of exact computations. In fact, we no-
ticed that the interval could be tighten to (0.99,1.008). The values of the approximated
reliability and logarithmic reliability of grids are provided in Appendix J. Based on our
results, we make the following observations:

* The reliability decreases with the increase of the size of the grid.

* The reliability decreases with the increase of the failure probability.

* The logarithmic reliability increases with the increase of the size of the grid.

* The logarithmic reliability decreases with the increase of the failure probability.

« p=0.1

p =025

. p=05
. p=075
« p=09

56 Chapter 6. Results

Figure 6.30 and Figure 6.31 show the growth rate of the two values for the 5 failure
probabilities we worked with. For a better visualisation, we also provide in Figures
6.32 and 6.33 the individual plots for p = 0.5, the main objective of this project. Ap-
pendix K provides the individual plots for the rest of the failure probabilities.

1.0

—_— 00

0.8 | /,f
0.6 | /

154
0.2 1
~ ~2.0 1 \—/_f—-

0.0

reliability
log reliahility
|
5

T T T T T T T T T T T
8 10 12 14 2 4 6 8 10 12 14
n n

N
|
o

Figure 6.30: Reliability of grid graphs Figure 6.31: Log rel. of grid graphs

—0.15 A

©
]

e

n

0.30

—0.20
0.25 4

0.20 -0.25 1

0.15 1 _0.30 4

reliability
log reliability

0.10 A
—0.35 1

0.05

—0.40

T T T T T T T T T T T
8 10 12 14 2 4 6 8 10 12 14
n n

]
4
=)

Figure 6.32: Reliability of grids, p = 0.5 Figure 6.33: Log rel. of grids, p = 0.5

The data collected suggests that, while the reliability is approaching 0, the logarithmic
reliability will eventually converge to a constant. The converge is faster for smaller
failure probabilities. While the complexity of the approximation algorithm makes
it difficult to obtain results for large graphs, our results allow us to establish upper
bounds for the reliability (which is a decreasing function of n given constant p) and
lower bounds for the logarithmic reliability (which is an increasing function of n given
constant p). These bounds are provided in Table 6.1.

6.3.2.1 Reliability running time

Figures 6.34 to 6.37 highlight the differences in the running time of the Reliability
Module for different probabilities. However, it is important to remember that the time
to estimate the reliability depends both on the performance of the platform used and on
the version of the system (iterative or parallel). For example, although it it expected to
compute the reliability for p = 0.25 faster than for p = 0.5, the GCP platform we used

6.3. Reliability results 57

p | Upper bound Z,,; | Lower bound L,,;
0.1 0.8920 -0.0008

0.25 0.1465 -0.0142

0.5 1.3027e-11 -0.1607

0.75 7.7700e-26 -0.8342

0.9 1.7698e-39 -2.0114

Table 6.1: Bounds for reliability and logarithmic reliability

for these computation was worse performance-wise than the student.compute clusters.
For p = 0.5, for which we used the student.compute clusters, the algorithm took be-
tween 4 seconds (for n = 2) and 4.25 days (for n = 13). For n = 14, the servers were
unreliable, resulting in a computation of more than 12 days. The consequences of vary-
ing the platform could also be noticed for p = 0.1, with a slower performance of the
personal device for n = 11. Lastly, Figure 6.35 for p = 0.25 shows the effect of updat-
ing the performance of the GCP virtual machine at n = 8. Thus, we cannot accurately

compare the running time of the complete Reliability Module for sets of experiments
on different platforms.

+ P =01 gcp & parallel, 4 cores + p=0.25,gcp & parallel, 4 cores
175 p = 0.1, gcp & serial 200 4 p = 0.25, gcp & serial
* p =01, personal & parallel s p=0.25, personal & parallel
150
150 4
125 4
= =
o 100 °
£ £ 100
s =
50 1
50 1
25
0 04
T T T T T T T T T T T T T
2 4 6 8 10 12 2 a4 6 8 10 12 14
n n
Figure 6.34: Running time, p = 0.1 Figure 6.35: Running time, p = 0.25
B 35 9
500{ =« p=0.5, personal & serial + p=0.75, gcp & serial
p = 0.5, compute & parallel, 4 cores
+ p=0.5, compute & parallel, 8 cores 30 4
400
254
z 300 = 201
]]
E £ 15
+ 2004 =
104
100
5 4
0 -———+———/ oA
2‘ fll é é 10 £2 14 2 3 4 5 6 %
n n

Figure 6.36: Running time, p = 0.5 Figure 6.37: Running time, p = 0.75

58 Chapter 6. Results

6.3.2.2 Number connected spanning subgraphs

The reliability of grids for p = 0.5 allows us to also approximate the total number of
connected spanning subgraphs of the input un-directed graph. For 2 < n < 4, we were
able to run the naive algorithm that gives the exact values. In particular, we found that:

* A 2 x 2 grid has 5 connected spanning subgraphs.
* A 3 x 3 grid has 431 connected spanning subgraphs.
* A4 x4 grid has 555195 connected spanning subgraphs.

For n = 5, the naive implementation did not complete the computation for the con-
nected subgraph of minimal size (n> — 1) in 12 hours. The reliability results allow us
to approximate this value for n > 5, with 95% confidence of (1 £0.1) deviation. Ta-
ble 6.2 presents these estimations (called K},), rounded to the nearest integer, and their
logarithmic value.

n K, g, (Kn) /1
2 5 0.5801
3 431 0.9724
4 553497 1.1923
5 10289687302 1.3304
6 | 2692756361079525 1.4238
7 9.7767e+21 1.4908
8 4.9990e+29 1.5415
9 3.5254e+38 1.5808
10 3.4099e+48 1.6122
11 4.5738e+59 1.6379
12 8.4249¢+71 1.6592
13 2.1381e+85 1.6772
14 7.4015e+99 1.6926
15 3.52712e+115 1.7059

Table 6.2: Approximation of total connected spanning subgraphs of n x n grids.

6.3.2.3 Observation on the number of root-connected expansions

As presented in Section 3.5, the reliability is estimated with a product of the means
of s (Appendix D) random variables for the consecutive iterations. In fact, the sum
of random variables for a contraction is equal to the total number of root-connected
expansions retrieved during the current iteration. Thus, we can write the reliability of
an n x n grid G with edges failure probability as:

2 2 2
n-—1 n“—1vs Ri,j n-—1

j=1
Zrel(G7p) = Z;/feac'h(G/vr7p> = H R; - H . s)
i=1 i=1 i=1

where G’ is the bi-directed graph of G, r the randomly selected root and C; the total
number of root-connected expansions at iteration i. In section 3.5.1, we showed that:

6.3. Reliability results 59

'-lz_lR/- 2
Zrel(va) < (ﬁ)n 71'

Since R} = %, then:

21G 21
Z?:] ?)nz—l _ (l)nz—l(z?:l Ci)nz—l‘

<
Zrel(Gap)_(n2_1 s nz_l

n2-1 X
The bond on the reliability allows us to define a new variable. We let avg C = %

be the average number of root-connected expansions over the n> — 1 contractions of
an n x n grid. We make some observations on the values of C; and avg_C for grids.
Firstly, each C; < s, the total number of root-connected samples drawn, with s being
O(n?). Figure 6.38 shows us how C; increases with the size of the grid. Moreover, for
a better approximation of the reliability, s increases with the failure probability. Figure
6.39 highlights the effect of the increase in the number of samples with the probability
on the average number of root-connected expansion, given constant grid size (n).

A eotet g T WA T
.
1750000 4 L e e e T .":.’... - e
.u:..o'w. ".....,.‘_‘., o oo i,y 2SN :_-.._ - .
W 15000004 T utesadendt € reet o B NS s i s
IRRT e fwtt ote% T, =
5 w0 IV e D gadent t p=05n=2
B 1250000 el b e RO TS p=05n=3
i =05n=4
: > ;j-;.{v.m p—os‘n 5
= Ve e egees + p=05
¥ 10000007 % Lt Rl p=05n=6
° T . p=05n=7
+ 750000 1 p=05n=8
g p=05n=9
< r
5 500000 4 p=05n=10
© p=05n=11
=0.5,n=12
250000 . p 05.n=12
e el p=05n=
E p=0.5n=14
o1 T T - . . « p=05n=15
0 50 100 150 200

contraction

Figure 6.38: Root-connected expansions for each iteration for p = 0.5.

1750000 A

L]
9]
£ 1500000 -
s ¢
w
c e p=01
B L]
; 1250000 . P 0.25
[. ® p=05
- 1000000 - e p=075
£ ° o ® p=09
2 750000 .
£ * .
o

v
o 500000 °
= ° ° ° L4
o o L *
2 250000 - °) e *
(] L] []

e * o o, ¢ ¢

o{ 8 & ©
2 4 6 8 10 12 14

Figure 6.39: Average root-connected expansions

60 Chapter 6. Results

Thus, a question that was raised was how far is the reliability from this bound. We
define the value A,;(p,G) as the difference between the upper bound on the reliability
and the approximate result:

n*—1
1.2 Y 7°Ci 2
Arei(p,G) = (E)n 1(I;E]_ 1 l)n ! ~Z1(G, p).

The values of A, (p,G) for each p are provided in Appendix L. In Table 6.3, we
present the average of the distances to the upper bound for each failure probability p,
over all the grids for which reliability has been estimated for p.

np
anAp _ Ziéz Arel (p, Gi) 7
np—1

where n,, is the maximum grid-size for which reliability has been computed for p and
n, — 1 is the total number of grids with reliability for p.

The low values of avg_A,, and of the standard deviation suggest that the distance from
the reliability to the upper bound is relatively small. However, for p < 0.5, this distance
is not a monotone function as the size of the grid increases. For p > 0.5, our analysis
shown that the average distance is a decreasing function.

)/ avg A, standard deviation
0.1 0.0001 5.5042e-05
0.25 0.0033 0.0009

0.5 0.0010 0.0018
0.75 0.0001 0.0004

0.9 | 2.0145e-05 4.8946¢e-05

Table 6.3: Average distance from estimated reliability to upper bound.

From section 3.5.1, we also know an upper bound on the logarithmic reliability for the
n x n grid:

2
n*—1 Y» 'R,

Lrel(Gv r,p) < 10g2(2 —1)
If we use the fact that fact R} = &
2 n*—1 2 n?—1 2
n-—1 Y. G n-—1 Y. G, n"—1
Lrel(Ga r p) < n2 logZ(s<;lz N 1)) = n2 lng(’;2]) - n2 IOgZ(S).

Looking again at the difference Aj,g, (p,G) between upper bound and the logarithmic
reliability, we noticed that they are more considerable for larger p, as suggested in
Table 6.4, where avg Ay, is computed by averaging A, (p,G) for all grids with
estimated reliability for p.

To exemplify these differences, in Figure 6.40 and Figure 6.41 we plotted the reliability
and logarithmic reliability of grids for p = 0.5 and their corresponding upper bounds.

6.3. Reliability results 61

p avg-Apg, | standard deviation
0.1 | 7.5414e-06 5.8951e-06
0.25 0.0003 0.0001

0.5 0.0064 0.0018
0.75 0.0363 0.0109

0.9 0.0827 0.0292

Table 6.4: Average distance from estimated logarithmic reliability to upper bound.

® approximated —0.151 ¢ approximated
upper bound upper bound & ° ¢

e

w

o
|

o
)
o
L
|
°
o
=1
L
L
[

e
o
<)
L
|
°
i
&

reliability
|
=]
8

° o e
o = =
w o wv
f !
L]
logarithmic reliability
S
W
&

o

o

=]

.
|

14
S
S

T T T T T T T T T T T T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14
n n

Figure 6.40: Reliability of grids and its up- Figure 6.41: Logarithmic reliability of grids
per bound for p = 0.5 and its upper bound for p = 0.5

This analysis suggest that a better understanding of the average number of root-connected
expansions could enable us to also approximate the behaviour of the reliability and, for
failure probabilities not too large, of the logarithmic reliability. Computing such values
with the reliability algorithm presented in this paper still requires the same computa-
tional complexity. We can notice, however, the behaviour of the average number of
connected expansions for all iterations over the total number of samples, w8C for

N

each failure probability, as the size of the grid increases. What this analysis shows us it
avg C Zﬁflci avg,C)
s s(n?-1) s /)
are increasing functions of n. Assuming the functions keeps their monotonically in-
creasing behaviour, our results for the highest n for each p give a lower bound for these

values, presented in Table 6.5. The data for each (n, p) is provided in Appendix M.

that this proportion of s,

. . . 1
, and its logarithmic growth rate, - log, (

p | avg_connected /s | log. growth of (avg_connected / s)
0.1 0.9994 -4.3070e-06
0.25 0.9902 -7.1815e-05
0.5 0.8971 -0.0006
0.75 0.5746 -0.0079
0.9 0.2599 -0.0303

Table 6.5: Lower bounds for percentage of average connected expansions out of num-
ber of samples and its logarithmic growth

Chapter 7

Conclusion

In the first part of the MInf project, we focused on establishing the existence of polyno-
mial approximation algorithms for #P-hard counting constraint satisfaction problems,
by looking at the distribution of the roots around the unit circle of the associated graph
polynomials. In the second part of the MInf project, we shifted our focus to the im-
plementation of an already existing approximation scheme for a problem that elicits
much research interest. This paper presented experimental results on the study of the
all-terminal reliability, a measure with substantial importance in many areas where
the relationship between objects can be represented with graphs, such as computer
networking. While computing the reliability is generally a #P-hard problem, we im-
plemented the first fully polynomial-time approximation scheme, that estimates the
reliability of an un-directed graph by using its equivalence with the reachability value
in the corresponding bi-directed graph with a randomly selected root. The reachability
approximation algorithm involves a sequence of iterations, with each iteration reducing
the size of bi-directed graph by contracting two adjacent vertices. From each contrac-
tion, the algorithm draws a number of root-connected subgraphs, using a sampling
algorithm that recursively finds minimal clusters and independently resamples the arcs
with 1 — p probability, where p is the arcs failure probability. The reachability is ap-
proximated using the means of random variables that check whether the expansion of
each root-connected subgraph is still root-connected, where an expansion un-contracts
the two previously chosen nodes and independently adds the arcs between them with
1 — p probability.

Another contribution of this paper is the introduction of an equivalent iterative imple-
mentation for the sampling algorithm, which was only recursively defined before this
project. We also presented an approach in which the root-connected subgraphs are
sampled in parallel, in order to decrease the running time of the reliability approxima-
tion algorithm.

We analysed the performance of the sampling algorithm, the main ingredient of the
approximation scheme, on bi-directed grids of size up to 100 x 100 for the 5 different
failure probabilities, presenting the average number of arcs resampled and minimal
clusters found (over 1000 runs for each grid size). We showed how these values are
influenced by the increase in the failure probability and grid size. By running the

63

64 Chapter 7. Conclusion

complete system on three different platforms, we extended our goal of computing the
reliability and logarithmic reliability of n x n grids for p = 0.5 to a total 5 different
failure probabilities. The number of samples was chosen such that the approximation
results have 95% confidence of being in the (1 £0.1) interval. In addition, we used the
known reliability polynomials of some family of graphs to test the system and compare
the behaviour of the reliability function. Furthermore, a bonus feature of our system
is that the reliability for p = 0.5 allowed us to estimate the total number of connected
spanning subgraphs of a grid and we also looked at the growth rate of these values. In
the end, we noticed the upper bounds of the reliability and logarithmic growth, given
the average number of root-connected expansions over all iterations.

We acknowledge that our reliability system is limited by the computational perfor-
mance of the platforms it run on. Using various environments, we traded consistency
for an extended results sets, which influenced our ability of accurately comparing the
running running time to estimate the reliability for different edges failure probabilities.
Moreover, the complexity of the approximation algorithm made it unsustainable to ob-
tain reliability results for graphs with more than 225 node and 840 arcs (of the 15 x
15 bi-direct grid). Thus, we empirically showed that the logarithmic reliability growth
rate tends to approach a constant. Although we cannot precisely compute the limits,
our results allowed us to determine certain bounds. Since the reliability of square grids
is decreasing with the size of the grid, we could establish the upper bounds of this
value for larger n, given the 5 failure probabilities. Similarly, we presented the lower
bounds of the logarithmic reliability growth rate, which is increasing with the size of
the grid. For example, for a failure probabilities of 0.5, the reliability for square grids
with n > 15 is at most 1.3026-10~!! and the logarithmic reliability at least -0.1607.

The experiments in this paper represent a only a small subset of the work that could
be done in the area of reliability approximation and there is space for plenty of fur-
ther research. More computational power than our resources would be necessary for
an advancement in estimating the reliability of square grids of larger size. Further-
more, similar experiments to those presented here could be carried out for other types
of graphs, to check how the behaviour we noticed is affected. Examples of graphs
interesting to analyse and compare with the square grids include non-square lattices
with arbitrary length and width. Similarly to the MInf Project Part I, we could focus
our attention to random connected regular graphs. For any chosen family of graphs to
experiment with, the reliability could be estimated for different failure probabilities,
eventually expanding the set of 5 probabilities of our research. Lastly, we could com-
pare our approximated values with the results of reducing the confidence level from
95% to, for example, 75%, which would imply a number of necessary samples per it-
eration % = 4.2 times smaller than for our current implementation. A more permissive
confidence interval would also allow a less expensive computation of the reliability,
eventually leading to an increase of the grid size limit.

[Bal80]

[BCI92]

[BD19]

[BM17]

[BN79]

[BolO1]

[BP83]

[Buz80]

[CGW16]

[CLX09]

Bibliography

Michael O Ball. Complexity of network reliability computations. Net-
works, 10(2):153-165, 1980. Available at https://doi.org/10.1002/
net.3230100206.

Jason I Brown and Charles J Colbourn. Roots of the reliability poly-
nomials. SIAM Journal on Discrete Mathematics, 5(4):571-585, 1992.
Available at https://epubs.siam.org/doi/pdf/10.1137/0405047.

Jason I Brown and Corey DC DeGagné. All terminal reliability roots of
smallest modulus. arXiv preprint arXiv:1906.02359, 2019. Available at
https://arxiv.org/abs/1906.02359.

Jason Brown and Lucas Mol. On the roots of all-terminal reliability poly-
nomials. Discrete Mathematics, 340(6):1287-1299, 2017. Available at
https://doi.org/10.1016/5.disc.2017.01.024.

Michael O Ball and George L Nemhauser. Matroids and a reliability
analysis problem. Mathematics of Operations Research, 4(2):132-143,
1979. Available at https://doi.org/10.1287/moor.4.2.132.

Béla Bollobas. Random graphs. Cambridge University Press, 2nd edition,
2001.

Michael O Ball and J Scott Provan. Calculating bounds on reachabil-
ity and connectedness in stochastic networks. Networks, 13(2):253-278,
1983. Available at https://doi.org/10.1002/net.3230130210.

John A Buzacott. A recursive algorithm for finding reliability measures
related to the connection of nodes in a graph. Networks, 10(4):311-327,
1980. Available at https://doi.org/10.1002/net.3230100404.

J. Cai, H. Guo, and T. Williams. A complete dichotomy rises from
the capture of vanishing signatures. SIAM Journal on Computing,
45(5):1671-1728, 2016. Available at https://doi.org/10.1137/
15M1049798.

Jin-Yi1 Cai, Pinyan Lu, and Mingji Xia. Holant problems and counting
CSP. In Proceedings of the forty-first annual ACM symposium on Theory
of computing, pages 715-724. ACM, 2009. Available at https://dl.
acm.org/citation.cfm?id=1536511.

65

https://doi.org/10.1002/net.3230100206
https://doi.org/10.1002/net.3230100206
https://epubs.siam.org/doi/pdf/10.1137/0405047
 https://arxiv.org/abs/1906.02359
https://doi.org/10.1016/j.disc.2017.01.024
 https://doi.org/10.1287/moor.4.2.132
https://doi.org/10.1002/net.3230130210
 https://doi.org/10.1002/net.3230100404
https://doi.org/10.1137/15M1049798
https://doi.org/10.1137/15M1049798
https://dl.acm.org/citation.cfm?id=1536511
https://dl.acm.org/citation.cfm?id=1536511

66

[CSO03]

[CS04]

[DOT]

[EMMI1)

[Fis86]

[gep]

[GHI18]

[GJO8]

[GJ19]

[GJL19]

[GLLZ]

[GP14]

Bibliography

Shu-Chiuan Chang and Robert Shrock. Reliability polynomials and their
asymptotic limits for families of graphs. Journal of statistical physics,
112(5-6):1019-1077, 2003. Available at https://doi.org/10.1023/
A:1024663508526.

Shu-Chiuan Chang and Robert Shrock. Tutte polynomials and related
asymptotic limiting functions for recursive families of graphs. Advances
in Applied Mathematics, 32(1-2):44-87, 2004. Available at https://
doi.org/10.1016/S0196-8858(03)00077-0.

The DOT language. Documentation at https://www.graphviz.org/
doc/info/lang.html (last accessed on 23/01/2020).

Joanna A Ellis-Monaghan and Criel Merino. Graph polynomials and their
applications I: The Tutte polynomial. In Structural analysis of complex
networks, pages 219-255. Springer, 2011. Available at https://arxiv.
org/pdf/0803.3079.pdf.

George S Fishman. A Monte Carlo sampling plan for estimating net-
work reliability. Operations Research, 34(4):581-594, 1986. Available at
https://doi.org/10.1287/opre.34.4.581.

Google Cloud Platform. https://cloud.google.com (last accessed on
10/04/2020).

Heng Guo and Kun He. Tight bounds for popping algorithms. arXiv
preprint arXiv:1807.01680, 2018. Available at https://arxiv.org/
abs/1807.01680.

Leslie Ann Goldberg and Mark Jerrum. Inapproximability of the Tutte
polynomial. Information and Computation, 206(7):908-929, 2008. Avail-
able at https://doi.org/10.1016/7.1c.2008.04.003.

Heng Guo and Mark Jerrum. A polynomial-time approximation algo-
rithm for all-terminal network reliability. SIAM Journal on Comput-
ing, 48(3):964-978, 2019. Available at https://doi.org/10.1137/
18M1201846.

Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through
the Lovasz local lemma. Journal of the ACM (JACM), 66(3):1-31, 2019.
Available at https://doi.org/10.1145/3310131.

Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang. Zeros of Holant
problems: locations and algorithms. Proceedings of the Thirtieth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 2262-2278.
Available at https://doi.org/10.1137/1.9781611975482.137.

Igor Gorodezky and Igor Pak. Generalized loop-erased random walks and
approximate reachability. Random Structures & Algorithms, 44(2):201—
223,2014. Available at https://doi.org/10.1002/rsa.20460.

 https://doi.org/10.1023/A:1024663508526
 https://doi.org/10.1023/A:1024663508526
 https://doi.org/10.1016/S0196-8858(03)00077-0
 https://doi.org/10.1016/S0196-8858(03)00077-0
https://www.graphviz.org/doc/info/lang.html
https://www.graphviz.org/doc/info/lang.html
https://arxiv.org/pdf/0803.3079.pdf
https://arxiv.org/pdf/0803.3079.pdf
 https://doi.org/10.1287/opre.34.4.581
https://cloud.google.com
https://arxiv.org/abs/1807.01680
https://arxiv.org/abs/1807.01680
https://doi.org/10.1016/j.ic.2008.04.003
 https://doi.org/10.1137/18M1201846
 https://doi.org/10.1137/18M1201846
 https://doi.org/10.1145/3310131
https://doi.org/10.1137/1.9781611975482.137
 https://doi.org/10.1002/rsa.20460

Bibliography 67

[gra] Graphviz - graph visualization software. https://www.graphviz.org/
(last accessed on 26/02/2020).

[GS16] Ilya B Gertsbakh and Yoseph Shpungin. Models of network reliability:
analysis, combinatorics, and Monte Carlo. CRC press, 2016.

[Hac17] Jirgen Hackl. Tikz-network manual. arXiv preprint arXiv:1709.06005,
2017.

[Hag91] Jane Nichols Hagstrom. Computing rooted communication reliability in
an almost acyclic digraph. Networks, 21(5):581-593, 1991. Available at
https://doi.org/10.1002/net.3230210507.

[HJO7] D Hunter John. Matplotlib: a 2d graphics environment comput. Sci. Eng,
9:90-5, 2007.

[HMW74] Eberhard Hansler, GK McAuliffe, and RS Wilkov. Exact calculation of
computer network reliability. Networks, 4(2):95-112, 1974. Available at
https://doi.org/10.1002/net.3230040202.

[HSSCO08] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network
structure, dynamics, and function using NetworkX. 2008. Available at
https://www.osti.gov/biblio/960616.

[Jae88] Francois Jaeger. Tutte polynomials and link polynomials. Proceedings of
the American Mathematical Society, 103(2):647-654, 1988. Available at
https://doi.org/10.1090/50002-9939-1988-0943099-0.

[Kel65] AK Kelmans. Some problems of network reliability analysis. Automation
and Remote Control, 26(3):564, 1965.

[KL85] Richard M Karp and Michael Luby. Monte-Carlo algorithms for the
planar multiterminal network reliability problem. Journal of Com-
plexity, 1(1):45-64, 1985. Available at https://doi.org/10.1016/
0885-064X(85)90021-4.

[Kur05] James F Kurose. Computer networking: A top-down approach featuring
the internet, 3/E. Pearson Education India, 2005.

[LGWO03] Alberto Leon-Garcia and Indra Widjaja. Communication Networks.
McGraw-Hill, Inc., USA, 2 edition, 2003.

[LLCa] Python Software Foundation LLC. Python language reference, version
3.7. https://docs.python.org/3/ (last accessed on 18/03/2020).

[LLCb] Python Software Foundation LLC. Python multiprocessing. https://
docs.python.org/2/library/multiprocessing.html (last accessed
on 11/02/2020).

[LLCc] Python Software Foundation LLC. Python random library.
https://docs.python.org/3/1library/random.html (last accessed
on 25/02/2020).

https://www.graphviz.org/
 https://doi.org/10.1002/net.3230210507
 https://doi.org/10.1002/net.3230040202
https://www.osti.gov/biblio/960616
 https://doi.org/10.1090/S0002-9939-1988-0943099-0
 https://doi.org/10.1016/0885-064X(85)90021-4
 https://doi.org/10.1016/0885-064X(85)90021-4
https://docs.python.org/3/
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/3/library/random.html

68

[LLCd]

[LPRS16]

[MCODO06]

[Min59]

[Mos58]

[MS56]

[Pan94]

[PB83]

[PP94]

[PR17]

[PR18]

[PS86]

Bibliography

Python Software Foundation LLC. Time access and conversions.
https://docs.python.org/3/1library/time.html (last accessed on
25/02/2020).

JL Lebowitz, Boris Pittel, D Ruelle, and ER Speer. Central limit the-
orems, Lee—Yang zeros, and graph-counting polynomials. Journal of
Combinatorial Theory, Series A, 141:147-183, 2016. Available at https:
//doi.org/10.1016/73.jcta.2016.02.009.

Richard C Murphy, Scott M Carter, Mario G Ornelas, and Shrikant Desh-
pande. System and method for dynamic resource configuration using a
dependency graph. Google Patents, December 19 2006.

Hisashi Mine. Reliability of a physical system. IRE Transactions on Cir-
cuit Theory, 6(5):138-151, 1959. Available at https://ieeexplore.
ieee.org/abstract/document/1086604.

Fred Moskowitz. The analysis of redundancy networks. Transactions of
the American institute of electrical engineers, part i: communication and
electronics, 77(5):627-632, 1958. Available at https://ieeexplore.
ieee.org/abstract/document /6372698.

Edward F Moore and Claude E Shannon. Reliable circuits using less
reliable relays. Journal of the Franklin Institute, 262(3):191-208, 1956.
Available at https://doi.org/10.1016/0016-0032(56) 90559-2.

Victor Y Pan. Simple multivariate polynomial multiplication. Journal
of Symbolic Computation, 18(3):183-186, 1994. Available at https:
//doi.org/10.1006/sco0.1994.1042.

J Scott Provan and Michael O Ball. The complexity of counting cuts and
of computing the probability that a graph is connected. SIAM Journal on
Computing, 12(4):777-788, 1983. Available at https://doi.org/10.
1137/0212053.

Lavon B Page and Jo Ellen Perry. Reliability polynomials and link
importance in networks. [EEE Transactions on Reliability, 43(1):51—
58, 1994. Available at https://ieeexplore.ieee.org/abstract/
document /285108.

Viresh Patel and Guus Regts. Deterministic polynomial-time approxi-
mation algorithms for partition functions and graph polynomials. SIAM
Journal on Computing, 46(6):1893—-1919, 2017. Available at https:
//doi.org/10.1137/16M1101003.

Hebert Pérez-Rosés. Sixty years of network reliability. Mathematics in
Computer Science, 12(3):275-293, 2018. Available at https://link.
springer.com/article/10.1007/s11786-018-0345-5.

Themistocles Politof and A Satyanarayana. Efficient algorithms for relia-
bility analysis of planar networks-a survey. IEEE Transactions on Relia-

https://docs.python.org/3/library/time.html
https://doi.org/10.1016/j.jcta.2016.02.009
https://doi.org/10.1016/j.jcta.2016.02.009
https://ieeexplore.ieee.org/abstract/document/1086604
https://ieeexplore.ieee.org/abstract/document/1086604
https://ieeexplore.ieee.org/abstract/document/6372698
https://ieeexplore.ieee.org/abstract/document/6372698
https://doi.org/10.1016/0016-0032(56)90559-2
https://doi.org/10.1006/jsco.1994.1042
https://doi.org/10.1006/jsco.1994.1042
 https://doi.org/10.1137/0212053
 https://doi.org/10.1137/0212053
 https://ieeexplore.ieee.org/abstract/document/285108
 https://ieeexplore.ieee.org/abstract/document/285108
https://doi.org/10.1137/16M1101003
https://doi.org/10.1137/16M1101003
https://link.springer.com/article/10.1007/s11786-018-0345-5
https://link.springer.com/article/10.1007/s11786-018-0345-5

Bibliography 69

bility, 35(3):252-259, 1986. Available at https://ieeexplore.ieee.
org/abstract/document /4335427.

[RKP86] Suresh Rai, Arun Kumar, and EV Prasad. Computing terminal reliabil-
ity of computer network. Reliability Engineering, 16(2):109-119, 1986.
Available at https://doi.org/10.1016/0143-8174(86)90079-X.

[RS02] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2nd edition, 2002.

[RS04] Gordon Royle and Alan D Sokal. The Brown—Colbourn conjecture on
zeros of reliability polynomials is false. Journal of Combinatorial The-
ory, Series B, 91(2):345-360, 2004. Available at https://doi.org/10.
1016/73.jctb.2004.03.008.

[SF71] Richard Van Slyke and Howard Frank. Reliability of computer-
communication networks. In Proceedings of the 5th conference on Win-
ter simulation, pages 71-82, 1971. Available at https://doi.org/10.
1145/800294.811426.

[SHS81] A Satyanarayana and Jane N Hagstrom. Combinatorial properties of
directed graphs useful in computing network reliability. Networks,
11(4):357-366, 1981. Available at https://doi.org/10.1002/net.
3230110405.

[SI98] Kyoko Sekine and Hiroshi Imai. Computation of the network reliability.
University of Tokyo, Department of Information Science, 1998. Avail-
able at https://www.researchgate.net/publication/240158906_
Computation_of_the_Network_Reliability_ FExtended_ Abstract.

[SW99] Angelika Steger and Nicholas C Wormald. Generating random regular
graphs quickly. Combinatorics, Probability and Computing, 8(4):377—
396, 1999. Available at https://pdfs.semanticscholar.org/allc/
daa%4e777b0d9752a326224£742aa3£f71c3b.pdf.

[Tan06] Christian Tanguy. Exact solutions for the two-and all-terminal reliabilities
of a simple ladder network. arXiv preprint cs/0612143, 2006. Available
athttps://arxiv.org/abs/cs/0612143.

[Tan19] Diana Tanase. Experimental study of the roots of graph polynomi-
als. School of Informatics, The University of Edinburgh, 2019. Avail-
able at https://project-archive.inf.ed.ac.uk/ug4/20191505/
ugd_proj.pdf.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
Jjournal on computing, 1(2):146-160, 1972. Available at https://doi.
org/10.1137/0201010.

[Tit99] Peter Tittmann. Partitions and network reliability. Discrete applied math-
ematics, 95(1-3):445-453, 1999. Available at https://doi.org/10.
1016/50166-218X(99)00092-X.

 https://ieeexplore.ieee.org/abstract/document/4335427
 https://ieeexplore.ieee.org/abstract/document/4335427
 https://doi.org/10.1016/0143-8174(86)90079-X
https://doi.org/10.1016/j.jctb.2004.03.008
https://doi.org/10.1016/j.jctb.2004.03.008
https://doi.org/10.1145/800294.811426
https://doi.org/10.1145/800294.811426
 https://doi.org/10.1002/net.3230110405
 https://doi.org/10.1002/net.3230110405
 https://www.researchgate.net/publication/240158906_Computation_of_the_Network_Reliability_Extended_Abstract
 https://www.researchgate.net/publication/240158906_Computation_of_the_Network_Reliability_Extended_Abstract
https://pdfs.semanticscholar.org/a11c/daa94e777b0d9752a326224f742aa3f71c3b.pdf
https://pdfs.semanticscholar.org/a11c/daa94e777b0d9752a326224f742aa3f71c3b.pdf
 https://arxiv.org/abs/cs/0612143
 https://project-archive.inf.ed.ac.uk/ug4/20191505/ug4_proj.pdf
 https://project-archive.inf.ed.ac.uk/ug4/20191505/ug4_proj.pdf
 https://doi.org/10.1137/0201010
 https://doi.org/10.1137/0201010
 https://doi.org/10.1016/S0166-218X(99)00092-X
 https://doi.org/10.1016/S0166-218X(99)00092-X

70

[Val79]

[Ver05]

[VSF71]

[Wei]

[Wei08]

[WelO1]

[WWO3]

[YKE13]

Bibliography

Leslie G Valiant. The complexity of computing the permanent. The-
oretical computer science, 8(2):189-201, 1979. Available at https:
//doi.org/10.1016/0304-3975(79)90044-6.

Dirk Vertigan. The computational complexity of Tutte invariants for pla-
nar graphs. SIAM Journal on Computing, 35(3):690-712, 2005. Available
athttps://doi.org/10.1137/50097539704446797.

R Van Slyke and Howard Frank. Network reliability analysis: Part I. Net-
works, 1(3):279-290, 1971. Available at https://doi.org/10.1002/
net.3230010307.

Eric Weisstein. Grid graph. MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/GridGraph.html (last accessed on
11/02/2020).

Eric Weisstein. Reliability polynomial. 2008. Available at https:
//mathworld.wolfram.com/ReliabilityPolynomial.html (last ac-
cessed on 05/03/2020).

Barry Wellman. Computer networks as social networks. Sci-
ence, 293(5537):2031-2034, 2001. Available at https://science.
sciencemag.org/content/293/5537/2031.

Dominic Welsh and David J Welsh. Complexity: knots, colourings and
countings, volume 186. Cambridge University Press, 1993.

Mina Youssef, Yasamin Khorramzadeh, and Stephen Eubank. Network
reliability: The effect of local network structure on diffusive processes.
Physical Review E, 88(5):052810, 2013. Available at https://doi.org/
10.1103/PhysRevE.88.052810.

https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/0304-3975(79)90044-6
 https://doi.org/10.1137/S0097539704446797
 https://doi.org/10.1002/net.3230010307
 https://doi.org/10.1002/net.3230010307
http://mathworld.wolfram.com/GridGraph.html
 https://mathworld.wolfram.com/ReliabilityPolynomial.html
 https://mathworld.wolfram.com/ReliabilityPolynomial.html
https://science.sciencemag.org/content/293/5537/2031
https://science.sciencemag.org/content/293/5537/2031
 https://doi.org/10.1103/PhysRevE.88.052810
 https://doi.org/10.1103/PhysRevE.88.052810

Appendices

71

Appendix A

Reliability polynomials for grids with
n<3j

Reliability polynomial

[\

—3p*+8p> —6p +1

79p12 — 560p'! + 16680 — 2656p° +2331p% —960p” +96p° +21p* — 16p° —4p® + 1

—17493p** 4+ 232144p>> — 1409764 p>% 4+ 5168576p>1 — 12693232p°" 4 21854512p1° —
—26726036p'® +22824576p'7 — 12739373 p'® +3710880p"> + 139672p'* — 370176 p'3 —
—35464p'2 +63968p'! +5912p'0 —7808p° — 17918 + 656p7 +204p° + 64p> — 8p*—
—16p3 —4p*+1

32126211p* — 681809240p> + 685247154838 —43322118652p°7 + 192968405711 p>°—
—642590690400p + 1655933457966 p3* — 3370276114636p33 + 5476061558391 p3% —
—7122774813980p3! + 7375859530466 p30 — 5981426876044 p*° +3667377815630p8 —
—1573096624396p%7 +375423772810p%6 + 9584416484 p>> —26112103320p** —
—6268146140p%3 +8011274210p?2 — 1051500660p>! — 575028980p>0—
—53196700p'° +139031550p'8 —2265380p!7 — 10705120p'0 — 3593556p 15+
+1357510p'4 4394172p'3 +35042p'2 —49636p'! — 10290p'0 —2036p° + 1021 p3+
+164p” +250p° 4+ 64p> — 11p* —20p> —4p>+1

Table A.1: Reliability polynomials for n x n grids [S198]

73

Appendix B

Reliability polynomials for complete
graphs with n <6

Reliability polynomial
—p+1
2p° —3p*+1
—6p° +12p° —3p* —4p> 41
24p1° —60p° +30p% +20p7 — 10p° —5p* +1
—120p" +360p™ —270p"3 —90p'? + 120p'1 4-20p° — 15p% —6p° + 1

N AW S

Table B.1: Reliability polynomials for n-complete graphs [S198]

74

Appendix C

Proof of minimum constant in the
number of samples expression

We want to find the minimum positive integer ¢ such that

x

20’

for x € [0, 1]. Let’s consider the function £, : [0,1] = R, fo(x) =&/ —1— 30+ We need
to find minimum positive integer ¢ such that f.(x) <0 for any x € [0, 1].

ex/cé 1+

Firstly, it must be true that f,.(0) <0 and f.(1) <O0.
£0)=1-1-0=0<0.

21
fc(l)zel/c—%-
21 1 21]
N<0=e/>" o _<In"—=¢>—~205
fe1) 20=elf 255 = - <In g i

Thus, since ¢ must be an integer, ¢ > 21. We will prove now that ¢ = 21 does satisfy
our requirements.

Define f:[0,1] = R, f(x) =e'/21 —1— 35- Itis obvious that f is a continuous function.
We analyse the monotony of f using the first derivative.

1 1
/ _ x/21
fx)=se 20°

We find the zeros of f’ to prove that f is strictly decreasing.
1 1 21 X 21 21
‘)=0=—e"'= ==~ —InZ = x=21ln= > 1.
F) 21°¢ 20 ¢ 20 21 207 120

Thus, for x € [0, 1], f'(x) = 0 does not have a solution and hence, f’ does not change
its (positive/negative) sign. Moreover, f’ is the a strictly increasing function (being
composed of an exponential and a constant function), which implies that for x < 1 <
211In %—(1), f'(x) < 0. Hence, f is strictly decreasing and for x € [0, 1]:

S) <@ < S0) = flx) 0= <14 2

75

Number of samples for a grid

Appendix D

n p=0.1 p=0.25 p=0.5 p=0.75 p=09
s=100m>—1) | s=120(2—1) | s=8400(n>—1) | s=33600(n>—1) | s=210000(n*>—1)

2 7778 11200 25200 100800 630000

3 20741 29867 67200 268800 1680000
4 38889 56000 126000 504000 3150000
5 62223 89600 201600 806400 5040000
6 90741 130667 294000 1176000 7350000
7 124445 179200 403200 1612800 10080000
8 163334 235200 529200 2116800 13230000
9 207408 298667 672000 2688000 16800000
10 256667 369600 831600 3326400 20790000
11 311112 448000 1008000 4032000 25200000
12 370741 533867 1201200 4804800 30030000
13 435556 627200 1411200 5644800 35280000
14 505556 728000 1638000 6552000 40950000
15 580741 836267 1881600 7526400 47040000

Table D.1: Number of samples for an n x n grid for estimating reliability with € = 0.1 and

95% confidence.

Note: For running the Reliability Module using parallelism of the consecutive sam-
pling runs, we used slightly more samples for p = 0.1 and p = 0.25, to be able to
assign an equal number of tasks to processes:

s 2593(n*> — 1) for p=0.1.
s 3734(n*> — 1) for p = 0.25.

76

Appendix E

Recursive and Iterative Sampling time

Tables E.1 present the running time to generate a root-connected subgraph using the
recursive and iterative implementations, averaged over 10 runs for each grid.

n | recursive | iterative n_| recursive | iterative

16 7.88 7.89
2 0.03 0.04

17 10.75 13.23
3 0.14 0.12

18 15.41 11.10
4 0.30 0.45

19 11.87 9.47
5 0.53 0.67

20 9.33 8.54
6 0.82 1.13

21 11.85 12.34
7 1.76 3.42

22 13.92 13.73
8 1.47 1.56

23 34.18 31.55
9 2.07 391

24 39.05 12.31
10 2.76 3.22

25 23.56 19.80
11 4.47 4.10

26 15.01 15.95
12 5.24 4.65

27 15.12 18.24
13 5.05 5.73

28 23.33 19.63
14 4.00 7.56
05 931 615 29 22.27 27.84

30 23.30 26.54

Table E.1: Average time in ms to generate 10 root-connected subgraphs for each n-grid

77

Appendix F

Exact and approximated reliability for
path, pan, star, cycle and ladder and
complete graphs

Tables F.1 to F.6 present for different types of graphs, for size 2 < n < 8, the ex-
act reliability values computed using the corresponding reliability polynomial and the
approximated results of our Reliability Module, for failure probability p = 0.5. All
estimated values are within the (1+0.1) accuracy interval.

n | exact Z,,; | approx. Z,.,; n | exact Z,,; | approx. Z,,;
2 | 0.5000 0.4951 2| 0.3750 0.3777
31 0.2500 0.2468 3|1 0.2500 0.2535
4 1 0.1250 0.1236 4 1 0.1562 0.1564
51 0.0625 0.0637 5| 0.0938 0.0931
6 | 0.0312 0.0305 6 | 0.0547 0.0544
71 0.0156 0.0157 71 0.0312 0.0315
8 | 0.0078 0.0078 8| 0.0176 0.0176
Table F.1: Reliability of path graph Table F.2: Reliability of pan graph

78

79

n | exact Z,,; | approx. Z,.,; n | exact Z,,; | approx. Z,,;
2 | 0.5000 0.4975 2 | 0.7500 0.7501
3| 0.2500 0.2526 3 0.5000 0.5031
4| 0.1250 0.1217 41 03125 0.3112
51 0.0625 0.0623 51 0.1875 0.1892
6 | 0.0312 0.0312 6 | 0.1094 0.1090
71 0.0156 0.0160 71 0.0625 0.0620
8 | 0.0078 0.0077 8 | 0.0352 0.0357
Table F.3: Reliability of star graph Table F.4: Reliability of cycle graph
n | exact Z,,; | approx. Z,,; n | exact Z,,; | approx. Z,,;
2 | 0.3125 0.3096 2 | 0.5000 0.4924
31 0.1797 0.1784 3 0.5000 0.4988
41 0.1025 0.1039 4 1 0.5938 0.5930
5| 0.0585 0.0581 51 0.7109 0.7094
6 | 0.0333 0.0329 6 | 0.8149 0.8136
7| 0.0190 0.0190 7| 0.8899 0.8901
8 | 0.0108 0.0108 8 | 09371 0.9367

Table F.5: Reliability of ladder graph Table F.6: Reliability of complete graph

Appendix G

Sampling running time on grids

n | p=01|p=025| p=0.5 p=0.5 p=0.75
5 | 0.1396 | 0.2043 0.3253 0.817 2.8885
10 | 0.4747 | 0.4806 1.687 3.6984 9.8295
15 | 1.2891 1.6819 3.2282 9.1157 28.4469
20 | 2.8081 2.1498 4.6596 17.5798 62.4887
25 | 3.3146 3.481 7.0673 28.333 80.8582
30 | 5.2845 | 4.7295 10.1825 77.0745 133.7406
35| 84184 | 6.7324 | 15.9345 61.8941 197.8669
40 | 10.0981 | 8.9303 | 22.7832 | 119.9797 272.332
45 | 11.7738 | 15.8979 | 30.2179 | 1229136 352.739
50 | 14.8631 | 17.5263 | 40.8679 | 1759184 | 632.1395
55 | 17.9069 | 22.1209 | 59.8267 | 226.0938 | 628.7326
60 | 23.0718 | 25.1502 | 63.598 341.9351 | 710.7768
65 | 28.4645 | 37.2717 | 83.7792 | 364.8171 | 958.4511
70 | 31.653 | 37.3352 | 106.1449 | 435.6148 | 1400.0201
75 | 33.7771 | 53.9339 | 135.9878 | 580.8345 | 1453.6386
80 | 41.6784 | 57.4063 | 168.4629 | 647.905 | 1882.0843
85| 60.3112 | 64.4347 | 207.0318 | 781.7487 -

90 | 67.9382 | 64.5729 | 251.3356 | 1029.5263 -

95 | 91.3844 | 74.6063 | 309.3275 | 1114.6956 -

99 | 75.409 | 78.9209 | 391.5794 | 13279111 -

Table G.1:

Running time of the iterative sampling algorithm (ms), averaged over 1000

runs for each (n, p))

80

Appendix H

Number arcs resampled on grids

n|p=01|p=025| p=05 p=0.75 p=09
5 1.371; 5.388; 45.965; 205.821; 947.192;
0.064 0.716 7.18 46.699 255.579
10 0.212; 7.208; 150.055; 973.113; 3314.376;
0.072 1.35 18.375 172.769 800.673
15 0.408; 26.61; 294.213; | 2365.762; 9654.624;
0.128 2.156 33.545 382.072 2147.673
20 0.496; | 44.871; | 544.568; | 4352.789; | 21204.055;
0.148 3.215 54.93 666.406 4514.632
75 0.678; | 35.267; | 738.511; | 6830.664; | 26173.482;
0.207 4.475 77.728 1015.608 5613.835
30 0.767; | 32.028; | 951.135; | 20055.73; | 43020.469;
0.228 5.943 105.409 2537.648 9011.312
35 1.084; | 50.579; | 1358.174; | 13410.039; | 61934.721;
0.308 7.537 141.775 1932.493 12805.714
40 1.338; | 65.767; | 1740.488; | 27297.057; | 83309.886;
0.38 9.623 179.981 3524.505 17088.454
45 25.363; | 81.503; | 2027.55; | 23750.946; | 103160.007;
0.447 11.757 219.688 3303.441 21101.145
50 1.835; | 98.736; | 2330.472; | 32994.549; | 190503.068;
0.501 13.966 263.344 4423.833 37832.41
55 2.122; 94.6; 5398.234; | 40246.862; | 177148.289;
0.571 16.562 369.61 5360.041 35604.289
60 44.694; | 124.846; | 3301.052; | 46639.726; | 186735.555;
0.609 19.353 370.598 6216.363 37757.098

Table H.1: Average arcs resampled (first value) and minimal clusters (second value)

found for 1000 runs of the sampling algorithm

81

82

Appendix H. Number arcs resampled on grids

n | p=01| p=0.25 p=0.5 p=0.75 p=0.9
65 2.666; | 210.787; | 4142.571; | 53235.367; | 251074.101;
0.714 22.304 436.033 7110.675 50191.062
70 2.924; | 205.207; | 4584.519; | 64214.228; | 306402.338;
0.794 25.399 496.898 8478.652 60943.101
75 3.197; | 279.523; | 5696.192; | 81567.517; | 330770.209;
0.861 29.226 578.644 10511.982 65920.58
20 3.94; 215.381; | 6168.17; | 78710.162; | 430438.485;
1.05 32.578 648.849 10487.729 84996.908
35 4.236; | 297.712; | 6707.124; | 87246.122; i
1.13 36.268 724.511 11650.08
90 4.623; | 1037.56; | 7151.051; | 120810.621; i
1.229 41.309 800.715 15358.169
95 5.176; | 1049.414; | 8614.663; | 102947.263; i
1.376 45.699 900.203 13880.075
99 5.708; 362.66; | 9583.923; | 119809.253; i
1.505 48.291 980.664 15864.103

Table H.2: Average arcs resampled (first value) and minimal clusters (second value)

found for 1000 runs of the sampling algorithm

Appendix |

Reliability and growth rate of path,
pan, ladder and complete graphs

graph | p=0.1 p=025 p=05 p=0.75 p=09
vath | 32791e-05; |1 5.70T6e-13; |13.1554¢-30; | 9.9568¢-60: | 9.9999e-99;
-0.1504 -0.4108 -0.9898 -1.9797 -3.2883
ban 0.0003; | 1.0904e-11; | 7.8886e-29; | 1.8544¢-58; | 8.9199¢-98;
-0.1173 -0.3678 -0.9429 -1.9371 -3.2564
adder 0.2545; | 1.7829¢-05; | 6.8090e-25; | 1.5482e-72; | 3.9383¢-145;
-0.0099 -0.0796 -0.4054 -1.2047 -2.4227
complete 1 I; I; 0.9999; 0.9967;
0 0 0 -8.3088¢-15 | -4.7788e-07

Table I.1: Reliability (first value) and logarithmic reliability (second value) for n = 100

83

Appendix J

Reliability results on grids

n| p=0.1|p=025 p=20.5 p=0.75 p=0.9

) 0.9449; | 0.7445; 0.3122; 0.0507, 0.0037,
-0.0204 | -0.1064 -0.4198 -1.0752 -2.0191

3 0.9490; | 0.6448,; 0.1052; 0.0012; 1.3904e-06;
-0.0083 | -0.0703 -0.3608 -1.0743 -2.1617

4 0.9427; | 0.5834; 0.0329; 1.2449e-05; | 4.7148e-11;
-0.0053 | -0.0485 -0.3076 -1.01834 -2.1439

5 0.9395; | 0.5247, 0.0093; 5.2457e-08; | 1.4196¢-16;
-0.0035 | -0.0372 -0.2695 -0.9673 -2.1058

6 0.9344; | 0.4684, 0.0023; 8.8857e-11; | 3.7862e-23;
-0.0027 | -0.0303 -0.2428 -0.9274 -2.0689

7 0.9306; | 0.4188; 0.0005; 6.1150e-14; | 8.7014e-31;
-0.0021 | -0.0256 -0.2234 -0.8958 -2.0379

g 0.9242; | 0.3699; | 9.6278e-05; | 1.6571e-17; | 1.7698e-39;
-0.0017 | -0.0224 -0.2084 -0.8710 -2.0114

9 0.9197; | 0.3241; | 1.5808e-05; | 1.7747e-21;]
-0.0014 | -0.0200 -0.1969 -0.8510

10 0.9134; | 0.2805; | 2.2251e-06; | 7.7690e-26;]
-0.0013 | -0.0183 -0.1877 -0.8341

1 0.90910; | 0.2418; | 2.7144e-07,)]
-0.0011 | -0.0169 -0.1802

12 0.9029; | 0.2057; | 2.8421e-08;]]
-0.0010 | -0.0158 -0.1740

13 0.8963; | 0.1746; | 2.5626e-09;]]
-0.0009 | -0.0149 -0.1688

14 0.8919; | 0.1465; | 1.9697e-10;)]
-0.0008 | -0.0141 -0.1644

1.3026e-11;
15 i i -0.1607 i i

Table J.1: Reliability (first value) and logarithmic reliability (second value) of n x n grids

84

Appendix K

Plots for reliability and logarithmic
growth rate

0.000
0.95 —-0.002
~0.004
0.94
<., —0.006
£
20934 =
= 9 —0.008 q
5 o
(1] 4 2]
= 0.92 Y om0
= o
=
0.91 4 —0.012 1
—-0.014
0.90
—0.016
0.89 4
2 4 6 8 10 12 14 2 4 6 8 10 12 14
n n

Figure K.1: Reliability of grids, p = 0.1 Figure K.2: Log. reliability of grids, p = 0.1

0.7 0.7
0.6 q 0.6
.é* 0.5 4 é-v 0.5
= o
o hd
3 041 3 0.44
- =
0.34 0.3
0.29 0.2 1
T T T T T T T T T T T T T T
2 4 6 8 10 12 14 2 4 6 8 10 12 14
n n

Figure K.3: Reliability of grids, p = 0.25 Figure K.4: Log.reliability of grids,p = 0.25

85

86

Appendix K. Plots for reliability and logarithmic growth rate

e
o
w

reliability

e
o
]

0.01 4

0.00 +

« p=075

Figure K.5: Reliability of grids, p = 0.75

0.0035

0.0030 +

0.0025 +

0.0020 +

reliability

0.0015 -

0.0010 o

0.0005 -

0.0000 -

Figure K.7: Reliability of grids, p = 0.9

—0.85 1

—0.90 4

=0.95 4

log reliability

=1.00 +

—1.05 1

Figure K.6: Log.reliability of grids,p = 0.75

-2.02 1

—2.04 1

—2.06 1

—2.08 4

log reliability

—-2.10 1

=212 1

-2.14 4

-2.16 1

Figure K.8: Log. reliability of grids, p =0.9

Appendix L

Distance from reliability to upper

bound

n p=0.1 p=0.25 p=20.5 p=20.75 p=0.9
2 | 6.6226e-05 | 0.0008 0.0027 0.0012 0.0001

3 0.00010 0.0029 0.0063 0.0002 9.8319e-07
4 0.00012 0.0025 0.0035 4.1255e-06 | 4.7667e-11
5 0.00017 0.0031 0.0011 4.2837e-08 | 6.7890e-16
6 0.00019 0.0049 0.0004 1.9416e-10 | 4.6010e-22
7 0.00017 0.0040 0.0001 2.0739¢-13 | 1.4567e-29
8 0.00019 0.0037 | 3.3425e-05 | 9.6873e-17 | 1.3466e-37
9 0.00022 0.0041 | 6.5760e-06 | 1.6373e-20 -

10 | 0.00020 0.0037 | 1.0469e-06 | 1.4488e-24 -

11| 0.00020 0.0042 | 1.6189e-07 - -

12 | 0.00022 0.0035 | 1.8048e-08 - -

13| 0.00021 0.0027 | 2.0354e-09 - -

14 | 0.00023 0.0026 | 1.8166e-10 - -

15 - - 1.4674e-11 - -

87

Table L.1: Distance from reliability to upper bound on n x n grids

Appendix M

Percentage of average connected
expansions out of number of samples

n p=0.1 p=025 | p=05|p=075| p=09
) 0.9845; 0.9066; 0.6803; | 0.3731; | 0.1566;
-0.0056 -0.03532 | -0.1389 | -0.3555 | -0.6685
3 0.9934; 0.9471; 0.7602; | 0.4418; | 0.1981;
-0.0010 -0.0087 -0.0439 | -0.1309 | -0.2595
4 0.9960; 0.9649; 0.8020; | 0.4800; | 0.2146;
-0.0003 -0.0032 -0.0198 | -0.0661 | -0.1387
5 0.9974; 0.9737, 0.8271; | 0.5098; | 0.2351;
-0.0001 -0.0015 -0.0109 | -0.0388 | -0.0835
6 0.9980; 0.9788; 0.8452; | 0.5335; | 0.2462;
-7.7399¢e-05 -0.0008 -0.0067 | -0.0251 | -0.0561
7 0.9985; 0.9822; 0.8581; | 0.5471; | 0.2510;
-4.3999¢-05 -0.0005 -0.0045 | -0.0177 | -0.0406
g 0.9987,; 0.9844; 0.8675; | 0.5583; | 0.2599;
-2.8097e-05 -0.0003 -0.0032 | -0.0131 | -0.0303
9 0.9989; 0.9861; 0.8747; | 0.5665;]
-1.8562e-05 -0.0002 -0.0023 | -0.0101
10 0.9990; 0.9873; 0.8802; | 0.5746;]
-1.3165e-05 -0.0001 -0.0018 | -0.0079
1 0.9992; 0.9883; 0.8850; i]
-9.4456e-06 -0.0001 -0.0014
12 0.9992; 0.9891; 0.8886; i]
-7.1352e-06 -0.0001 -0.001
13 0.9993; 0.9897, 0.8920; i]
-5.5504e-06 | -8.7863e-05 | -0.0009
14 0.9994; 0.9902; 0.8947, i]
-4.3070e-06 | -7.1815e-05 | -0.0008

Table M.1: Percentage and logarithmic growth of connected expansions out of s

88

	Introduction
	Motivation
	Goals and achievements
	Structure of the report

	MInf Project Part I - Overview
	MInf Project Part II - Background
	Introductory graph theory
	Network reliability
	Different expressions for the reliability polynomial
	General properties of the reliability polynomial
	Reliability growth rate and logarithmic reliability
	Reliability of square grids
	Known reliability polynomials for some family graphs

	Network reachability
	From network reachability to network reliability
	Network reachability approximation
	Logarithmic reliability using the reachability approximations

	Algorithms and Implementation Decisions
	Programming language
	Graph data structure
	Graph representation
	Graph generation
	Graph manipulation
	Graph visualisation

	Contraction Module
	Algorithm overview
	Complexity analysis
	Example

	Sampling
	Sampling set-up
	Recursive Sampling
	Iterative Sampling
	Sampling Module testing
	Complexity analysis
	Example

	Expansion Module
	Algorithm overview
	Complexity analysis
	Example

	Reliability Module
	Algorithm overview
	Reachability Module testing
	Complexity analysis
	Parallel Reliability
	Example

	Coupling Module
	Algorithm overview
	Example

	Experiments Running Environment
	Results
	Sampling running time
	Sampling running time for grids
	Sampling running time for contractions

	Resampling count
	Arcs resampled and minimal clusters for grids
	Arcs resampled and minimal clusters for contractions

	Reliability results
	Reliability of graphs with known polynomials
	Reliability of grids

	Conclusion
	Bibliography
	Appendices
	Reliability polynomials for grids with n 5
	Reliability polynomials for complete graphs with n 6
	Proof of minimum constant in the number of samples expression
	Number of samples for a grid
	Recursive and Iterative Sampling time
	Exact and approximated reliability for path, pan, star, cycle and ladder and complete graphs
	Sampling running time on grids
	Number arcs resampled on grids
	Reliability and growth rate of path, pan, ladder and complete graphs
	Reliability results on grids
	Plots for reliability and logarithmic growth rate
	Distance from reliability to upper bound
	Percentage of average connected expansions out of number of samples

