
Mandelbrot Maps: Rebuilding for
a responsive cross-device

experience

Freddie Bawden

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2020

3

First created by Iain Parris in 2009, the Mandelbrot Maps project aimed to create
a browser-based real-time fractal viewer. Since then, others have ported the
application to Android to provide an experience for touch devices. Today, most
browsers support touch directly — by rebuilding the application for the modern
web, it can support touch and desktop devices without the need to maintain
separate applications for each target.

The application was rebuilt using Javascript and WebAssembly to create a
responsive cross-device application which is usable on desktop and mobile
devices. The application supports a user interface that allows for intuitive control
through multiple input sources and a renderer which uses web workers to
parallelize the workload. The renderer is able to draw fractals magnified
10,000,000 times in under a second on popular browsers. A user experience
survey based on the System Usability Scale showed our system exceeded the
industry standard: it scored 77.8 out of 100, where a rating of 70 or higher is
considered acceptable. The survey also demonstrated that our user interface is
accessible and easy to learn regardless of the user’s mathematical background.
These results show that the new version of Mandelbrot Maps is a successful
update of the original project. The updated application is available to try at
magentahttp://mmaps.freddiejbawden.com

http://mmaps.freddiejbawden.com

4

Acknowledgements

Special thanks to:

Philip Wadler My supervisor for this project, who offered great advice and
feedback which drove the project forwards.

Siobhan Vickerstaff For helping unscramble my thoughts into understandable
words.

The people of Appleton Tower floor 9 For keeping me sane and letting me
commandeer their computers to test on

Table of Contents

1 Introduction 7

2 Background 9
2.1 Mathematical Background . 9

2.1.1 Iterative Systems . 9
2.1.2 Filled Julia Set . 9
2.1.3 Mandelbrot Set . 11

2.2 Technical Background . 11
2.2.1 Rendering Mandelbrot and Julia Sets 11
2.2.2 Multithreading In The Browser 11
2.2.3 WebAssembly . 12
2.2.4 React . 12

3 Implementation 13
3.1 User Interface . 13
3.2 Viewer Options . 15
3.3 Architecture . 17

3.3.1 State Management . 17
3.4 User Interaction . 17

3.4.1 Dragging . 17
3.4.2 Zooming . 18

3.5 Rendering . 19
3.5.1 Selecting the Iteration Count 20
3.5.2 Multithreading . 21
3.5.3 Partial Rendering . 21
3.5.4 Coloring . 22

3.6 Link Sharing . 25
3.6.1 Link Cards . 25

3.7 Tutorial . 25

4 Evaluation 29
4.1 Performance . 29

4.1.1 Impact of number of chunks 29
4.1.2 Overall Performance . 30

4.2 User Experience . 35

5

6 TABLE OF CONTENTS

5 Future Work 37
5.1 Improving Performance . 37
5.2 Improving Value . 37

5.2.1 Use as an educational tool 37
5.2.2 Generalize the renderer . 38
5.2.3 More Rendering Options . 38

6 Conclusion 41

A Feedback Form 43

Bibliography 45

Chapter 1

Introduction

The Mandelbrot Maps project was originally created by Iain Parris in 2009 [1] (Figure
1.1). The project’s aim was to provide a browser based fractal viewer that demonstrated
the relationship between the Julia and Mandelbrot fractals. The project has been a
staple for undergraduates ever since; the latest version was developed for Android
devices and saw great success on the Play Store [2].

A decade on from the release of Parris’ application, a number of the dependencies
needed for the application have been deprecated. Notably, support for Java Applets,
(the framework the application is built on) has been dropped by many browsers [3] [4]
[5] [6]. Without support for the framework, the application is no longer usable online.

In addition to losing dependencies, the application was not optimised for touch devices.
When Parris originally created the application desktop browsers accounted for 99.33%
of all browser traffic [7], making touch controls an unnecessary addition. Today, touch-
first devices make up the majority of browser traffic [7]. The lack of touch support
was partially solved by moving to an Android application [2]. However, the Android
application does not provide an alternative for iOS or desktop users.

I aim to provide a new version of Mandelbrot Maps for all devices by building a modern
web application (Figure 1.2). To achieve this I undertook the following:

• Creating a cross-platform rendering engine using WebAssembly and Javascript

• Designing an accessible user interface which can support touch and desktop
devices and is usable on many screen sizes

• Evaluating the performance of the application through user surveys and
automated testing.

The project was created in parallel with Joao Maio. Both of us focused on different
technologies, I used WebAssembly and Javascript to render the fractals while Joao used
WebGL, a web-based graphics engine. Throughout the project, we held joint biweekly
meetings with our project supervisor to share ideas. However, due to differences in
the WebGL and WebAssembly interfaces, no design or code was shared between the
projects.

7

8 Chapter 1. Introduction

Figure 1.1: Original Mandelbrot Maps application. The original application was built
using Java. This meant as browsers dropped Java support the application became
inaccessible online. The original application also did not have a touch interface. This is
likely due to touch interfaces being a rare use case at time of creation. Touch devices
now make up the majority of browser traffic, the updated application must therefore
include a touch interface [7]. (Image taken from an instructional video created by Parris
[8])

(a) Desktop Interface (b) Mobile Interface

Figure 1.2: Updated Mandelbrot Maps application. The updated application is
built using WebAssembly and Javascript. The interface was designed to be usable
regardless of screen size; we achieved this by taking inspiration from popular mapping
applications (Section 3.1). We built intuitive interactions for mouse, multi-touch
trackpad, touch and keyboard to allow the user to explore the fractals.

Chapter 2

Background

2.1 Mathematical Background

A detailed understanding of fractals is not needed for this project; however a general
background helps justify the design choices made during this project. This section
assumes a basic understanding of complex numbers and the complex plane.

2.1.1 Iterative Systems

The fractals shown in the application are examples of iterative systems. In these
systems, we repeatedly apply a function to a point, feeding the output of the function
as the input for the next iteration. We describe the values x0,x1,x2,x3... generated at
each step by f (x) as the orbit of x0 under f .

An orbit can either be convergent or divergent depending on its behaviour. Converging
orbits approach a fixed point or are contained in a fixed area; diverging orbits escape to
infinity. The starting point of a function can change an orbit’s behavior. For example,
when −1≤ x0 ≤ 1, the orbit under f (x) = x2 converges. When −1 > x0 or 1 < x0, the
orbit grows to infinity, diverging.

2.1.2 Filled Julia Set

The Filled Julia Set of a complex number c is the set of complex points such that orbit
of f (z) = z2 + c for z ∈ C, where C is the set of complex numbers, converges. From
this we can derive the Julia set; the boundary of the Filled Julia Set. For simplicity we
will use “Filled Julia Set” and “Julia Set” interchangeably.

Plotting these points in the complex plane we can see that the set changes depending
on our constant c. Setting c = 0 produces a connected structure (Figure 2.1a); c =
−0.67−0.4i separates the set into disconnected dusty particles (Figure 2.1b); c = 1.5
produces a different, yet still connected set (Figure 2.1c).

9

10 Chapter 2. Background

The connectedness of a Julia set is described by Mandelbrot’s Criterion: a Julia set is
connected if and only if z0 = 0 under f (z) = z2 + c converges [9]. From this theorem
we can derive the Mandelbrot Set: the set of c ∈ C for which Mandelbrot’s Criterion
is true (Figure 2.2)..

(a) c = 0 produces a
connected set.

(b) c = −0.67 − 0.4i
produces a disconnected
set.

(c) c = 1.5i produces a
different connected set.

Figure 2.1: Julia Sets with different c values. We visualise the Julia set by coloring a
point white if it belongs to the set, black if not. We can see the set changes dramatically
depending on the starting point.

Figure 2.2: The Mandelbrot Set. We visualise the Mandelbrot set in the same way
as the Julia set. If a point belongs to the set, it is colored white, otherwise the point is
black.

2.2. Technical Background 11

2.1.3 Mandelbrot Set

The Mandelbrot Set is the set of complex points such that the orbit of the function
f (z) = z2 + c,c ∈ C, where z0 = 0, converges. As z0 is constant, there exists only one
Mandelbrot Set.

The Mandelbrot Set provides a map of Julia Sets, when a point c in the Mandelbrot
set converges, the Julia Set of c is connected. Conversely, when a point diverges, the
corresponding Julia Set is disconnected.

2.2 Technical Background

2.2.1 Rendering Mandelbrot and Julia Sets

Rendering the Mandelbrot and Julia sets requires knowing whether a point converges
or not. This is challenging as no closed form solution has been found to determine
a points behavior for either set. We must therefore iterate each point individually to
determine its behavior. However, as convergent points can bounce around a fixed area
infinitely we cannot know if a point has converged after a finite number of iterations.
We can therefore only approximate the curves when rendering.

The Escape Time Algorithm presents a simple method for performing the
approximated calculation. Using the fact that the orbit of the function,
f (z) = z2 + c,c ∈ C, will always diverge when |zn| > 2, we iterate each point on the
complex plane until its absolute value is greater than 2, or we reach an iteration limit.

Placing an iteration limit guarantees that any point within the Mandelbrot Set will be
shown as such, however points outside the set that need more iterations than the limit
to diverge may be mis-classified as convergent. Raising the iteration limit reduces this
inaccuracy, but impacts performance due to the additional iterations.

2.2.2 Multithreading In The Browser

In browsers, events such as button presses and API calls occur sequentially due to
script execution using a single thread. This causes computationally heavy processes to
slow all other script execution, meaning the page will be unresponsive [10].

A common remedy for slow web pages is to use an external server to which web
pages can offload heavy computation. While this solution prevents computation from
blocking interaction, the response time will increase due to the network transfer time.
As my application relies on quick interactions, this is not a viable solution.

Web workers were introduced to the HTML5 standard as another method to counter
single threaded script execution. They allow for intensive tasks to be offloaded to a
separate thread while keeping the main thread responsive [11]. Web workers are ideal
for rendering fractals as they allow us to perform the escape time algorithm without
blocking the main thread. I use web workers to parallelize the escape time algorithm.

12 Chapter 2. Background

2.2.3 WebAssembly

Parris’ application was build using Java Applets; a system which allowed for Java
Bytecode to be run in a separate process from the web client. Java Applets also
provided hardware acceleration and access to additional computation resources,
meaning it was a popular choice for intensive applications. However, mounting
concerns surrounding key dependencies needed to run Java Applets led to support
being dropped by popular browsers [3] [4] [6] [5]. As Java applets departed, a new
standard arrived to keep the web running quickly.

WebAssembly is a new coding standard which provides a portable binary format that
focuses on high performance in the browser. Its compiled nature makes it much faster
to parse than an equivalent Javascript file. WebAssembly also makes it far easier to
write performant code through finer control over memory and by utilising common
hardware optimisations [12].

I chose to compile Rust (a language focused on performance and safety [13]) into
WebAssembly using wasm-pack [14]. This decision was motivated by Rust’s
functionality for exposing methods to Javascript through the wasm-bindgen
library [15]. This library made integrating WebAssembly into the application more
simple. Writing in Rust and then compiling to WebAssembly rather than manually
writing the WebAssembly binary also improves maintainability for future
contributors. I use WebAssembly to provide a fast experience across browsers.

2.2.4 React

React is an open source Javascript framework maintained by Facebook along with a
large community of independent developers and companies [16]. React is a popular
option when creating modern web applications: Github hosts 3.4 million projects that
use React [17]. A React application is built out of multiple components each of which
manage their own state. These components are arranged in a hierarchical structure to
allow for efficient rendering of the application. This hierarchy also makes it easier
to create dynamic web pages; when a component’s state is updated, React re-renders
the updated component along with all its children. I use React to organise code and
increase maintainability for future contributors.

Chapter 3

Implementation

3.1 User Interface

Parris’s application was created for desktop computers and could not scale to fit mobile
screens. To create a cross-device experience, I redesigned the user interface so that it
is usable on many screen sizes. To see how similar applications create responsive user
interfaces, I evaluated popular mapping applications, OpenStreetMap (Figure 3.1) and
Google Earth (Figure 3.2).

Both mapping applications have a similar structure; they display a fullscreen map and
provide additional functions through a small iconographic menu (upper right in Figure
3.1 and upper left in Figure 3.2). This approach means the interface does not change
much when scaled down to a mobile screen which provides the user with a consistent
experience: a key principle in building cross-device user interfaces [18].

My application’s design takes inspiration from these mapping applications (Figure
3.3). The user interface presents the user with a fullscreen fractal view and provide
additional features using a sidebar menu. By calling upon other mapping applications,
my application is able to create a consistent experience across devices.

13

14 Chapter 3. Implementation

(a) Desktop Interface (b) Mobile Interface

Figure 3.1: OpenStreetMap Interface. OpenStreetMap is a community driven
mapping application with over 6 million registered users. It allows users to view,
annotate and share highly detailed maps. [19].

(a) Desktop Interface (b) Mobile Interface

Figure 3.2: Google Earth Interface. Google Earth provides an extensive set of tools
for exploring satellite imagery. [20]

(a) Desktop Interface (b) Mobile Interface

Figure 3.3: Redesigned Mandelbrot Maps Interface. Both OpenStreetMap and
Google Earth display a fullscreen map and put controls to the side of the window (upper
right in Figure 3.1, upper left in Figure 3.2). The updated application mirrors this layout
to create a consistent experience. I used the Semantic UI design system to create the
user interface [21]. This provides premade interface elements to which I gave interactive
functions.

3.2. Viewer Options 15

3.2 Viewer Options

Parris’s original application placed the Mandelbrot and Julia fractals side-by-side
(Figure 3.4). This layout works well on desktop but suffers on smaller screens. The
recent Android implementation created by Alasdair Corbett solves this issue by
shrinking one of the fractals into a corner, freeing up space for the larger (Figure 3.5).
As the updated application is to be used on both desktop and mobile browsers, I
added both arrangements to the application, along with a fullscreen mode to allow
users to explore one fractal at a time (Figure 3.6).

Users can cycle through view modes using the “Change view button” and use the
”Swap Fractal” button to change which fractal is minimized. The viewers are able to
adapt to the screen they are being used on, for example the side-by-side mode stacks the
fractals vertically when the user is using a portrait display (Figure 3.7a). The detached
viewer adapts by shrinking in order to not obscure the primary fractal (Figure 3.7b).

Figure 3.4: Parris’s original application. The original application used a side by side
view to display the fractals. This works well on desktop however suffers on mobile due
to the reduced screen size. (Image taken from instructional video created by Parris [8])

Figure 3.5: Mandelbrot Maps Android app interface. The Mandelbrot Maps app
created by Alasdair Corbett makes a mobile friendly experience by shrinking one fractal
into the corner, freeing up space for the other [2] (Image taken from application running
on my phone)

16 Chapter 3. Implementation

(a) Fullscreen (b) Detatched

(c) Side By Side

Figure 3.6: View options provided by the application. The application provides 3
view options, fullscreen, detatched and side by side.

(a) Vertically stacking side by side view (b) Shrinking the detached viewer

Figure 3.7: Adapting to mobile screens. The application’s interface changes
depending on the user’s screen size. This makes view modes usable across devices.

3.3. Architecture 17

3.3 Architecture

The application is structured in a hierarchy to follow React guidelines. At the root
of the tree is the application router created by react-router [22]. The router loads
different components depending on the URL path, for example /app loads the fractal
viewer, while /feedback loads the feedback form.

3.3.1 State Management

React’s hierarchical structure makes it challenging to share state among components.
For example, the Mandelbrot viewer must share the current c value to the Julia viewer.
A common solution to this problem is using a global state management system. I
created my own lightweight state management system inspired by L. Spyna [23].

This system uses the root component to maintain the global state and provides an
interface for other components. Updating the state at the root causes the whole
component tree to re-render. Re-rendering a component is expensive, therefore each
component independently decides whether it needs to update given the new state.
This system prevents unnecessary renders.

3.4 User Interaction

The application uses a canvas element to display the fractal. The canvas element does
not have in built functionality for dragging or zooming. I therefore implemented this
functionality myself using the browser’s interaction events.

A web page can capture interaction events using a listener interface. The application
uses these events to enable custom interactions using a mouse, multi-touch trackpad,
touch screen or keyboard.

Including keyboard controls is important for accessibility. Users who cannot use a
mouse due to physical disability or conditions such as repetitive stress injuries often
use the keyboard as their means of interaction with a web page [24]. Implementing
bindings for keyboard allows these users to more easily access the application.

Keyboard controls however does not provide an alternative for users using touch
controls. Touch accessibility involves creating alternative, single pointer motions for
multi-touch gestures, such as a two finger pinch zoom (Section 3.4.2.1). This means
that users who are using a stylus or a single finger can still use the application [25].
The interface therefore provides alternative control schemes for those using a single
pointer. This could be improved further by adding button inputs for some interactions,
such zooming in and out, similar to those found in Google Earth (Figure 3.8).

3.4.1 Dragging

The dragging interaction allows users to pan the fractal. Users using mouse or trackpad
can ”click and drag”; keyboard users can use the arrow keys and touch users can ”touch
and drag”. These actions mirror the control scheme seen in Google Earth [20].

18 Chapter 3. Implementation

Figure 3.8: Alternative controls for Google Earth. Google Earth provides alternative
controls for its complex pinch zoom gesture through + and − buttons [20]. Adding a
similar feature to the application in future would help improve its accessibility

In a prototype design, the application rendered the fractal every time the user panned
it. This method led to a choppy experience as the browser would have to wait for the
render to complete before continuing with the movement. I solved this by moving the
previously rendered image with the drag motion; only rendering once the motion was
completed. This method led to a smoother experience as moving the image is much
quicker than rendering a new one.

I used a similar solution when implementing the Julia Pin interaction: users can drag
the Julia Pin on the Mandelbrot fractal to update the Julia set’s c value. This movement
requires re-rendering the whole Julia set. Rather than re-render the whole image when
the user moves the pin, the application performs a low iteration render of the image
and then renders at full quality after the interaction is over. This allows for the Julia set
to react in real time to the changes in the Julia pin.

3.4.2 Zooming

The zoom interaction allows users to enlarge the fractal. Mouse users can use the scroll
wheel, trackpad and touch users can ”pinch and zoom” (as recommended by Google’s
Material Design guidelines [26]) and keyboard users can use the plus and minus keys.
User can also double tap to zoom the fractal; this provides a single pointer alternative
for touch users. Again, a similar control scheme is seen in Google Earth [20].

The prototype design used a simple zoom which scaled the image around it’s centre.
This made for a bad user experience as users would have to zoom then re-position the
viewer to reach their desired position. Mapping applications solve this by zooming in
on a point rather than the centre of the image.

I implemented this solution by defining an anchor point in the world space whose
position on screen is maintained after a zoom (Figure 3.9). The anchor point is placed
at the centre of the screen when using keyboard, the centre of the pinch on mobile and
the pointer position when using trackpad or mouse. This allows the user to zoom in on
a point in the fractal without having to re-position the viewer.

When the user zooms, the application must re-render the whole fractal as the pixel size
(the area of the fractal one pixel represents) changes. Rendering the whole image is
an intensive activity therefore the application scales the previous fractal while the user
zooms. After the user has not zoomed for a short time, the fractal is re-rendered.

3.5. Rendering 19

Figure 3.9: The anchored zoom process. We put our anchor point at (100, 150), we
then scale the view and reposition the zoomed view such that our anchor point is at
(100, 150) in the new frame.

3.4.2.1 Pinch And Zoom

Unlike scrolling using a mouse, browsers currently do not contain a pinch zoom event
for touch screen devices (Figure 3.10). I developed a straight-forward system to enable
this feature by scaling the image with the velocity of the pinch. This allows for the
zoom speed to match the user’s pinch, creating a responsive feeling.

(a) Contracting fingers on a point on the
screen zooms the image out

(b) Expanding fingers on a point on the
screen zooms the image in

Figure 3.10: Pinch Gesture (Image Credit: GRPH3B18 CC BY-SA [27] [28])

3.5 Rendering

Efficient rendering is critical for the usability of the application. If the application
cannot update the fractal quickly, the panning and zooming actions will feel
unresponsive.

I created two renderers for the application, one using Javascript and one using
WebAssembly; this allows us to see if WebAssembly provides a significant
improvement in performance compared to Javascript. I analyse the performance of
each renderer in Section 4.1.

https://creativecommons.org/licenses/by-sa/3.0

20 Chapter 3. Implementation

The escape time algorithm (Section 2.2.1) requires many calculations to render an
image. For example, an image of size 1000 x 1000 pixels with a limit of 200 iterations
could require as many as 200,000,000 calculations! To prevent the user interface from
freezing during execution, the application offloads the rendering work to web workers
(Section 2.2.2).

The render system must be able to translate between screen space (defined in pixels)
and the world space (a continuous plane). This is achieved by maintaining a pixel
size parameter, (the area contained in a single pixel); for example a pixel size of 0.001
represents a 0.001 x 0.001 segment of world space.

Using the pixel size, along with the screen width, screen height and centre point of
the fractal, we can to create a bounding box in the world space. This is accomplished
through Equation 3.1 which calculates the corners of the bounding box given a pixel
size α, screen width in pixels, w, screen height h in pixels and a centre point defined in
world space (xc,yc).

(x1,y1) = (xc−
w
2

α,yc−
h
2

α)

(x2,y2) = (xc +
w
2

α,yc +
h
2

α)

(3.1)

After defining the bounding box, the render system steps through each pixel and
computes the escape time for the point at the centre of each world space segment. The
render system returns an array containing RGBA values for each pixel (discussed
further in Section 3.5.4). The array is then compiled into an image and displayed on
screen using a canvas.

3.5.1 Selecting the Iteration Count

At deep zoom levels, a low iteration count will produce an image that lacks detail
(Figure 3.11a). This result is caused by many of the points reaching the iteration count
limit and being inaccurately assumed to be convergent. Raising the iteration count
reduces the inaccuracy but causes the render time to slow as a result (Figure 3.11b).
The renderer must therefore dynamically set the iteration count based on the zoom
level to achieve an optimal balance of performance and detail.

Parris investigated this when creating the original application and found a good
solution for varying the iterations with the pixel size (Equation 3.2) [1]. I modified
Parris’s function through visual inspection of the resultant fractals to better suit my
application’s coloring function (Equation 3.3).

iterations = 54e1.23| ln(pixelSize)| (3.2)

iterations = 54e0.2| ln(pixelSize)| (3.3)

3.5. Rendering 21

(a) Fractal rendered at 100 iterations (b) Fractal rendered at 500 iterations

Figure 3.11: Impact of iteration count at deep zooms. Rendering the point
(−0.299− 0.644i) at 20000x zoom with a low iteration count causes a loss in detail
as shown in Figure 3.11a. By raising the iteration count we add more detail to the
image (Figure 3.11b).

3.5.2 Multithreading

Rendering a Mandelbrot fractal is classed as an ”embarrassingly parallelisable”
problem; one which can be easily split among different threads [29]. Each pixel can
be evaluated independently meaning they can be distributed among threads
independently.

A common method of parallel rendering is to divide the image into chunks and
distribute them amongst threads [30]. To achieve this, I created a WebWorkerManager
to coordinate web workers to evaluate chunks in parallel. The WebWorkerManager
splits the image into n chunks, then distributes the tasks among web workers using a
queue and assembles processed chunks into an image.

Finding the optimal number of chunks is challenging. With each call to a web worker
there is computational overhead meaning the more chunks WebWorkerManager
creates, the greater the total overhead is for the process. However, with fewer chunks,
the WebWorkerManager may not distribute the work evenly, which causes the
renderer to have to wait for one thread to finish. I found the optimal number of chunks
to be 8, this is discussed further in Section 4.1.1.

3.5.3 Partial Rendering

When the user is panning much of the current image does not need to be recalculated.
After the user finishes dragging the renderer copy previously calculated pixel values
into the new position and only calculates the newly revealed areas (Figure 3.12). This
reduces render time when panning, creating a more responsive experience.

22 Chapter 3. Implementation

Figure 3.12: Partial Rendering System. When the user pans the image, much of
the image does not need to be recalculated. The renderer therefore copies previously
calculated pixel values into a new position. The highlighted area is then calculated to
produce the new fractal.

3.5.4 Coloring

A common method of coloring uses the escape time of a point. This method
interpolates through a color space as the escape time reaches the maximum. However
as the iterations are discrete, images rendered with this method exhibit a haloing
effect (Figure 3.13a). To solve this, I used a solution proposed by I. Quilez which uses
the magnitude of the point to add a continuous part to the discrete iteration count,
making the iteration count continuous (Equation 3.4) (Figure 3.13b) [31].

u(zn) = (i−1)− log2(log2(||zn||))+4 (3.4)

(a) Result before applying smooth
coloring Coloring based off the discrete
iteration count caused halos to form around
the fractal.

(b) Result after applying smooth
coloring. By using the magnitude of a
point as a continuous part to the discrete
iteration count, we can smooth out the
coloring, making it much more appealing.

Figure 3.13: Comparison of coloring based on discrete and continuous iteration
count

3.5. Rendering 23

3.5.4.1 Rainbow Color Scheme

I created a rainbow effect by varying the RGB channels of each pixel using offset
sine waves. The sine waves are offset because when the RGB values are equal, the
resulting color would be grey. Offsetting the sine waves for each channel means all
three channels will never be equal, creating a rainbow effect (Figure 3.14). Figure 3.15
shows the final result.

colorvalue = sin(0.3i+offset) ·127+128 (3.5)

Figure 3.14: Variation of RGB channels producing the rainbow The iteration count
is put through three offset sine waves for each color channel, the result is a smoothly
changing rainbow effect

3.5.4.2 Striped Color Scheme

To create a striped pattern the renderer passes the smoothed iteration count through a
cosine function (Equation 3.6) which is used to interpolate the RGB channels between
0 and 255. We multiply the smooth iteration count by 2π to cycle the color with each
iteration creating the striped effect (Figure 3.16).

colorvalue =
1+ cos(2π · i)

2
(3.6)

24 Chapter 3. Implementation

Figure 3.15: Rainbow Color Scheme Passing the iteration count through sine waves
produces a rainbow pattern. The renderer colors areas black if they are part of the set
to make them stand out against the colorful background.

Figure 3.16: Striped Color Scheme The striped coloring scheme gives a unique look
to the fractals, adding visual interest in regions where the iteration count is stable

3.6. Link Sharing 25

3.6 Link Sharing

The link sharing feature allows users to share to specific areas of the fractal through a
URL query string. URL query strings are attached at the end of a URL and contain a
list of parameters which can be processed by the application. Users can generate a
custom link using the “Share Current Fractal” button. This button encodes the current
position and zoom of each fractal in a URL string and displays a dialogue box
prompting the user to copy the URL. When the encoded URL is opened by another
user, the application parses the values and uses them to configure the viewer to show
the shared position.

3.6.1 Link Cards

The Open Graph protocol allows links to become rich objects when shared; these can
include a description, title and image which are defined in the HTML page’s meta
data. I created a link card for Mandelbrot Maps to provide more context about the
application and make links more attractive when shared on social media (Figure 3.17).

Figure 3.17: Open Graph link as displayed on Facebook Messenger. The rich
content of OpenGraphs gives the user more context about the shared URL and makes
the URL more visually appealing to the user.

3.7 Tutorial

In previous iterations, tutorials were only available through external videos [8] [32].
I aimed to increase accessibility by adding a tutorial into the application as a more
efficient method of teaching the user how to use it.

I provide a tutorial through a static help page. This demonstrates how to use the
application through text prompts and animation of the application (Figure 3.18).
When users visit the site for the first time, a modal appears which prompts them to
view the tutorial before starting. Once the user closes the modal (Figure 3.19), the
application stores a flag in the browser to prevent it from displaying again.

I also included an in-app help box so the users can be reminded what the controls are
without having to open a new page (Figure 3.20)

26 Chapter 3. Implementation

Figure 3.18: Help Card. The help cards are displayed in the tutorial page and use
animated GIFs to explain how to use the application. This card shows an animation of
the mouse pointer clicking the reset button and how the fractal changes after.

Figure 3.19: The tutorial prompt which is displayed to new users.

3.7. Tutorial 27

Figure 3.20: In-App Help Box. This pop up provides a quick reference for the
application’s controls as well as links to the static pages holding the tutorial.

Chapter 4

Evaluation

4.1 Performance

I tested the application using Puppeteer; a high-level API which autonomously controls
a browser [33]. The tests used Puppeteer to load the webpage, specify the parameters
under test and record performance metrics. Performance metrics were captured using
the HTML5 User Timing API which allows web pages to measure the time between
events: we measure the time between the start (the triggering action) and end of a
render (image being drawn on screen) [34]. To ensure consistency across tests, I locked
the screen size at 1280x720 pixels for each test.

Puppeteer is built for use within Chromium browsers, however an experimental
package, puppeteer-firefox, allows for Firefox browsers to be tested with the
Puppeteer API [35]. It is important to test on both these browsers as they use different
engines meaning performance metrics will differ.

4.1.1 Impact of number of chunks

As discussed in Section 3.5.2, there is a trade-off between evenly balancing work and
the number of calls to the web worker. To explore this, I ran two experiments: one at 1x
zoom, and one at the maximum zoom level. During each experiment, I incremented the
number of chunks by doubling it, performing 50 renders of the Mandelbrot fractal at
each step. To enable this, we bind the ”Q” key to force a render of the Mandelbrot Set;
Puppeteer can then automatically press ”Q” repeatedly to trigger renders. I ran both
experiments using WebAssembly and Javascript renderers on Firefox and Chrome.

Figure 4.1 shows the result of rendering at 1x zoom. In both browsers, we see a
steady decrease in render time for both Javascript and WebAssembly as the number of
chunks increases to 4. This is expected as the browsers on the test machine allowed
for 4 concurrent web workers, therefore with each increase we are utilising more
parallel computation power. We also see an increase in WebAssembly render time as
the number of chunks rises past 32. Unlike Javascript, WebAssembly has a high
invocation cost: the more chunks, the more WebAssembly is invoked which raises the
render time.

29

30 Chapter 4. Evaluation

At 1x zoom there is no significant change in render time between 4 to 32 chunks,
whereas at maximum zoom we see a more pronounced difference. Figure 4.2 shows
the render time at the maximum zoom. On Firefox, there is a decrease of 500ms for
WebAssembly, however there was no significant difference between Javascript and
WebAssembly or across chunk sizes for Chrome at this zoom level.

I chose to use 8 chunks for the application as this provided a good compromise between
load balancing and overhead.

4.1.2 Overall Performance

I set goals for the application’s performance based off of how users perceive delay.
A delay of 1000ms is thought to be the maximum time a user can maintain flow of
thought while waiting [36]. The application will therefore be successful in this regard
if it can respond in under one second to user interaction. To evaluate this, I ran tests to
capture the overall performance of the application. This involved testing at incremental
zoom levels, from 1x to 1012x, zooming by 10 times each step into the point 0+0i. At
each step, the test rendered the Mandelbrot Set 50 times. I again tested on Firefox and
Chrome with both WebAssembly and Javascript.

For each zoom level I tested the the worst case - where every pixel reaches the
maximum iteration count. I had to modify the renderer to test this as there is no
location where all pixels reach the maximum iteration count at 1x and 10x zoom. I
achieved this by temporarily removing the termination condition when a point
exceeds a magnitude of 2 (Section 2.2.1) forcing each point to iterate to the maximum
iteration count. By testing the worst case, we can establish an upper bound for the
render time for each zoom level.

Figure 4.3 shows how the renderer performs in these tests. In both cases, we see an
increase in render time for both the Javascript and WebAssembly renderer as we zoom
deeper into the fractal. This is expected as we increase the iteration count with the
zoom level. Firefox shows an improvement in render time when using WebAssembly,
whilst Chrome shows no significant difference between Javascript and WebAssembly.
The difference in performance is in part a result of the two browsers’ WebAssembly
and Javascript compilers.

Both Chrome and Firefox manage to stay under the bound of 1000ms as the zoom level
rises to 107. However, the application fails to maintain this as the zoom level grows
further. Rather than limit the user from zooming into these deeper areas, we follow the
recommendation of J. Nielson and show a work indicator in the bottom of the screen
(Figure 4.4). This gives the user feedback that the viewer is still functioning, making
the wait more tolerable [36].

4.1. Performance 31

(a) Render times for Firefox 65. We see an average decrease of 300ms
and 100ms for Javascript and WebAssembly respectively. *p < 0.001, **p <
0.001

(b) Render times for Chrome 78.0.3882.0. We see an average decrease of
240ms and 60ms for Javascript and WebAssembly respectively. *p < 0.001,
**p < 0.001

Figure 4.1: Results for 1x zoom. Both tests show a significant decrease in render time
when the number of chunks increases from 1 to 4. This is due to the most browsers
allowing for 4 concurrent web workers, meaning with each new chunk we are able use
more parallel computing power. We also see an increase in WebAssembly render time
as the number of chunks rises past 32. This is caused by a high invocation cost for
WebAssembly, adding overhead to the render.

32 Chapter 4. Evaluation

(a) Render times for Firefox 65.0. There is a significant decrease of 500ms
when increasing the chunk number from 4 to 8. *p' 0.00479

(b) Render times for Chrome 78.0.3882.0. There was no significant
decrease in render time when compared against 4 chunks.

Figure 4.2: Results for maximum zoom. Running the test at a deeper zoom level
causes differences in render time to be more pronounced due to the increase in iteration
count needed to render them.

4.1. Performance 33

(a) Render time for Firefox 65. WebAssembly vastly outperforms Javascript at high
zoom levels. At 109x zoom, WebAssembly is 375% faster than Javascript. p < 0.001

(b) Render time for Chrome 78.0.3882.0. There is no significant difference between
WebAssembly and Javascript when using Chrome.

Figure 4.3: Render time as magnification amount increases.. As we zoom in, we
increase the number of iterations being performed, therefore we see an increase of in
render time in both cases. Firefox and Chrome use different engines to execute scripts
which perform different optimizations when compiling: this causes the difference in
performance profiles.

34 Chapter 4. Evaluation

Figure 4.4: Work Indicator (Bottom Right). After a zoom, the renderer may take more
than 1000ms to display the updated image. To provide the user with feedback while the
system is loading, the application displays a spinner after 1000ms. This component
indicates to the user that the application is still running, which makes the wait more
tolerable.

4.2. User Experience 35

4.2 User Experience

I gathered data about the user experience using a survey. The survey was certified
according to the Informatics Research Ethics Committee, RT number 2019/17630.

The survey used the System Usability Scale (SUS) to evaluate the application [37].
This is a ten question survey with 5 positively framed questions, (for example, “I
thought the system was easy to use”), and 5 negatively framed questions (“I think that
I would need the support of a technical person to be able to use this system”). On top
of the SUS questions we asked participants to rate their familiarity with the
Mandelbrot and Julia sets before using the application, and also asked questions about
the application’s performance. The survey is listed in Appendix A.

Participants responded to each question on a Likert scale with 5 options ranging from
“Strongly Disagree” to “Strongly Agree”. Each question’s responses were adjusted
sit between 0 and 4, where 0 is the worst result and 4 the best for both positive and
negative questions (Figure 4.5). Finally, we find the average of each score and sum the
results, giving a score out of 40, and then multiply by 2.5 to give a score between 0
and 100. Scores above 70 are deemed acceptable [37].

Figure 4.5: The System Usability Scale scoring system. The System Usability Scale
adjusts the score depending on whether the question framed in a negative or positive
manner. Questions that are positive score higher the closer they are to “Strongly Agree”,
while negative questions score higher the closer they are to “Strongly Disagree”.

The survey was distributed amongst student email lists and the project supervisor’s
blog, receiving a total of 17 responses. After compiling the responses we found the
application’s usability score to be 77.8 out of 100. This is deemed an acceptable score,
but indicates there is still room for improvement. There was no significant difference in
score between those who said they were familiar with fractals before use and those who
were not, showing the application is usable by those without a significant mathematical
background.

36 Chapter 4. Evaluation

This survey showed that the application achieved the goal of being accessible. The
question “I thought the system was easy to use’; scored a 3.3 out of 4 and “I think that
I would need the support of a technical person to be able to use this system” scored
a 3.6 out of 4. These results show that users were either able to intuitively use the
application or were able to utilise the tutorial to learn the application.

While the survey showed the application succeeded in being accessible, it highlighted
other issues. The response to “I found the system was responsive to my input” was
scored 2.8 out of 4. This score shows that the system’s performance could be improved
further. Use of specialised graphics system, such as WebGL, could solve this. Section
5.1 discusses this further.

There was also a significant difference in responses to the question “I think that I would
like to use this system frequently” between those that were familiar with the fractal and
those that were not (p= 0.008). Users who were familiar averaged a score of 2.5, while
those who weren’t averaged 1.14. This shows that users who aren’t familiar with the
system view it as a novelty, or that the system is too specialised; options to improve
the systems value are discussed in Section 5.2.

Chapter 5

Future Work

5.1 Improving Performance

As mentioned previously (Section 1), this project was completed in parallel with
another student; Joao Maio. To avoid overlap in the projects, we agreed to explore
different rendering methods. Joao explored rendering using WebGL; a browser based
graphics engine. Unlike my WebAssembly and JavaScript renderer, WebGL can use
the device’s GPU, a highly parallel computation framework, allowing for excellent
performance when rendering intensive images. However, WebGL cannot perform
deep zooms as it is limited to 23 bit precision [38]; compared to Javascript and
WebAssembly’s 52 bit precision [39] [40].

A future improvement might be to dynamically switch between a WebGL, and
Javascript and WebAssembly renderer. In this system shallow zooms could use the
performant WebGL system while deeper zooms use the more precise Javascript and
WebAssembly system. This would involve creating a common interface to pass data
between both systems, however this may be challenging due to the different ways in
which WebGL and Javascript take in data.

5.2 Improving Value

The user evaluation shows that the current application provides a good tool for
exploring the Mandelbrot and Julia sets, however lacks value beyond this. This can be
improved by expanding the feature set of the application.

5.2.1 Use as an educational tool

The potential for education using the Mandelbrot Maps project has not been explored
in previous years. Many online resources exist explaining the fractals but consist
mainly of video and text resources. Therefore a future improvement could be to
implement an interactive explanation of the fractals. This could include a
visualisation of the escape time of a point, or an explanation behind more advanced
ideas such as Misiurewicz points (the areas where the Mandelbrot set is self-similar).

37

38 Chapter 5. Future Work

5.2.2 Generalize the renderer

The Mandelbrot Set can be generalized to the Multibrot Set, z 7→ zd + c, where d ∈ R
and c ∈ C. To create the Mandelbrot set, we set d = 2 and c = 0. Varying d gives
unique fractals and could greatly extend the use of the application. This could be
taken further by allowing the users to input their own functions, similar to graphing
applications such as Desmos (Figure 5.1). This would allow the user to explore other
fractal systems such as the ”Bugbrot” (Figure 5.2a) or ”Simonbrot” sets (Figure 5.2b).

Figure 5.1: Desmos Interface. In Desmos, users can visualise graphs by entering
their own formulae [41]. This allows for the application to be extremely flexible as it is
not restricted by a set of predetermined visualisations. The current application could be
extended to allow the user to input their own fractal functions, greatly increase the utility
of the app.

5.2.3 More Rendering Options

We can also increase the value of the application by giving the users more variety in
the methods we use to render fractals. The application currently offer three static color
options, limiting the potential of the application’s visuals. A future extension could see
the color options being extended to allow users to customize the palette used. Another
extension could see the introduction of other render methods.

The application uses escape time to color the fractal, however many other methods
exist. The Triangle Inequality Average, for example yields stripes extruding from the
fractal and gives a different insight into the sets [31] (Figure 5.3). The Buddabrot uses
a probability distribution to color fractals which adds details into the flat areas of the
image (Figure 5.4) [43]. Including these alternative rendering methods will add value
by allowing the user to gain different insights into the fractal.

5.2. Improving Value 39

(a) Bugbrot. This image is created using
the function f (z) = ((z2 + c−1)(2z+ c−
2))2

(b) Simonbrot Set. This image is created
using the function f (z) = z2 · |z|2 + c

Figure 5.2: Alternative Fractals. By allowing the user to input their own formulas into
the rendering engine the application can show many other fractals apart from Multibrot
sets. (Images generated by MandelBrowser app [42])

Figure 5.3: The Triangle Inequality Average. This method produces lines extruding
from the main fractal. It is created by derving constants from the triangle inequality; two
shorter sides of a triangle cannot exceed the longest. Image taken from [31].

40 Chapter 5. Future Work

Figure 5.4: Buddhabrot Fractal. This method adds greater detail to the fractal by
using a probability distribution of the trajectories of points under iteration. It adds detail
to previously flat areas giving a unique insight. (Image created by UnreifeKirsche (Public
Domain) [44])

Chapter 6

Conclusion

I updated the Mandelbrot Maps project to run on the web by making use of modern
technologies such as WebAssembly and React. Through web workers I was able to
significantly decrease the render times in the application. The user interface
implements controls for mouse, multi-touch trackpad, touch and keyboard to allow
for users on many different devices to use the application intuitively.

I used the System Usability Scale to gain insights from surveys into the user experience
and showed that the application exceeded the industry benchmark of 70 out of 100,
achieving 77.8. From this survey, I also showed that the system was easy to learn
regardless of the user’s prior familiarity with the fractals. As well as evaluating user
experience, I tested the performance of the application using Puppeteer and saw that
the application maintained acceptable performance up to 10,000,000x magnification.

Through user surveys and automated testing I have shown that we succeeded in
rebuilding the Mandelbrot Maps project to create a responsive cross-device
experience.

The updated version of Mandelbrot Maps presented is available to try at http://
mmaps.freddiejbawden.com. The source code is hosted at https://github.com/
freddiejbawden/mandelbrotmaps

41

http://mmaps.freddiejbawden.com
http://mmaps.freddiejbawden.com
https://github.com/freddiejbawden/mandelbrotmaps
https://github.com/freddiejbawden/mandelbrotmaps

Appendix A

Feedback Form

The feedback form contained 12 questions. Questions 1 through 6 ask that the
particpants understand their rights as part of the user study. Questions 8 through 17
are standard to the system usability scale test, Question 7 was used to divide users by
their knowledge of the fractals prior to use. Question 18 was asked with regards to the
system’s performances and question 19 asked for general feedback.

43

1.

Mark only one oval.

Yes

No

2.

Mark only one oval.

Yes

No

3.

Mark only one oval.

Yes

No

4.

Mark only one oval.

Yes

No

Consent

Mandelbrot Maps Feedback Form
Please read the information sheet available here before beginning this survey: https://github.com
/freddiejbawden/mandelbrotmaps/blob/develop/information_sheet_form.pdf
* Required

I confirm that I have read and understood the Participant Information Sheet for the study,
that I have had the opportunity to ask questions, and that any questions I had were
answered to my satisfaction *

I understand that my participation is voluntary, and that I can withdraw at any time without
giving a reason. Withdrawing will not affect any of my rights *

I consent to my anonymised data being used in academic publications and presentations

I understand that my anonymised data can be stored fora minimum of two years *

Mandelbrot Maps Feedback Form https://docs.google.com/forms/u/0/d/1YpEEtdn7CkOzpDdtdyaoU...

1 of 1 16/04/2020, 10:34

Bibliography

[1] Parris I. “Fractals don’t have to be scary.” Mandelbrot Maps: Creating a real-time
Mandelbrot/Julia fractal explorer [disseration]. University Of Edinburgh; 2009.

[2] Mandelbrot Maps. Alasdair Corbett;. Available from: https://play.google.
com/store/apps/details?id=uk.ac.ed.inf.mandelbrotmap.

[3] Java and Firefox Browser. Oracle; [cited January 2020]. Available from: https:
//java.com/en/download/faq/firefox_java.xml.

[4] Java and Chrome Browser. Oracle; [cited January 2020]. Available from: https:
//java.com/en/download/faq/chrome.xml.

[5] Java and Safari Browser. Oracle; [cited January 2020]. Available from: https:
//java.com/en/download/faq/safari.xml.

[6] Windows 10 and Java. Oracle; [cited January 2020]. Available from: https:
//www.java.com/en/download/faq/win10_faq.xml.

[7] Desktop vs Mobile vs Tablet Market Share Worldwide. StatCounter
Global Stats; [updated December 2020; cited January 2020]. Available
from: https://gs.statcounter.com/platform-market-share/
desktop-mobile-tablet/worldwide/#monthly-200901-201912.

[8] Mandelbrot Maps - Brief Background; 2008. Available from: https://www.
youtube.com/watch?v=4AMiUPkapy0.

[9] Yan A, Merenkov S. Asymptotic counting in dynamical systems; 2018. .

[10] Intensive Javascript. Mozilla Foundation; [updated March 2019; cited January
2020]. Available from: https://developer.mozilla.org/en-US/docs/
Tools/Performance/Scenarios/Intensive_JavaScript.

[11] Web Workers. HTML Standard. 2020 Apr [cited April 2020];Available from:
https://html.spec.whatwg.org/multipage/workers.html#workers.

[12] Portability: Assumptions for Efficient Execution. WebAssembly CG; [cited
January 2020]. Available from: https://webassembly.org/docs/
portability/#assumptions-for-efficient-execution.

[13] Rust. Rust Programming Language [cited April 2020];Available from: https:
//www.rust-lang.org/.

45

https://play.google.com/store/apps/details?id=uk.ac.ed.inf.mandelbrotmap
https://play.google.com/store/apps/details?id=uk.ac.ed.inf.mandelbrotmap
https://java.com/en/download/faq/firefox_java.xml
https://java.com/en/download/faq/firefox_java.xml
https://java.com/en/download/faq/chrome.xml
https://java.com/en/download/faq/chrome.xml
https://java.com/en/download/faq/safari.xml
https://java.com/en/download/faq/safari.xml
https://www.java.com/en/download/faq/win10_faq.xml
https://www.java.com/en/download/faq/win10_faq.xml
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#monthly-200901-201912
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#monthly-200901-201912
https://www.youtube.com/watch?v=4AMiUPkapy0
https://www.youtube.com/watch?v=4AMiUPkapy0
https://developer.mozilla.org/en-US/docs/Tools/Performance/Scenarios/Intensive_JavaScript
https://developer.mozilla.org/en-US/docs/Tools/Performance/Scenarios/Intensive_JavaScript
https://html.spec.whatwg.org/multipage/workers.html#workers
https://webassembly.org/docs/portability/#assumptions-for-efficient-execution
https://webassembly.org/docs/portability/#assumptions-for-efficient-execution
https://www.rust-lang.org/
https://www.rust-lang.org/

46 Bibliography

[14] Rust and WebAssembly. Rust and WebAssembly [cited April 2020];Available
from: https://rustwasm.github.io/.

[15] The wasm-bindgen Guide. The ‘wasm-bindgen‘ Guide [cited April
2020];Available from: https://rustwasm.github.io/docs/
wasm-bindgen/.

[16] React – A JavaScript library for building user interfaces. – A JavaScript library
for building user interfaces. 2020 [cited April 2020];Available from: https://
reactjs.org/.

[17] React Source Code. Facebook; 2020 [cited April 2020]. Available from: https:
//github.com/facebook/react.

[18] Wäljas M, Segerståhl K, Väänänen-Vainio-Mattila K, Oinas-Kukkonen H.
Cross-platform service user experience. Proceedings of the 12th international
conference on Human computer interaction with mobile devices and services -
MobileHCI 10. 2010 Jan;.

[19] OpenStreetMap. OpenStreetMap. 2020 [cited Feburary 2020];Available from:
https://www.openstreetmap.org/about.

[20] Google Earth. Google Earth. 2020 [cited Feburary 2020];Available from: https:
//www.google.co.uk/intl/en_uk/earth/.

[21] Semantic UI 2.4.2. Semantic UI. 2020 [cited Feburary 2020];Available from:
https://semantic-ui.com/.

[22] React Router. ReactTraining; [cited March 2020]. Available from: https://
github.com/ReactTraining/react-router.

[23] Spyna L. Manage React State Without Redux. ITNEXT by LINKIT; [updated
February 2019; cited December 2019]. Available from: https://itnext.io/
manage-react-state-without-redux-a1d03403d360.

[24] Keyboard Compatibility. Web Accessibility Initiative (WAI); 2020 [cited April
2020]. Available from: https://www.w3.org/WAI/perspective-videos/
keyboard/.

[25] Understanding WCAG 2.1 - Understanding Success Criterion 2.5.1: Pointer
Gestures. Understanding Success Criterion 251: Pointer Gestures. 2018
[cited Feburary 2020];Available from: https://www.w3.org/WAI/WCAG21/
Understanding/pointer-gestures.html.

[26] Gestures. Material Design [cited March 2020];Available from:
"https://material.io/design/interaction/gestures.html#
types-of-gestures".

[27] GRPH3B18. Gestures Pinch; 2011. Available from: https://commons.
wikimedia.org/wiki/File:Gestures_Pinch.png.

[28] GRPH3B18. Gestures Unpinch; 2011. Available from: https://commons.
wikimedia.org/wiki/File:Gestures_Unpinch.png.

https://rustwasm.github.io/
https://rustwasm.github.io/docs/wasm-bindgen/
https://rustwasm.github.io/docs/wasm-bindgen/
https://reactjs.org/
https://reactjs.org/
https://github.com/facebook/react
https://github.com/facebook/react
https://www.openstreetmap.org/about
https://www.google.co.uk/intl/en_uk/earth/
https://www.google.co.uk/intl/en_uk/earth/
https://semantic-ui.com/
https://github.com/ReactTraining/react-router
https://github.com/ReactTraining/react-router
https://itnext.io/manage-react-state-without-redux-a1d03403d360
https://itnext.io/manage-react-state-without-redux-a1d03403d360
https://www.w3.org/WAI/perspective-videos/keyboard/
https://www.w3.org/WAI/perspective-videos/keyboard/
https://www.w3.org/WAI/WCAG21/Understanding/pointer-gestures.html
https://www.w3.org/WAI/WCAG21/Understanding/pointer-gestures.html
"https://material.io/design/interaction/gestures.html#types-of-gestures"
"https://material.io/design/interaction/gestures.html#types-of-gestures"
https://commons.wikimedia.org/wiki/File:Gestures_Pinch.png
https://commons.wikimedia.org/wiki/File:Gestures_Pinch.png
https://commons.wikimedia.org/wiki/File:Gestures_Unpinch.png
https://commons.wikimedia.org/wiki/File:Gestures_Unpinch.png

Bibliography 47

[29] Shavit MHN. Introduction. In: The Art of Multiprocessor Programming, Revised
Reprint. Morgan Kaufmann Publishers; 2012. p. 14.

[30] Molnar S, Cox M, Ellsworth D, Fuchs H. A sorting classification of parallel
rendering. ACM SIGGRAPH ASIA 2008 courses on - SIGGRAPH Asia 08.
1994 Jul;.

[31] On Smooth Fractal Coloring Techniques [thesis]. Abo Akademi University;
2007.

[32] Mandelbrot Maps - A Quick Start Guide; 2009. Available from: https://www.
youtube.com/watch?v=ozC9GBH2i5M.

[33] Puppeteer. Tools for Web Developers [cited March 2020];Available from:
https://developers.google.com/web/tools/puppeteer.

[34] User Timing API. MDN Web Docs. 2020 [cited April 2020];Available from:
https://developer.mozilla.org/en-US/docs/Web/API/User_Timing_
API.

[35] Puppeteer. Puppeteer. 2020 Mar [cited March 2020];Available from: https:
//github.com/puppeteer/puppeteer/tree/master/experimental/
puppeteer-firefox.

[36] Nielsen J. In: Usability engineering. Morgan Kaufmann; 2009. p. 135.

[37] Tullis T, Albert W. In: Measuring the user experience: collecting, analyzing, and
presenting usability metrics. Morgan Kaufmann; 2016. p. 137–140.

[38] WebGL best practices. MDN Web Docs. 2020 [cited April 2020];Available
from: https://developer.mozilla.org/en-US/docs/Web/API/WebGL_
API/WebGL_best_practices.

[39] Number. MDN Web Docs. 2020 [cited April 2020];Available from:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Number.

[40] Types. Types - WebAssembly 10. 2017 [cited April 2020];Available
from: https://webassembly.github.io/spec/core/syntax/types.html#
syntax-valtype.

[41] Desmos. Desmos. 2020 [cited April 2020];Available from: https://www.
desmos.com/.

[42] Śmigielski T. MandelBrowser. Google Play. 2019 JulAvailable
from: https://play.google.com/store/apps/details?id=pl.y0.
mandelbrotbrowser&hl=en_GB.

[43] Green M. The Buddhabrot Technique. Buddhabrot fractal method [cited March
2020];Available from: http://superliminal.com/fractals/bbrot/bbrot.
htm.

https://www.youtube.com/watch?v=ozC9GBH2i5M
https://www.youtube.com/watch?v=ozC9GBH2i5M
https://developers.google.com/web/tools/puppeteer
https://developer.mozilla.org/en-US/docs/Web/API/User_Timing_API
https://developer.mozilla.org/en-US/docs/Web/API/User_Timing_API
https://github.com/puppeteer/puppeteer/tree/master/experimental/puppeteer-firefox
https://github.com/puppeteer/puppeteer/tree/master/experimental/puppeteer-firefox
https://github.com/puppeteer/puppeteer/tree/master/experimental/puppeteer-firefox
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_best_practices
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_best_practices
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://webassembly.github.io/spec/core/syntax/types.html#syntax-valtype
https://webassembly.github.io/spec/core/syntax/types.html#syntax-valtype
https://www.desmos.com/
https://www.desmos.com/
https://play.google.com/store/apps/details?id=pl.y0.mandelbrotbrowser&hl=en_GB
https://play.google.com/store/apps/details?id=pl.y0.mandelbrotbrowser&hl=en_GB
http://superliminal.com/fractals/bbrot/bbrot.htm
http://superliminal.com/fractals/bbrot/bbrot.htm

48 Bibliography

[44] UnreifeKirsche. Buddhabrot Image. Wikimedia Commons. 2008 Nov [cited
April 2020];Available from: https://commons.wikimedia.org/wiki/File:
Buddhabrot-100I-2000.png.

https://commons.wikimedia.org/wiki/File:Buddhabrot-100I-2000.png
https://commons.wikimedia.org/wiki/File:Buddhabrot-100I-2000.png

	Introduction
	Background
	Mathematical Background
	Iterative Systems
	Filled Julia Set
	Mandelbrot Set

	Technical Background
	Rendering Mandelbrot and Julia Sets
	Multithreading In The Browser
	WebAssembly
	React

	Implementation
	User Interface
	Viewer Options
	Architecture
	State Management

	User Interaction
	Dragging
	Zooming

	Rendering
	Selecting the Iteration Count
	Multithreading
	Partial Rendering
	Coloring

	Link Sharing
	Link Cards

	Tutorial

	Evaluation
	Performance
	Impact of number of chunks
	Overall Performance

	User Experience

	Future Work
	Improving Performance
	Improving Value
	Use as an educational tool
	Generalize the renderer
	More Rendering Options

	Conclusion
	Feedback Form
	Bibliography

