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Abstract
Bit Commitment is a basic cryptographic primitive that has an important use in con-
struction of more sophisticated cryptographic protocols. To allow for such construc-
tions, composable security needs to be proven in order to guarantee that its security is
preserved if it is arbitrarily composed with copies of itself or any other cryptographic
protocols. By a recent impossibility result by V.Vilasini et al., composable bit commit-
ment is impossible without any further assumption. This project presents a historical
development of important possibility and impossibility theorems concerned with con-
struction of bit commitment protocols up to this novel no-go theorem. It then analyzes
the proof of the result and identifies necessary assumptions for evading it. We find
that a trusted shared resource that does not take any input from any involved party and
that acts before the protocol starts, is many times sufficient assumption to evade the
no-go theorem. We define several general definitions describing properties of shared
resources and argue about their necessity and sufficiency for evading the impossibility
theorems and motivate further research by analyzing possibilities for their relaxations.
On top of the determined results, a specific composable bit commitment protocol is
proposed assuming a trusted third party and its composable information-theoretic se-
curity is proven even against quantum adversaries. The Casual Boxes Framework,
which is an extension of Abstract Cryptographic Framework, is used for the proofs in
this project as it extends its scope to relativistic settings.
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Chapter 1

Introduction

1.1 Motivation

The rise of quantum computing poses new challenges in standardizing cryptographic
protocols as new classes of possible attacks become available by exploiting capabili-
ties of quantum hardware. Security of modern classical cryptographic protocols often
relies on computational guarantees which might no longer hold in quantum world, for
instance, by making use of Shor’s algorithm, the polynomial-time quantum algorithm
for integer factorization. Moreover, many abilities of classical or quantum computers
still remain greatly undiscovered and consequently even the protocols that rely on com-
putational assumptions believed to be practically unbreakable may become vulnerable
in the future. Therefore, there has been a trend in development of information-theoretic
secure cryptographic protocols based on postulates of quantum mechanics and physical
properties of the world. These protocols are unbreakable by arbitrarily powerful clas-
sical or quantum computers as long as the underlying physics is correct. Cryptography
can be thought as of a resource theory that construct complex protocols from more
basic primitive ones. One of them is bit commitment which allows construction of
many protocols of a great importance, for example, coin flipping [2], zero-knowledge
proofs of statements in NP complexity class [18, 15], contract signing [12] or multi-
party computation [30]. However, such constructions require composability property.
By novel result by V.Vilasini, C.Portmann and L.Del Rio [31], construction of se-
cure composable bit commitment protocol is impossible unless extra assumptions are
introduced. Concerning the wide range of applications of composable secure bit com-
mitment, our aim is to tackle the problem by determination of such extra assumptions.

1.2 Aims

In this project we intend to give a brief historical overview on development of bit
commitment protocols and on breakthrough impossibility results that have shaped the
research directions. We believe that a brief understanding of the results is especially
important for further development as it provides much better intuition about feasible
implementations and is also essential to understand our motivation in proposing spe-
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8 Chapter 1. Introduction

cific extra assumptions and particular bit commitment implementations. In addition,
we aim to provide a specific example of such assumption and prove composable secu-
rity of the corresponding protocol.

1.3 Contributions

The project fully satisfies the proposed aims. In particular,

• Chapters 2 - 5 provide a historical perspective on bit commitment protocol and
discuss breakthrough possibility/impossibility results that had significant impact
on research in the area.

• Chapter 7 proposes an Assymetric Quantum Beamer resource and a bit commit-
ment protocol that makes use of it. It also proves its security and composability
and argues how it avoids security impossibility result by Lo and Chau [21] and
the composability impossibility result by Vilasini et al. [31].

Furthermore, we carried on with our research achieving results beyond the objectives.

• We expanded the Vilasini’s et al. proof in Chapter 5 by presenting more detailed
arguments with a particular focus on steps which do not necessary longer apply
when new assumptions presented in Chapter 6 are introduced. Moreover, we
state and prove Theorem 5.0.1 which is implicitly assumed by Vilasini’s et al.
impossibility proof, although the justification in their work is missing.

• In Chapter 6 we motivate an assumption of a trusted third party, define its prop-
erties useful for thorough analysis and derive a relation of its security parameters
that needs to be satisfied in order to evade Vilasini’s et al. impossibility result.

• We show an example of a practical application of our theorems developed in
Chapter 6 in showing that our bit commitment protocol using Assymetric Quan-
tum Beamer avoids Vilasini’s et al. result.

• Based on facts and observations from all the chapters, we devote Chapter 8 to
general discussion about sufficiency, necessity and practicality of various extra
assumptions that are considered throughout the work and motivate further re-
search.

In fact, part of Chapter 5 and all of Chapters 6 - 8 constitute entirely our contribution.
In addition to finding a specific assumption allowing composable bit commitment, we
pushed the research further by identifying some necessary assumptions and identifying
where some assumptions can get relaxed and consequently allow a more practical real-
world implementation of composable bit commitment protocol.



Chapter 2

Overview of Bit Commitment protocol

Bit commitment is a basic cryptographic primitive. It involves two parties, typically
called Alice and Bob and consists of two phases, the commitment phase followed by
the reveal phase. In the commitment phase, Alice chooses a bit b ∈ {0,1} to which
she commits. After the commitment, Bob has no information about the bit b. This
property is called concealing. At the same time, it is desired that Alice is no longer
able to change her decision about the bit b without Bob noticing it. We shall call this
property binding. In the reveal phase initiated by Alice, Bob learns the bit b.

2.1 Applications of the protocol

Despite appearing to be very trivial and “boring”, bit commitment has many important
applications in construction of more sophisticated cryptographic protocols in post-
quantum era. It allows construction of half-biased coin flipping by famous Blum’s
protocol [2] provided the parties have a power to abort the protocol. If we assume
they lack such capability, an unbiased coin-flipping protocol can by constructed by the
same technique instead. Blum’s protocol will be of a particular use later in this project.
Details of the construction are explained in proof of Theorem 5.0.3 in Chapter 5. It has
also its use in constructing zero-knowledge proofs, where the aim of Alice is to prove
to Bob that she knows some information without revealing the content of the infor-
mation to Bob. As for a widely used example, Alice might want to prove to Bob that
she knows the proof of Riemann hypothesis without revealing the proof to him. It is
shown [18, 15] that bit commitment can provide zero-knowledge proofs of statements
in NP complexity class. Another important application is multi-party computation [30]
in which both parties want to extract relation between their informations that are kept
secret from each other. For example, two companies might want to compare their in-
come without revealing it to each other. The multi-party computation is in this case an
abstract protocol that takes income information from both companies and outputs to
both of them which one is greater without revealing the actual values of the incomes.

9



10 Chapter 2. Overview of Bit Commitment protocol

2.2 Security of classical Bit Commitment

Several ideas are being used to construct bit commitment protocols without use of
quantum resources. They are usually based on collision-free hashing functions [14] or
pseudo-random generators [25]. The former assumes computationally bounded sender
and hardness of finding collisions in collision-free hash functions [22] and the lat-
ter assumes cryptographically secure pseudorandom number generator (CPSRNG).
Assuming capabilities of current classical hardwares the schemes are still being con-
sidered secure.

2.2.1 Vulnerability to quantum adversaries

There exist quantum database search algorithms, such as Grover’s algorithm, that offer
an exponential speedup in searching over an unsorted database. Specifically, given a
one-way function f (·) it might be practically feasible to search for x over countable
domain D of f such that given y, f (x) = y. This suggests that computational hard-
ness assumptions that are valid today are likely to be vulnerable against sufficiently
powerful quantum hardware that is expected to become available in near future. For
instance, in [7] an algorithm offering quantum time speedup for finding collisions in
collision-free hash functions is proposed or [13] describes a polynomial-time quantum
attacks on Blum–Micali or Blum-Blum-Shub pseudorandom generators that are proven
to be secure against classical attacks. However, there exist classes of CPSRNG, whose
security relies on lattice-based problems [1], that are conjectured to be hard to break
even for quantum computers, although this still remains as an open problem. However,
to the best of our knowledge, there exists no classical bit commitment protocol with
assumptions that are proven to remain secure even against quantum adversaries.

2.3 Motivation of Composability Requirement

Bit commitment is a trivial functionality which is rarely interesting for practical ap-
plications when used just on its own. It is usually used as part of a more complex
protocol. This implies need to retain its security when used in a combination with any
other protocol or when an arbitrary number of copies of themselves are run in parallel
or series. To illustrate the problem we consider a much simpler example discussed
in [31]. Consider an adversary playing two online chess sessions with different col-
ors against stronger players who simultaneously reproduces the opponents’ moves to
make them ultimately play against each other. This way the player either loses in one
game and wins in the other one or ties in both of them. However, the widely-used Elo
rating system awards the lower-ranked player with a high number of points whereas
the penalization for the loss is comparably lower. Hence the adversary improves his
score disregarding the outcome of the matches. This instance of a man-in-the middle
attack is one of the ways the security under composition of protocols can fail. The
possibility/impossibility results in our work follow from security definitions in The
Casual Boxes Framework (Appendix B) where Casual Boxes that emulate protocols
are allowed to be composed in series, in parallel and/or through feedback loops. Such
composition results in another Casual Box which can be checked if it can be securely
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constructed (according to Definition A.0.6) from given initial Casual Boxes,.e. from
simpler protocols.

2.3.1 Canetti’s and Fischlin’s no-go theorem

In 2001, R.Canetti and M.Fischlin proved that no composable classical secure bit com-
mitment protocol can exist [6] without any further assumption. In the same paper
they also specified an assumption called common reference string (crs) which can be
thought as of a third party that distributes the same random string to both Alice and
Bob from some specific random distribution prior to running the protocol. However,
it is complicated to argue that this scheme holds if we assume quantum capabilities
of the involved parties as composability in this case relies on security of claw-free
pairs of trapdoor permutations which is a computational assumption. There has been
no proof existence of trapdoor claw-free permutations secure against quantum adver-
saries, however in [3] a scheme based on Learning with Errors (LWE) is proposed
which is conjectured to be hard to break even for quantum devices. This motivates
to determine a simpler assumption with quantum capabilities that could be introduced
instead of crs in the post-quantum era.





Chapter 3

Impossibility of Quantum Bit
Commitment in the plain model

We present the famous Lo & Chau [21] attack in a simplified way showing no secure
bit commitment scheme is possible unless further assumptions are introduced. It shows
that disregards the protocol implementation, Alice is able to apply a specific unitary in
the opening phase to change her commitment. Hence no bit commitment protocol in
plain model can be binding. This breakthrough result from 1996 has since been moti-
vating researchers to come up with minimal possible assumptions that would evade it
and the question still remains open today. We prove the result for the case when Bob
has no information about the commited bit before the reveal phase. The case when
Bob can guess the commited bit with some small non-zero probability, which is more
realistic scenario in the real-world implementations, is discussed by D.Mayers in [24].
It follows the same idea presented here, but provides a solid argument considering fi-
delity of the two commitment states that correspond to commiting zero or one after we
perform a partial trace over the system A . Note, that even though the proof assumes
quantum capabilities of Alice, it applies to classical setting as well since it is just a
special case of the quantum ones. The proof starts by observation that any bit com-
mitment in the plain model can be described by a quantum composite system A ⊗B ,
where A and B are Alice’s and Bob’s systems respectively, and follows the following
procedure:

1. Commitment phase:

(a) Alice, who wants to commit to a bit b, prepares
if b = 0:

|0〉= ∑
i∈α

ci|µi〉A ⊗|φi〉B

if b = 1:
|1〉= ∑

i∈α

c′i|µi〉A ⊗|φ′i〉B

for some scalars ci,c′i, orthonormal basis {|µ1〉, |µ2〉, ...} and some states
{|φ1〉, |φ2〉, ...}, {|φ′1〉, |φ′2〉, ...} such that

TrA|0〉〈0|= TrA|1〉〈1| (3.1)

13



14 Chapter 3. Impossibility of Quantum Bit Commitment in the plain model

Equation 3.1 is required for concealing property against dishonest Bob who
is not supposed to learn the value of the commitment before the reval phase.

(b) Honest Alice then measures first register in the |µi〉 basis, remembers the
measurement outcomes m. Note, that if her system is classical, there is
a measurement which lefts it intact and hence this step is not explicitly
present in all the existing protocols.

(c) Alice sends the second register, i.e. |φi〉 (or |φ′i〉) to Bob as an evidence for
her commitment.

2. Reveal phase:

(a) Alice sends the commitment bit b to Bob with the measurement outcome
m from 1b) as an evidence

(b) Bob measures |φi〉 (or |φ′i〉 and checks if the outcome is consistent with b
and m

It is argued in [21] that any bit commitment protocol follows the above general pro-
cedure. We now proceed to show that Alice can change her commitment anytime
between commit and reveal phase. In the rest of this chapter we summarize relevant
ideas from Nielsen and Chuang book [26] and John Watrous’s lecture notes [32] about
application of Schmidt decomposition and purification in the impossibility proof.

Consider an ideal case, where Bob has no information about the committed bit b.
Suppose Alice prepares two states as in 1a). Then TrA|0〉〈0| = TrA|1〉〈1|. Let m :=
dim(A) and n := dim(B). Then any pure state |ψ〉 ∈ A⊗B can be rewritten as

|ψ〉= ∑
1≤i≤m,1≤ j≤n

ai j|i〉| j〉 (3.2)

for any choice of orthonormal bases {|i〉}i and {| j〉} j that correspond to A and B
respectively and some corresponding m× n matrix A ≈ ai j determined by the choice
of bases. Suppose for simplicity that m ≥ n. The case n < m follows by the same
reasoning. By singular value decomposition

A =UD′V

for some unitary m×m matrix U , unitary n× n matrix V and diagonal matrix D′ of

the form D′ :=
[

D
0

]
where 0 is n× (m−n) zero matrix and D is diagonal n×n matrix.

Write U in the form U = [U1 U2] where U1 is m×n matrix. Then

A =U1DV

Then we can rewrite |ψ〉 as

|ψ〉= ∑
1≤i≤m,1≤ j,k≤n

uikdkkvk j|i〉| j〉

where U1 = (uik)1≤i≤m,1≤k≤n, D = (dkk)1≤k≤n, V = (vk j)1≤ j,k≤n. Defining |kA〉 :=
∑i uik, |kB〉 := ∑ j vk j and λk := dkk we get that

|ψ〉= ∑
k

λk|kA〉|kB〉
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Moreover,

TrA|ψ〉〈ψ|= TrA

(
∑
k,k′

λkλk′|kA〉〈k′A|⊗ |kB〉〈k′B|

)
= ∑

k,k′
λkλk′|kB〉〈k′B|Tr(|kA〉〈k′A|)

= ∑
k,k′

λkλk′|kB〉〈k′B|〈k′A|kA〉

= ∑
k

λ
2
k |kB〉〈kB|

The result is known as Schmidt decomposition. The reason we provide a proof rather
than referencing it is to stress out a point that in Equation 3.2 we are allowed to choose
arbitrary orthonormal basis {| j〉} for Hilbert space of the system B . This fact will be
of a particular usefulness in Chapter 7. Once this has been done, observe that there is
a unique orthonormal basis {|i〉} given |ψ〉.

Let ρ := TrA|0〉〈0|= TrA|1〉〈1|. Then the density operator ρ has a spectral decomposi-
tion

ρ = ∑
i

λi|φi〉〈φi|

where {|φk〉}k is some orthonormal basis of B . Following the above procedure, Alice
can find two distinct orthonormal bases {|µi〉}i and {|µ′i〉}i such that

|0〉= ∑
i

√
λi|µi〉|φi〉

|1〉= ∑
i

√
λi|µ′i〉|φi〉

and ρ = ∑i λi|φi〉〈φi|. This technique is called a purification. Since there clearly exists
a ”change of basis” unitary operator U that maps {|µi〉}i to {|µ′i〉}i, Alice can always
cheat in a way that she follows a bit commitment protocol as if she wanted to commit
towards b = 0 with the difference that she skips the measurement step 1b) but sends
an evidence of commitment as in 1c). If she decides to change her commitment before
the reveal phase, she applies U on her register, essentially changing |0〉 → |1〉. She
then proceeds to run the 1b) and follows the rest of the protocol for the reveal phase as
normal.





Chapter 4

Possibility of non-composable
Quantum Bit Commitment in

relativistic model

Following the impossibility result presented in Chapter 3 much research has been done
on finding possible weak assumptions that would allow bit commitment protocol with
binding and concealing properties. One of interesting observations that has been done
is that the physical world is relativistic, i.e. the events can be modeled in Minkowski
space-time with limited signalling speed. This assumption has demonstrated to be
of a significant importance as it allowed to construct several secure bit commitment
schemes. The core ideas of implementation of these protocols have been proposed by
Kent [16, 9, 17]. However, these protocols involve some implementation difficulties
that include limited maximal secure commitment time and requirement of trusted Al-
ice’s and Bob’s agents to be light-like separated from Alice’s location at the beginning
of her commitment phase. There have been a few improvements of the Kent’s proto-
col that relax, but not completely avoid these limitations, for example [20, 8]. In this
chapter we present the Kent’s protocol [17] that inspired the development in the area
and discuss how it evades the Lo and Chau no-go theorem.

4.1 Minkowski space-time

Following the Kent’s works, we assume a Minkowski space-time description of the
world. It is a four dimensional manifold M resulting from a combination of Euclidean
three-dimensional space and time. Given two points P,Q ∈M we write P≺ Q if Q is
reachable by light from P. We will use notion of future light-cone of a point P which
is informally a set of points in Minkowski space-time reachable by light from P, i.e.

future light-coneP = {Q ∈M |P≺ Q}

Given two locations l1 and l2 we say that l1 and l2 are light-like separated from P if
P≺ l1,P≺ l2 and there is no point Q ∈M ,P≺Q,Q 6= P such that Q≺ l1 and Q≺ l2.

17



18Chapter 4. Possibility of non-composable Quantum Bit Commitment in relativistic model

4.2 Unconditional Secure Bit Commitment by Transmit-
ting Measurement outcomes

We give an intuition about the famous Kent’s protocol [17]. Alice and Bob agree on
a space-time location P. The protocol begins by Bob sending a sequence of inde-
pendently randomly chosen BB84 states {|0〉, |1〉, |–〉, |+〉} at P′ ≺ P to Alice at P.
Assuming Alice wants to commit to a bit b, she either measures the quantum states in
{|0〉, |1〉} basis if b = 0 or measures them in {|–〉, |+〉} basis if b = 1. She then sends
the measurement outcomes and b to her light-like separated agents located at Q0 and
Q1. In the reveal phase, Alice’s agents at Q0 and Q1 reveal the measurement outcomes
and the bit b to Bob’s agents located at Q′0 and Q′1 as illustrated in Figure 4.1. For the
simplicity of argument, suppose that the distance between Q0 and Q′0 (and for Q1 and
Q′1) is negligible. The Bob’s agents later meet in the intersection of their light cones
to check if they both received the same unveilings and if they correspond to the states
prepared at P′. If so, they accept the commitment and reject otherwise.

The protocol is obviously secure against dishonest Bob who learns nothing about Al-
ice’s commitment until her agents unveil the commitment at Q′0 and Q′1. To see that it is
secure against dishonest Alice, observe that since Q0 and Q1 are light-like separated,
Alice has no chance of consistently changing her commitment for both space-time
locations Q0 and Q1. Hence Bob would discover cheating behaviour of Alice by ob-
serving inconsistent outcomes received at Q′0 and Q′1 up to some small probability ε

that could be forced to be arbitrarily small by sending a sufficiently long sequence of
BB84 states at P′. See [9] for formal proof of the security.

P′

P

Q0 Q1

Q′0 Q′1

Bob

Alice

Alice Alice

Bob Bob

tim
e

spatial distance

Figure 4.1: Kent’s relativistic bit commitment by transmitting measurement outcomes



Chapter 5

Impossibility of Composable Quantum
Bit Commitment

The class of bit commitment protocols discussed in Chapter 4 not only possess prac-
tical implementation issues, e.g. limited commitment time or light-like separation of
agents, but has been shown by recent result by Vilasini [31] to be non-composable un-
less further assumptions are introduced. In this chapter we expand the Vilasini’s proof
by providing more detailed justifications with focus on the step we discovered that can
be evaded.

The following chapters assume familiarity with Casual Boxes framework (Appendix
B) which is an extension of Abstract Cryptography framework (Appendix A). We
proceed to provide informal introduction the concepts, but for the solid understanding
it is essential that reader gets familiar with the concepts in Appendices. The Casual
Boxes framework views protocols as a constructive resource theory in a sense that by
combination of protocols (resources) we can construct new ones and gives a method
for evaluation of security of such constructions not only when both parties are honest,
but considers also dishonest Bob and dishonest Alice cases. The dishonest Alice and
dishonest Bob case is omitted from proofs as it is impossible to argue about such cases
since Alice and Bob can take whatever actions possible and it does not intuitively make
sense to consider security of protocols where both parties are trying to behave dishon-
estly. The security of the construction is defined as a probabibility of distinguishing
between the constructed resource and the ideal “black box” resource maximized over
all the three cases. The security measure is called a distinguishing advantage and is
maximized over all possible distinguishers interacting with the resources. We denote
R≈ε S if the optimal distinguisher for R,S has distinguishing advantage less than ε. In
the below proofs we shall consider two resources, a half-biased coin flipping CF

1
2 and

a bit commitment resource BC. BC is defined similarly as in Chapter 2 and CF
1
2 is a

resource that outputs to both parties the same random bits. However, if either party is
dishonest, it has a probability 1

2 to change the coin-flip outcome. See Appendices B.1,
B.2 for detailed specifications of the functionalities.

The proof of impossibility to construct a composable bit commitment protocol follows
as a contrapositive statement to a possibility to construct CF

1
2 within a distance 0 (see

19



20 Chapter 5. Impossibility of Composable Quantum Bit Commitment

Definition A.0.6) from a BC protocol [2, 10] given a proof that secure construction of
CF

1
2 is impossible (Theorem 5.0.2). In order to provide a rigid proof of the result we

shall be in need of the following theorem:

Theorem 5.0.1. Let S be a set of available resources. Then ∀R,S,α ∈ S the following
two statements hold:

R≈ε S⇒ αR≈ε αS
R≈ε S⇒ Rα≈ε Sα

Proof. Suppose R ≈ε S, let α ∈ S and let D ∈ D be the set of all considered distin-
guishers. Then Dα ∈ D and hence

dD(αR,αS) = sup
D∈D
|P(D(αR) = 0)−P(D(αS) = 0)|

= sup
D∈D
|P(Dα(R) = 0)−P(Dα(S) = 0)|

= dDα(R,S)

≤ sup
D∈D

dD(R,S)

≤ ε

The similar reasoning shows dD(Rα,Sα)≤ ε.

The proof of the impossibility result follows in the rest of this chapter. See Definition
A.0.6 in Appendix A for explanation of graphical illustrations used in the proofs.

Theorem 5.0.2. It is impossible to construct with ε < 1
12 a CF

1
2 protocol in all classi-

cal, quantum, relativistic and non-relativistic settings without any further assumptions.

Proof. (Extended from [31] with focus on important details) Suppose it is possible to
construct a CF

1
2 protocol within a distance ε. Let D be a set of all possible distinguish-

ers including quantum, relativistic and non-relativistic ones, S be a set of all relevant
simulators and suppose Π = (ΠA,ΠB) is a protocol followed by the two parties. Then
by Definition A.0.6, all the conditions below must be true:

dD(ΠAΠB,CF
1
2 )≤ε (5.1)

∃σA ∈ S :dD(ΠB,σACF
1
2

A )≤ ε (5.2)

∃σB ∈ S :dD(ΠA,CF
1
2

B σB)≤ ε (5.3)

By triangle inequality and Theorem 5.0.1 the equations can be combined in the follow-
ing way

dD(ΠAΠB,ΠAσACF
1
2

A )≤ ε (? : 5.2 + Thm 5.0.1)

dD(ΠAσACF
1
2

A ,CF
1
2

B σBσACF
1
2

A )≤ ε (� : 5.3 + Thm 5.0.1)

dD(ΠAσACF
1
2

A ,CF
1
2 )≤ 2ε (♦ : ? + 5.1)

dD(CF
1
2

B σBσACF
1
2

A ,CF
1
2 )≤ 3ε (5.4: �+♦)
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CF
1
2

B CF
1
2

A

(c, t1)

(b, t2)

(c, t ′1)

(b, t2)
(cA, t3) (cB, t ′3)σBA

t2 ≺ t3, t2 ≺ t ′3

Figure 5.1: Biased Coin Flipping Casual Box for dishonest Alice and honest Bob.

Collapsing σBσA into a single simulator σBA and realizing that a distinguisher, which
guesses a constructed non-ideal resource every time cA

0 6= cB
0 has at least P(cA

0 6= cB
0 )

probability of making a right guess, we have that

3ε≥ dD(CF
1
2

B σBACF
1
2

A ,CF
1
2 )≥ P(cA

0 6= cB
0 ) (5.5)

where

P(cA
0 6= cB

0 ) = 1−P(cA
0 = cB

0 )

= 1−P(cA
0 = cB

0 |c = c′)P(c = c′)−P(cA
0 = cB

0 |c 6= c′)P(c 6= c′)

= 1−1× 1
2
− 1

2
(P(cA

0 = cB
0 |c 6= c))

=
1
2
− 1

2
(P(cA

0 = cB
0 |c 6= c′,both biased)P(both biased)

P(cA
0 = cB

0 ,A biased)P(A biased)

P(cA
0 = cB

0 ,B biased)P(B biased)

P(cA
0 = cB

0 ,none biased)P(none biased))

=
1
2
− 1

2

[
1×
(

1
2

)2

−0×
(

1
2

)2

−1×
(

1
2

)2

−0×
(

1
2

)2
]

=
1
4

Substituting back into Equation 5.5 we find a lower bound ε≥ 1
12 .

Theorem 5.0.3. It is impossible to construct a composable bit commitment protocol in
any of classical, quantum and relativistic settings without any further assumptions.

ΠA
BC

ΠB
X⊕Y, t4 X⊕Y, t4

X , t1

reveal, t3

received, t ′1
X , t ′3

Y, t2

ti ≺ ti+1

Figure 5.2: Blum’s protocol
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Proof. Let Π = (ΠA,ΠB) be a protocol where Alice starts by generating a random bit
X and committing to it towards Bob. She then postpones the reveal phase until she
receives a random bit Y from Bob. Both parties now consider the random variable
X ⊕Y as the coin flip outcome. If any party aborts protocol, the other one uniformly
generates a random output bit. It is proved in [10] that the protocol (depicted in Figure
5.2) perfectly constructs CF

1
2 in the Casual Box framework which assumes a general

class of distinguishers including quantum and relativistic ones. Hence the result di-
rectly follows as a contrapositive since by Theorem 5.0.2 the secure construction of
CF

1
2 is not possible. See Figure 5.2 for a graphical depiction of this construction.



Chapter 6

Evading proof of Composability No-Go
Theorem

The use of initial shared resource is suggested in [31] although not justified. It can
be modeled as a Casual Box (see Figure 6.1). In this chapter we show that given the

ΠA ΠB

F

Figure 6.1: Connecting a shared resource F in Casual Box Framework to Alice and
Bob. The resulting resource in the figure is denoted by ΠAFΠB.

assumption of a shared resource, the Inequality 5.5 in Chapter 5 is no longer neces-
sarily true and we can evade the lower bound on ε imposed by Vilasini’s et al. proof.
This is, however, not the case for any considered shared resource and hence we begin
the chapter by assuming some general properties of it that turn out to be useful in the
later proofs. A specific example of such shared resource is then presented in Chapter 6
and discussion about necessity of the assumptions for shared resources can be found
in Chapter 8.

6.1 General properties of shared resources

Definition 6.1.1. A setup stage t0 is a space-time region in which neither Alice nor
Bob executes any action other than storing messages in their memory that appear on
their input interfaces.

Definition 6.1.2. We call a shared resource F

• Non-interactive if F lacks input interface. Such resource cannot take any input
from any party involved in the protocol. F is interactive if its actions can be
conditioned on some input.

23
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• Symmetric if its interfaces commute in the sense that dD(ΠAFΠB,ΠBFΠA) = 0
for any Π = (ΠA,ΠB). A shared resource whose interfaces do not commute is
called asymmetric.

• Inactive if F never produces a message on its output interface at time ti where
ti � t0.

• Active if dD(ΠAFΠB,ΠBφFφΠA) > 0 where φ is a “filter” resource acting as
identity in the setup stage t0 and acting as a blank resource outside t0.

• (ε,λ,ρ)-effective with respect to protocol Π = (ΠA,ΠB) and resource R if F
uniformly samples with probability ρ its output from its image

img(F) = {(αF ,βF)|∀αF :∃!βF s.t. (αF ,βF) ∈ img(F)

∧
∀βF :∃!αF s.t. (αF ,βF) ∈ img(F)}

i.e. ρ = 1
|img(F)| if img(G) is finite(p = 0 otherwise), and the following two

inequalities hold

dD(ΠAFΠB,R)≤ ε (6.1)

inf
η∈∆

dD(ΠAηΠB,R) = λ (6.2)

where ∆ is a set of shared resources whose image is complement to image of
F in a set of all possible images of a shared resource. Let αΓ be a message(or
set of messages) produced on the left interface of a shared resource Γ in t0 and
similarly βΓ be a message(or set of messages) produced on the right interface in
t0. We will use notation

αΓ ‖F βΓ ⇐⇒ (αΓ,βΓ) ∈ img(F)

αΓ ∦F βΓ ⇐⇒ (αΓ,βΓ) /∈ img(F)

If the corresponding protocol Π = (ΠA,ΠB) or the corresponding resource R is
obvious from the context, it does not need to be explicitly mentioned.

6.2 Evading the composability no-go theorem

The result of this section determines a relation of security parameters of a trusted
shared resource that needs to hold in order to achieve secure construction of com-
posable bit commitment. We state the main result and then proceed to prove various
useful lemmas before restating it and providing a proof.

Theorem 6.2.1. Let ε > 0 and Π = (ΠA,ΠB) a protocol followed by Alice and Bob.
Suppose further that both parties share a non-interactive and (λ,ε,ρ)-effective re-
source F such that protocol Π ε-constructs bit commitment resource BC. I.e.,

dD(ΠAFΠB,BC)≤ε

∃σA ∈ S :dD(FΠB,σABC)≤ ε

∃σB ∈ S :dD(ΠAF,BCσB)≤ ε
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Then if
1
4
≤ λ(1−ρ)

then ΠAFΠB ε-constructs bit commitment resource BC which evades Vilasini’s et al.
impossibility Theorem 5.0.3.

Proof. Proof to be found at the end of the chapter.

This result is very surprising for us as it shows that very weak assumptions are suf-
ficient to evade Vilasini’s et al. impossibility Theorem 5.0.3. Informally, if one con-
structs a secure bit commitment protocol that assumes a non-interactive trusted third
party F with uniformly distributed output, then it is almost guaranteed that the con-
structed bit commitment protocol evades the composability no-go theorem. Indeed,
any reasonable shared party has image of size greater than 2 since otherwise it is use-
less as it can me omitted from the protocol without influencing its functionality. Hence
ρ≤ 1

2 . Similarly, if a shared resource η with image that does not intersect image of F
is used instead of F then there should be a distinguisher that has at least 1

2 probability
of spotting this substitution unless the constructed resource F plays no important role
in the protocol. Hence λ ≥ 1

2 and by Theorem 6.2.1 it evades the famous Vilasini’s
impossibility Theorem 5.0.3.

6.2.1 Proof of sufficiency result in evading no-go composability
theorem

Suppose there is a resource F used as a trusted third party by a protocol Π = (ΠA,ΠB)

and that there is a construction of CF
1
2 within some distance ε that can be made ar-

bitrarily small by adjusting security parameters, similarly as in the proof of Theorem
5.0.2. Then

dD(ΠAFΠB,CF
1
2 )≤ε (6.3)

∃σA ∈ S :dD(FΠB,σACF
1
2

A )≤ ε (6.4)

∃σB ∈ S :dD(ΠAF,CF
1
2

B σB)≤ ε (6.5)

By triangle inequality and Theorem 5.0.1 the equations can be combined in the follow-
ing way

dD(ΠAFΠB,ΠAσACF
1
2

A )≤ ε (? : 6.4 + Thm 5.0.1)

dD(ΠAFσACF
1
2

A ,CF
1
2

B σBσACF
1
2

A )≤ ε (� : 6.5 + Thm 5.0.1)

dD(ΠAσACF
1
2

A ,CF
1
2 )≤ 2ε (♦ : ? + 6.3)
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By triangle inequality

dD(CF
1
2

B σBACF
1
2

A ,CF
1
2 )≤dD(ΠAσACF

1
2

A ,CF
1
2 )

+

dD(ΠAFσACF
1
2

A ,ΠAσACF
1
2

A )

+

dD(ΠAFσACF
1
2

A ,CF
1
2

B σBσACF
1
2

A )

= 3ε+dD(ΠAFσACF
1
2

A ,ΠAσACF
1
2

A )

= 3ε+κ (6.6)

where κ := dD(ΠAFσACF
1
2

A ,ΠAσACF
1
2

A )). In the proof of the impossibility Theorem
5.0.2, F can be considered to be the identity resource (forwarding the messages both
ways). Hence κ = 0, determining a lower bound for ε by Equation 5.5. If F is not an
identity resource, we are no longer guaranteed that κ = 0. In the rest of this chapter we
will explore what are sufficient assumptions for F such that for any ε> 0 Inequality 6.6
is satisfied. We assume that F is non-interactive and (λ,ε,ρ)-effective with respect to
some protocol Π = (ΠA,ΠB) and protocol CF

1
2 for some λ,ε,ρ. Chapter 8 is dedicated

to discussion about necessary assumptions of F to satisfy the Inequality 6.6 and it will
indeed argue that non-interactivity is an essential property to assume. We start by
proving lemmas that will find their use in proof of Theorem 5.0.3.

ΠA σA

F
αF , t0 βF , t0

CF
1
2

A

≈κ

ΠA

ασA, t0

σA CF
1
2

A

Figure 6.2: Definition of κ depicted in Casual Box Framework

Lemma 6.2.2. Suppose F is non-interactive and (λ,ε,ρ)-effective shared resource and
that FF is a shared resource constructed by connecting two identical copies of F in
series. Let αFF be output of FF on its left interface and βFF on its right interface.
Then

P(αFF ‖F βFF) = ρ

, i.e. probability that (αFF ,βFF) ∈ img(F) is ρ.
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Proof. By definition of image of F there exists a unique β̃F such that αFF ‖F β̃F . Since
F is non-interactive, the right output βFF is independent of its left output αFF . Hence

P(αFF ‖F βFF) = P(βFF = β̃F |αFF) = P(βFF = β̃F) = ρ

There is likely a confusion that reader can experience in proof of the next lemma. Note

that CF
1
2 = (CF

1
2 ,CF

1
2

A ,CF
1
2

B ) is a triple of half-biased coin flipping protocols for three
cases: when both parties are honest, when Alice is dishonest and when Bob is dishonest
respectively. Hence when refering to CF

1
2 we assume the coin flip protocol that does

not allow any party to change the coin outcome. Such assumption is reasonable but
odd since the ability to cheat would never be used by honest parties. We are aware
that this is confusing, but there is no other way to model half-biased coin flipping as a
Casual Box since the dishonest party needs to receive the coin flip outcome before the
other party in order to be able to bias it and therefore this Casual Box cannot provide
both parties with power to bias the outcome. However, this problem is obviously not
present in the real world implementation of the half-biased coin flipping as a dishonest
behaviour is defined as any action that does not follow the protocol Π = (ΠA,ΠB).
This approach has been followed in Vilasini’s et al. impossibility proof [31] as well
and took us a considerable time to understand it and approve the approach. Hence
we suggest for a reader that reads this chapter for the first time just to accept the fact
that output(CF

1
2 )∈ {(0,0),(1,1)}, which means that both involved parties will always

receive the same bits from CF
1
2 , and to proceed on.

Lemma 6.2.3. Suppose FF is the shared resource as in Lemma 6.2.2 used by protocol

Π = (ΠA,ΠB) that ε-constructs CF
1
2 = (CF

1
2 ,CF

1
2

A ,CF
1
2

B ) and that FF outputs αFF
on its left interface and βFF on its right interface. Then the probability that either Alice
or Bob successfully change the coin flip outcome given that output of FF is in image
of F is upper bounded by ε. I.e.,

P(ΠAFFΠB ∈ {(0,1),(1,0)}|αFF ‖F βFF)≤ ε

Proof. Suppose αFF ‖F βFF . FF is identical to F because (αFF ,βFF) ∈ img(F).
Define a distinguisher D ∈ D as

D(R ) =

{
ΠAFΠB if output(R )∈ {(0,1),(1,0)}
CF

1
2 if output(R )∈ {(0,0),(1,1)}

By Inequality 6.1 and since output(CF
1
2 ) ∈ {(0,0),(1,1)},

ε≥ dD(ΠAFΠB,CF
1
2 )≥ dD(ΠAFΠB,CF

1
2 )

= |P(D(ΠAFΠB) = ΠAFΠB)−P(D(CF
1
2 ) = ΠAFΠB)|

= |P(D(ΠAFΠB) = ΠAFΠB)−0|
= P(ΠAFΠB ∈ {(0,1),(1,0)})
= P(ΠAFFΠB ∈ {(0,1),(1,0)}|αFF ‖F βFF)
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Lemma 6.2.4. Let F be (ε,λ,ρ)-effective. Then

dD(ΠAFFΠB,CF
1
2 ) = P(ΠAFFΠB ∈ {(0,1),(1,0)})

and moreover, D ∈ D defined as

D(R) =

{
ΠAFFΠB if output(R )∈ {(0,1),(1,0)}
CF

1
2 if output(R )∈ {(0,0),(1,1)}

is a maximal distinguisher in a sense that

dD(ΠAFFΠB,CF
1
2 ) = dD(ΠAFFΠB,CF

1
2 )

Proof. Let D ∈D be a maximal distinguisher of ΠAFFΠB and CF
1
2 . Since output(CF

1
2 )∈

{(0,0),(1,1)}, D(R) = ΠAFFΠB whenever output(R) ∈ {(0,1),(1,0)}. Hence D is
of the form

D(R ) =


ΠAFFΠB if output(R)∈ {(0,1),(,10)}{

ΠAFFΠB with probability p
CF

1
2 with probability 1− p

if output(R)∈ {(0,0),(1,1)}

for some probability p. Then

dD(ΠAFFΠB,CF
1
2 ) = |P(D(ΠAFFΠB) = ΠAFFΠB)−P(D(CF

1
2 ) = ΠAFFΠB)|

(6.7)

where

P(D(ΠAFFΠB) = ΠAFFΠB) = P(D(ΠAFFΠB) = ΠAFFΠB|ΠAFFΠB ∈ {(0,0),(1,1)})
×P(ΠAFFΠB ∈ {(0,0),(1,1)})

+

P(D(ΠAFFΠB) = ΠAFFΠB|ΠAFFΠB ∈ {(0,1),(1,0)})
×P(ΠAFFΠB ∈ {(0,1),(1,0)})

= p×P(ΠAFFΠB ∈ {(0,0),(1,1)})
+

1×P(ΠAFFΠB ∈ {(0,1),(1,0)})

P(D(CF
1
2 ) = ΠAFFΠB) = P(D(CF

1
2 ) = ΠAFFΠB|CF

1
2 ∈ {(0,0),(1,1)})

×P(CF
1
2 ∈ {(0,0),(1,1)})

+

P(D(CF
1
2 ) = ΠAFFΠB|CF

1
2 ∈ {(0,1),(1,0)})

×P(CF
1
2 ∈ {(0,1),(1,0)})

= p×1+0×0
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By substituting into Equation 6.7, p maximizes the following quantity

dD(ΠAFFΠB,CF
1
2 ) = |pP(ΠAFFΠB ∈ {(0,0),(1,1)})+P(ΠAFFΠB ∈ {(0,1),(1,0)})− p|

= |p[(P(ΠAFFΠB ∈ {(0,0),(1,1)})+P(ΠAFFΠB ∈ {(0,1),(1,0)})]
+

(1− p)P(ΠAFFΠB ∈ {(0,1),(1,0)})− p|
= |p+(1− p)P(ΠAFFΠB ∈ {(0,1),(1,0)})− p|
= |(1− p)P(ΠAFFΠB ∈ {(0,1),(1,0)})|

Hence p = 0 as D is a maximal distinguisher and thus

dD(ΠAFFΠB,CF
1
2 ) = P(ΠAFFΠB ∈ {(0,1),(1,0)}) (6.8)

Lemma 6.2.5. Let F be non-interactive and (ε,λ,ρ)-effective. Then

dD(ΠAFFΠB,CF
1
2 )≥ λ(1−ρ)

Proof. Let D be the maximal distinguisher as in Lemma 6.2.4. Suppose FF outputs
αFF on its left interface and βFF . If αFF ∦F βFF , we can find an upper bound for λ

with the help of Inequality 6.2:

λ≤ dD(ΠAFFΠB,CF
1
2 ) = dD(ΠAFFΠB,CF

1
2 )

= |P(D(ΠAFFΠB) = ΠAFFΠB|αFF ∦F βFF)

−

P(D(CF
1
2 ) = ΠAFFΠB|αFF ∦F βFF)|

= |P(D(ΠAFFΠB) = ΠAFFΠB|αFF ∦F βFF)−0|
= P(ΠAFFΠB ∈ {(0,1),(1,0)}|αFF ∦F βFF)

By Lemmas 6.2.2,6.2.3 and 6.2.4:

dD(ΠAFFΠB,CF
1
2 ) = P(ΠAFFΠB ∈ {(0,1),(1,0)}) by Lemma 6.2.4

= P(ΠAFFΠB ∈ {(0,1),(1,0)}|αFF ‖F βFF)P(αFF ‖F βFF)

+

P(ΠAFFΠB ∈ {(0,1),(1,0)}|αFF ∦F βFF)P(αFF ∦F βFF)

= P(ΠAFFΠB ∈ {(0,1),(1,0)}|αFF ‖F βFF)ρ

+

P(ΠAFFΠB ∈ {(0,1),(1,0)}|αFF ∦F βFF)(1−ρ)

= ε
′
ρ+λ

′(1−ρ) for some 0≤ ε
′ ≤ ε, λ≤ λ

′ ≤ 1
≥ λ

′(1−ρ)

≥ λ(1−ρ)
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where

P(αFF ‖F βFF) = ρ by Lemma 6.2.2,
P(ΠAFFΠB ∈ {(0,1),(1,0)}||αFF ‖F βFF)≤ ε by Lemma 6.2.3,

We now have enough results to prove the following theorem that has a key importance
in evading Vilasini’s et al. impossibility proof.

Theorem 6.2.6. Let F be non-interactive and (λ,ε,ρ)-effective. Then

κ := dD(ΠAFσACF
1
2

A ,ΠAσACF
1
2

A )≥ λ(1−ρ)−3ε

Proof. See Figure 6.3 for a geometric illustration of this proof. The proof just summa-
rizes previous results and uses properties of the distinguishing advantage metric space
to prove the theorem.

• dD(ΠAσACF
1
2

A ,CF
1
2 )≤ 2ε by Inequality ♦

• dD(ΠAFFΠB,ΠAFσACF
1
2

A )≤ ε by Inequality 6.4 and Theorem 5.0.1

• dD(ΠAFFΠB,CF
1
2 )≥ λ(1−ρ) by Lemma 6.2.5

• dD(ΠAFσACF
1
2

A ,CF
1
2 )≥ λ(1−ρ)− ε by triangle inequality

• dD(ΠAFσACF
1
2

A ,ΠAσACF
1
2

A )≥ χ−2ε≥ λ(1−ρ)−3ε by triangle inequality

ΠAFσACF
1
2

A ΠAσACF
1
2

A

CF
1
2ΠAFFΠB

κ≥ χ−2ε

≤ ε ≤ 2εχ≥ λ(1−ρ)− ε

≥ λ(1−ρ)

Figure 6.3: Depiction of proof of Lemma 6.2.6. A line label denotes a metric in distin-
guishing advantage space over D.

Assuming a (λ,ε,ρ)-effective shared resource F between Alice and Bob, the next theo-
rem is of a great importance in finding an implementation of F as it gives us a sufficient
condition for the three parameters (λ,ε,ρ) such that the Vilasini’s impossibility proof
of composable bit commitment [31] is evaded.
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Theorem 6.2.1. Let ε > 0 and Π = (ΠA,ΠB) a protocol followed by Alice and Bob.
Suppose further that both parties share a non-interactive and (λ,ε,ρ)-effective re-
source F such that protocol Π ε-constructs bit commitment resource BC. I.e.,

dD(ΠAFΠB,BC)≤ε

∃σA ∈ S :dD(FΠB,σABC)≤ ε

∃σB ∈ S :dD(ΠAF,BCσB)≤ ε

Then if
1
4
≤ λ(1−ρ)

then ΠAFΠB ε-constructs bit commitment resource BC which evades Vilasini’s et al.
impossibility Theorem 5.0.3.

Proof. The impossibility Theorem 5.0.3 of bit commitment follows as a consequence
of impossibility Theorem 5.0.2 of half-biased coin flipping. We have seen that evad-
ing the Theorem 5.0.2 can be achieved by finding a shared resource F with certain
properties that would satisfy the Inequality 6.6 for the given ε. By Figure 6.4 it is ob-
vious that F is a shared resource between Alice and Bob in bit commitment protocol
Π = (ΠA,ΠB) if and only if F is a shared resource in the corresponding Blum’s con-
struction discussed in Theorem 5.0.2. Hence the properties of F in half-biased coin
flipping protocol that allow to construct CF

1
2 also evade the Vilasini’s impossibility re-

sult. Suppose F is non-interactive and (λ,ε,ρ)-effective. By Equation 5.5, Inequality

Π̃A ΠA

F
ΠB Π̃B

BC

c c =
ΠA
+
Π̃A

ΠB
+
Π̃B

F
c c

Figure 6.4: Blum’s protocol with shared resource

6.6 and Theorem 6.2.6 it follows that

1
4
= P(cA

0 6= cB
0 )≤ dD(CF

1
2

B σBACF
1
2

A ,CF
1
2 )≤ 3ε+κ

Therefore
1
4
− (λ(1−ρ)−3ε)≤ 1

4
−κ≤ 3ε

After algebraic manipulation we find that the Inequality 6.6 is satisfied if λ and ρ are
such that

1
4
≤ λ(1−ρ)





Chapter 7

Quantum Beamer Bit Commitment
Algorithm

In the previous chapter we motivated an assumption of a trusted non-interactive third
party acting only in the setup phase prior Alice and Bob take any actions. In this
chapter we develop an example of such party which we call an Asymmetric Quantum
Beamer, prove its security in Casual Boxes framework and use the results of the pre-
vious chapter to show it does not conflict with the novel Vilasini’s et al. impossibility
proof [31].

7.1 Asymmetric quantum beamer assumption

We introduce a non-interactive, inactive and assymetric trusted third party Assymetric
Quantum Beamer FQB. See Algorithm 1 for the definition of FQB and see Algorithm
2 for the proposed protocol Π = (ΠA,ΠB) that uses FQB. To the best of our knowl-
edge, the idea emerged just recently in literature in [19]. The shared party used in
[19] however relies on existence of appropriate perfectly non-linear bijections which
they claim are difficult to determine. Our proposed Assymetric Quantum Beamer does
not require any such assumption making it easier for practical implementation pur-
poses. Classically, a similar assumption has been made in [5] showing that common
reference string(crs) model, in which both parties have access to a randomly gener-
ated string from some probability distribution, is a sufficient assumption to achieve
computationally-secure composability of bit commitment. It is unclear whether such
scheme is secure against quantum adversaries, see Section 2.3.1 for details. However,
note that crs model achieves composability when applied to an already existing secure
non-composable bit commitment protocol whereas our proposed Assymetric Quantum
Beamer is an essential assumption to construct even a single instance bit commitment
protocol given the protocol Π = (ΠA,ΠB). Hence Assymetric Quantum Beamer is a
much stronger assumption that crs. Possibilities of weaker assumptions are discussed
in Chapter 8.

33
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Algorithm 1: Non-interactive asymmetric quantum beamer resource FQB

Input:
• Security parameter l

Output:
• To Alice:

– bit b
– a bit string s of length l

• To Bob:
– set of BB84 states {|ψi〉}i∈1,...,l

1 FQB:
2 sample b∼ {0,1} uniformly
3 randomly generate s∼ {0,1}l

4 if b = 0 then

5 prepare {|ψi〉}i∈1,...,l such that |ψi〉=

{
|0〉 if si = 0
|1〉 if si = 1

6 end
7 if b = 1 then

8 prepare {|ψi〉}i∈1,...,l such that |ψi〉=

{
|–〉 if si = 0
|+〉 if si = 1

9 end

7.2 Security analysis of the proposed protocol

We first prove the standalone security against dishonest Alice (binding) and against
dishonest Bob (conceailing). We then discuss why the proposed protocol evades both
Lo & Chau [21] attack and Vilasini’s et al. impossibility theorem [31]. The rest of the
section is devoted to proof of composability in the UC framework.

7.2.1 Binding + Concealing

If Alice acts dishonestly in the reveal phase, i.e. she flips a bit m, Bob measures the
states {|Ψi〉} in wrong basis, obtaining measurement outcomes {ãi} inconsistent with s
up to a negligible probability λ. Assuming Bob measures in the wrong basis, for every
i there is 1

2 probability that ãi = si. Hence Bob accepts the dishonest commitment with
probability λ = 2−l .

The protocol is perfectly concealing against dishonest Bob since prior the reveal phase
Bob learns nothing about Alice’s commitment as the received bit c = m⊕ b does not
provide any information about m given that b is unknown to Bob.

7.2.2 Security against Lo and Chau Attack

The protocol evades the Lo & Chau and Mayers [21, 24] impossibility proof as once
Alice creates the state |m〉 corresponding to commitment of bit m, up to a negligible
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Algorithm 2: Bit commitment protocol Π = (ΠA,ΠB) using FQB

1 ΠA:
Input:
• (b,s) from FQB
• commitment bit m

2 COMMIT PHASE:
3 send c = m⊕b to Bob
4 REVEAL/ABORT PHASE:
5 if Alice wants to reveal then
6 send (m,s) to Bob
7 end
8 else if Alice wants to abort then
9 send abort to Bob

10 end
11 ΠB:

Input:
• {|ψi〉}i∈1,...,l from FQB

12 COMMIT PHASE:
13 After receiving c from Alice output received notification
14 REVEAL/ABORT PHASE:
15 if ”abort” received then
16 output abort
17 end
18 else
19 After receiving (m,s) from Alice:
20 b̃ := c⊕m
21 ∀i = 1, ..., l: ãi := Measurement(|Ψi〉, basis = b̃)
22 if ∀i : si = ãi then
23 output m
24 end
25 else
26 output abort
27 end
28 end

probability she cannot guess the state |m⊕1〉 as it requires predicting Bob’s measure-
ment outcomes in b⊕ 1 basis. We provide a more formal argument of the statement.
After Alice commits to a bit m, the phase of the joint system of Alice and Bob A⊗B
can be expressed as follows.
if m = 0:

|0〉= ∑
i∈α

ci|µi〉A ⊗|φi〉B ⊗|ξi〉B

if m = 1:
|1〉= ∑

i∈α

c′i|µi〉A ⊗|φ′i〉B ⊗|ξi〉B
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for some scalars ci,c′i, orthonormal basis {|µ1〉A , |µ2〉A , ...} and some states {|φ1〉B , |φ2〉B , ...},
{|φ′1〉B , |φ′2〉B , ...}, {|ξ1〉B , |ξ2〉B , ...}. The states {|φ1〉B , |φ2〉B , ...}, {|φ′1〉B , |φ′2〉B , ...}
are prepared by Alice and sent to Bob as in step 1c) in Chapter 3 whereas {|ξ1〉B , |ξ2〉B , ...}
are prepared and sent to Bob by the Asymmetric Quantum Beamer and hence these
states are unknown to Alice. Note, that in the original impossibility proof the states
{|ξ1〉B , |ξ2〉B , ...} are not present as a shared resource is not assumed in their work.
Suppose Alice wants to cheat by changing |0〉 → |1〉 (the same argument works vice-
versa) between commitment and reveal phases. Let Ξ be a collection of all possible
measurement outcomes of {|ξ1〉B , |ξ2〉B , ...} in basis b = 1. In the commitment phase,
she has prepared a state

|0〉= ∑
i∈α

ci|µi〉A ⊗|φi〉B ⊗|ξi〉B

Let τ ∈ Ξ be a string of measurement outcomes that Bob will obtain when he measures
{|ξ1〉B , |ξ2〉B , ...} in basis b = 1. Since the states are prepared in basis b = 0 according
to Algorithm 1, τ is a string of uniformly random bits. Let

|1τ〉= ∑
i∈α

cτ
i |µi〉A ⊗|φi〉B ⊗|ξi〉B

be a state that corresponds to commitment of m = 1 where (s,b) = (τ,1). By the
concealing property proven in Section 7.2.1, there is a density operator ρ=TrA|0〉〈0|=
TrA|1τ〉〈1τ| with spectral decomposition

ρ = ∑
i

λi|ϕi〉〈ϕi|

where {|ϕi〉}i is a unique orthogonal basis of B given |0〉. The uniqueness prop-
erty is an essential observation and is stressed in proof of Schmidt decomposition in
Chapter 3. If Alice wants to apply the technique from Lo and Chau attack, she must
find purifications of ρ

|0〉= ∑
i

√
λi|µ〉A |ϕ〉B

|1τ〉= ∑
i

√
λi|µ′

τ

i 〉A |ϕ〉B

However, since τ is an outcome of a random variable independent from Alice’s actions,
she does not know |1τ〉 and hence cannot determine |µ′τi 〉A . This is the key difference to
the original impossibility result where Alice has an ultimate power over state of Bob’s
system. In such settings Alice would create the states {|ξ1〉B , |ξ2〉B , ...} by herself in
basis b = 1 and hence would know the value of τ. Hence the only thing that Alice
can try is to make guess about τ. The size of Ξ is in our algorithm the number of
possible strings τ, i.e. |Ξ|= 2l . Denote the Alice’s guess as τA. Hence there is p = 2−l

probability τA = τ. She follows the procedure in Chapter 3 and prepares purifications

|0〉= ∑
i

√
λi|µi〉A |ϕi〉B

|1τA 〉= ∑
i

√
λi|µ′

τA
i 〉A |ϕi〉B
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Let UτA be the change of basis unitary that rotates |0〉 → |1τα〉. She applies UτA on the
state |0〉 with a hope that τA = τ. Hence with negligible probability p = 2−l the state
of the system becomes |1τ〉 and Bob accepts the cheating behaviour of Alice when
she proceeds to reveal phase. Otherwise, the state of A ⊗B is transformed to |1τA 〉.
By uniqueness of {|ϕi〉}i justified earlier, |1τ〉 is the only state that will result in Bob
accepting the dishonest commitment and hence he rejects the Alice’s commitment as
his measurement outcomes τ do not correspond to the evidence string s = τA received
from Alice.

7.2.3 Avoiding Vilasini’s impossibility proof

Once we check that ΠAFΠB ε-constructs BC in UC framework(see Section 7.2.4) for
any ε > 0 we are done with the proof of composability. In this subsection we show
FQB is not ruled-out by Theorem 6.2.1 and hence it is as a reasonable assumption for
the shared resource. Otherwise we would not need to develop lengthy argument in
Section 7.2.4 and would rethink the implementation of the shared resource. The claim
is simple and gives an example of how our result from Chapter 6 might be used as a
“quick check” when developing new bit commitment protocols that assume a trusted
third party.

Let η be a shared resource between Alice and Bob such that αη ∦FQB βη for all (αη,βη)∈
img(FQB). Observe that if η provides output in invalid form, i.e. if it doesn’t send a
message to any of the party at t0 or the length and structure of the message is different
that the one of FQB than either party aborts the protocol and dD(ΠAηΠB,BC) = 1. Let
us now restrict our attention to η such that it provides output of the valid form but such
that αη ∦F βη. Define a distinguisher D ∈ D as

D(R ) =

{
ΠAηΠB if output(R ) ≈ abort
BC otherwise

and let D be such that it never aborts the protocol and commits to a random bit c. Then

dD(ΠAηΠB,BC)≥ dD(ΠAηΠB,BC)

= |P(D(ΠAηΠB) = ΠAηΠB)−P(D(BC) = ΠAηΠB)|
= |P(D(ΠAηΠB) = ΠAηΠB)−0|
= P(output(ΠAηΠB) = abort)
≥ 1−2−l

because if η is used as a shared resource, then Bob either measures {|ψi〉} in the wrong
basis b or it compares the measurements to a wrong measurement outcomes string s.
Hence there is at most 2−l probability that he accepts the commitment.

Since there are 2× 2l possibilities for (b,s) and {|ψi〉} are completely determined
by (b,s) (see Algorithm 1), the size of image of F is 2l+1. By construction of FQB,
the Assymetric Quantum Beamer uniformly samples from its image and hence FQB is
(≥ 1−2−l,ε,2−(l+1))-effective resource (see Definition 6.1.2). Identifying λ≥ 1−2−l ,
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ρ = 2−(l+1) we find that

λ(1−ρ)≥ (1−2−l)(1−2−(l+1))≥ 1
4

for l ≥ 1

and hence the Assymetric Quantum Beamer bit commitment algorithm evades the the
Vilasini’s et al. proof by Theorem 6.2.1 and hence it is reasonable to check if FQB
satisfies the ε-construction in UC framework.

7.2.4 Composability proof in UC framework

Since FQB has been shown not to be ruled-out by result of Theorem 6.2.1, we proceed
to a careful check whether the protocol Π ε-constructs BC. See B.1 for definition of
ideal Bit Commitment resource BC. We strongly suggest to follow the graphical de-
pictions of the arguments.
Honest case. Bob is guaranteed to measure {|Ψi〉} in correct basis and hence outputs
the committed bit m. Hence no distinguisher is capable of distinguishing the con-
structed and ideal resources (Figure 7.1).

ΠA ΠB

FQB

BC≈0

Figure 7.1: dD(ΠAFQBΠB,BC) = 0

Honest Alice and dishonest Bob (Figure 7.2).

ΠA

FQB

BC≈0 σB

{|ψi〉}i, t0 {|ψ̃(2)
i 〉}i, t0(b,s), t0m, t1 m, t1

c := m⊕b, t2

received, t2 c̃, t ′2
reveal, t3
/abort

reveal, t3
/abort

(m,s)/abort, t3

m/abort, t ′3 (m, s̃), t ′′3
/abort

ti ≺ ti+1, ti ≺ ti′, t ′i ≺ ti+1

Figure 7.2: ∃σB : dD(ΠAFQB,BCBσB) = 0

The role of simulator σB is to minimize distinguishing advantage of the constructed and
the ideal resources. Let σB simulate FQB by generating l EPR pairs {(|ψ̃(1)

i 〉, |ψ̃
(2)
i 〉)}i=1,...,l

and the corresponding (b, s̃) as in Algorithm 1 and sending {|ψ̃(2)
i 〉}i to the outer inter-

face. Upon receiving received message from BC, it randomly generates and outputs
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c̃ to the outer interface. If Alice aborts the protocol, σB sends an abort message at t3
and hence both resources produce identical output. Assuming Alice does not abort the
protocol, after receiving commitment m from BC, σB calculates b̃ := c̃⊕m and checks
if b̃ = b. If the equality holds, it outputs (m,s) to the outer interface. Otherwise it
measures {|ψ̃(1)

i 〉}i in basis b̃ and outputs (m,s′) where s′ is the string of measurement
outcomes.

Since σB follows procedure of Algorithm 1 for FQB we have that density matrices
ρA and ρB, corresponding to quantum systems A :=

⊗
i|ψi〉 and B :=

⊗
i|ψ̃

(2)
i 〉 re-

spectively, satisfy ρA = ρB and hence are not distinguishable by any distinguisher.
Moreover, as b, c̃ are independently drawn from the same probability distribution and
equivalently for s, s̃, no distinguisher can gain any distinguishing advantage by com-
paring the inputs from outer interface of the resources. If a distinguisher checks for
consistency of the inputs, i.e. when measuring {|ψ̃(2)

i 〉}i in c̃⊕m basis (or equivalently
{|ψi〉}i in c⊕m basis) it always finds out the measurement is consistent with s̃ (or s).
This property is guaranteed by constructing s̃ in a way it corresponds to measurement
outcomes of measurement of {|ψ̃(1)

i 〉}i in c̃⊕m basis. Hence there is zero distinguish-
ing advantage for any possible distinguisher.

Dishonest Alice and honest Bob (Figure 7.3).

ΠB

FQB

BC≈ε σA

(b,s), t0 (b̃, s̃), t0{|ψi〉}i, t0

c, t1
c̃, t1

received, t2 c̃⊕ b̃′, t ′2 received, t ′′2

(b′,s′)/abort, t3 (b̃′, s̃′), t3
/abort

b′/abort, t4
reveal
/abort, t4

b̃′/abort, t ′4

ti ≺ ti+1, ti ≺ ti′ , t ′i ≺ ti+1

Figure 7.3: ∃σA : dD(FQBΠB,σABCA)≤ ε

The optimal strategy for σA involves simulating FQB by generating a pair (b̃, s̃) and
sending it to Alice. After receiving the commitment information c̃, let σA emulate ΠA
by extracting the commitment m := c̃⊕ b̃ and commiting the value m to BC. Hence
if Alice acts consistently with Algorithm 2, the two resources FQBΠB and σABC have
identical outputs, disregards if she aborts the protocol. Hence we only consider dis-
tiguishers that emulate cheating Alice sending (b′,s′) 6= (b,s) (or (b̃′, s̃′) 6= (b̃, s̃)) at t3.

If cheating Alice does not flip the ’basis bit’ b (or b′) she sends (b,s′) (or (b̃, s̃′)) to
Bob where s 6= s′ (or s̃ 6= s̃′). Then since Bob measures {|ψi〉}i in the correct basis,
he always discovers the cheating behavior of Alice by comparing the measurement
outcomes to s′ (or s̃′). Hence ΠB outputs the abort message. Similarly, σA can check
for the malicious behavior by discovering s̃ 6= s̃′ and hence we define it to abort the
protocol in this case as well. Hence in this case the resources FQBΠB and σABC are
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indistinguishable.

If she flips the ’basis bit’ b (or b′), i.e. if she sends b′ := b⊕ 1 (or b̃′ := b′⊕ 1) to
Bob at t3 then σA can detect the malicious behavior by observing b̃ 6= b̃′. We define
σA to abort the protocol in this scenario. Considering the case for FQB, since Bob has
no information about b, he is unable to detect the malicious behavior as easily as σA.
He proceeds to measure {|ψi〉}i in b′ basis and compares the outcomes with s′. Since
{|ψi〉}i was prepared in b basis, the result of the measurement is a random bit string
where each bit is uniformly sampled from a Bernoulli distribution with p = 1

2 . Since
Alice does not posses a clone of {|ψi〉}i, she has probability λ := 2−l of producing a
string s′ such that Bob accepts the malicious commitment.

Algorithm 3: Definition of distinguisher D
1 D:
2 Receive (b,s) from FQB or σA
3 Randomly generate m with uniform probability
4 COMMIT PHASE:
5 send c := m⊕b to FQB or σA
6 REVEAL PHASE:
7 send ((b⊕1),s) to FQB or σA
8 DISTINGUISHING PHASE:
9 o← output of the outer interface of the resource connected to D

10 if o = (m⊕1) then
• with probability 1

ε+1 guess ideal
• with probability ε

ε+1 guess constructed
11 end
12 else if o=error then
13 guess constructed
14 end

Let D ∈ D be a distinguisher that upon receiving (b,s) at t0 sends (b⊕ 1,s′) where
s ∈ {0,1}l is randomly generated, see Algorithm 3. By the above argument, D has the
greatest distinguishing advantage over the set D of all possible distinguishers. There-
fore

dD(FQBΠB,σABCA) = sup
τ∈D

dτ(FQBΠB,σABCA)

= dD(FQBΠB,σABCA)

= |P(D(FQBΠB) = ideal)−P(D(σABCA) = ideal)| (7.1)



7.2. Security analysis of the proposed protocol 41

where

P(D(FQBΠB) = ideal) = P(D(FQBΠB) = ideal|FQBΠB = (m⊕1))P(FQBΠB = (m⊕1))
+

P(D(FQBΠB) = ideal|FQBΠB = error)P(FQBΠB = error)

= 0×λ+
1

1+(1−λ)
× (1−λ)

=
1−λ

2−λ

P(D(σABC) = ideal) = P(D(σABC) = ideal|σABC = (m⊕1))P(σABC = (m⊕1))
+

P(D(σABC) = ideal|σABC = error)P(σABC = error)

= 0×0+
1

1+(1−λ)
×1

=
1

2−λ

It then follows by substitution into Equation 7.1 that

dD
A (FQBΠB,σABC) = |P(D(FQBΠB) = ideal)−P(D(σABC) = ideal)|

=
λ

2−λ

Theorem 7.2.1. Let ε > 0. Then there exists security parameter l (see Algorithm 2)
such that BC is constructed within distance ε from FQB via protocol Π = (ΠA,ΠB) with
respect to a set of all possible distinguishers D.

Proof. If ε > 1 the statement is trivial since 1 is an upper bound for any distinguishing
advantage metric. Suppose ε ∈ (0,1]. Let l := d− log(ε)e where logarithm is in base 2.
Then

λ = 2−l = 2−d− log(ε)e

=

{
2dlog(ε)e if log(ε) ∈ Z
2−(1−dlog(ε)e) if log(ε) /∈ Z

=

{
2blog(ε)c if log(ε) ∈ Z
2−(1−(blog(ε)c+1)) if log(ε) /∈ Z

= 2blog(ε)c

≤ ε

Hence since 1≤ 2−λ≤ 2,
λ

2−λ
≤ λ≤ ε
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and by above results in this section it follows that

dD(ΠAFQBΠB,BC) = 0 ≤ ε

∃σA : dD(FQBΠB,σABCA) =
λ

2−λ
≤ ε

∃σB : dD(ΠAFQB,BCBσB) = 0 ≤ ε

The Theorem 7.2.1 concludes the composability proof of Assymetric Quantum Beamer
bit commitment algorithm in terms of Casual Boxes Framework (Appendix B) since it
shows that BC = (ΠAFQBΠB,FQBΠB,ΠAFQB) can be modeled as a Casual Box that is
ε-constructed for arbitrary ε > 0.



Chapter 8

On Minimal Assumptions for
Composable Bit Commitment

In Chapter 7 we have demonstrated that non-interactive, inactive, assymetric and (λ,ε,ρ)-
effective shared resource with respect to CF

1
2 is a sufficient assumption to construct

composable secure bit commitment. It is indeed a strong assumption since neither
Alice nor Bob can detect malicious behavior of the shared resource. In this chapter
we discuss what properties are required in order to evade Vilasini’s et al. proof and
what properties could possibly get relaxed after further explorations in order to obtain
practically most feasible implementation.

8.1 Sufficiency and necessity of shared resource prop-
erties

Note, that since the protocol Π = (ΠA,ΠB) considered in proof of impossibility Theo-
rem 5.0.2 was arbitrary, the only way to break the proof is to consider a resource that
cannot be merged with ΠA or ΠB. Hence a trusted third party acting in the protocol is
essential to achieve composability. Let F be a shared resource between Alice and Bob
for the rest of this chapter. Recall that we follow Definition 6.1.2 to describe properties
of F which are in particular:

• (ε,λ,ρ)-effectiveness

• activity / inactivity

• interactivity / non-interactivity

• symmetry / asymmetry.

By our result in Theorem 6.2.1, if λ and ρ satisfy relation

1
4
≤ λ(1−ρ)

then Vilasini’s et al. impossibility proof of composability is evaded. However, note that
our proof in Chapter 6 did not consider converse at all and it hence might be possible

43
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to relax this sufficiency result even more, although the practicality of such approach
is very unlikely as the relation is satisfied by (almost) all reasonable shared resources
that have a significant role in the protocol as discussed in the beginning of Section 6.2.

The next sections discusses necessity and/or sufficiency of the other remaining prop-
erties.

8.1.1 Inactivity and non-interactivity properties

If F is active and interactive, i.e. if it can take input from Alice and Bob after the setup
stage, then the assumption is no weaker than a trusted party emulating bit commitment
protocol which receives Alice’s commitment bit at the commit phase and reveals it to
Bob when Alice triggers reveal phase. Such protocol is obviously silly from point of
cryptography and hence we need either of non-interactivity or inactivity as a necessary
assumption.

If F is interactive and inactive, then by Definition 6.1.2 it provides output only in the
setup-stage space-time region. However, by Definition 6.1.1 of the setup-stage, nei-
ther Alice nor Bob outputs any message to the shared resource outside the setup-stage
region and hence it is perfectly indistinguishable from the shared resource φFφ, where
φ is a “filter” resource which forwards output from F to its output interface unchanged
but blocks any input. φFφ is clearly non-interactive. In other words, inactivity cancels
out any effect of interactivity and hence we don’t reduce size of the set of possible can-
didates for shared resources that apply in Theorem 5.0.2 by requiring non-interactivity.

On the other hand, if F is active and non-interactive, then informally, F keeps sending
messages to Alice and Bob during runtime of the protocol and the protocol is condi-
tioned on output from F . Although we haven’t devoted our time in finding whether
such F that allows composable security exits, in Chapter 7 we presented a shared re-
source that has weaker assumptions by being inactive and non-interactive. We indeed
consider the case to be weaker since if F is active, then it requires a big level of trust
that it behaves honestly towards both parties while the protocol is active. If it is inac-
tive, there could be implementations of F that would allow both parties to check that it
is “shut down”, e.g. in simplest case by unplugging power from a corresponding quan-
tum device that realizes the shared resource and hence to ensure it does not behave
dishonestly towards any party after the set-up stage. Therefore we are of the opinion
that this direction is not worth exploring as the resulting resource would not require
less level of trust than the Assymetric Quantum Beamer (AQB) defined in Chapter 7.

To conclude, non-interactivity is an essential property of F , whereas it remains as an
open, but likely not very interesting question, whether inactivity is required as well.
As argued, active asymmetric shared resource would be a stronger assumption com-
pared to AQB and hence it has no interesting use unless it allows to relax any other
assumption introduced by AQB with asymmetry as the only candidate that remains.
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8.1.2 Symmetry / Asymmetry

The security of AQB bit commitment protocol (Chapter 6) is based on asymmetry of
the shared resource FQB. To see why, observe that before the reveal phase, Bob is in
possession of qubits {|ψi〉}i prepared in an unknown basis b to him and Alice knows
the basis b and string {si}i of corresponding measurement outcomes. This allows Alice
to send Bob evidence of her commitment m⊕b which is unique given the commitment
bit m and concealing property holds since Bob does not know b. The binding property
holds since if Alice decides to open commitment to m⊕ 1 then she must lie to Bob
about the basis, announcing to him that {|ψi〉}i are prepared in b⊕1 basis. (Note that
b = 0 means basis is {|0〉, |1〉} and {|–〉, |+〉} otherwise). Then up to some negligible
probability, Alice is unable to generate and announce to Bob string of measurement
outcomes s̃ that would be consistent with his measurement. See Chapter 7 for more
detailed description of the protocol. Furthermore, we have shown in Section 7.2.2
that assymetry property was also useful in proving security against Lo & Chau attack.
The asymmetric construction of FQB is in AQB protocol essential to construct a secure
(not necessary composable) bit commitment protocol and the composability proof that
follows does not explicitly require this property.

Indeed, we didn’t use the symmetry/asymmetry assumption in the proof of Theorem
6.2.1. The symmetric shared resource is just a special case of the (ε,λ,ρ)-efficient
shared resource with a restricted image. Hence the Theorem 6.2.1 holds for the sym-
metric case as well. An interesting question to ask is whether there exists a secure
bit commitment protocol with a symmetric shared resource. Such resource would be
more interesting than AQB as it might not require such high level of trust by both
parties in practical implementation. E.g. it could be open-source implemented on a
server accessible worldwide and it would not allow any interaction by the necessity
for non-interactive property argued in Section 8.1.1. It would not therefore be able
to favor any of the involved parties. In contrast, because of the asymmetric property
of AQB, neither Alice nor Bob can check honesty of AQB. For example, a dishonest
AQB could send EPR pairs of {|ψi〉}i to Alice and hence she would be able to produce
a string of measurement outcomes s̃ that would correspond to Bob’s outcomes when
measuring in the wrong basis. Hence he would never detect Alice changing the com-
mitment value. Similarly, if AQB announces basis b to Bob he would be able to extract
the commitment bit m before the reveal phase by applying XOR of b and the evidence
b⊕m sent by Alice.

We motivated a question of existence of a symmetric shared resource that would allow
secure and composable bit commitment. We provided an intuition with specific exam-
ples where asymmetric property finds its important use and we conclude it would be
challenging to find a symmetric resource while satisfying the above discussed scenar-
ios once asymmetry is evaded. On the other hand, we haven’t proved not disproved
such existence and we think this is a very interesting problem to consider as it would
allow to lower requirements on level of trust in the shared resource. A care should
be taken to ensure that once such implementation is found, it should weaken the extra
assumptions introduced.

A careful reader might recall that symmetric shared resource called common refer-
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ence string (crs) has been demonstrated to construct a composable bit commitment in
computational security settings [6]. However, the proposed protocol has no known im-
plementations that are secure against quantum computers, although this might change
once hardness of lattice-based problems is proven for quantum devices. See Section
2.3.1 for more details.



Chapter 9

Conclusion and Future Work

In this project we defined bit commitment protocol and motivated the need for an im-
plementation that would satisfy security and composability properties. Such protocol
which uses an assymetric, inactive and non-interactive shared resource called Assy-
metric Quantum Beamer (AQB) has been defined in Chapter 7. It is a very simplified
and surprisingly more “powerful” modification of protocol [19] as it does not rely
on assumption of perfectly non-linear bijections. Its standalone security and security
against the famous Lo & Chau attack [21] is carefully explained and its composability
is proven in Casual Boxes Framework. We use our results from Chapter 6 to argue
how it specifically evades Vilasini’s et al. composability no-go theorem [31].

The project explores beyond just finding a specific implementation of the protocol as
AQB is a strong assumption that requires a high level of trust by all involved parties.
It might be possible to relax some of the assumptions and hence lower the level of
trust required. The important property of AQB is its inactivity, i.e. that it acts only
in the set-up stage before the actual protocol is run. Otherwise, we could just con-
sider a trusted third party that would emulate the protocol. If Alice and Bob are able
to ensure that the third party is not involved in the protocol during its runtime, the
assumptions are weakened. In Chapter 6 we formally defined a shared resource and
its properties activity/inactivity, interactivity/non-interactivity, symmetry, asymmetry,
(ε,λ,ρ)-effectiveness considered in the project which are as general as possible to cover
all possible shared resources and in Chapter 8 we argue which properties are necessary
and which have a potential to be relaxed. In particular, we argue that a shared resource
F is a necessary, but not yet sufficient assumption on its own to evade the Vilasini’s et
al. composability no-go theorem. On top of the assumption we require that:

• F is non-interactive

• F is (ε,λ,ρ)-effective such that

1
4
≤ λ(1−ρ)

It is an open question whether the above assumptions are sufficient to construct com-
posable secure bit commitment protocol. AQB has in addition the following properties
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• F is asymmetric

• F is inactive

This result implies that almost every reasonable shared resource in a bit commitment
protocol evades the composability no-go theorem which is a remarkable result. The
more elaborated explanation is located at the beginning of Section 6.2.1.

It is not clear whether the above two properties are necessary. As discussed in Chapter
8, the asymmetric property of F is a strong assumption which might possibly get re-
laxed. In the protocol using AQB, the asymmetry property guarantees that Lo & Chau
attack can get evaded since once Alice commits to a bit m, she knows the state |m〉
but she does not know the state |m⊕ 1〉 and hence up to a negligible probability she
cannot prepare the required purification of the joint system state that would allow her
to apply a unitary that would change her commitment towards m⊕ 1. Hence if sym-
metric property of F is assumed, there should be different assumption introduced that
would evade Lo & Chau impossibility theorem. One of such plausible assumptions
is relativistic constraint as discussed in Chapter 4 which however requires space-like
separation of Alice’s agents and poses a limit on a commitment time interval. Hence
the pros and cons of such method, that on the other hand allows symmetric F , depend
on practical needs. Existence of different appropriate assumption that would allow
symmetric F and offer a greater level of practicability than the asymmetric assumption
is unclear to us and is and is an interesting direction to explore.

Although the inactivity property did not have any particular use in our discussions, we
do not think there is a more practical implementation of the shared resource than AQB
which is active during the runtime of the protocol, although we do not completely rule
out such possibility. For example, activity might turn out to be a useful assumption in
achieving symmetry of F , although we have no indication of such case.

Furthermore, it is unclear whether there exists a better practical implementation of non-
interactive, inactive, asymmetric and (ε,λ,ρ)-effective resource satisfying Theorem
6.2.1 than the AQB resource. For example, it is unclear whether quantum capabilities
of the shared resource are required. If computational hardness of solving lattice based
problems by quantum computers is proven then it is possible that there is a specific
realization of the common reference string discussed in Section 2.3.1 that satisfies the
above properties as well. However, if quantum capabilities are assumed, we believe
we have found a very effective implementation of the shared resource as its security is
exponentially proportional to its security parameter.
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Appendix A

The Abstract Cryptography
Framework

In order to argue about security and composability of classical/quantum cryptographic
protocols we are in need of a framework providing definitions of such security guaran-
tees. The Abstract Cryptography Framework [4, 23] has been widely applied for this
purpose [31, 5, 11, 28] and therefore to preserve compatibility with previous works
our project adopts it as well. Extension to relativistic settings is possible via Casual
Boxes Framework, see Appendix B. The basic building blocks of the The Abstract
Cryptography Framework are resources, converters and distinguishers. We restrict
our definitions to allow for only two-party protocols, called Alice and Bob by conven-
tion, which is sufficient for the scope of our project.

Definition A.0.1. A resource R is an abstract system with two interfaces, each of the
accessible to a separate party.

Resources can be thought of as black boxes providing certain functionalities (e.g. a
commitment functionality, communication channel,etc.) for the involved users.

Definition A.0.2. A converter is an abstract system with inner and outer interfaces.
It emulates an operation performed by a user U ∈ {Alice,Bob} interacting with a re-
source R . The inner interface is connected to the interface of a resource R devoted for
the user U and the outer interface is made available for user U.

Converters serve as an intermediate program between two interfaces.

The fundamental principle of the framework is that a combination of resources and
converters constructs new resources. For example, Blum’s protocol [2] constructs a
coin flipping resource given bit commitment resource. In order to measure security of
a constructed protocol we need an ideal reference protocol to allow for the comparison.

Definition A.0.3. Ideal functionality is a black box resource that provides a desired
behavior.
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S RU

Figure A.1: Schematic depiction of a resource R and a connected converter S emulat-
ing operations of user U. We write SUR to denote the resulting resource. This can be
simplified to SR with convention that converters to the left of R belong to the user U
and similarly the resources to the right belong to the user using right interface of R .

We define a security of a constructed protocol P in terms of distinguishability from the
corresponding ideal functionality F .

Definition A.0.4. A distinguisher for resources P and F is an abstract system with
two interfaces. An inside interface connects to either P or F and the outside interface
produces a single bit providing a guess whether P or F is connected to the inside in-
terface.

Definition A.0.5. A distinguishing advantage for a single distinguisher D for re-
sources P and F is a pseudo-metric [29] defined as

dD(P ,F ) = |P(D(P ) = 0)−P(D(F ) = 0)|

where D(P ) is an output of D when connected to P . A distinguishing advantage for a
set of distinguishers D is defined by

dD(P ,F ) = sup
D∈D

dD(P ,F )

A security of a constructed resource P via protocol Π from an initial resource R is
defined via probability of successfully distinguishing between P and ideal function-
ality F given set of all possible distiguishers relevant in the given settings. I.e. we
might restrict the set of distinguishers to contain only computationally bounded dis-
tinguishers when proving computational security guarantees. Similarly, under differ-
ent assumptions, computationally unbounded up to quantum distinguishers can be in-
cluded. We argue about security of a constructed resource in three different settings:
when both parties are honest, when Alice is dishonest and Bob is honest and vice-
versa. The initial resources available to the players in the three cases are given by a
tuple R = (R,RA,RB) where RA is an initial resource available to a dishonest Alice
and honest Bob, likely providing more functionalities to Alice. Similarly, the con-
structed resources are P = (ΠARΠB,RAΠB,ΠARB) where Π = (ΠA,ΠB) is a tuple of
converters emulating actions taken by Alice and Bob respectively. In case of a dishon-
est behaviour the protocol is removed from the corresponding interface of R since we
do not know what steps the dishonest party follows. Most of the time RAΠB and FA
can be trivially distinguished as dishonest Alice has no restrictions over her actions.
Hence we limit the abilities of Alice by connecting a converter σA on her interface
of FA with the aim to make Alice weaker and hence possibly make the two systems
indistinguishable. We shall call the converter in this setting a simulator. If σAFA is



53

indistinguishable from RAΠB we can then safely use RAΠB instead of ΠARΠB since
introducing the simulator σA only makes Alice weaker.

The security is hence defined via distinguishability between (ΠARΠB,RAΠB,ΠARB)
and F = (F,FA,FB).

Definition A.0.6. A resource F = (F,FA,FB) is constructed within distance ε from
R = (R,RA,RB) via protocol Π = (ΠA,ΠB) with respect to a set of distinguishers D
and set of simulators S if and only if

dD(ΠARΠB,F)≤ ε

∃σA ∈ S :dD(RAΠB,σAFA)≤ ε

∃σB ∈ S :dD(ΠARB,σBFB)≤ ε

We often abbreviate the above scenario to say F is ε-constructed from R by Π. There
is also a convenient graphical representation of the conditions in Definition A.0.6 [31]:

ΠA ΠB

R
F≈ε

Figure A.2: dD(ΠARΠB,F)≤ ε

ΠB

RA

FA≈ε σA

Figure A.3: ∃σA : dD(RAΠB,σAFA)≤ ε

ΠA

RB

FB≈ε σB

Figure A.4: ∃σB : dD(ΠARB,FBσB)≤ ε





Appendix B

The Casual Boxes Framework

The Abstract Cryptography Framework (Appendix A) is unable to model relativistic
cryptography. The extension is done via introducing Causality condition [31] which
requires that outputs produced at a space-time point P can be dependent only on events
inside the past lightcone of P . The Minkowski-spacetime model is assumed.

In Abstract Cryptography Framework the classical/quantum messages exchanged through
interfaces of resources and converters are points in a state space of the corresponding
quantum system (classical system can be considered as a special case of the quantum
system) that can be generally represented as a Hilbert space H . A casual box is an ex-
tension of a resource where interfaces can carry arbitrary number (or a superposition
of different numbers) of messages where each message is annotated with an ordering
label from a countable, partially ordered set T . The precedence operator tα ≺ tβ on
messages (α, tα) and (β, tβ) depicts that message β is in future light cone of α, see
Figure B.1 for a schematic depiction.

Definition B.0.1. A casual box is a map from H ⊗ l2(T ) to itself that respects causal-
ity condition where l2(T ) is a sequence space induced by l2 norm.

R

(m1, t1)
(m2, t2)

(mn, tn)

(m̃1, t̃1)
(m̃2, t̃2)

(m̃n, t̃n)

t1 ≺ t̃1, t2 ≺ t̃2, . . . , tn ≺ t̃n

... ...

Figure B.1: A schematic depiction of a Casual box with an example of a defined partial
order on messages m1, . . . ,mn, m̃, . . . m̃n.

The key property of Casual Boxes we shall need is composability. Indeed, in [27] a
proof is provided that Casual Boxes can be arbitrarily composed with itself or other
Casual Boxes while still providing security guarantees. The proof is complex and out
of scope of this project report, although it has essential use in the proofs used in it.
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B.1 Bit Commitment in Casual Boxes Framework

We define the ideal Bit Commitment functionality in honest case BC as a casual box

(b, t1) (received, t2)

(reveal, t3)
/abort

(b , t4)
/abort

BC

t1 ≺ t2 ≺ t3 ≺ t4

Figure B.2: Bit Commitment Casual Box for honest Alice and honest Bob.

During the commitment phase, Alice inputs her chosen commitment bit b. Bob is then
notified about Alice’s action by a received message. Alice later on decides whether she
reveals the bit b to Bob or whether she aborts the protocol. Note, that many implemen-
tations are feasible, for example, abort is triggered as well if Alice does not execute
reveal phase in some specified space-time region. Bob then receives either the bit b or
the abort message.

B.2 Biased Coin Flipping in Casual Boxes Framework

A p-biased coin flipping resource CF p = (CF p,CF p
A ,CF p

B ) outputs the same random
bit c to both of the involved parties. If either party is dishonest, it has probability
p of altering the coin flip outcome. Schematically, it is convenient to express the
functionality in Casual Boxes as follows.

(c, t) (c, t ′)
CF p

Figure B.3: Biased Coin Flipping Casual Box for honest Alice and honest Bob.

(c, t1)

(b, t2)
(c′ ∈ {b,c}, t3)CF p

A

t1 ≺ t2 ≺ t3

Figure B.4: Biased Coin Flipping Casual Box for dishonest Alice and honest Bob. c′= b
with probability p and c′ = c otherwise.
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(c, t1)

(b, t2)
(c′ ∈ {b,c}, t3) CF p

B

t1 ≺ t2 ≺ t3

Figure B.5: Biased Coin Flipping Casual Box for honest Alice and dishonest Bob. c′= b
with probability p and c′ = c otherwise.
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