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Abstract
Kurshan’s algorithm for language inclusion checks whether L (A) ⊆ L (B) holds for Büchi
automata A and B. When B is deterministic the algorithm is complete, but otherwise the algo-
rithm can only witness inclusion some of the time and can never witness non-inclusion. This
dissertation describes my implementation of Kurshan’s algorithm for checking inclusion be-
tween Büchi automata, based on the RABIT framework, written in Java. Work is evaluated
and experimental results analysed to come to a conclusion on the applicability of Kurshan’s
algorithm.
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Chapter 1

Introduction

1.1 Motivation

Büchi automata have applications in formal verification, particularly model checking of static
systems that run for an indefinite amount of time. Such systems might include, for example,
operating systems, as they should be ready to accept user input at any moment and do not
terminate at any set time. We can model them as running “infinitely” [GTW02]. We might
represent such a system with LTL (Linear Temporal Logic). Any LTL system can be converted
to an equivalent Büchi automaton, and similarly any LTL property can be converted to a Büchi
automaton. If all input words accepted by the system automaton are accepted by the prop-
erty automaton then the property holds for the system. This is a language inclusion problem.
[HR04] [HHK96]

The RABIT framework has various inclusion-checking algorithms implemented already. The
most used inclusion checking method, inclusion_Buchi, attempts various algorithms on the
input automaton pair, both in parallel and sequentially, while minimising the inputs along the
way. Should it be found that Kurshan’s algorithm is effective, RABIT could be modified and
Kurshan’s algorithm called at an appropriate point in inclusion_Buchi.

1.2 Goals

My primary aim for this project was to implement, using the RABIT framework, Kurshan’s
algorithm for checking language inclusion between Büchi automata. The effectiveness of the
algorithm and implementation was then to be evaluated, with key questions including:

• We know that Kurshan’s algorithm can return non-null answers when automaton B is
non-deterministic, but do so with any reasonable frequency for non-deterministic B?
How often does it return null results and how is this affected by properties of the in-
put automata?

• Is Kurshan’s algorithm faster than inclusion_Buchi, already implemented in RABIT?
How much faster? Is it only faster on certain classes of input?
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• How effective is this particular implementation of the algorithm? Could it be improved?
Was it developed with good engineering practises?

Should the implementation of Kurshan’s algorithm be deemed useful, it could be integrated
into the RABIT framework and perhaps employed by inclusion_Buchi in certain situations.

The description of Kurshan’s algorithm in [Kur87] is not intuitive, and so I also aim in this
dissertation to give some intuition to the algorithm and its data structures through high-level
textual descriptions and diagrams, neither of which were present in [Kur87].

1.3 Achievements

Throughout the project I

• implemented Kurshan’s algorithm in RABIT;

• tested Kurshan’s algorithm with both handwritten tests and randomly-generated automata
on which Kurshan’s algorithm could be cross-checked with RABIT’s inclusion_Buchi
for consistency;

• evaluated the effectiveness of Kurshan’s algorithm on its own compared to RABIT;

• implemented an integration of Kurshan’s algorithm into the main RABIT inclusion-
checking method and evaluated its effectiveness;

• and wrote more intuitive descriptions of Kurshan’s algorithm, via higher-level descrip-
tions and diagrams.

We will see in Chapter 5 that Kurshan’s algorithm seemed at first to outperform RABIT for
some classes of automata, but then see that this was really only due to a greater effort at min-
imising the input automata before checking for inclusion, rather than anything to do with Kur-
shan’s algorithm itself. If Kurshan were integrated into RABIT it would be useful only rarely.

1.4 Structure of the Report

I will start by providing the necessary background to the project in Chapter 2, including a
definition of Büchi automaton and an informal summary of Kurshan’s algorithm for checking
language inclusion. In Chapter 3 I will describe this project’s implementation of Kurshan’s
algorithm, written in Java, and, to better appreciate each component of the implementation, I
explain each step of Kurshan’s algorithm in a more intuitive style than [Kur87]. The design
problems that occurred throughout the project, and the decisions made to solve them, shall be
discussed here also. I will present data I gathered by recording results of the implementation on
randomly generated automata, as well as some previously-known “nasty” automata, in Chapter
5. Results will be analysed and conclusions drawn from them. In Chapter 6 I will draw on
the preceding chapters to evaluate the overall effectiveness of Kurshan’s algorithm and my
implementation of it. I will also discuss potential future work in this final chapter.
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Chapter 2

Background

2.1 Büchi Automata

Büchi automata are similar to finite automata, but with an important difference. A finite au-
tomaton takes as input a finite-length input word and accepts or rejects, and each finite au-
tomaton recognises a regular language. A Büchi automaton, however, takes as input an infi-
nite-length input word. The language recognised by a Büchi automaton is called an ω-regular
language. More formally, a Büchi automaton is a tuple A = (Q,Σ,∆, I,R) where:

• Q is a finite set of states

• Σ is a finite set of symbols, normally referred to as the alphabet

• ∆ : Q×Σ→ 2Q is the transition function, as with finite automata, where 2Q is the power
set of Q

• I ⊆ Q is the set of initial states

• R⊆ Q is the set of recurring states

Rather than being defined with a set of accepting states, a Büchi automaton is defined with a set
of “recurring states” R. [Wika] For a given Büchi automaton, a chain is an infinite sequence of
states v = v0,v1, ... where vi ∈ Q and |∆(vi,vi+1)|> 0 for all i. An acceptance chain is a chain
where for infinitely many values of i, vi ∈ R holds. [Kur87].

When we have |∆(v,u)|> 0, we say A has an edge (v,u) with associated symbols ∆(v,u).

A sequence t = t0, t1, ... where ti ∈ Σ for all i, called an “input word”, follows a chain v =
v0,v1, ... if for all i we have ti ∈ ∆(vi,vi + 1). t is accepted by automaton A if it follows an
acceptance chain. The language of A, L (A), is the set of all t ∈ Σω (where Σω is the set of
infinitely long strings of symbols in Σ) such that t follows some acceptance chain v. If an input
word t is in L (A), we say t is “accepted” by A.

When we say “Büchi automaton” without qualification we generally mean a non-deterministic
Büchi automaton. A deterministic Büchi automaton is one where |I| = 1 and for all q ∈ Q,
a ∈ Σ we have |∆(q,a)|= 1.
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For a Büchi automaton A = (Q,Σ,∆, I,R), let DA = (V,E) be the directed graph where:

• V = Q

• (v,u) ∈ E if |∆(v,u)|> 0

2.1.1 Edge-recurring Büchi Automata

Kurshan defines edge-recurring Büchi automata, a variant on the above definition of Büchi au-
tomata that is useful for his algorithm of overestimating the complement of a Büchi automaton.
In an edge-recurring Büchi automaton, R is a subset of Q×Q and we consider recurring edges
rather than recurring states. An acceptance chain for an edge-recurring Büchi automaton is
a chain v = v0,v1, ... such that for infinitely many i, (vi,vi+1) ∈ R holds. When it is unclear
from context which variant is being discussed, we refer to the standard variant of Büchi au-
tomata as “state-recurring Büchi automata”. [Kur87] Chains, input words and the language of
an edge-recurring automaton in the same way as for a state-recurring automaton.

Edge-recurring automata and state-recurring automata can represent exactly the same lan-
guages, and conversion between the two representations is straightforward. See [Kur87] for
a formal description of conversion between the representations, and Section 3.2 for a more
high-level description.

2.2 Kurshan’s Quasi-Complement, and its Applications to Lan-
guage Inclusion

Given Büchi automata A and B, we may wish to know whether L (A) ⊆ L (B) holds. To
answer this, we can use the method described in [Kur87] to construct an overestimation of the
complement of B; call this quasi-complement B̃. If B has n states then B̃ can be constructed
with O(n) states. We have L (B̄) ⊆ L (B̃), and, if B is deterministic, L (B̄) = L (B̃). Thus
if L (A)∩L (B̃) = /0 we can conclude that L (A)∩L (B) = /0 and thus L (A) ⊆L (B). The
reverse implication does not hold unless B is deterministic. Full details of this procedure can be
found in [Kur87]. Details on the procedure will be described throughout Chapter 3, at a higher
level than the original paper, in order to better explain the corresponding components of my
implementation.

This provides a relatively fast algorithm of checking for inclusion -the previously best known
algorithm for obtaining the complement of B constructed an automaton with 24n2

states - but
does not guarantee an answer unless B is deterministic.

Unlike finite automata, there exist non-deterministic Büchi automaton cannot be converted
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Figure 2.1: Büchi automata can be represented diagrammatically in a similar way to finite au-
tomata. Recurring states of state-recurring Büchi automata are drawn as two concentric circles,
and recurring edges of edge-recurring Büchi automata are drawn with double line. I will use this
representation throughout the dissertation.



to an equivalent deterministic Büchi automaton.1 Thus we cannot rely on conversion to a
deterministic Büchi automaton to ensure that Kurshan’s algorithm returns a definite answer. A
deterministic equivalent of a non-deterministic Büchi automaton can sometimes be found by
minimisation, however, as we will see in Chapter 5. This is an important fact and crucial to the
applicability of Kurshan’s algorithm in domains with any amount of non-determinism.

In my implementation, a null value will returned when an answer cannot be produced.

2.3 The RABIT Framework

RABIT (RAmsey-based Büchi automata Inclusion Testing) is a framework for checking language-
inclusion and other propeties of both Büchi automata and finite automata. Several inclusion-
checking algorithms have been implemented in RABIT, but Kurshan’s algorithm is not among
them. The main method for checking inclusion in RABIT, inclusion_Buchi, makes use of
several algorithms and techniques, trying first the least compuationally expensive algorithms
that may or may not produce a result, and later resorting to complete, yet expensive, algorithms.
RABIT is written in Java. [May]

2.3.1 Random Generation of Automata in RABIT

The RABIT framework can also randomly generate automata using the Tabakov-Vardi model.
[TV05] This feature takes the following parameters

• Size - Size of Q

• Alphabet Size - Size of Σ

• Transition Density - For each symbol s ∈ Σ the number of transitions labelled with s is
equal to dt · |Q|, where dt is the transition density

• Acceptance Density - Number of recurring states is equal to da · |Q|, where da is the
acceptance density

This project makes use of randomly generated automata for gathering experimental results, and
for cross-checking my implementation with inclusion-checking algorithms already in RABIT.

1This result is folkloric. Here is a proof: Take the language L of alphabet Σ = {a,b} that contains
only those strings with finitely many bs. This is accepted by non-deterministic Büchi automaton A =
({q0,q0},{a,b},∆,{q0},{q1}) where ∆(q0,a) = {q0,q1}, ∆(q0,b) = {q0}, ∆(q1,a) = {q1}, ∆(q1,b) = {}. Sup-
pose L were also accepted by some deterministic Büchi automaton B with recurring states R. B accepts aω where
aω is an infinitely long string of as, B must enter R after reading some finite prefix of aω, say at the the n0th symbol.
B also accepts an0baω, similarly entering R after the n1th symbol for some n1. We can continue this construction
and build the word an0ban1ban2 ... which contains infinitely many bs, but is accepted by B. This is a contradiction,
and thus B cannot exist. L is a language accepted by a non-deterministic Büchi automaton that is not accepted by
any deterministic Büchi automata.
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Chapter 3

Design, Implementation and a High-Level
Description of Kurshan’s Algorithm

3.1 A Data Structure for Representing Edge-Recurring Büchi
Automata

The RABIT framework already has graph-like data structures for representing Büchi automata,
but these are not suitable for Kurshan’s edge-recurring variant. I had to write a new data struc-
ture to represent edge-recurring automata. It was important to be able to convert automata
between the state-recurring and edge-recurring data structures, as algorithms already featured
RABIT - which would be useful for this project - can be used only on the pre-existing state-
recurring data structure.

I considered extending the class FiniteAutomaton, already present in RABIT. The rationale
behind this was that edge-recurring automata differ little in their definition from state-recurring
automata - the only difference being a set of recurring edges rather than recurring states. How-
ever, any subclass of FiniteAutomaton could be used in any context in which the parent class
is usable. This is problematic, as it is not safe to assume that all methods that work on state-
recurring automaton (e.g. RABIT’s pre-existing minimisation methods) would work correctly
on edge-recurring automata. Such a class extension would thus be in violation of the Liskov
Substitution Principle, an Object Oriented principle that aims to prevent errors and increase
maintainability.1

Additionally, the description of Kurshan’s algorithm to calculate the quasi-complement uses a
non-standard matrix-based representation of Büchi automata, rather than the traditional “states
and transition function” representation given in Chapter 2. By writing a new data structure, I
could structure it in a way that allows for closer correspondence with Kurshan’s matrix-based
descriptions of the data structure and algorithms and thus implementation was more straight-
forward - there was no need to translate the descriptions between different representations.

1The Liskov Substitution principle states that if class S is a subclass of class T then it should be possible to
replace all instances of type T with an instance of type S without altering the desirable behavior of the program. S
should require no more than T, and promise no less. [Lis87]
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Pair<ERAState,ERAState>

Figure 3.1: Class diagram of the edge-recurring automaton data structures

Conversion between state-recurring automata and edge-recurring automata is relatively com-
putationally inexpensive, compared to other parts of Kurshan’s algorithm, as can will seen in
Section 5.2, so if we desire to run, for example, RABIT’s minimisation algorithms on an edge-
recurring automaton, we can convert it to state-recurring, minimise, then convert it back again.

Thus I decided to make a whole new data structure to represent edge-recurring Büchi automata.

3.1.1 Overall Data-Structure

See Figure 3.1 for a class diagram of the data structures used to represent edge-recurring au-
tomata.

An instance of EdgeRecurringAutomaton can be constructed by passing a FiniteAutomaton
instance. This encapsulates the conversion from state-recurring to edge-recurring. It also has a
more “manual” constructor where each attribute is passed separately. This second constructor
is useful in unit testing, and is also used in the implementation of Kurshan’s algorithm itself.
The instance method toStateRecurring encapsulates the conversion from edge-recurring to
state-recurring.

3.1.2 Representation of Q, the States

In an earlier implementation of the data structure, I represented the states of an edge-recurring
automata only by integers. I chose to do so as it corresponds more closely with the description
of edge-recurring automata in [Kur87], so felt natural. However, this posed problems in im-
plementing Kurshan’s algorithm when the “duplicating” of states is required, as there was no
simple way to distinguish a state from its duplicate while both were represented by the same
integer. For this reason, I wrote the basic ERAState class, whose only attribute is a String label

14



p u b l i c Set < S t r i n g > ge tSymbols ( ERAState s r c , ERAState d s t ) {
i f ( s r c T o D s t s . c o n t a i n s K e y ( s r c ) ) {

Map<ERAState , Set < S t r i n g >> s r c D s t s = s r c T o D s t s . g e t ( s r c ) ;
i f ( s r c D s t s . c o n t a i n s K e y ( d s t ) )

r e t u r n s r c D s t s . g e t ( d s t ) ;
}
r e t u r n emptySet ;

}

Figure 3.2: The getSymbols method of EdgeMatrix

that, in this implementation, is used for toString methods and nothing else. The use of objects
rather than primitives means we can compare ERAState instances by checking only for object
reference equality and thus it is impossible for two states to “accidentally” be equal.

The set Q is represented in EdgeRecurringAutomaton by a Set of ERAState instances.

3.1.3 Representation of ∆, the Transition Function

To represent the transitions between states, I wrote a HashMap-based abstraction of an adja-
cency matrix. This is closer to the representations of automata used in [Kur87] and so imple-
mentation of later algorithms was more straightforward. I chose this HashMap implementation
over a traditional adjacency matrix as it allows for the ERAState object IDs to be used as keys,
and because Java’s HashMap interface provides useful auxiliary methods.

I implemented this in the class EdgeMatrix, which is essentially a 2-key HashMap which
takes as keys two instances of ERAState and returns a Set of Strings. The instance method
getSymbols returns the set ∆(src,dst) of symbols. It returns the empty set if there is no tran-
sition from src to dst. See Figure 3.2 for a code snippet.

Before constructing the quasi-complement of an automaton, Kurshan’s algorithm requires that
|∆(q,s)| > 0 for all q ∈ Q and s ∈ Σ. This is, in fact, baked into Kurshan’s definition of both
state-recurring and edge-recurring automata. [Kur87] We call an automaton A “lockup-free” if
it meets this condition. This necessarily-lockup-free definition is non-standard [Wikb] [Wika],
and I overlooked it in early implementations of EdgeRecurringAutomaton, only to discover
it when troubleshooting bugs further down the line. The solution I chose to solve this problem
is discussed in Subsection 3.2.1.

3.1.4 Representation of Σ, I and R : The Alphabet, Initial States and Re-
curring Edges

Σ is represented by a Set of strings, I by a Set of ERAState instances and R by a Set of Edge
instances. I chose Sets over, say, Lists or arrays, so that there is no need to worry about
duplication of data.
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3.2 Conversion Between State-Recurring and Edge-Recurring
Automata

3.2.1 State-Recurring to Edge-Recurring

Constructing an edge-recurring automaton from a state-recurring automaton is straightforward.
For a state-recurring automaton A = (Q,Σ,∆, I,R) we construct edge-recurring automaton A′ =
(Q′,Σ,∆′, I,R′) where:

• Q′ = Q∪{Sink} where Sink is a special “sink state”.

• R′ contains all edges (v,u) where u ∈ R

• The transition function is essentially the same, but “missing transitions” from all vertices
are directed to the sink state. We have:

– ∆′(v,u) = ∆(v,u) for all v,u ∈ Q

– For any v ∈ Q, have ∆′(v,Sink) = {s ∈ Σ| 6 ∃u ∈ Q such that s ∈ ∆(v,u)}

– ∆′(Sink,Sink) = Σ

The construction of R′ from R is intuitive. It is easy to see that an input word is accepted by A′

if and only if it is accepted by A. What is less immediately clear is the addition of the sink state.
This state is added (and transitions to and from Sink are added) to ensure that the EdgeMatrix
attribute of all EdgeRecurringAutomaton instances are lockup free, as discussed in Section
3.1.3.

The “state-recurring to edge-recurring” transformation is encapsulated in the constructor of
EdgeRecurringAutomaton. Its signature is EdgeRecurringAutomaton(FiniteAutomaton
aut).

As, initially, I overlooked the lockup-free requirement, the requirement is ensured only when
using the constructor with the above signature. The “manual” constructor described in Subsec-
tion 3.1.1 allows for the EdgeMatrix to be non-lockup-free. Future versions of this implemen-
tation might aim to ameliorate this.

When constructing an edge-recurring automaton from state-recurring automaton A, a “new”
alphabet Σ′ ⊇ Σ can optionally be passed to the constructor. This will result in extra sink-state
transitions being added to A′ for symbols in Σ′ \Σ. This ensures the intersection between A and
B̃ is constructed correctly, as this implementation requires that the alphabet of A be a subset of
the alphabet of B̃, and B̃ is constructed using this edge-recurring automaton data structure. This
augmented constructor has signature EdgeRecurringAutomaton(FiniteAutomaton aut, Set<String>
alphabet).

3.2.2 Edge-Recurring to State-Recurring

This transformation is more involved than the inverse above.

The full algorithm is described in [Kur87], but without much intuition. I shall give more intu-
ition to the algorithm in the following description. For each q ∈ Q that has both an incoming
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recurring edge and an incoming non-recurring edge it must be split into two states: qNR and
qR. We can view qR as the “recurring version” of the q and qNR as the “non-recurring version”.
qNR and qR have the same outgoing non-self-looping edges as q, but for incoming edges, qNR is
constructed with the incoming non-recurring non-self-looping edges and qR with the incoming
recurring non-self-looping edges. For self-looping edges on q, if recurring, the edge is repre-
sented as edges (qNR,qR) and (qR,qR) . If a self-loop on q is non-recurring, it is represented
as edges and (qR,qNR) and (qNR,qNR). Symbols associated with the edges are unchanged.
See Figures 3.3a and 3.3b for an example. To intuit: we have split q into a “recurring” and a
“non-recurring” state, to make up for the loss of ability to express distinctly recurring edges.

Ideally I would have captured this transformation in a constructor for FiniteAutomaton, so
as to mirror the constructor EdgeRecurringAutomaton(FiniteAutomaton aut), but alter-
ing the pre-existing code of RABIT was off-limits for this project and writing a subclass
FiniteAutomaton that differs only in additional constructor would be overkill. Thus I encap-
sulated the transformation in EdgeRecurringAutomaton.toStateRecurring. If Kurshan’s
algorithm were to be integrated fully into the RABIT framework, this transformation could
easily be relocated to a new constructor for FiniteAutomaton.

A complication arose in that Kurshan’s description of edge-recurring Büchi automata allows
for multiple initial states, whereas, for legacy reasons, the class FiniteAutomaton (used to
represent state-recurring automata) in RABIT supports only one initial state. A Büchi automa-
ton with start state set I can be transformed into a Büchi automaton with a single start state by
adding a new state qI , setting it as the only initial state, and setting ∆(qI,s) =

⋃
q∈I ∆(q,s). See

Figures 3.3b and 3.3c for an example. The new start state qi is never entered again after reading
the first symbol from the input word.

Note that, due to the addition of the sink state, converting an state-recurring automaton A to
edge-recurring then back again does not guarantee an identically structured automaton, but
language is preserved by these transformations so it will accept exactly the same language as
A. Space complexity is not a concern as O(n) states and O(n) edges (where n = |Q|) are added.

3.3 Computing the Quasi-Complement

[Kur87] provides an algorithm to convert a lockup-free edge-recurring automaton B into an
(incidentally, also lockup-free) edge-recurring automaton B̃ such that B̃ is an overestimation of
the complement of B - a quasi-complement. In this section I describe that algorithm, give some
intuition to its correctness, and present my implementation of the construction.

Given an automaton B = (QB,ΣB,∆B, IB,RB), the basic idea of the first step is to construct an
automaton M = (QB,ΣB,∆M, IB,RM) such that for all non-acceptance chains t on B, there exists
some acceptance chain t’ for M such that t’ is a suffix of t i.e. t = t0, t1, ..., tk, tk+1, ... and t’ =
tk, tk+1, .... See sub-figures 3.5a and 3.5b for an example. The chain t= a,b,b,a,b,b,a,(b,b, ...)
is not accepted by B, while the chain t’ = b,b, ... (a suffix of t) is accepted by M.

M is constructed from B by creating a copy of B with all (u,v) ∈ RB removed. The recurring
edges of M are chosen by finding a maximal spanning forest F of graph DM and, as all cycles
in DM must contain one of the back-edges, we can ensure all chains in M are accepting chains
by setting RM to the set of back-edges. [Kur87] In this implementation, the set of back-edges
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p u b l i c s t a t i c Set <Edge > backEdges ( EdgeMatr ix e d g e M a t r i x ) {
Set <ERAState > examined = new HashSet < >() ;
Set <ERAState > h a s P a r e n t = new HashSet < >() ;
Set <Edge > f o r e s t = new HashSet < >() ;
Set <Edge > backEdges = new HashSet < >() ;
e d g e M a t r i x . g e t V e r t i c e s ( ) . f o r E a c h ( s r c −> {

i f ( ! examined . c o n t a i n s ( s r c ) )
s e a r c h ( s r c , edgeMat r ix , examined , h a s P a r e n t , f o r e s t , backEdges ) ;

} ) ;
r e t u r n backEdges ;

}
p r i v a t e s t a t i c vo id s e a r c h ( ERAState s r c , EdgeMatr ix edgeMat r ix , Set <

ERAState > h a s P a r e n t , Set <ERAState > a n c e s t o r s , Set <Edge > f o r e s t , Set <Edge
> backEdges ) {

e d g e M a t r i x . g e tO u t ( s r c ) . k ey Se t ( ) . f o r E a c h ( d s t −> {
a n c e s t o r s . add ( s r c ) ;
i f ( a n c e s t o r s . c o n t a i n s ( d s t ) )

backEdges . add ( new Edge ( s r c , d s t ) ) ;
e l s e i f ( ! h a s P a r e n t . c o n t a i n s ( d s t ) ) {

f o r e s t . add ( new Edge ( s r c , d s t ) ) ;
h a s P a r e n t . add ( d s t ) ;
s e a r c h ( d s t , edgeMat r ix , h a s P a r e n t , a n c e s t o r s , f o r e s t , backEdges ) ;

}
a n c e s t o r s . remove ( s r c ) ;

} ) ;
}

Figure 3.4: Method backEdges takes an edgeMatrix and returns a set of back edges for some
maximal spanning tree

is found through a modified depth-first search which records vertices that have been previously
examined. See Figure 3.4 for a code snippet of the implementation. [AHU74] [AHU83]

In Figure 3.4, the line beginning else if (!hasParent.contains(dst)) is of particular
note. hasParent, a Set of ERAStates contains all previously visited states that have some
parent state added to the in-construction forest. In the case where we a child state is not an
ancestor (in the forest) of the currently examined state, nor does it have a parent, it must be
the root of some other tree in the forest. When this else-if condition evaluates to true, the
subsequent line adds an edge that conjoins two trees of the forest while maintaining that forest
is, in fact, a valid forest of DM.

To construct B̃ = (Q̃B,ΣB, ∆̃B, ĨB,RM) , we combine B and M as follows:

• Let Q̃B = {vB,vM|v ∈ QB}

• Let ĨB = {vB,vM|v ∈ IB}

• ∆̃B is defined by:

– ∆̃B(vM,uM) = ∆M(v,u)

– If (v,u) 6∈ RB, set ∆̃B(vB,uB) = ∆B(v,u), else set ∆̃B(vB,uM) = ∆B(v,u)
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– To keep B̃ lockup-free, add a sink state Sink for missing transitions, similar to that
described in Subsection 3.2.1.

To give some intuition to this construction, observe Figure 3.5: B̃ combines B and M into one
graph, with the vertices of B and M distinct from each other. Recurring edges in B are no longer
recurring, and, for each recurring edge in B, we add a corresponding edge from the “B section”
of the automaton to the “M section” of the automaton. Any input word t on a non-accepting
chain in B must either:

• Never hit a recurring edge, in which case it must be on an acceptance chain in M and thus
it is on an acceptance chain in B̃.

• Or, at some point, hit a recurring edge for a final time. Let t’ be the suffix of t whose
first symbol makes the final “recurring edge” transition in B. When running t on B̃, a
transition is made from the “B section” to the “M section” when the first symbol of t’ is
read. The remainder of t’ must loop in the “M section” of the automaton, and all chains
in M are an acceptance chain. Thus t is accepted by B̃.

Thus we must have that L (B̄)⊆L (B̃).

I implemented this computation in the static method InclusionKurshan.kurshanComplement.

3.4 Emptiness of the Intersection of Two Büchi Automata

The intersection construction of two Büchi automata is described in [Cho74]. This subsection
will give some intuition to the construction, and describe my implementation (and adaptations
for this specific use case) of the intersection and emptiness checking algorithms.

The intersection construction of two finite automata is familiar and straightforward. For two
finite automata A1 = (Q1,Σ1,∆1, I1,A1) and A2 = (Q2,Σ2,∆2, I2,A2), there intersection is A∩ =
(Q∩,Σ∩,∆∩, I∩,A∩) where:

• Q∩ = Q1×Q2

• Σ∩ = Σ1∩Σ2

• ∆∩((q1,q2),s) = (∆1(q1,s),∆2(q2,s)) for all (q1,q2) ∈ Q∩

• I∩ = I1× I2

• A∩ = A1×A2

It is easy to see that each state in the intersection is tracking which state we would be in for
each of the original automata were we to run them simultaneously on the same input word.

One might naively construct the intersection of two Büchi automata in this way (taking the
cross product of the recurring states in place of accepting states) such as in Figure 3.6c, but this
is incorrect.

Instead, the intersection state set Q∩ sees two states for each (q1,q2) ∈ Q1×Q2. Call these
states (q1,q2)1 and (q1,q2)2. The subscript of these states can be interpreted as an annotation
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defining which of the original automata we would be “waiting on” to enter a recurring state,
were we to run them on the same input word simultaneously.

For two Büchi automata A1 = (Q1,Σ1,∆1, I1,A1) and A2 = (Q2,Σ2,∆2, I2,A2), we define their
intersection A∩ = (Q∩,Σ∩,∆∩, I∩,A∩) as follows:

• Q∩ = {(q1,q2)1,(q1,q2)2|(q1,q2) ∈ Q1×Q2}, as described above

• Σ∩ = Σ1∩Σ2, as before

• I∩ = {(q1,q2)1|(q1,q2) ∈ I1× I2}

• R∩ = {(q1,q2)2|(q1,q2) ∈ I1× I2 and q2 ∈ R2}

• ∆∩ is a bit more complicated to define for Büchi automata. For edges out of non-recurring
states, we define them as we would in the finite automata intersection for states with
the same subscript i.e. ∆∩((q1,q2)i,s) = (∆1(q1,s),∆2(q2,s))i if qi 6∈ Ri, for i ∈ {1,2}.
However, for a state (q1,q2)1 with q1 ∈ R1, then ∆∩((q1,q2)1,s) = (∆1(q1,s),∆2(q2,s))2,
and symmetrically for (q1,q2)2 with q2 ∈ R2.

Observe that the subscript “swaps” when a transition is made out of a recurring state.
Thus, after an automaton reading the input word leaves a recurring state (q1,q2)2 ∈ R∩
(and note that we must have q2 ∈ R2) the subscript swaps to 1 and the automaton cannot
enter another recurring state until the subscript swaps back to 2 i.e. until the automaton
(enters and) leaves a state (q′1,q

′
2)1 with q1 ∈ R1. Thus R∩ reading an input word t visits

states in R∩ infinitely many times if and only if t, given to A1 or A2, enters states in R1 or
R2, respectively, infinitely many times.

See Figure 3.6d for an example of the correct Büchi automaton intersection construction.

The importance of the intersection construction to this implementation of Kurshan’s algorithm
in the need check whether L (A∩ B̃) = /0 holds for automata A and B. It seems remiss to
construct the entirely new automata (with O(|QA| · |QB|) states) when an acceptance chain could
be found early in its construction. For this reason, I wrote the emptiness check to run while
dynamically constructing the intersection. We can identify (and construct) the reachable states
of any state of the intersection given the original transition functions of A and B. Emptiness
is checked with a novel version of Tarjan’s algorithm [Tar72] that has been modified to take
two automata A and B̃ as input and dynamically construct the graph of their intersection, DA∩B̃,
while checking for SCCs (Strongly Connected Components) that contain recurring states. This
allows for early termination in the cases where emptiness does not hold i.e. the cases where
inclusion does not hold between A and B. In cases where we want to minimise A and B prior
to performing Kurshans algorithm, the time to construction the intersection is dominated by
the minimisation time, so the early termination helps little in these cases. (We will see in
Chapter 5 that we want to perform some minimisation in most cases if there is any amount of
non-determinism.)

3.5 Bringing the Components Together

I wrote the primary interface to this implementation of Kurshan’s algorithm as a single method.
It is short and straightforward to understand. See Figure 3.7.
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p u b l i c s t a t i c Boolean i n c l u d e s ( F i n i t e A u t o m a t o n a , F i n i t e A u t o m a t o n b , i n t
l o o k a h e a d ) {

a = l o o k a h e a d < 1 ? min . removeDead ( a ) : min . Minimize_Buchi ( a , l o o k a h e a d ) ;
b = l o o k a h e a d < 1 ? min . removeDead ( b ) : min . Minimize_Buchi ( b , l o o k a h e a d ) ;
Set < S t r i n g > s h a r e d A l p h a b e t = new HashSet < >() ;
s h a r e d A l p h a b e t . ad dA l l ( a . g e t A l l T r a n s i t i o n S y m b o l s ( ) ) ;
s h a r e d A l p h a b e t . ad dA l l ( b . g e t A l l T r a n s i t i o n S y m b o l s ( ) ) ;
F i n i t e A u t o m a t o n complementB = kurshanComplement ( b , s h a r e d A l p h a b e t ) ;
i f ( Empt ines s . i s E m p t y I n t e r s e c t i o n ( a , complementB ) )

r e t u r n t r u e ;
e l s e i f ( i s D e t e r m i n i s t i c ( b ) )

r e t u r n f a l s e ;
e l s e

r e t u r n n u l l ;
}

Figure 3.7: The final inclusion checking method

The parameters a and b are the system and specification automata respectively.

The parameter lookahead is used to determine the strength of minimisation performed on
the input automata, prior to executing the steps of Kurshan’s algorithm discussed in the pre-
ceding section. Minimisation of Büchi automata is important to this project, as by reducing
the number of states we also decrease the non-determinism of an automaton, so to speak, and
sometimes even minimise a non-deterministic automaton to an equivalent deterministic one;
this means that Kurshan’s algorithm of inclusion checking is more likely to return an answer if
the specification automaton B is minimised prior to computing the quasi-complement. RABIT
already contains minimisation methods. [CM19] These methods take an integer “lookahead”
parameter. Increasing this parameter generally results in a smaller number of states in the
minimised automaton, and in a less non-deterministic automaton, but increasing the lookahead
also increases the execution time of the minimisation algorithm. The algorithm in [Kur87]
makes no mention of minimisation, but in practice, if Kurshan’s algorithm is to be used on
non-deterministic automata, it would be wise to minimise first in order to avoid null answers.
See Chapter 5.
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Chapter 4

Testing and Verification

4.1 Unit Testing

I generally wrote unit tests for each non-trivial method, before beginning work on a new
method, to ensure correctness of the individual components of the implementation. Over 35
unit tests were written. Branch coverage of over 93% was achieved for the package kurshan.algorithms,
where kurshan’s algorithm itself is actually implemented, while branch coverage of over 84%
was achieved in the package kurshan.datastructure. This coverage could be improved
from more extensive testing. However, many of the missed branches were in straightforward
methods such as compareTo methods that were not used in the final implementation. These
methods were left as I did not want to assume they would never be used in future.

4.2 Cross-checking With Pre-Existing RABIT Algorithms

As RABIT can already check inclusion in inclusion_Buchi (which combines several algo-
rithms) I could cross-check Kurshan’s algorithm with inclusion_Buchi to further ensure
correctness. Automata pairs were generated randomly using the Tabakov-Vardi method (see

Figure 4.1: Branch coverage from the project’s unit tests, as measured by Eclipse
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subsection 2.3.1) with following parameters :

1. Size = 25

2. Alphabet Size = 2

3. Transition Density = 1.8

4. Acceptance Density = 0.5

I chose these parameters as they are similar to the parameters used in later data collection,
and because inclusion holds for automata pairs generated with these parameters at a reasonable
frequency. The size is 25 to allow for relatively fast computation.

I wrote a script to generate these automata and run both Kurshan’s algorithm and inclusion_Buchi
on each automata pair, and report any pairs for which the two methods are inconsistent in their
answers i.e. if Kurshan’s algorithm’s answer is non-null, then inclusion_Buchi should return
the same answer. If an inconsistency was found, the offending two automata would be saved to
file and unit tests written to replicate the issue. I then found and fixed the bugs associated with
these automaton pairs. I generated and saved in this fashion until all new unit tests passed and
no new inconsistencies could be found in any reasonable amount of time

In the end, over 100,000 automata pairs were checked tested consistent answers. It is safe
to say that, if any erroneous cases remain for these automaton paramters, they do not arise
often. It might be prudent in future to cross check with automata generated from more varying
parameters. Problematic edge-cases might be found sooner in this way. The results gathered
in Chapter 5 still failed to flag up any further inconsistencies, strengthening my belief that the
implementation is correct.
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Chapter 5

Results and Analysis

This chapter presents results from various experiments to analyse the performance of Kurshan’s
algorithm and compare it to RABIT’s pre-existing inclusion_Buchi method.

5.1 Initial Experiment

These experiments analyse the performance of Kurshan’s algorithm on non-deterministic au-
tomata generated by various parameters.

We wish to compare the performance of my implementation of Kurshan’s algorithm to the
performance of RABIT’s pre-existing inclusion-checking method inclusion_Buchi, which
makes use of several algorithms to compute an answer.

For brevity1 in the rest of this chapter I will frequently refer to Kurshan’s algorithm as just
“Kurshan” and inclusion_Buchi as “RABIT”.

5.1.1 Setup

For each experiment in this section, a set of automaton pairs was generated using the Tabakov-
Vardi method (see sub-section 2.3.1) with chosen parameters. The acceptance density used for
all sets was 0.5 and alphabet size was 2. The other parameters differ between the sets and will
be stated explicitly before each set of results. Kurshan’s algorithm and RABIT were run on
each of these pairs, with their outputs and execution times recorded.

In some cases inclusion_Buchi can take an extremely long time, resorting to complete yet
time-consuming inclusion checking algorithms. There are, in fact, still automaton pairs with
fewer than just fifty states that remain to be solved by RABIT, due to stalling. See Section 5.3.
For this reason, I set a timeout on RABIT running on each experiment. If the timeout is reached
before RABIT can output an answer, we consider it to have failed to return an answer and we
then write the output as null. The duration of these timeouts is stated explicitly prior to sets of
results. Timeouts were chosen based on a time that was observed to be an upper limit on the

1and reduce the amount monospace font!
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execution time of the non-stalling inputs, from when experiments were run without a timeout
in previous attempts.

For each set of automaton pairs, I tried minimising the input automata A and B with various
lookaheads before executing the rest of Kurshan’s algorithm. Lookaheads measured were 0,
1, 4, 8 and 12, but for the sake of brevity I will present mostly results for lookaheads 0, 4, 8
and (in one case) 12; these were the lookaheads with the best range of results. When I say
“lookahead 0”, this is not technically correct, and I use it as shorthand for when no advanced
minimisation is used - the only “minimisation” is the removal of dead states. See Section 3.5
for an explanation of minimisation and lookaheads in RABIT.

My earlier implementations of Kurshan’s algorithm for this project further minimised the quasi-
complement B̃ after computing it from a minimised B, but, as will be seen Subsection 5.2, the
time to check for emptiness of the intersection of A and B̃ is dominated by the time to minimise
B in the first placed, so any minimisation of B̃ would likely increase execution time without
even reducing the chances of a null answer being returned.

I partitioned the experimental results into categories based on answers returned by the algo-
rithms and (if relevant) whether or not the automaton B was minimised to a deterministic au-
tomaton.

In addition to the execution times of each partition, we are also interested in the relative size
of each partition: How often does Kurshan return an answer when inclusion holds What about
when inclusion doesn’t hold? Are there partitions in which RABIT times out but Kurshan
returns an answer? I made the determinism partitions to find how often Kurshan’s algorithm
returns an answer for non-deterministic B.

For each set of results, I will discuss general observations. Full result tables, for the keen
reader, are given in Figures 5.1 and 5.3. For most results, median times are observed, rather
than mean times, to avoid outliers asserting too much influence. I will make explicit which
kind of “average” is presented.

5.1.2 Hardware

All experiments were run on the University of Edinburgh student.compute general purpose
servers. [Edi] The longjob command to run the experiments was started with a nice [Ker10]
value of 10, so as not to hog the server resources. It is inevitable that there is some noise in the
results due to experiments run by other students simultaneously, and it is for this reason that
such large sets of automaton pairs were used. With 500 pairs of automata, the noise will matter
less and hopefully even out.

Specifications of the “student.compute” servers are as follows:

• CPU: 40 × Intel Xeon CPU E5-2690 v2 @ 3.00GHz

• RAM: 400GB

Although, as noted, only a small portion of these resources was used.

Ideally the experiments would have been run on a single dedicated machine rather than servers
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accessible to all students, but that was not an option for this project due to how long the expeir-
ments took.

5.1.3 100 State Automata Results

For each of the three experiments in this subsection, a set of 500 pairs of automaton were
generated, where each automaton in a pair has 100 states before minimisation. Each set was
generated with a different transition density. (See 2.3.1 for an explanation of transition density
and other parameters.)

RABIT was restricted by a timeout of 5 minutes for these experiments.

Full timing results are given in Figure 5.1.

RABIT was restricted by a timeout of five minutes for these experiments.

5.1.3.1 Transition Density 1.6

A partition of particular interest is that where inclusion holds but B has not been minimised to
a deterministic automaton by Kurshan. That partition in this results set sees Kurshan confirm
inclusion in 32 or 49 cases with lookahead 8, and poorer results with lower lookaheads. In
the partition where Kurshan returns true for these non-deterministic automata, RABIT is faster
than Kurshan by a factor of of over 5 for lookaheads greater than 4. It is useful to know that
Kurshan even can return a result for these automata with any reasonable likelihood.

In the partitions where RABIT confirms inclusion and Kurshan returns the correct answer,
Kurshan outspeeds RABIT only when it can B to a deterministic automaton - it’s faster by
a factor of around 8 for these cases. For the pairs where Kurshan cannot minimise B to an
equivalent deterministic automaton, RABIT is extremely fast, relative to the rest of the results
in Subfigure 5.3a.

RABIT is also slower where inclusion holds yet Kurshan returns null, though this is less useful
as we don’t actually get an answer out of Kurshan’s algorithm. With lookahead 8, Kurshan is
about 8 times faster than RABIT for this partition, and even faster for lower lookaheads. But a
lower lookahead does of course see Kurshan return null more often.

This transition density for 100-state automata sees RABIT timeout at five minutes most fre-
quently - with 38 timeouts - but Kurshan could not solve these timed-out automaton pairs either,
even with lookahead 8. Kurshan does save time in the partitions where RABIT times out - by
a large factor. This time reduction is not particularly useful given that Kurshan doesn’t return
an answer for these results, but it is perhaps a silver lining. Not too much time is wasted wait-
ing for Kurshan, whereas RABIT could have taken far longer than five minutes had a timeout
not been implemented. In Subsubsection 5.1.4.1, which analyses the same transition density
on 1000 state automata, we will see that in cases where RABIT times out, it is probable that
inclusion does hold.

When RABIT returns false, Kurshan is slower by at least a factor of 5 for non-zero lookaheads,
regardless of answer returned by Kurshan. It is of course even slower for higher lookaheads.
This trend will repeat in all sets of automata.
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By increasing lookahead, we can greatly decrease the number of null answers for inclusion-
positive input pairs - from 51 null answers to 17 - but the improvements for the non-inclusion
partitions are barely an improvement: from 358 null answers to 330.

For this first set of automata, comparing the algorithms as they are, there does not seem to
be much reason to use Kurshan’s algorithm over existing methods. In domains where inclu-
sion mostly holds, perhaps Kurshan could see some applicability, but in domains that see non-
inclusion hold any significant amount of time, Kurshan would be near-useless, as even with
lookahead 8 we see Kurshan return null for more than 80% of inclusion-negative pairs. Even
when it does return false, Kurshan is considerably slower than RABIT.

5.1.3.2 Transition Density 1.8

In the partitions where inclusion holds and B has not been made deterministic, this transition
density sees an even lower proportion of null answers from Kurshan’s algorithm. With looka-
head 8 there are only 10 null answers of 179 inclusion-positive input pairs. For lookahead 8,
Kurshan now outspeeds RABIT in all partitions where inclusion holds, regardless of whether
B is minimised to deterministic.

Execution time in partitions where inclusion doesn’t hold are similar to Subsection 5.1.3.1,
though Kurshan is generally slightly faster than before. Thankfully, we also see a reduction in
null answers for the non-inclusion partitions - the amount of null answers for transition density
1.6 was distressingly high. With lookahead 8, we see a non-null answer from Kurshan for about
half of the automaton pairs for which we know inclusion to not hold.

RABIT also times out significantly less for this transition density. The timeout partitions are
not large enough for us to draw many conclusions from the data regarding execution time. As
before, Kurshan could not return an answer in experiments where RABIT timed out.

See Figure 5.2 for branching case diagrams that visualise how often each parition of results
arises this set of automaton pairs for three different lookaheads.

As Kurshan (with lookahead 8) so rarely returns null on inclusion-positive pairs in this experi-
ment, and outspeeds RABIT by a large margin on these automata, It could be beneficial to run
Kurshan in practise on such automata. One might write a simple combined algorithm that runs
Kurshan’s algorithm on the input pair, then if a null answer is returned, the (now minimised)
automata are passed to RABIT’s inclusion_Buchi method. If inclusion needed to be checked
between a large number of pairs, this combined algorithm should see time saved if the pairs
tend towards inclusion holding, seeing as how Kurshan rarely returns null and executes faster
than RABIT for inclusion-positive pairs. More nuanced and realistic integration of Kurshan
into RABIT’s inclusion_Buchi method will be discussed in Section 5.4.

5.1.3.3 Transition Density 2.0

This increase in transition density sees similar changes in proportion of null answers. Kurshan’s
algorithm now only returns null in a total of 60 of 500 experiments, with the vast majority of
null answers being for inclusion-negative cases. RABIT never timed our on any automata
generated by these parameters, and execution times are otherwise similar to those of subsub-
subsection 5.1.3.2. Kurshan still tends to outspeed RABIT in the inclusion-positive cases, now
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with far fewer null answers. The combined algorithm proposed at the end of 5.1.3.2 would
perform slightly better on this set of automata, as inclusion holds more often.

5.1.3.4 General Conclusions on 100 State Automata

On lower transition densities, Kurshan probably returns null too often to be used in practise.
The simple combined algorithm - proposed in Subsubsection 5.1.3.2 - could save some time on
automata of transition densities 1.8 and 2.0, as:

• Kurshan generally outspeeds RABIT when inclusion holds

• These higher transition densities see fewer null answers

• Inclusion tends to hold more often for higher transition densities

. These results are not earth-shattering, but we now know that Kurshan’s algorithm is not
useless in practise, and perhaps could have some applicability if we delve deeper into other sets
of automaton pairs. Larger automata, for instance...

5.1.4 1000 State Automata Results

For each of the following three experiments, automaton pairs were generated with the same
parameters as in Subsection 5.1.3, but with the number of states increased to 1000.

A longer timeout of 10 minutes was used.

Full timing results are given in Figure 5.3.

5.1.4.1 Transition Density 1.6

RABIT returns true less often for these larger automata. Regardless, we can observe that, in
the cases where we know inclusion to hold, while increasing lookahead up to 8 does increase
the time taken by Kurshan’s algorithm, it doesn’t change the partitions whatsoever. Due to
this anomaly, I reran the experiments with an even higher lookahead of 12 as a sanity check,
and we can see that the partition sizes do change slightly for this higher lookahead. An extra
column with lookahead 12 as been added to the table in Subfigure 5.3a only. With this extra run
of experiments, the overall difference in number of null results from Kurshan (looking only at
the cases where RABIT does not timeout) is small. We go from a total of 363/406 null results
across all partitions to 335/406.

Kurshan’s algorithm witnesses inclusion in almost all 18 cases where RABIT does so - regard-
less of lookahead - for this set of automaton pairs, but RABIT returns its results so blindingly
fast that Kurshan cannot compete. We can safely assume that these are near-trivial cases of
inclusion checking. Two of them, in fact, were deterministic after just the removal of dead
states. For lookahead 12, Kurshan returns true in all cases where RABIT does so.

In the partitions where inclusion doesn’t hold, Kurshan’s results are again disappointing for
this transition density. For the lookaheads lower than 12, non-inclusion is only witnessed in
26/388 cases, and Kurshan is slower than RABIT by at least a factor of 15. The time difference
between Kurshan with lookahead 12 and RABIT, in these partitions, is again stark.
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Count Minimum Time Maximum Time Median Time Mean Time
K=true, trivial=false 8 246s 1628s 479s 649s
K=true, trivial=true 10 241s 689s 475s 487s

K=null 69 380s 3017s 629s 768s

Figure 5.4: test

Figure 5.5: Results for lookahead 12 on the 87 automata pairs on which RABIT timed out at 30
minutes. The value of “trivial” refers to whether B was minimised to a trivial automaton.

RABIT times out in 94 experiments here. With lookaheads of 8 and lower, Kurshan fails
to solve all of these cases. Kurshan with lookahead 12, however, witnesses inclusion for 22
pairs! The median time taken by Kurshan in these experiments is just over 5 minutes - half of
RABIT’s assigned timeout. This might provide insight into the ease of witnessing inclusion -
by RABIT’s pre-existing methods - for automata generated by these parameters. It appeared
at first that inclusion only held in a few cases, and in those cases it was trivial to solve. (See
above.) Yet upon the introduction of lookahead 12 we can see that inclusion in fact holds for
at least 22 of the timed out cases - and likely more. Proving inclusion seems to tend towards
either exceedingly easy or exceedingly difficult.

It’s possible that inclusion holds for (almost) all of these timed out cases. As can be seen across
all of the results tables, proving non-inclusion is typically far less computationally expensive
than proving inclusion. To prove non-inclusion, an algorithm need only find an input word that
is accepted by A yet not accepted by B. To prove inclusion, on the other hand, an algorithm
must prove that every single input word accepted by A is also accepted by B. So it would make
sense for the difficult cases to be mostly inclusion-negative. Of the cases where RABIT does
prove non-inclusion, the longest execution time was 379 seconds; this is close enough to the
timeout of 600 seconds that we could expect some of the timed out cases to be on pairs for
which inclusion does not hold.

Concerned that these impressive results arose due to the RABIT timeout being set too low, I
reran the experiments with a timeout of thirty minutes. This timeout was recommended by
my supervisor, as anecdotal evidence suggests that if RABIT does not compute a result in 30
minutes for this size of automaton, then it is unlikely to ever compute a result in any reasonable
time. These results are presented in Figure 5.5.

There are 7 fewer timeouts under the increased timeout, but still substantially many at 87. Kur-
shan’s algorithm with lookahead 12 solves 18 of these, with even the longest of these execution
times not exceeding RABIT’s timeout of 30 minutes. (Kurshan’s algorithm was not run with
a timeout.) 10 of these true answers followed B being minimised to a trivial automaton, i.e.
an automaton that accepts either all words or no words, prior to calculation of B̃. Had RABIT
“tried harder” to minimise B down to such a trivial automaton before attempting the complete-
yet-expensive algorithms, it may not have stalled, so it is possible that many of the pairs for
which RABIT stalled and Kurshan returned true may not quite have required Kurshan’s algo-
rithm to avoid timeout. I shall analyse this properly in Section 5.4.

After not-so-impressive results from Kurshan on the 100 state automata, this set of 1000 state
automata demonstrates that Kurshan certainly can outperform RABIT’s pre-existing methods
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as they are. Kurshan is not effective at witnessing non-inclusion for these automata, and it does
still struggle to witness inclusion - with many pairs remaining unsolved by either method - but
for witnessing inclusion it ostensibly performs better than RABIT.

5.1.4.2 Transition Density 1.8

These results are less noteworthy than the preceding subsubsection’s. We see similar trends
similar to those observed in Subsubsection 5.1.3.2. It’s worth noting, that, in contrast to the
100 state automata, we barely see a difference in the sizes of the partitions when increasing the
lookahead from 0 to 4. For transition density 1.6 (above) we might say that some “threshold”
was passed regarding the lookahead, somewhere between 8 and 12, at which point we get
significant decrease in the number of null results. We can see something similar here, in that
there is barely a difference between lookahead 0 and 4 and yet the improvement between 4 and
8 is markedly better. Increasing beyond this threshold barely sees a reduction in null results.
This was not observed in the 100 state automata.

5.1.4.3 Transition Density 2.0

Again we can see a “threshold” passed, this time between lookaheads 0 and 4, at which point
we see a drastic decrease in the number of null results. Increasing the lookahead beyond this
threshold sees further improvement but returns are diminishing and, of course, the execution
time is greater for higher lookaheads.

5.1.4.4 General Conclusions on 1000 State Automata

The most notable results from the experiments on these larger automata are those from the
automata with transition density 1.6. Kurshan solving so many pairs on which RABIT timed
out tells us that this algorithm could have a use case. On large automata with low transition
densities, we still can’t always expect an answer from Kurshan’s algorithm - it is not complete
- but we can expect it not to stall (unlike RABIT) and expect it to solve some inclusion-positive
pairs on which RABIT would take an extremely long time.

A pattern on these larger automata that was not present in the 100 state automata is that, for
different transition densities, there is some “threshold” that the lookahead must pass to reduce
the frequency of null answers from Kurshan. After passing this threshold, any further increase
in lookahead has diminishing returns.

Like the 100 state automata, Kurshan outperforms RABIT (in terms of execution time) on
inclusion-positive pairs for transition densities 1.8 and 2.0, though by a smaller margin.

The combined algorithm proposed in Subsubsection 5.1.3.2 would generally not be useful on
these larger automata, as the time saved in the inclusion-positive cases is far less drastic than
for the 100 state automata. As we will see in the following section, the execution time of my
implementation is dominated by the time to minimise the inputs using RABIT’s pre-existing
minimisation methods. Thus any issues with scaling up to larger automata cannot lie in my
specific implementation of Kurshan’s algorithm.
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5.2 Execution Time of Each Stage of the Algorithm

For each of the experiments described in Subsections 5.1.3 and 5.1.4, while I presented the sum
total execution time of all stages in Kurshan’s algorithm, the actual timing data of Kurshan’s
algorithm was split into the following stages:

• Time to minimise B

• Time to calculate the quasi-complement, B̃

• Time to check if A∩ B̃ is empty

• Time to check if B, after minimisation, was deterministic

All percentages given in this section refer to the mean percentage of time taken, so that I can
refer to the proportion of time taken by one stage compared to another.

The recurring pattern across all experiments - regardless of automaton size, automaton tran-
sition density, and minimisation lookahead - is that the time to minimise the input automata
dominates the execution time of Kurshan’s algorithm. Even with just lookahead 1, in all exper-
imental sets of automata, minimisation took over 95% of the total execution time. With higher
lookaheads, this percentage is even greater. Lookahead 12 sees over 99% of its execution time
spent on minimisation.

It is for this reason that, for this implementation of Kurshan’s algorithm, only A and B are
minimised, rather than additionally minimising B̃ after computing it. This second stage of
minimising would likely increase execution time. It would be worth investigating variations of
the algorithm that don’t minimise A and minimise only B for the purpose of potentially making
it deterministic and thus eliminating the possibility of receiving a null output. This could cut
execution time, but it could not be decreased to more than half of the current time, as we would
still be performing minimisation on the other input automaton B of the same size.

With lookahead 0 the construction of the quasi-complement B̃ is generally the most expensive
stage of the algorithm, taking over 85% of the computation time in all experiments. There
are, however, too many null answers for this variant of the algorithm to be practical on input
automata with the amount of non-determinism seen earlier.

5.3 Performance on Previously Known “Nasty” Automata

A set of 155 known “difficult” Büchi automaton pairs were provided by my supervisor. Of
these, 111 pairs have been solved for inclusion by other methods. My implementation of Kur-
shan’s algorithm, with minimisation lookahead 12, solved 11 of the 111 previously-solved
pairs. It solved none of the unsolved pairs. From this small experiment, it suggests that Kur-
shan’s algorithm, while fast in some cases, may not provide answers to currently unknown
inclusion questions for non-deterministic automata. But as seen in Subsubsection 5.1.4.1, we
have found randomly generated automaton pairs on which only Kurshan, so far, has returned
an answer - but this could change were the timeout on incluson_Buchi increased or removed,
as inclusion_Buchi is complete.
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5.4 Integration Into RABIT

5.4.1 Motivation

After the positive-looking results of Subsubsection 5.1.4.1, I was interested to see how well
Kurshan’s algorithm could perform when integrated into the inclusion_Buchi method al-
ready included in RABIT.

The primary method for checking inclusion in RABIT, inclusionBuchi, makes use of several
techniques - trying one after another in increasing order of typical execution time, minimising
the two automata along the way - until an answer is returned. See Figure 5.6. As we saw in
Subsubsection 5.1.4.1, there are classes of automata for which Kurshan’s algorithm may return
a non-null answer long before RABIT would. Given that (for all experiments presented above)
Kurshan’s algorithm never stalled, it could be worth it for RABIT to run Kurshan’s algorithm
before calling the complete Ramsey procedure [Abd+11] for inclusion checking.2 If RABIT
ever reaches this stage in its checks for inclusion, the input automata have already been heavily
minimised, and thus, as we know from Section 5.2, much of the heavy lifting required to employ
Kurshan’s algorithm effectively has already been done. The construction of quasi-complement
B̃ and checking the emptiness of the intersection is so computationally inexpensive compared
to the complete Ramsey procedure and the minimisation that it would be remiss not to see if
Kurshan’s algorithm can give an answer. If it returns null, then the complete Ramsey procedure
can be called as normal.

I thus decided to write a modified version of inclusion_Buchi, which attempts Kurshan’s al-
gorithm (without any pre-Kurshan minimisation, since inclusion_Buchi already minimises)
before calling the complete complete Ramsey procedure.3 See Subfigure 5.7a.

5.4.2 Results

The modified algorithm was run on the same set of automata from Subsubsection 5.1.4.1. Kur-
shan is called on 91 of the pairs by this modified inclusion_Buchi. Kurshan was called on
all but one of the pairs which stalled at 30 minutes in Subsubsection 5.1.4.1, and was called
only 5 times on pairs which did not stall in Subsubseciton 5.1.4.1. (Inclusion holds for none
of these pairs, but Kurshan returned null for each of them in the modified inclusion_Buchi.)
So inserting Kurshan’s algorithm before the calling of the complete Ramsey procedure was a
sensible choice.

Results for this first experiment are presented in Subfigure 5.8a. See that Kurshan only ever
returned null! The time taken by Kurshan to return null is so small as to be insignificant, at
least, but from this set of input automata the addition of Kurshan appears useless. I knew from
Subsubsection 5.1.4.1 that Kurshan’s algorithm can return true for some of these automata,
after enough minimisation, so I modified inclusion_Buchi further (Subfigure 5.7b) to allow

2The complete Ramsey procedure can be seen as a last last ditch-effort - a final resort. It is a complete, but
computationally expensive, method of checking for inclusion.

3The modified version actually runs Kurshan’s algorithm instead of the Ramsey procedure. We don’t really
care what happens beyond this point. We just want to know how often Kurshan’s algorithm is called and how
often it can actually produce an answer. An actual implementation deployed to RABIT would call the complete
Ramsey procedure after Kurshan if Kurshan could not produce an answer.
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. . .

. . .

. . .
i f ( x . r e s u l t ) {

i f ( O p t i o n s . v e r b o s e )
System . o u t . p r i n t l n ( " I n c l u d e d ( a l r e a d y proven d u r i n g p r e p r o c e s s i n g ) " ) ;

r e t u r n t r u e ;
} e l s e {

O p t i o n s . g l o b a l s t o p = f a l s e ;
F a i r s i m T h r e a d f s t = n u l l ;
i f ( O p t i o n s . j u m p i n g _ f a i r s i m ) {

f s t = new F a i r s i m T h r e a d ( au t1 , a u t 2 ) ;
f s t . s t a r t ( ) ;

}
/ / −− a t t e m p t Kurshan ’ s a l g o r i t h m h e r e ! −−
/ / S t a r t Ramsey p r o c e d u r e wi th l i m i t ==0 , which means no l i m i t .
I nc lu s ionOp tBVLaye red i n c l u s i o n = new Inc lus ionOptBVLaye red ( au t1 , au t2 ,

0 ) ;
i n c l u s i o n . run ( ) ;
i f ( O p t i o n s . j u m p i n g _ f a i r s i m )

f s t . s t o p ( ) ;
i f ( O p t i o n s . v e r b o s e )

System . o u t . p r i n t l n ( " Metagraphs added t o t h e Next s e t : " + i n c l u s i o n .
mggen ) ;

i f ( i n c l u s i o n . i s I n c l u d e d ( ) )
r e t u r n t r u e ;

e l s e {
i f ( O p t i o n s . v e r b o s e )
System . o u t . p r i n t l n ( " Coun te rexample : " + i n c l u s i o n .

c o u n t e r e x a m p l e _ p r e f i x + " ( " + i n c l u s i o n . c o u n t e r e x a m p l e _ l o o p + " )
" ) ;

r e t u r n f a l s e ;
}

}
}

Figure 5.6: An excerpt of final lines of the inclusion_Buchi method, which takes as input two
finite automata aut1 and aut2 and returns true if L (aut1) ⊆L (aut2), and false otherwise.
A comment has been added where Kurshan’s algorithm could be inserted as a second-to-last
attempt to prove inclusion or non-inclusion. The augmented inclusion_Buchi method would
move on to the subsequent complete Ramsey procedure, which is where RABIT tends to stall,
only if Kurshan’s algorithm returned null. Otherwise it would return the answer returned by
Kurshan.
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e x e c u t e u n m o d i f i e d pre−Ramsey p r o c e d u r e code as normal
i f answer n o t found :

c a l l Kurshan ’ s a l g o r i t h m

(a) The first modification

e x e c u t e u n m o d i f i e d pre−Ramsey p r o c e d u r e code as normal
i f answer n o t found :

min imise bo th a u t o m a t a wi th l o o k a h e a d 12
c a l l Kurshan ’ s a l g o r i t h m

(b) The second modification

e x e c u t e u n m o d i f i e d pre−Ramsey p r o c e d u r e code as normal
i f answer n o t found :

min imise bo th a u t o m a t a wi th l o o k a h e a d 12
c a l l Kurshan ’ s a l g o r i t h m
c a l l c o m p l e t e Ramsey p r o c e d u r e

(c) The third modification

Figure 5.7: The three modifications to inclusion_Buchi

K=true K=null
# of Occurrences 0 91

Median pre-Kurshan time NaN 335s
Median Kurshan time NaN 0.696s

(a) No additional minimisation
K=true K=null

# of Occurrences 17 74
Median pre-Kurshan time 326s 325s

Median Kurshan time (including minimisation) 351s 531s

(b) Lookahead 12 minimisation before calling Kurshan’s algorithm

Figure 5.8: Results from the modified version of inclusion_Buchi that attempts Kurshan’s
algorithm before calling the complete Ramsey procedure. Kurshan is called on 91 of the au-
tomaton pairs from Subsubsection 5.1.4.1.



for additional minimisation of A and B just before calling Kurshan’s algorithm. Lookahead 12
was used, as this was found to be the most effective lookahead in Subsubsection 5.1.4.1. A
second experiment with this additional lookahead was run, and results are presented in 5.8b,
where we can see that Kurshan’s algorithm returned true in 17 of its 91 calls.

From Figure 5.8 we can gather that (for this set of automata) there is little point in using
Kurshan’s algorithm in this way if we do not perform further minimisation before calling it.
The additional minimisation does take quite some time (generally about as much time as all
preceding attempts to determine inclusion by inclusion_Buchi) but if Kurshan fails to return
an answer then the proceeding complete Ramsey procedure call will at least be less likely to
stall on the now further minimised automata.

5.4.3 Lookahead 12 Minimisation Before Attempting Complete Ramsey
Procedure

As so many of the B automata for which Kurshan returned a true answer in Subsubsection
5.1.4.1 were minimised to a trivial automaton, I wondered whether Kurshan’s algorithm was
actually making a difference to prevent stalling 5.1.4.1, or if the complete Ramsey procedure
could just have easily been used in place of Kurshan and benefited from the additional looka-
head 12 minimisation all the same.

I made a third modified version of inclusion_Buchi (Subfigure 5.7c) which, after perform-
ing the additional lookahead 12 minimisation, executes Kurshan’s algorithm and the complete
Ramsey procedure on the now smaller automata, regardless of the answers returned by Kur-
shan, for the sake of comparing how effectively they each get results.

I ran this modified method on the 17 RABIT-stalling automaton pairs for which Kurshan re-
turned true in Subsection 5.4.2 to see if I would have been as well calling the complete Ramsey
procedure in place of Kurshan’s algorithm. Results are presented in Figure 5.9.

We can see that the complete Ramsey procedure did not stall on any of these input pairs when
passed the minimised automata. It returned true on each of them, as did Kurshan’s algorithm.
While Kurshan’s algorithm did execute faster than the complete Ramsey procedure in all cases,
the execution times of both techniques so small compared to the time to minimise that they are
negligible.

We can thus conclude that previous positive-looking results for Kurshan’s algorithm were really
just due to the strong minimisation, and the pre-existing inclusion_Buchi method could just
as well have been modified to “try harder” in minimising the automata before passing them
to the complete Ramsey procedure. This more vigorous minimisation has been shown in this
section to reduce the likelihood of RABIT stalling.

From these results it might be more accurate to say that, on the 1000 state / 1.6 transition
density automata, Kurshan “keeps up with” RABIT, rather than “outperforms” RABIT, at least
in terms of returning results.
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pre-Ramsey time Ramsey time Kurshan Time B size before extra min B size after
1 630s 1.68s 0.155s 887 1
2 559s 1.58s 0.0986s 895 1
3 691s 0.280s 0.0958s 909 1
4 640s 1.30s 0.0943s 894 1
5 1142s 5.63s 1.23s 902 454
6 731s 1.73s 0.130s 895 1
7 770s 1.68s 0.130s 901 1
8 667s 2.78s 0.231s 910 2
9 936s 1.88s 0.117s 892 2

10 1118s 0.148s 0.114s 914 1
11 911s 0.008s 0.117s 904 2
12 861s 2.54s 0.100s 912 1
13 667s 0.195s 0.127s 888 3
14 883s 3.15s 0.236s 898 369
15 626s 1.85s 0.179s 897 1
16 658s 0.351s 0.105s 909 2
17 1483s 0.296s 0.114s 905 7

Mean 822s 1.593s 0.198s 900 50

Figure 5.9: Results for the third modified version of inclusion_Buchi, seen in Subfigure 5.7c

5.5 Conclusions: Applicability of Kurshan’s Algorithm

We have seen that Kurshan’s algorithm does work in practise even when B is non-deterministic,
though minimising B to be “more” deterministic (or fully deterministic) does reduce the amount
of null answers at the cost of greater execution time.

On all randomly generated automata sets tested, there are cases in which Kurshan’s algorithm
outspeeds RABIT’s inclusion_Buchi method, but the time saving is small enough, and the
frequency of null answers high enough, that there would be little reason to use Kurshan’s algo-
rithm instead of inclusion_Buchi.

For small automata (around 100 states) there is little reason to use Kurshan’s algorithm at all. It
could perhaps be used to prove inclusion-positive pairs more quickly than inclusion_Buchi,
but we would still need to call inclusion_Buchi in cases where Kurshan returns null. For
proving non-inclusion, Kurshan has no conceivable advantage over RABIT.

For 1000 state automata, we see results similar to the 100 state automata when generated with
higher transition densities, but it is in the large automata with low transition densities on which
Kurshan seemed to perform best. This is a class of automata on which inclusion_Buchi
frequently stalls, and it is these stalling inputs that Kurshan, with prior lookahead 12, has been
shown to sometimes produce an answer for - although it still returns null more often than not
on the stalling automata. When we replaced Kurshan’s algorithm with the complete Ramsey
procedure, however, we found that it was in fact the high lookahead value that avoided stalling,
rather than Kurshan itself. For this reason I do not believe Kurshan would be very useful
if integrated into inclusion_Buchi, but it executes so quickly that it would do little harm
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to call Kurshan before calling the complete Ramsey procedure, and we might save time in
some cases. If working in domains with mostly deterministic automata, we might see Kurshan
outperform RABIT. The execution time of Kurshan’s algorithm itself - omitting the preparatory
minimisation - is very small, and it is guaranteed to return an answer if input automaton B is
deterministic.
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Chapter 6

Future Work

6.1 Development

I’m overall very satisfied with my implementation of Kurshan’s algorithm, but it is not without
its weak points.

• I discussed in Subsection 3.2.1 that Kurshan’s requirement in [Kur87] that Büchi au-
tomata be lockup-free - in order for his algorithm to be correct - was overlooked in my
early implementation, and thus when using certain constructors for EdgeRecurringAutomaton
it is currently possible to instantiate an edge-recurring automaton that does not meet the
lockup-free requirement. Future versions of the implementation might solve this by hav-
ing, for example, the “manual” constructor throw errors if given an EdgeMatrix instance
that is not lock-up free, or ensuring the invariant in some other way.

• I would have liked to capture the “edge-recurring to state-recurring” transformation in a
constructor for the pre-existing FiniteAutomaton class in RABIT, so as to be symmet-
rical with the EdgeRecurringAutomaton constructor, but modification of pre-existing
RABIT code was off-limits for this project, for the sake of isolating my own work.
If my implementation were integrated into RABIT (see Sections 5.4 and 6.4) such a
constructor could be implemented and the toStateRecurring instance of method of
EdgeRecrringAutomaton removed.

• Similarly to how the intersection automaton is constructed dynamically while checking
for its emptiness, additional time could be saved by constructing the quasi-complement
dynamically as the intersection is constructed dynamically. When no additional min-
imisation is performed, construction of the quasi-complement was found to be the most
expensive step in Section5.2.

6.2 Experiments

As I had little prior experience with gathering data on programs such as this, there were some
false-start experiments run, and some unusable data that did not make it into this dissertation.
I also found it difficult to glean conclusions from much of the data, both due to inexperience
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with analysing such data and the fact that RABIT and Büchi automata in general were entirely
new to me. We have seen some useful results, but there is room for more.

We have concluded that there do exist classes of automata, generated by the Tabakov-Vardi
method, on which Kurshan’s algorithm keeps up with the multi-strategy inclusion-checking
method inclusion_Buchi already in the RABIT framework. In particular: automata of 1000
states and transition density 1.6. Other such classes of automata might be found by varying
other parameters, such as alphabet size and acceptance density.

It would be wise to run future experiments on a dedicated machine in future. Shared servers
such as student.compute were not ideal for performance-measuring experiments, as the re-
sources allocated to me where unreliable due to experiments run by other students. Addition-
ally, I did not feel that I could use the computing resources to their full capacity, as this would
be unfair on other students. Running experiments on a dedicated machine was not an option for
this dissertation project, as some of the experiments I ran took over a week in total to complete.

6.3 Theory

Knowing that Kurshan performs strongly on certain automata is well and good, but we do not
yet have an understanding of why it performs so strongly on certain automata, such as those
with lower transition densities. More theoretical insight into this phenomenon would better
enable us to use Kurshan’s method to its full potential.

We saw in Subsubsection 5.1.4.4 that for larger automata, there is a “threshold” in minimisation
lookahead past which Kurshan is far more affective, with diminishing returns beyond this. It
would be good to find some theoretical basis behind this, so that methods can be developed that
determine the best lookahead to use on a given automaton pair, taking into account execution
time and likelihood of returning a non-null answer.

Not all non-deterministic Büchi automata have a deterministic equivalent, but many do. There
might be a “best effort” algorithm, to try to convert automata, that is more effective at producing
equivalent deterministic automata than the minimisation used in this project.

6.4 Integration Into RABIT

We saw in Section 5.4.2 that, looking at the pairs on which Kurshan returns an answer after RA-
BIT’s unmodified inclusion_Buchi method stalled, the results could just have well have been
achieved by passing the heavily-minimised automata to the complete Ramsey procedure rather
than to Kurshan. So there is not as much reason integrate Kurshan into inclusion_Buchi as it
first appeared, at least in the way trialed in Section 5.4. Kurshan’s algorithm is so inexpensive
that would do no harm to integrate it into inclusion_Buchi, at least, and perhaps in some
niche applications it might save time.
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