
Machine Learning of Fonts

Antanas Kascenas

MInf Project (Part 1) Report
Master of Informatics
School of Informatics

University of Edinburgh

2017

3

Abstract
Font kerning is the adjustment of the spacing between specific pairs of characters that
appear next to each other in text. Kerning is important for achieving visually pleas-
ing displayed text. Due to the quadratic growth of possible character pairs, manually
kerning a font takes time and effort.

This project explores the possibility of automatic kerning using machine learning. Ex-
isting automatic kerning tools were discussed but no implementations using machine
learning were found. Kerning specification in font files and relation to other font met-
rics were researched. A dataset for supervised regression learning of the spacings be-
tween character pairs was constructed. A neural network model predicting the proper
spacing between the glyph bounding boxes given the whitespace shape between the
glyphs and the font tracking was developed.

The neural network model was evaluated on a test set as well as on standard fonts, both
quantitatively and visually. The results beat the baseline performance and an existing
implementation of automatic kerning in FontForge font toolset.

4

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Iain Murray, for proposing an
interesting project topic, helpful feedback, useful thoughts and ideas.

Secondly, I would also like to thank Justas Zemgulys for feedback on the visual quality
of the intermediate results during the development of the project.

Table of Contents

1 Introduction 9
1.1 Main contributions . 10
1.2 Structure of the report . 11

2 Background 13
2.1 Glyph metrics . 14
2.2 Existing solutions . 15

2.2.1 iKern . 15
2.2.2 TypeFacet Autokern . 15
2.2.3 FontForge . 15
2.2.4 Other software . 16

2.3 Discussion . 17

3 Problem set up and dataset creation 19
3.1 The regression problem . 19
3.2 Source of the Font Files . 19
3.3 Software for Parsing Font Data . 20
3.4 Extraction of the Spacing and Kerning Data 20
3.5 Feature design . 21
3.6 Cleaning, Filtering and Further Processing 22

4 Baselines and Initial Experiments 23
4.1 Outlier Detection . 23

4.1.1 Results . 23
4.2 Regression models . 24
4.3 Linear Regression . 24

4.3.1 Principal component analysis 25
4.3.2 Increasing the complexity of the model 25
4.3.3 Discussion . 26

4.4 Decision trees and random forests 27
4.4.1 Experiments . 27
4.4.2 Discussion . 28

4.5 Nearest Neighbours . 28
4.5.1 Experiments . 28
4.5.2 Discussion . 28

4.6 Basic neural networks . 29

5

6 TABLE OF CONTENTS

4.6.1 Introduction . 29
4.6.2 Experiments . 30
4.6.3 Discussion . 30

4.7 Discussion . 31

5 Encoding font information 33
5.1 One-hot encoding of fonts . 33

5.1.1 Experiments . 34
5.1.2 Results . 34
5.1.3 Problems with one-hot encoding 35

5.2 Separating kerning and tracking . 36
5.2.1 Experiments . 37
5.2.2 Discussion . 37

6 Deep neural networks 39
6.1 Deep feed-forward neural networks 39

6.1.1 Experiment set-up . 40
6.1.2 Experiments and results . 40
6.1.3 Discussion . 40

6.2 Convolutional neural networks . 41
6.2.1 Experiments . 42
6.2.2 Results . 43
6.2.3 Discussion . 44

7 Evaluation 47
7.1 Quantitive evaluation . 47

7.1.1 Test error on held out glyph pairs 47
7.1.2 Errors on standard fonts . 47
7.1.3 Discussion . 49

7.2 Comparison to FontForge automatic kerning functionality 50
7.2.1 FontForge set-up . 50
7.2.2 Results and discussion . 50

7.3 Visual comparisons . 51
7.3.1 Implementation details . 51
7.3.2 Standard fonts . 51
7.3.3 Predicting from a set of glyphs 52

8 Conclusion 55
8.1 Future work . 56

8.1.1 Dataset quality . 56
8.1.2 Glyph shape representation 56
8.1.3 Different approaches . 56

9 Plan for next year 57
9.1 Problem description . 57
9.2 Existing tools and approaches . 57
9.3 Proposed approach . 58

TABLE OF CONTENTS 7

Bibliography 59

Appendices 63

A Visual comparisons 65
A.1 Standard fonts . 65
A.2 Improved fonts . 68

Chapter 1

Introduction

One of the main ways to consume information is through reading printed or otherwise
displayed text. It is accepted that the layout and other design aspects of the text content
can affect engagement, focus, reading speed, eye strain, text comprehension and other
characteristics [1, 2, 3].

One of the text design decisions is the choice of a typeface or a font. A typeface is a
family of fonts containing different variations of a font such as bold, italic, condensed
etc. (for the purposes of this project, no distinction between typeface and font is made).
However, the process of designing a font itself has a lot of subtle decisions that can
affect the final design quality.

The focus of this project is the kerning and letter spacing aspect of the font design pro-
cess. Kerning and letter spacing both affect the intraword spacing. More specifically,
letter spacing is the assignment of whitespace on the sides of every character. Kerning
is the adjustment is spacing between specific pairs of characters.

Together, letter spacing and kerning are used to finely control the space between the
letters in the text. A well designed font is more visually pleasing to read and does not
attract unnecessary attention to the specifics of the spatial configuration of the letters in
a word. There is research indicating that intraword and interword spacings can affect
the reading speed and legibility [4, 5] as well as that proportional fonts can be read
faster than monospaced fonts [6] (fonts where all characters take up the same amount
of horizontal space).

The difficulty with producing well spaced fonts is that due to varied shapes of the
glyphs it is not enough to set how much space there should be on either side of a
glyph. A glyph is a shape that usually corresponds to a character. A character can be
a combination of a few glyphs but in Latin letters (which are used in this project) the
correspondence is one to one.

Placing equal amounts of whitespace between the bounding boxes of neighbouring
glyphs does not produce text with spacing that is visually consistent. To obtain text
where each glyph pair appears to be equally spaced, manual offsets need to be applied
to some specific pairs. In other words, some pairs need to be kerned. The number

9

10 Chapter 1. Introduction

of possible glyph pairs in a font grows as a square of the glyphs defined in the font.
Therefore, it quickly becomes infeasible to kern all the possible pairs manually. In
practice, letter spacing (assigning whitespace to each side of every glyph) is used to
get as close to a good result as possible and kerning is used to fix the worst spaced pairs.
These usually include capital letter pairs such as “AV” or upper-case and lower-case
combinations such as “To”.

The aim of this project is to get insight into whether it is possible to leverage already
existing manually designed fonts (this project uses fonts collected in the Google Fonts
repository [7]) with machine learning methods to create a process that would partly or
fully automate the letter spacing and kerning stages of font design.

1.1 Main contributions

• Research was done on how fonts are implemented in the currently widely used
TrueType and OpenType font file formats. It was investigated how the relevant
glyph spacing information is represented in the mentioned font formats.

• Existing approaches to automatic font letter spacing and kerning were explored
and discussed.

• A supervised regression learning problem was set up to predict the proper spac-
ing of glyph pairs given the description of the whitespace between the glyph
outlines.

• Tools were sought to handle fonts and allow the extraction of the spacing infor-
mation. A process of extracting or changing spacing information in font files
was implemented using FontForge [8]. Code was written to visually compare
the text with original and changed spacings in a font.

• A dataset from popularly used existing fonts was constructed and features de-
scribing the whitespace designed.

• Baselines for predicting the glyph pair spacing were set and compared with a
variety of basic machine learning regression methods.

• Problem description was modified to model the tracking of fonts (a constant
spacing offset common to all the pairs)

• Fully connected and convolutional neural network models were implemented
and tuned to achieve reasonable results on the validation set.

• The best model was evaluated on a test set as well as on fonts unseen during train-
ing time. The results were also visually compared to the baseline solution and an
existing FontForge automatic kerning algorithm. The proposed model beat the
baseline and the FontForge implementation both in the quantitative evaluation
and visual comparisons in the vast majority of cases.

1.2. Structure of the report 11

1.2 Structure of the report

Chapter 2 presents the relevant background information including the main specifica-
tions of spacing information in TrueType font file formats and the discussion on the
existing automatic kerning and letter spacing solutions.

Chapter 3 describes the regression problem in more detail as well as presents the rea-
soning, design and the implementation details of constructing the dataset for the re-
gression problem.

Chapter 4 details the initial experiments, baselines, basic methods and their results on
the regression problem as well as the problems with the approach.

Chapter 5 presents the reasoning on modifying the problem and the design of the mod-
els in the following experiments.

Chapter 6 focuses on the design, implementation and results of fully connected and
convolutional neural models as the part of the regression system.

Chapter 7 describes the evaluation done on the best model. Quantitative and visual
comparisons are provided and discussed.

Chapter 8 summarises the project and provides possibilities for improvements and fu-
ture work.

Chapter 9 presents the plan for the second part of the “Machine Learning of Fonts”
project.

Chapter 2

Background

Font design is a multipart process and there are multiple software options available
for working with various aspects of fonts. Most bigger toolsets such as FontForge or
FontLab (both commercial and free) have at least basic options for automatic kerning
and letter spacing. Since both processes affect the final horizontal glyph positioning,
they are usually applied at the same time.

There are two types of automatic kerning that are usually used in software. Metric
automatic kerning uses only the font and glyph metrics specified in the font file (glyph
metrics are discussed in the next section) and usually some kind of an iterative algo-
rithm to adjust the letter spacing until it is considered good enough by a metric of visual
spacing consistency across all the pairs. The metric of the visual spacing consistency is
the hardest part of the algorithm since it is hard to define how exactly the eye perceives
the space between different pairs of glyphs. Optical automatic kerning works in a sim-
ilar way however it takes into account the actual shapes of the glyphs and how they
combine in pairs. It uses the glyph shape information to construct more sophisticated
metrics of visual spacing consistency. Optical automatic kerning is a more powerful
and complex technique. This project heavily relies on the information of glyph shapes
so could be categorised as an approach for optical automatic kerning.

In the experience of some font designers, neither of these automatic kerning types are
enough to produce a well kerned font [9]. Therefore, some of the existing automatic
kerning solutions aim to be transparent as possible or have many parameters so that the
designers themselves can tune the process in an understandable and controllable way.
The result of the automatic kerning process is usually treated as a starting point for the
designer manual kerning work rather than a finished work.

The next section describes the glyph metrics that are specified in TrueType and Open-
Type format font files and drive existing automatic kerning solutions. Further sections
discuss a few existing automated kerning solutions and their working principles.

13

14 Chapter 2. Background

Figure 2.1: The basic glyph metrics. Figure taken from [10].

2.1 Glyph metrics

Glyph metrics contain data that influences how the glyph is rendered in the text in terms
of the position of the neighbouring glyphs. The most important horizontal metrics are
shown in Figure 2.1. While rendering text, glyphs are drawn sequentially one after
another. Each glyph is drawn at the current marker position on the baseline. Glyph
advance width defines how much horizontal space the glyph occupies in total and how
much the marker position is increased on the baseline for drawing the next glyph.
Left-side and right-side bearings define how much additional whitespace there is on
either side of the glyph bounding box. Note that these can sometimes be negative
to produce tighter fonts. In the case when the previous and current glyph pair has
a specified kerning value, the marker position is moved to the right or to the left by
the specified number of font units. One font unit is a font-specific fraction (usually
1/1000 or 1/2048) of font ‘em‘ (where ‘em‘’ is the current font size). The kerning
value can be either positive or negative (the space between the glyphs is increased
if the kerning value is positive and vice versa. Glyph ascent and descent control the
vertical positioning of the glyph.

Kerning of a pair of glyphs is the process of finding a suitable marker offset after the
first glyph in a pair before starting to draw the second glyph in a pair. Letter-spacing
is a process of finding suitable left-side and right-side bearings.

2.2. Existing solutions 15

2.2 Existing solutions

2.2.1 iKern

iKern [11] a commercial closed-source service that provides letter-fitting (kerning to-
gether with letter-spacing) services for wide variety of scripts (not only Latin). Even
though the specifics of the system are not known, the author has explained the theory
behind the system publicly [12]. The letter-fitting system is based on a mathematical
model of the interaction of glyph shapes. It claims to have a number of parameters
that control the automated system that can be adjusted iteratively after getting a fast
visual response. The system generally models the whitespace so it works with side-
bearings and kerning values at the same time. It claims to be modelling such high-level
concepts as text homogeneity, coherence, compenetration, rhythm and distribution of
density. These concepts are used to define how pleasing the glyph spacing is to the eye.
The author of iKern claims that the system is continually being developed to be more
general by taking font designer feedback and has kerned fonts from Latin, Cyrillic,
Greek, Arabic and even some ancient scripts. Even though the system is considered
to be quite impressive in relation to its competition [13], the author only regards the
outputs as test cases that can bring new ideas for the designers. The system has been
first publicly announced in 2004 and in development and use since then which testifies
to the effectiveness of the service.

2.2.2 TypeFacet Autokern

TypeFacet Autokern [14] is a free and open source tool that tries to help font designers
automate the process of letter spacing and kerning. It can perform kerning or letter
spacing separately or do both simultaneously. The focus of the project is to make
the automated kerning process as transparent and configurable to the font designer as
possible and capable of quick iteration. The manual provided suggests guidelines for
optimising the process. It involved setting of parameters such as the lower bound on
the distance between the contours of two glyphs (by fitting pairs such as “TT”), the
upper bound on the distance between the contours (by fitting a pairs such as “MM”),
“intrusion” tolerance (how much glyphs can “intrude” into each others space), upper
bound on the “overlap” of the horizontal extrema of the glyphs and many others. The
process also focuses on heavy logging to improve the understanding of the process.
The whole process is less automated (involves a lot of parameter tuning) and requires
experience of working with the tool. The website claims the system to be actively
developed but no contributions to the source code have been made since 2012.

2.2.3 FontForge

FontForge [8] is a popular and powerful free and open source font work software. It
provides both automatic letter spacing and automatic kerning functionality as a part

16 Chapter 2. Background

of its toolkit. Automatic kerning is described here since it can achieve more specific
spacing results.

The automatic kerning procedure takes in as a parameter a number that describes the
desired optical separation of the glyphs. It uses a glyph separation procedure that
guesses the optical distance between the pair of glyphs and calculates the appropriate
kerning value to adjust the separation to the desired one. An assumption is made that
the optical separation is linear in terms of the actual spacing (so that iteration is not
required to find the correct adjustment).

The glyph separation procedure calculates the optical separation of glyphs by taking a
weighted average of the horizontal distances between the glyph outlines in their com-
mon vertical space. This approach of using horizontal distances between the glyph
outlines inspired the design of features describing the whitespace between glyphs in
the dataset creation stage of the project presented in Chapter 3.

The details and the pseudo code of the automatic kerning algorithm are described in
the deprecated version of the FontForge documentation [15](the functionality itself is
not deprecated).

An interesting and powerful feature of this software is that the user can pass a custom
routine to calculate the visual separation of the glyphs instead of the default implemen-
tation.

FontForge is actively developed since 2001 but its focus is much wider than just auto-
matic kerning and letter spacing.

2.2.4 Other software

There are a few other software solutions to automatic kerning and letter spacing (some
commercial and closed-source some open source but long abandoned). Some of them
are listed here:

• DTL KernMaster [16] is a commercial font kerning and letter spacing solution.
It is provided as a part of FontMaster font toolset developed by Dutch Type Li-
brary. The public specifics of the auto kerning algorithm are quite vague. How-
ever, it is clear that KernMaster converts glyphs into high resolution bitmaps and
performs optical automatic kerning. It boasts very high quality results, however,
no samples or other evaluation was found on the website.

• PubLink KernMaster [17] is a commercial automatic kerning solution. It claims
to use artificial intelligence and space control algorithms. The essence of the
algorithm is described as moving all the glyph pairs as close to each other as
possible (so that they barely touch) and then applying tracking to the whole font
(tracking is adding a constant spacing value to the spacings of all the pairs).

• FontLab’s TypeTool [18]

• Font Combiner [19]

2.3. Discussion 17

2.3 Discussion

The information on existing solutions is sparse and, in the case of commercial systems,
is obscured by marketing promotion rather than actual details. Reviewing the informa-
tion that is available on existing automatic kerning solutions indicates two different
paths taken by most approaches. The first path being implementing a relatively sim-
ple algorithm with parameters that govern the execution of the algorithm (TypeFacet
and FontForge solutions). The focus in this approach is on transparency and giving as
much control as possible to the font designer. The second approach builds on some
model of proper glyph spacing. The spacings of a new font are then adjusted to satisfy
that spacing model (iKern, DTL KernMaster and PubLink KernMaster solutions).

The approach explored in this project differs from both of these paths since it aims to
provide a fully or nearly fully automatic process without defining an explicit model
of proper spacing (the “understanding” of proper spacings is learned from manually
kerned fonts).

Chapter 3

Problem set up and dataset creation

3.1 The regression problem

The regression explored in the following chapters is that of predicting the normalised
spacing (in font units normalised by the number of font units in one font ‘em‘) between
the bounding boxes of a pair of glyphs (the spacing can be negative). The spacing is
the sum of the right side bearing of the left glyph in the pair, the pair kerning value and
the left side bearing of the right glyph in the pair.

The input to the regressors is the set of features describing the whitespace between
the outlines of the glyph pair when the bounding boxes of the glyphs are touching.
Figure 3.1 displays the glyph placement and the features that are described later in this
chapter.

The spacing of each pair is predicted separately and when the spacings of all the re-
quired pairs in the font are known, a new font file is generated.

In order to experiment with machine learning regressors, a dataset of well kerned fonts
was needed to use for supervised learning. There is currently no official or unofficial
font dataset constructed for specifically kerning and letter spacing. A dataset of fonts
with open licenses was constructed. The methods, choices, decisions and assumptions
made while constructing the dataset are outlined in the sections below.

3.2 Source of the Font Files

There a quite a few websites online that aggregate font files in various formats. How-
ever, the quality of the design of such fonts is usually questionable. The variety of font
formats would also significantly complicate the task of extracting meaningful kerning
and spacing values. In addition to that, it was preferable to work with vector fonts
instead of older style bitmap fonts since they are much more widely used and more
universal. Google’s open source font files repository was chosen as the source of the
font files for the dataset. It has over a thousand font files provided in TrueType and

19

20 Chapter 3. Problem set up and dataset creation

OpenType font formats (for the purposes of this project, they are compatible) under
a few different but open licenses (SIL Open Font License, v1.1 [20], Apache 2 [21]
and Ubuntu Font License v1.0 [22]). TrueType is still the most popular font file format
used for web and desktop fonts and has a number of software tools available to perform
data extraction and font editing.

3.3 Software for Parsing Font Data

Python bindings for FontForge were chosen to perform the data manipulation. There
are other lower-level alternatives (such as python’s fontTools [23]) but the TrueType
format is general enough to allow different ways of encoding the same information in
different fonts. That means that it is very hard to write general software that performs
actions on batches of fonts. Using lower-level tools proved to be infeasible since it
would require writing custom code to extract the needed data from almost each differ-
ent font. Putting adjusted values back into a font would also require significant manual
effort.

FontForge is a powerful set of font software tools. However, despite its popularity and
maturity, it was designed with a single font designer editing a single font at a time in
mind. It also primarily focuses on providing a GUI interface instead of command line
tools or importable modules. The documentation for the python bindings is sparse,
outdated and sometimes requires knowledge of how font files work. It took consid-
erable effort to figure out the code and API calls needed to extract the data described
in the next section. The obstacles included: getting the kerning values in a consistent
way (some fonts have more general positioning descriptions, others just define simple
kerning values), some fonts can’t be opened by FontForge or parsed, some fonts have
glyphs named in non-standard ways that make accessing glyph data more difficult.

3.4 Extraction of the Spacing and Kerning Data

The fonts provided came in a variety of styles, compositions and degrees of exhaus-
tiveness in terms of glyph definition. For consistency and to reduce the complexity of
the data, only Latin character data was extracted from fonts.

Features for the training data needed to be chosen. The features needed to reflect the
whitespace distribution between a glyph pair in order for machine learning models to
be able to produce any kerning/spacing results. The most obvious choice is to provide
the images of the glyphs and take the pixel values as the features. However, this would
require the complex machine learning models to extract high level information regard-
ing spacing, kerning and the glyph shapes. On the other end of the spectrum, it’s pos-
sible to just take the side-bearing values, bounding box measurements and other glyph
metrics and mostly ignore the relationship between the contours of the two glyphs in
a kerning pair (similarly to automatic metric kerning mentioned in Chapter 2). This
would work only to some extent because there would be not enough information in

3.5. Feature design 21

the features to kern pairs with reasonable errors. A middle of the road solution was
chosen.

3.5 Feature design

Figure 3.1: Constructing glyph spacing features. The features are the lengths of the red
lines which are the distances between glyph outlines. The number of vertical sections
(red lines) was reduced for clarity. The black rectangles are the glyph bounding boxes.
The glyphs are from a Google font Snowburst One.

For each pair of glyphs, a number of steps were performed to construct the features.
The side-bearings between the glyphs were not used as they contain a part of the spac-
ing data (a model predicting just the sum of the left and right side bearings of the
respective glyphs in a pair would be correct most of the time since relatively few pairs
contain kerning values). Discarding the side bearings resulted in the bounding boxes
of the glyph pair touching. The vertical space between the glyphs was divided into
sections (variants included 5, 10, 30, 100, 200 sections). Two types of vertical split-
ting were tried (splitting the whole space between hard-coded upper and lower bounds
regardless of the shape of the pair of glyphs and splitting just the common vertical
region in each pair). The first type of splitting provided better results in the initial ex-
periments and therefore was chosen for further work. After splitting the vertical space
into horizontal sections, a point furthest to the right on the left glyph contour and a
point furthers to the left on the right glyph contours were selected in each section and
the distance between the points (scaled by the number of font units in font ‘em‘ to be
consistent across fonts) was measured. This produced the same number of distinct dis-
tances as the number of sections that the vertical space was divided into. The distances
together represent the shape of the whitespace between the pair of glyphs. Figure 3.1
displays a subset of features extracted for a glyph pair “AV”.

22 Chapter 3. Problem set up and dataset creation

FontForge alone did not have all the functionality required the perform these calcula-
tions. All the glyphs from all the fonts were exported to the SVG files. This allowed
the usage of a SVG handling library [24] to approximate the points on the contours
of the glyphs. To choose the outermost point in each vertical section the following
procedure was performed. Sufficiently many points over the whole glyph contour to
reflect the shape of the whole glyph were sampled (2000 points), then the subset of
these points that are in the required vertical section was taken and the point which is
the most to the right (for the left glyph in a pair) or the most to the left (for the right
glyph in a pair) was taken.

The label (target) for each pair of glyphs was calculated to be the sum of right side
bearing of the left glyph in a pair, left side bearing of the right glyph in a pair and
the kerning value if it exists. The resulting value was divided by the number of font
units in font ‘em‘. This is essentially font unit invariant distance between the bounding
boxes of the two glyphs.

The process of extracting the glyphs and calculating all the needed distances was rel-
atively computationally expensive since there were over a million being processed.
Naive implementation took around 8 hours to process all the glyphs. A faster imple-
mentation using bisection algorithms [25] on sorted lists as well as parallelisation on
multiple CPU cores brought the time down to about 30 minutes.

3.6 Cleaning, Filtering and Further Processing

Google’s font repository is relatively well maintained and a good resource for fonts.
However, not all the fonts provided in the repository are of equal quality. To produce
good results through supervised learning it is essential that the training data is of good
quality. An assumption was made that the most popularly downloaded fonts in the
repository would be of the highest quality in terms of kerning decisions, thoroughness
and completeness. Therefore, the training set was chosen to be constructed out of the
100 most popular typefaces (font families).

Access to Google font developer JSON API [26] was required to determine the font
popularity order and metadata (such as font type and other fonts in the family). It was
required to obtain a Google developer key to get access to the API.

Using the obtained font descriptions, monospaced fonts were skipped when collecting
the most popular fonts. Monospaced fonts are specifically designed to have the same
width for all the characters. They have no kerning at all and although the letter spacing
is still important for a visually pleasing result, it is approached differently than in
proportional fonts. Therefore, it does not make sense to include monospaced fonts in
the training or testing data.

The final dataset resulted in data from 245 different fonts and 662171 glyph pairs (2704
pairs per font). A small fraction of glyphs that failed to parse was skipped. Each data
point contained the target, 200 features and metadata (font and the glyph pair). 25000
pairs were kept for the test set while the rest was shared for training and validation.

Chapter 4

Baselines and Initial Experiments

The creation of the dataset described in the last chapter enables the exploration and
experimentation of the data. The first section of this chapter describes some initial
exploration of the glyph spacing data. The rest of the sections describe some of the
baselines, basic machine learning models trained and the conclusions made.

4.1 Outlier Detection

Some data exploration was needed to check how clean the dataset is. Cleanliness, in
this case, means how reasonable all the side-bearing and kerning values in the fonts
are. It was needed to make sure that there are no extreme values that are obviously
there by mistake and that could impede the training of models later on.

Outlier detection was the method chosen to detect any possible extreme values in the
font files. Outlier detection algorithm EllipticEnvelope from scikit-learn [27] machine
learning toolset for Python was applied to pairs across all fonts with defined Latin
characters. The features used were the right side bearing of the left character in the
pair and the left side bearing of the left character as well as the font unit.

The specific EllipticEnvelope algorithm was chosen because it was already readily
implemented in scikit-learn and could be applied without a lot of additional set up and
it generally works well in low dimensions.

4.1.1 Results

Getting the results required setting an appropriate contamination parameter for Ellip-
ticEnvelope (essentially the fraction of the fonts that should be considered outliers).
The contamination parameter was set to 0.01 to obtain and visualise the pairs which
the model considers to be the biggest outliers.

Random words from a standard English word list through python’s NLTK [28] con-
taining the required pairs were generated to visually inspect the results. Figure 4.1

23

24 Chapter 4. Baselines and Initial Experiments

Figure 4.1: The biggest outliers found in glyph pairs “LV” and “BV”.

displays the glyph pairs considered to be outliers for pairs “LV” and “BV”.

The outliers found were not extreme or otherwise unlikely values except for the im-
perfect spacing in some cases. Therefore, no significant irregularities in the font files
were found and it was moved on to training some basic models.

4.2 Regression models

In the second phase of the project, the dataset and its variations described in Chapter
3 were used to try and build a regression model. The targets for the model were the
distances between pairs of glyphs (distance from bounding box to bounding box, the
sum of both side bearings and kerning scaled by font units in font ‘em‘). The features
used were subsets of varying size of the 200 horizontal distances described in Chapter
3.

The results were evaluated looking at the mean squared error (the loss function), mean
absolute error (easier to interpret in terms of distances between glyphs and improve-
ment) as well as visual results. Excluding the data set aside for testing (as described
at the end of Chapter 3), 50000 data points were used for validation and the rest was
used for training.

4.3 Linear Regression

Simple linear regression (minimising the mean squared error between the predicted
and target glyph pair spacings) implemented in scikit-learn [29] was first tried on the
dataset version with 200 horizontal features. This resulted in the errors shown in the
first row of Table 4.1. Linear regression is the simplest model that has been tried and
is considered to be the baseline result for this type of regression.

A number of approaches were tried to improve the baseline performance using linear
regression.

4.3. Linear Regression 25

4.3.1 Principal component analysis

The features are spatially related (sequentially close features are heavily dependent
on each other). It means that there is at least some redundancy in the information
provided by the features. One way to avoid the redundancy is to make the features
linearly uncorrelated using a transformation such as PCA [30]. However, the results
of running PCA with linear regression only provided very small improvements. It was
also tried to reduce the number of principal components used to reduce the number of
features overall. The feature reduction did not have a significant impact. Only when
reduced down to 10 components it increased the errors slightly. The results of these
experiments are shown in rows 2 to 4 in Table 4.1.

The reason for the lack of improvements is most likely the fact that there is a lot of
training data. PCA in this case (especially when reducing the dimensionality of the
features) acts as a regulariser. Regularisation is a technique to reduce overfitting. Over-
fitting is the model describing the noise in the data rather than the actual relationship
between the targets and the features. Since there is enough data, the linear regression
model generalises well and does not overfit. Therefore, PCA does not improve the per-
formance. Training with other regularised linear regression variants (ridge and lasso
regression) also did not improve performance which confirms the hypothesis that over-
fitting is not a problem (training and validation errors being very similar indicates that
too).

4.3.2 Increasing the complexity of the model

Since the previous point proved that overfitting is not a problem, it makes sense to try
and increase the complexity of the model.

The goal of increasing the complexity of the model is to try to extract more information
from the features which the model can use to make better predictions and in that way
improve the performance.

One way of making the linear regression model more complex is adding polynomial
features. That is, adding new features that are multiplications of existing features. The
problem with this is that the number of features increases exponentially with respect
to the polynomial order. This explosion means that to use polynomial features we first
need to reduce the dimensionality of existing features (it is not feasible to add polyno-
mial features if we already have 200 features due to exponential explosion). Two ap-
proaches for reducing the dimensionality were taken. The first one approach involves
reducing the number of features by uniformly sampling a subset of existing features.
However, this means losing some information. The second approach involves adding
polynomial features to the PCA components with the biggest explained variance. In
theory, using the components with the biggest explained variance should means that
less information should be lost.

For the first approach, the existing features were reduced to 20 features and quadratic
features were added using scikit-learn’s PolynomialFeatures class [31] resulting in

26 Chapter 4. Baselines and Initial Experiments

231 features in total. Adding polynomial features resulted in noticeable improvement
shown in the row 5 of Table 4.1. Slightly different variantions (such as reducing fea-
ture number to 10 and adding cubic polynomial features instead) were tried as well and
yielded similar or slightly worse results.

For the second approach, after applying PCA to the original features, 20 first compo-
nents were taken. Quadratic features were added similarly to the first approach. Using
PCA in this approach yielded significant improvements (presumably because less in-
formation was lost during the original feature reduction). Another variation of taking
10 PCA components and adding cubic features yielded similar results. The improve-
ments are shown in rows 6 and 7 of Table 4.1.

Training Validation
Notes

MSE MAE MSE MAE
Linear regression
200 features 1.9∗10−3 3.4∗10−2 1.9∗10−3 3.4∗10−2 Baseline result

Linear regression
200 PCA features 1.9∗10−3 3.4∗10−3 1.9∗10−3 3.4∗10−2

Linear regression
100 PCA features 1.9∗10−3 3.4∗10−2 2.0∗10−3 3.4∗10−2

Linear regression
10 PCA features 2.1∗10−3 3.5∗10−2 2.2∗10−3 3.5∗10−2

Polynomial regression
20 original features
231 features in total after
adding quadratic features

1.6∗10−3 3.1∗10−2 1.6∗10−3 3.1∗10−2
8% validation
MAE improvement
over the baseline

Polynomial regression
20 PCA features
231 features in total after
adding quadratic features

1.4∗10−3 2.9∗10−2 1.4∗10−3 2.9∗10−2

Polynomial regression
10 PCA features
286 features in total after
adding cubic features

1.4∗10−3 2.9∗10−2 1.4∗10−3 2.9∗10−2
15% validation
MAE improvement
over the baseline

Table 4.1: Initial results for linear and polynomial regression

4.3.3 Discussion

The baseline results provide a good starting point to measure improvements. The close-
ness of validation and training error show that the linear regression models might be
underfitting (the models can’t capture the underlying relationships between the features
and the targets). Therefore, it is understandable why dimensionality reduction by PCA
did not help. Underfitting also means that it is worth trying models that can extract
more information from the features. The improved results from polynomial regression
indicate that significant improvements could be achieved by combining features. It
is very likely that more feature engineering would result in further improvements. A
few of such approaches could be combining only spatially close features (would al-
low using higher order polynomials) or splitting the features into sections and adding

4.4. Decision trees and random forests 27

additional features that describe those sections (such as minimum and maximum in
a section). However, feature engineering takes considerable effort and it is easier to
switch and try more complex models to solve the problem of underfitting.

4.4 Decision trees and random forests

Decision trees and random forests are popular models for generic regression and classi-
fication. Decision trees and forests produce non-linear decision boundaries. Non-linear
decision boundaries can be beneficial in the glyph pair spacing regression problem
since the previous experiments indicated the need for more complexity in the model.
Single decision trees are usually prone to overfitting (subjectively more than linear re-
gression) unless some variance reduction techniques are used. Two ways of dealing
with overfitting were tried in the experiments in this section. Firstly, the maximum
depth of the decision tree was limited. Secondly, random forests were tried. Random
forests average the predictions of multiple trees each of which is trained on a subset of
the training data. This makes the overall predictions more robust.

4.4.1 Experiments

A single decision tree models with maximum depths of 5, 10 and 15 were tried. Ran-
dom forest of 30 and 50 trees with each having maximum depth of 15 was tried. It is
likely that increasing the number of trees in the random forest would increase the per-
formance slightly but the improvements in performance had diminishing returns. The
improvement likely would not be big so no bigger forests were trained. The resulting
model performance is displayed in Table 4.2.

Training Validation
Notes

MSE MAE MSE MAE

Decision tree
5 max depth 1.6∗10−3 3.2∗10−2 1.8∗10−3 3.1∗10−2

7% validation MAE
improvement over the
linear regression baseline

Decision tree
10 max depth 1.1∗10−3 2.4∗10−2 1.1∗10−3 2.4∗10−2

Decision tree
15 max depth 6.1∗10−4 1.7∗10−2 7.4∗10−4 1.9∗10−2

Random forest
30 trees
15 max depth

4.7∗10−4 1.5∗10−2 5.5∗10−4 1.6∗10−2

Random forest
50 trees
15 max depth

4.6∗10−4 1.5∗10−2 5.5∗10−4 1.6∗10−2
52% validation MAE
improvement over the
linear regression baseline

Table 4.2: Initial results of decision tree experiments

28 Chapter 4. Baselines and Initial Experiments

4.4.2 Discussion

Bigger decision trees and forests proved to perform significantly better than linear
regression models. Similarly to more complex linear regression models, the improve-
ments come from more complexity. More specifically, the ability of the trees to fit
more complex decision boundaries and having enough data to avoid overfitting. How-
ever, since decision trees (and by extension, forests) split the data only on one feature
at a time (on a single node), they combine features rather inefficiently (since the max
depth is at most 15, each prediction is made only relying on 15 features at most).
To get even better results, it would probably be useful to choose a slightly different
feature representation or hand-craft some manually combined features. This would al-
low extracting the information of feature combinations easier. In general, both linear
regression and decision tree experiments show that feature combination can bring sig-
nificant improvements, therefore rather than trying to hand-craft features for decision
trees, it was decided to try other models that deal with features combinations better.

4.5 Nearest Neighbours

The K Nearest neighbours is a powerful but fairly simple type of model. To predict
a spacing for a glyph pair, k closest glyph pairs in the training set (in terms of some
distance measure on the features) are found and their targets averaged. There are two
main reasons for experimenting with KNN. Firstly, KNN models can be effective given
enough data and the previous experiments indicate that we do have a lot. Secondly,
KNN models do not make assumptions about the characteristics of the concepts behind
the predicted relationship but can learn complex concepts by local approximation. In
addition, it requires almost no additional set up so it is easy to plug the data into the
model and see if it is possible to draw any meaningful conclusions from the results.

4.5.1 Experiments

The KNN implementation from scikit-learn [32] was used with the default parameters
(most importantly, Euclidean distance measure) was used. KNNs with k = 1, 3 and 5
were tried. In addition, it was also tried to use KNNs with PCA features to reduce the
effects of the curse of dimensionality [33] (in a high-dimensionality space, Euclidean
distance might not be helpful). The results or the experiments are shown in the Table
4.3.

4.5.2 Discussion

The results from the k-NN experiments show k-NN models performing better than the
best random forest models from the previous section despite high feature dimension-
ality. The relatively good results indicate that the features lie in some manifolds of the
whole feature space (otherwise, the curse of dimensionality of the 200 features should

4.6. Basic neural networks 29

Training Validation
Notes

MSE MAE MSE MAE
k-NN
k = 1 0 0 5.3∗10−4 1.3∗10−2

k-NN
k = 3 2.2∗10−4 9.0∗10−3 4.9∗10−4 1.4∗10−2

k-NN
k=5 3.3∗10−4 1.2∗10−2 5.3∗10−4 1.6∗10−2

k-NN
k = 3
20 PCA features

2.3∗10−4 9.4∗10−3 5.3∗10−4 1.5∗10−2

k-NN
k = 3
30 PCA features

2.2∗10−4 9.1∗10−3 5.0∗10−4 1.4∗10−2

k-NN
k = 5
30 PCA features

3.4∗10−4 1.3∗10−2 5.3∗10−4 1.2∗10−2
64% validation MAE
improvement over the
linear regression baseline

Table 4.3: Initial results of k-nearest neighbours experiments

affect the results more). It is likely that it is possible to increase the performance of the
model by customising the feature representation and the distance measure used. How-
ever, there is a number of issues with the k-NN approach to glyph spacing regression.
The good model performance is likely a result of using the same fonts in both training
and validation sets (the model might not generalise well on unseen fonts). Ultimately,
predicting on unknown fonts is the goal and it is particularly hard to extend the model
to provide some font information that glyph pairs share (discussed in more detail in
the next chapter). In addition, initial experiments with neural networks (described in
the next section) provided comparable results and have a clear path of improvement.
Therefore, despite promising results, k-NNs were not pursued any further.

4.6 Basic neural networks

4.6.1 Introduction

Neural networks are graphical models consisting of small computational units “neu-
rons”) that compute a non-linear function of their inputs. Units are usually grouped in
sequential layers. The first layer is called the input layer, the last layer is the output
(the prediction) layer and the layers in-between are the hidden layers. At first, fully-
connected hidden layers are explored which means that all units from a previous layer
(input layer if it is the first hidden layer) are connected to all the units in the current
layer.

Having multiple layers makes neural network models have many weights that are
learned (each connection between two units has a weight). Having many weights
allows the deeper neural networks to learn complex relationships between the fea-

30 Chapter 4. Baselines and Initial Experiments

tures and the targets. Neural network training is usually done by backpropagation [34]
which, in practice, allows to train networks of sufficient depth to achieve high perfor-
mance in a lot of classification and regression tasks.

4.6.2 Experiments

Scikit-learn’s implementation of multi-layer perceptron [35] (another name for a neural
network) was used to run experiments. Neural networks with 1, 2, 3 and 4 hidden
layers were tried. All hidden layers were set to have 300 units. ReLU activation
functions [36] were used in hidden units since it’s the most popularly used non-linearity
in recent networks and in practice works well across a wide range of learning problems.
Mean squared regression error was minimised using the Adam optimiser [37]. Training
was done using batches of 200 samples until the error improvement after each of two
consecutive epochs (complete passes through the training data) was less than 0.000001.
No regularisation techniques were used. The results of the neural network experiments
are displayed in Table 4.4.

Training Validation
Notes

MSE MAE MSE MAE
NN
1 hidden layer
of size 300

9.5∗10−4 2.3∗10−2 9.6∗10−4 2.4∗10−2

NN
2 hidden layers
of size 300

7.2∗10−4 2.0∗10−2 7.4∗10−4 2.1∗10−2

NN
3 hidden layers
of size 300

4.7∗10−4 1.6∗10−2 5.2∗10−4 1.7∗10−2

NN
4 hidden layers
of size 300

3.9∗10−4 1.5∗10−2 4.6∗10−4 1.6∗10−2
53% validation MAE
improvement over the
linear regression baseline

Table 4.4: Initial results of neural network experiments

4.6.3 Discussion

Neural networks managed to achieve the lowest validation mean squared error from all
the models tried (KNN achieved lower MAE but that will also be beaten by the further
experiment with neural networks). The performance is increasing as more layers are
added which suggests a clear path for further improvements. Together with increased
number of layers, the networks also are getting progressively slower to train. In gen-
eral, this agrees with the hypotheses and experiments made earlier which indicated that
more complex models are needed to extract the required information from the features
and learn the concepts governing the spacings. However, most experiments in this
chapter only scratched the surface of what might be possible as few hyperparameters

4.7. Discussion 31

Figure 4.2: Text samples with the original Times New Roman (regular) font (left) and the
same font with letter spacings predicted by the 4 hidden layer neural network model.
Note that the Times New Roman font was not part of the training or validation sets.
Particularly, pay attention to the words “Sphinx”, “Thief”, “JUGS”, “QUICKLY”.

were optimised (such as changing the distance function for k-nearest neighbours mod-
els and adjusting the hidden layer width for neural networks). Since neural networks
achieved the best mean squared error as well having an obvious way to increase the
model complexity further (more hidden layers), they will be explored in more detail in
Chapter 6.

4.7 Discussion

An important general trend to notice is that the models did not display performance
in different orders of magnitude. Visualising the predictions of the best neural net-
work model (4 hidden layer network, best in terms of MSE) displays an obvious issue
with the problem set up (Figure 4.2). In some cases, the model predicted spacings are
quite different than the original ones (even for the pairs that did not actually need any
changes). In addition, individually the predicted spacings between pairs might look
fine but consistency in spacing might be more important than the preciseness of the
spacings. These problems point to the fact that the model does not have any informa-
tion about the whole of the font itself. The issues of the consistency of predictions
across a font and providing models with font information will be addressed in the next
chapter.

Chapter 5

Encoding font information

The results from the previous chapter turned out to be not good enough to achieve
nice and consistent glyph spacing. One of the most important causes of that is the fact
that none of the models from the previous chapter had any information about the font
from which a pair distance was being predicted. This limitation restricts the models to
predicting the same distance for all the fonts in the training set that have a specific type
of glyph pair contour interaction (which our features describe).

An example of the problem described above would be two very similar fonts in the
training set with different tracking values. A tracking value is a scalar value that deter-
mines the general “spaciness” of the font (the tracking value gets added to the spacing
between all the pairs of glyphs in a font and can be both positive and negative) [38].
Since in the current learning set up, a model does not see the difference in predicting
the spacing of the same pair of glyphs in differently tracked fonts, it is forced to predict
the average of the targets for such a pair of glyphs to minimise the error.

The hypothesis for the experiments in this chapter is that if the models had information
about the overall features of the font for which a pair spacing is being predicted, they
could learn to tune the predictions to particular fonts and thus achieve lower errors.

Two ways of providing the models with some font specific information were tried and
are described in detail in the sections below.

5.1 One-hot encoding of fonts

The most basic way of providing the font information together with the original fea-
tures is to one-hot encode the font in the training set. One-hot encoding means having
an additional feature for each font used in the training set (the feature is set to 1 if the
pair described with the features is from that specific font and 0 otherwise). Since about
100 font families totalling to about 245 fonts were used in the dataset construction, this
adds 245 additional features to the data.

In the case of the linear regression models, this translates directly to each font having its

33

34 Chapter 5. Encoding font information

specific tracking value (the weight of the specific encoded font feature) that is learned
(to minimise the training error) and added to the spacing predicted by the rest of the
model. The learning of tracking is a desirable trait for reasons that will be explained in
the next section.

In the case of neural networks (and to a lesser extent, other non-linear models), adding
one-hot encoded fonts is more powerful. It allows the neural network to produce dif-
ferent values in the hidden layers for different fonts. Since hidden layers build on top
of the previous hidden layers and the input layer, in theory, using one-hot encoded fea-
tures enables the model to use the one-hot encoded features to predict different glyph
pairs in different ways. For contrast, in linear regression, all the glyph pairs from a
specific font are affected in the same way (a weight of the font feature is added to the
spacing).

More generally, providing the model with information about the exact font that each
pair is from adds more complexity to the models (more features in total). Therefore, it
is expected to improve the training performance of all the models. Since we have a lot
of data and validation set uses subsets of pairs from the same fonts, it should improve
validation performance as well (particularly because the experiments in the last chapter
favoured model complexity).

5.1.1 Experiments

One-hot encoded font features were added to the baseline linear regression model to
get an idea of how much adding font information could improve the performance. In
addition, one-hot encoded font features were added to the input of the same best per-
forming (in terms of validation MSE) 4 hidden layer neural network from the previous
chapter.

A new “same space” baseline was constructed. The new baseline model predicts a
single spacing value for each font and applies it to all the glyph pairs in that font. This
baseline allows us to compare how much the models learns beyond just putting glyphs
same distance from each other (while it is a lower baseline than the one set in the
previous chapter, the comparisons to it are more interpretable).

5.1.2 Results

Table 5.1 displays a few interesting results. Firstly, the “same space” (which used
only one-hot encoded fonts but no shape describing features) baseline achieves only
slightly worse results than the previous linear regression baseline (which used only the
shape describing features). The models with added one-hot encoded fonts show big
improvements in performance. Including both shape describing and one-hot encoded
font features in a linear regression model (3 row in the table) achieved the best result
for linear regression (even without polynomial features) by a significant margin (17%
validation MAE improvement over the previous best polynomial regression model seen
in Chapter 4). These improvements indicate that font information is important and is

5.1. One-hot encoding of fonts 35

likely required to achieve lower errors. Secondly, adding one-hot encoded features
to a neural network model reduced the validation MAE by 49% (compared to the
same 4 hidden layer model trained only on shape describing features in Chapter 4). As
mentioned before, adding one-hot encoded font features gave more power to the neural
network model than the simple linear regression models because in neural networks the
relation between the one-hot encoded features and the predictions is non-linear. Even
though the results from the neural network models look promising, there are significant
problems with the approach of using one-hot font encoding for neural networks. These
problems are described in detail in the next section.

Training Validation
Notes

MSE MAE MSE MAE

Linear regression
only 200 features 1.9∗10−3 3.4∗10−2 1.9∗10−3 3.4∗10−2

Previous baseline
(no one-hot
encoding)

Linear regression
only one-hot
encoded fonts

2.5∗10−3 3.6∗10−2 2.5∗10−3 3.6∗10−2 “Same space”
baseline result

Linear regression
200 features +
one-hot encoded fonts

1.1∗10−3 2.4∗10−2 1.1∗10−3 2.4∗10−2

NN
4 hidden layers
200 features +
one-hot encoded fonts

1.2∗10−4 7.7∗10−3 1.5∗10−4 8.2∗10−3

77% validation MAE
improvement over
the “same space”
baseline

Table 5.1: Results and comparisons of experiments with one-hot encoded fonts

5.1.3 Problems with one-hot encoding

The goal of the project is to use these models for font work which means that we
probably want to predict the spacings for a font that is not in the training data or
validation data (in the current set up, training and validation data contain glyph pair
from the same set of fonts). However, the predictions of spacings for an unseen font
are not possible (or at least do not make much sense) by the fact that the unseen font
does not have its corresponding one-hot encoded feature. This problem affects linear
models and neural networks in different ways.

Linear regression models (using both shape describing features and one-hot encoded
fonts) during training take in as input a list of glyph pairs that are described by their
in-between whitespace shape and one-hot encoded font features. The outputs are the
predicted spacings for each pair of glyphs. Predicting unseen fonts raises the problem
that any unseen font will not have its one-hot encoded feature and the font specific
weight will not be added to the predicted spacing value. In essence, for an unseen font
during test time we have a weight missing because it was not learned during train time.

In linear regression models, the missing weight is not a huge problem. Since the font
specific weight gets added to all the pairs in that font, it acts as a tracking value that

36 Chapter 5. Encoding font information

controls the overall “spaciness” of the font. Therefore, it is possible to leave the font
tracking decision to the designer. After all, it is just one value to adjust and it affects
the output linearly. In addition, for an existing that has all its pairs run through the
model and spacings adjusted, it is always possible to find such weight that the whole
model changes the font in a minimal way. In other words, for an existing font, it is
possible to find the font specific weight by minimising the error between the inputs
(the original font spacings) and the outputs (the predicted spacings). Since the font
specific weight does not affect individual glyph pair spacings (only all of the spacings
at once), the model is forced to keep the overall “spaciness” of the original font and
the predicted font similar while applying the spacing adjustments for individual pairs
that it learned from the training data.

The same approach of solving the problem of the missing weight for an unseen font
cannot be applied to neural networks. Features in neural networks interact with each
other by design (so that the network is able to construct complex features from the in-
puts) and therefore, one-hot encoded font features can affect the output of the network
in ways that are hard to predict even after the network is trained. The non-linear rela-
tionship between the output and the one-hot encoded font means that one-hot encoding
of fonts for neural networks is not useful in practice since it is not possible to mean-
ingfully apply the model to unseen fonts. A way to use neural networks for individual
glyph pair spacing decisions but also make use of font information in a linear way is
needed.

5.2 Separating kerning and tracking

As explained in the last section, the problem with using neural networks with unseen
fonts stems from the non-separation of the adjustments to the spacing between glyphs
because of how the shapes of the glyphs interact and because of the general “spaciness”
of the whole font. The approach chosen was to leave the neural network to make
decisions only about the specific glyph pair spacing (kerning) and build a linear model
on top of that which adjusts the predicted spacing to be consistent across the font
(tracking).

In more detail, the inputs to the neural network are only the features describing the
shape between the glyphs. The output of the neural network is one of the inputs to
a linear model which also uses the one-hot encoded fonts to predict the final spacing
output.

Two different linear models on top of the neural network were tried. The first one (call
it model A) only adds a font specific weight (shifts) to the neural network output (in
effect, very similar to the linear regression with one-hot encoded fonts).

The second model (call it model B) uses 2 weights. The output of the neural network
is multiplied by the first weight and the second weight is added. In general terms, the
model A just shifts the neural network output, while model B scales and shifts it.

5.2. Separating kerning and tracking 37

5.2.1 Experiments

Both linear models were tried on top of the previously used 4 hidden layer neural
network and the results compared to the previously best performing neural network
(which used one-hot encoded fonts as inputs). The resulting errors are shown in Table
5.2.

Training Validation
Notes

MSE MAE MSE MAE
NN
4 hidden layers
200 features +
one-hot encoded fonts

1.2∗10−4 7.7∗10−3 1.5∗10−4 8.2∗10−3 Best model from
Chapter 4

NN + shift
4 hidden layers 1.5∗10−4 8.6∗10−3 1.7∗10−4 8.9∗10−3 Model A

NN + shift and scale
4 hidden layers 1.2∗10−4 7.7∗10−3 1.6∗10−4 8.4∗10−3 Model B

Table 5.2: Results of providing the 4 hidden layer neural network with the font informa-
tion in different ways.

5.2.2 Discussion

Rather surprisingly, the errors of the three models compared in Table 5.2 are relatively
close. The neural network + shift model (model A) is the easiest to use in practice
since it only requires one font specific weight to predict the spacings for an unseen
font. In fact, in practice, tracking is done by adding a single constant to all the spacings
(corresponding to the model A approach) [39]. Therefore the model A approach was
chosen to be pursued in all the following experiments. In all further experiments, the
tracking parameter (shift) was learned for each font and added to the final predictions
whether it was explicitly mentioned or not (at train and test time for fonts included in
the training set). At test time for unseen fonts, the tracking parameter would need to
be supplied as another input to the whole model.

Chapter 6

Deep neural networks

Neural networks in the previous chapters were used simply as high complexity mod-
els. In this chapter, the focus is more on optimisation of neural networks as well as
exploring techniques that can extract as much information as possible from the shape
describing features to lower the regression error. The preliminary numeric evaluation is
given in the tables in this chapter but more detailed and application-specific evaluation
of the best model is done in Chapter 7.

To allow for more flexibility in implementations and training speed, the neural network
implementation was switched from scikit-learn to the Keras framework [40] with Ten-
sorFlow [41] backend. Keras is a high-level neural network API that features automatic
computational graph differentiation and the possibility to train on GPUs. Training on
GPUs is a key feature because it allows experimenting with bigger models while keep-
ing the training timeframes reasonable (scikit-learn models only run on CPUs). All
training in this and the following chapters was done on Nvidea GeForce GTX970 video
card.

Keras was already used to implement the neural networks with linear tracking models
on top from Chapter 5 since feeding the output from one model to another and training
them both at the same time is not possible in scikit-learn.

6.1 Deep feed-forward neural networks

The results of neural network experiments in Chapter 4 showed that increasing the
number of hidden layers increased the network performance. In this section, we ex-
periment with the neural network hidden layer number and their width. In addition,
a lot of other hyperparameters influencing the network performance were tuned and
although quantitative justification for all of them is not provided for conciseness, the
reasons for the choices made are given.

39

40 Chapter 6. Deep neural networks

6.1.1 Experiment set-up

Since the framework was switched to Keras, some training options are different than
with scikit-learn. All of them are outlined below. Most of the choices described in this
section are fairly standard and are included for completeness and reproducibility.

All neural networks were trained using Adamax optimiser (a variant of previously
used Adam). It was found to achieve slightly better results than Adam in some cases.
Adamax was not available in the scikit-learn implementation of neural networks.

Same as previously, mean squared error was optimised while monitoring mean abso-
lute error as well.

Training was done in batches of 500 (network weights updated every 500 data points)
for 50 to 150 epochs depending on how the training was going. The batch size of
500 was found to make the networks converge the fastest (lower batch size increased
the time per epoch while higher batch size did not improve the error as fast). Early
stopping [42] was used stop training when the lowest error on the validation set was
reached.

10% of the training data was randomly picked for validation.

As previously, ReLU activations were used although different options (tanh and sig-
moid) were briefly explored. ReLU performed the best in all the vast majority of cases.

Xavier initialisation [43] was used for all the weights. Biases were initialised to zeros.
Other options were not explored but Xavier initialisation should be good enough.

6.1.2 Experiments and results

Neural networks with 5 to 11 hidden layers were tried. Hidden layer width was also
varied from 300 to 1000 units. The exact configurations used and the results are shown
in Table 6.1.

6.1.3 Discussion

Increasing the number of layers as well as the number of units in each hidden layer
significantly decreased the errors. The decrease could probably be explained by the
fact that having more layers and more units allows the neural network to combine and
construct new features and thus extract information easier. Therefore, it might be a
good idea to experiment with more techniques that help networks to combine features
and extract patterns. One such technique is convolutional layers in neural networks.

6.2. Convolutional neural networks 41

Training Validation
Notes

MSE MAE MSE MAE
NN
5 hidden layers
300 layer width

9.8∗10−5 6.9∗10−3 1.3∗10−4 7.5∗10−3

NN
7 hidden layers
300 layer width

7.7∗10−5 6.0∗10−3 1.2∗10−4 7.0∗10−3

NN
9 hidden layers
300 layer width

6.3∗10−5 5.3∗10−3 1.1∗10−4 6.5∗10−3

NN
9 hidden layers
500 layer width

4.8∗10−5 4.4∗10−3 9.9∗10−5 5.8∗10−3

NN
9 hidden layers
1000 layer width

3.7∗10−5 3.7∗10−3 9.0∗10−5 5.2∗10−3

NN
11 hidden layers
1000 layer width

3.8∗10−5 3.6∗10−3 8.8∗10−5 5.1∗10−3

43% validation MAE
improvement over the
4 hidden layer model B
from Chapter 5

86% validation MAE
improvement over the
“same space” baseline

Table 6.1: Results of experiments on hidden layer number and width

6.2 Convolutional neural networks

Convolutional neural networks are a different type of neural network structure that
makes use of convolutional, pooling and fully-connected layers.

Convolutional layers contain units that have local receptive fields instead of being
fully-connected (a specific unit would only have connections to a few spatially close
units from the previous layer). The local receptive fields of the units usually overlap.
Some units share their weights with other units. The units that share the weights form
filters being applied all throughout the inputs. The application of filters results in the
network being able to detect patterns invariant of their spatial location in the inputs.

Pooling layers are usually included after every one or a few convolutional layers to
reduce the dimensionality of the intermediate activations and concentrate the important
information that was extracted. Most popularly, Max pooling is used, which splits the
input (to the pooling layer) into groups of spatially close units (same number of units
in each group) and outputs the maximum value from each group.

Fully connected layers are usually included after all the convolutional and pooling
blocks just before the output layer. They function in the same way as in fully-connected
networks except for the fact that there is usually very few of them and the inputs are

42 Chapter 6. Deep neural networks

flattened (to 1 dimension) outputs from the convolutional layers.

The motivation for using convolutional neural networks is the fact that an assumption
is made that input features form a one dimensional image (of the whitespace between
the pair of glyphs). This assumption allows to greatly reduce the number of weights in
the network as well as focus the network on learning location invariant local features
(in this case, the local features could be narrowing or widening of the whitespace).
Because of the weight sharing, the local features can be learned in any place among the
features (as opposed to learning a local feature only in one specific place in the features
by fully-connected networks). The location invariance could mean, for example, that
handling glyph serifs at the baseline could be easily generalised to handling serifs the
same way at the top of the glyphs.

6.2.1 Experiments

Training convolutional neural networks involves quite a few more decisions than train-
ing simple fully-connected networks. Among others, there are choices in network
architecture, size of filters in every convolutional layer, number of filters in every con-
volutional layer, pooling type and size.

6.2.1.1 Architectures

INPUT → [[CONV → ReLU]∗N→ POOL]∗M→ FC ∗K→ OUT PUT

Figure 6.1: Parametrised architecture of convolutional neural networks

Architecture advice from [44] was taken to design most of the experiments. More
specifically, the reference mentions the architecture construction pattern displayed in
Figure 6.1

CONV, ReLU, POOL and FC here refer to convolutional layers, non-linearity layers
with ReLU activation function, pooling layers and fully connected layers respectively.
The architecture parameters are N, M and K.

The experiments were designed to try the most popularly used N, M and K values for
building CNNs. However, the advice is more tailored to visual (from images which are
2 dimensional data) classification (as opposed to the current task which is regression
from 1 dimensional data). Therefore, some ad-hoc architectures that were based on
intuition about the problem at hand were also tried.

6.2.1.2 Other hyperparameters

The filter size used in the convolutional layers was 3 (5 was tried briefly but produce
worse results). 3x3 filters are most commonly used even for high dimensional image

6.2. Convolutional neural networks 43

data.

The pool size for max pooling was 2 and applied so that they do not overlap (stride
of also 2). Almost all applications use non-overlapping small pools since they already
reduce the dimensionality aggressively. The input dimensionality in this problem is
relatively low to begin with so there is even more reason to use small pooling layers.

The number of filters in the convolutional layers was selected depending on the rest
of the architecture choices as to allow the model to finish training (via early stopping)
in a couple of hours. In practice, the number of filters did not affect the performance
of the trained models a lot as long as it was not too low (usually at least 10 filters).
The number of filters in the convolutional layers was doubled after each pooling layer
to keep the number of total activations per layer approximately consistent (a common
practice in most CNNs).

6.2.2 Results

The most successful or interesting model structures and hyperparameters are provided
below.

1. Basic CNN

An architecture of N = 1, M = 2, K = 2 given by Figure 6.1. Filter numbers of
16 and 32 for the two convolutional layers respectively. Fully connected layers
had width of 1000 units each.

2. Deeper Basic CNN

An architecture of N = 1, M = 4, K = 2 given by Figure 6.1. Filter numbers were
16, 32, 64, 128 for the four convolutional layers respectively. Fully connected
layers had width of 1000 units each.

This is essentially the same architecture as the “Basic CNN” but made deeper.
Since “Basic CNN” worked relatively well already with 2 convolutional layers,
it was hoped that adding more convolutional and pooling layers might provide
significant improvements.

3. 4C1P

An architecture of N = 4, M = 1, K = 2 given by Figure 6.1. All convolution
layers had 16 filters. Fully connected layers had width of 1000 units each.

During training of “Deeper Basic CNN” and similar models, it was noticed that
adding more pooling layers makes the models harder to train (in terms of con-
vergence speed) and worse (in terms of achieved validation MSE) in general.
Therefore, this experiment contains more convolutional layers than the “Basic
CNN” but less pooling layers.

4. 4C

44 Chapter 6. Deep neural networks

INPUT→ [CONV→ ReLU] * 4 →
FC * 9→ OUTPUT

INPUT →

Table 6.2: The architecture of network ”4CNN”. Feeding the inputs again in the middle
of the network.

An architecture of 4 convolutional layers and two fully connected layers after
that (No pooling layers). The filter number for all convolutional layers is 16.
Fully-connected layers have a width of 1000.

Since the input features are not high dimensional, even the smallest pooling lay-
ers might be too aggressive in reducing the dimensionality. The idea of checking
the necessity of pooling layers at all comes from [45].

5. 4CFC

A custom architecture of combining the convolutional fully-connected network
approaches. The intuition was that even though CNNs and deep fully-connected
layers both achieve comparable errors, it might be the case that they learn differ-
ently. Therefore, a custom architecture was designed to first feed the inputs to 4
convolutional layers, then concatenate the resulting flattened activations with the
inputs again and input the resulting tensor to 9 fully-connected layer network (of
width 1000 each). The resulting network structure is laid out visually in Figure
6.2.

The performance achieved by these models is displayed in Table 6.3

Training Validation
Notes

MSE MAE MSE MAE
Basic CNN 2.3∗10−5 3.0∗10−3 7.8∗10−5 5.1∗10−3

Deeper Basic CNN 3.5∗10−5 4.0∗10−3 1.0∗10−4 6.1∗10−3

4C1P 1.8∗10−5 2.6∗10−3 7.3∗10−5 4.8∗10−3

4C 1.6∗10−5 2.5∗10−3 7.2∗10−5 4.9∗10−3 Best validation MSE achieved
4CFC 1.7∗10−5 2.2∗10−3 7.9∗10−5 4.5∗10−3 Best validation MAE achieved

Table 6.3: Results of CNN experiments

6.2.3 Discussion

Basic CNN achieved similar performance to the best performing 11 hidden layer fully
connected layer from the previous section. Basic CNN model has an order of mag-
nitude fewer weights so it achieving the same performance shows the effectiveness
and higher efficiency (in terms of the number of weights needed) of convolutional
networks.

However, going deeper with CNNs did not work out. The most likely reason is that the
“Deeper Basic CNN” network had too many pooling layers which discarded too much
information.

6.2. Convolutional neural networks 45

Stacking convolutional layers with little to no pooling improved the results. Both
”4C1P” and ”4C” models have a relatively small number of weights but achieve the
same or better results than models with more parameters. Stacking more convolutional
layers without pooling was tried as well, but proved to be too difficult to train (net-
works would get stuck or train extremely slowly). Increasing the number of filters also
didn’t improve the performance.

Combining the convolutional and fully-connected networks in ”4CFC” produced an
impressive mean absolute error. However, the mean square error is what was optimised
and is more important. Intuitively, square error penalises extreme errors more. In
visualised text, a lot of small errors in spacing would look better than a few big spacing
errors.

The ”4C” model was selected as the best model and used for all the evaluation in the
next chapter.

Chapter 7

Evaluation

The evaluation of the best model from the last chapter was done in a few ways. Firstly,
quantitative evaluation with mean squared errors and mean absolute errors was done.
Secondly, the best performing model was compared to the auto-kerning functional-
ity of FontForge by measuring the errors as well as visually inspecting the results on
some standard fonts. Finally, a section is dedicated to more thoroughly look at the
visualisations of applying the best model to a few different fonts.

7.1 Quantitive evaluation

7.1.1 Test error on held out glyph pairs

25000 random glyph pairs were held out from the training and validation sets to be used
for the final evaluation. The best model recorded the mean squared error of 8.09∗10−5

and mean absolute error of 4.91∗10−3. The errors are not too far from the validation
errors. The dataset is big and the number of experiments that would need to be run to
notice any overfitting on the validation set would be high. Note, however, that these
pairs are from the same fonts that were used for training and validation. Therefore the
test set only shows how well the model generalises on unseen pairs but not necessarily
on unseen fonts. Generalisation on unseen fonts is more interesting, therefore, the test
errors of this kind are not particularly meaningful or interesting.

7.1.2 Errors on standard fonts

A different way to measure how well the model is performing was devised. A few
widely used and generally well-regarded fonts were chosen (the standard fonts used
are displayed in Figure 7.1).

As mentioned in Chapter 4, producing spacings for fonts that were not in the training
set required additional input of a tracking parameter (which corresponds to the weight

47

48 Chapter 7. Evaluation

Figure 7.1: Standard fonts (left) and their samples (right) that were used for evaluating
the quality of model predictions.

of the one-hot encoded font feature for fonts in the training set). The tracking pa-
rameters were learned during training for seen fonts but need to be provided to obtain
predictions for unseen fonts.

An assumption was made that the standard fonts mentioned previously are well-spaced.
Therefore, the tracking parameter was chosen to minimise the mean squared error
between the original font spacings and the full model predictions. In other words, the
tracking parameter is chosen so that the average space between two glyphs as predicted
by the full model is as close to the original as possible.

The minimisation of the error was implemented by linear regression of no features with
targets being the differences between the original spacing and the predicted spacing
without tracking (only by the neural network without the shift model on top) for each
pair of glyphs in a specific font. The linear regression learns no weights but a single
bias that minimises the MSE of full model predictions and original font targets. The
bias is used as the best tracking parameter for the font.

In general terms, obtaining the tracking parameter for an unseen font this way means
keeping the global spacing of the font as close to the original as possible while still
making adjustments to the spacings of individual pairs. All the pairs have almost the
same spacing on average but the specific pair spacings differ in ways that the model
thinks improves the spacing quality.

The resulting errors for the standard fonts comparing them to the “same space” baseline
are displayed in Table 7.1. The comparison of the mean absolute errors with the width
of the letter “H” in that specific font is also given to make the errors more interpretable
and comparable across the fonts.

7.1. Quantitive evaluation 49

Font
“Same space”
baseline mean
squared error

“Same space”
baseline mean
absolute error

Prediction mean
squared error

Prediction mean
absolute error

Prediction mean
absolute error

as a percentage
of letter H width

Helvetica 1.6∗10−3 3.2∗10−2 4.1∗10−4 1.5∗10−2 2.8%
Times New Roman 1.1∗10−3 2.3∗10−2 8.9∗10−4 2.3∗10−2 3.4%
Baskerville 2.9∗10−3 4.2∗10−2 9.2∗10−4 2.3∗10−2 2.9%
Akzidenz Grotesk 1.4∗10−3 3.0∗10−2 4.7∗10−4 1.5∗10−2 2.6%
Franklin Gothic 1.5∗10−3 3.0∗10−2 4.5∗10−4 1.5∗10−2 2.8%
Didot 2.4∗10−3 3.9∗10−2 1.2∗10−3 2.7∗10−2 3.8%
Gotham 1.8∗10−3 3.3∗10−2 3.0∗10−4 1.2∗10−2 2.1%
Rockwell 7.7∗10−4 2.1∗10−2 8.9∗10−4 2.3∗10−2 3.5%
Minion 7.7∗10−4 2.1∗10−2 7.4∗10−4 2.0∗10−2 2.9%

Table 7.1: Errors obtained by predicting standard fonts

7.1.3 Discussion

The first thing to notice is that all the errors on the standard fonts are significantly
worse that the errors on the test set. The cause of this difference is most likely the
model overfitting on the set of fonts (as opposed to the glyph pairs) that were used in
the training, validation and test sets. Even though the neural network itself did not have
any information regarding the font of each pair, it managed to learn representations that
are more suitable for the whole set of fonts in training/validation/test sets rather than
unseen fonts.

The model prediction quality was not uniform across all the standard fonts. Sans serif
fonts (Helvetica, Akzidenz Grotesk, Franklin Gothic and Gotham) were predicted sig-
nificantly better on average than serif fonts (Times New Roman, Baskerville, Didot,
Rockwell and Minion). Serif fonts are usually more tricky to space manually as well.
The serifs might touch each other and not reduce legibility (e.g. in the pair “kn”) and
vice versa (e.g. in the pair “nm”). Sans serif glyphs do not touch each other in the vast
majority of cases (doing so would almost always reduce legibility). The contours of
sans serif fonts are also usually straight lines or smooth curves and might be easier for
a neural network to learn and represent. Evidence of this hypothesis is the Rockwell
font which was predicted worse than the baseline solution most likely due to unusually
strongly pronounced serifs (slab serifs).

Relatively high errors do not necessarily mean that the predicted spacings are bad or
that the model did not generalise well (in terms of the visual quality of its predictions).
The visualised sampled text from standard fonts (predicted and original) is showcased
in Section 7.3. The relationship between the errors and the goodness of the letter
spacings is further discussed in the next chapter.

50 Chapter 7. Evaluation

7.2 Comparison to FontForge automatic kerning func-
tionality

The predicted standard fonts from the previous section were compared to the results
produced by FontForge automatic kerning functionality mentioned in Chapter 2.

7.2.1 FontForge set-up

FontForge sets the kerning for each pair according to an optical separation parameter
that is passed in as an argument to the autokern function. The algorithm then adjusts
the kerning of each pair so that it is as close to the optical separation (as measured
by an optical separation measure, default or custom user-provided) as possible. The
default optical separation measure was used in the comparisons. The optical separation
parameter was optimised to minimise the MSE between the autokerned font and the
original font (similarly to how the tracking parameter was found in the neural network
models). The minimisation was done using a golden section search algorithm [46].
The same solution of applying linear regression to find the optimal parameter could
not be applied because the relation of optical separation parameter and the produced
spacings in FontForge automatic kerning functionality is non-linear.

7.2.2 Results and discussion

Font FontForge autokerned
“Same space”
baseline mean
squared error

Prediction mean
squared error

Helvetica 6.2∗10−3 1.6∗10−3 4.1∗10−4

Times New Roman 7.3∗10−3 1.1∗10−3 8.9∗10−4

Baskerville 1.1∗10−2 2.9∗10−3 9.2∗10−4

Akzidenz Grotesk 5.7∗10−3 1.4∗10−3 4.7∗10−4

Franklin Gothic 4.4∗10−3 1.5∗10−3 4.5∗10−4

Didot 1.0∗10−2 2.4∗10−3 1.2∗10−3

Gotham 6.6∗10−3 1.8∗10−3 3.0∗10−4

Rockwell 5.5∗10−3 7.7∗10−4 8.9∗10−4

Minion 5.7∗10−3 7.7∗10−4 7.4∗10−4

Table 7.2: Results of the “same space” baseline, best model predictions and FontForge
automatic kerning functionality.

The resulting errors are compared to the results from the previous section in Table 7.2.

The errors produced by FontForge automatic kerning are significantly higher than both
the prediction errors and the baseline errors for all the standard fonts. The errors dis-
tribution is also non-uniform. Serif fonts seem be harder to space well for automatic
kerning in FontForge as well.

7.3. Visual comparisons 51

The big errors from FontForge autokerned fonts seem to be due to a few grave errors
rather than accumulated over lots of pairs. This is showcased further in the next section.

Although the autokerned errors being bigger than the baselines is surprising, it is ex-
plained by the fact that the FontForge automatic kerning algorithm is recommended as
just a starting point for manual spacing work and it is not optimising for the best MSE.

7.3 Visual comparisons

The MSE of produced spacings is not always a good measure of the quality of the
spacing. In this section, some of the fonts were visualised and compared in terms of
their spacings in same sampled text. A few of the more interesting comparisons with
comments are given here, but more can be found in Appendix A.

7.3.1 Implementation details

This section describes the implementation of the font visualisation process and does
not have any evaluation results.

The most of the software capable of visualising text with the user choice of fonts ei-
ther needs the font to be installed on the operating to function or does not make use
of full kerning information available in the fonts if the font is not installed. Specifi-
cally, ImageMagick [47] and Matplotlib [48] libraries were tried but could not produce
correctly spaced images.

A roundabout way to visualise a large number of fonts without having to install them
was developed. HTML templates were generated that use CSS to load and use the
specific fonts as well as to enable font kerning capabilities. PhantomJS [49] imple-
mentation of a headless browser was used to render the HTML templates and take
screenshots of the resulting web pages to obtain the images for visual comparison of
differently spaced fonts.

7.3.2 Standard fonts

The results of predicting “Times New Roman” is showcased in Figure 7.2.

In general, although the visual comparison is highly subjective, the predicted text sam-
ples are more consistent in terms of spacing than the two other solutions. Both the
FontForge automatic kerning algorithm and the “same space” baseline solution do not
produce consistent results for both lowercase letters and capital letters in most cases.
Looking more closely, it is always possible to find a few pairs that stick out and are
highly noticeable in both solutions while the predicted text looks much more similar to
the original and the disparities can sometimes be disputed (such as the spacing of the
triplet “PAC” in word “PACK” in Figure 7.2).

52 Chapter 7. Evaluation

Figure 7.2: Model used to predict the spacings for the Times New Roman font. The
“Original”, “Autokerned”, “Baseline” and “Predicted” columns refer to the original font,
font autokerned using FontForge, font spaced with the “same space” baseline solution
and font with the model predicted spacings respectively.

7.3.3 Predicting from a set of glyphs

Another perspective of looking at the results produced by the model is to see the out-
puts as the “fixed” version rather than it trying to mimic the original. Using fonts with
subpar spacing, it is possible to use the model predicted spacings to improve the font
and compare the visual results.

7.3.3.1 Monospaced fonts

Monospaced fonts are designed so that all the characters take up the same amount
of horizontal space. Therefore, it does not make sense to try and predict spacings of
monospaced fonts. However, we can take the glyphs from a monospaced font and treat

7.3. Visual comparisons 53

Figure 7.3: Model used to predict the spacings for a monospaced font Nova Mono. The
spacings are made to be more balanced around each letter while the overall width of
the font is held to be approximately the same. Particularly, note the spacings around
letter “i” and the word “fox”.

it as a font without any spacing information. The model can then predict the spacings,
in essence properly letter-spacing and kerning a font. The glyphs in a monospaced font
are not designed to be used in a proportional font so the result is still not very visu-
ally pleasing. However, the resulting visualisation in Figure 7.3 helps to understand
what the model is doing and how the spacings are changed according to glyph shape
interactions.

7.3.3.2 Unfinished fonts

During the development of a font, the letter spacing and kerning stage sometimes might
be delayed or skipped (more so for amateur font designers). Generating the correct
spacing and kerning information might be considered tedious and not as interesting as
designing the glyph shapes but is nonetheless important for a visually pleasing result.
Figure 7.4 showcases how the model predicted spacings could be used to assist the
process of development of a font.

54 Chapter 7. Evaluation

Figure 7.4: Model used to predict the spacings for a mid-development font Iont Slab.
The models produces spacings that are a good start for the designer to fine tune.

Chapter 8

Conclusion

The goal of this project was to investigate the possibility of using machine learning for
fully or partially automating the kerning and letter spacing part of font development.
The minimal objective was to learn to predict some hold out kerning information in
existing fonts and quantitatively evaluate the predictions.

The existing tools were reviewed. Most of the existing tools for automatic kerning and
spacing are either experimental, not good enough or commercial and closed source.
No open-source implementations explicitly using machine learning were found.

A dataset for supervised learning was created using the most popular fonts in the
Google fonts repository. A process for extracting glyph information from fonts and
constructing features describing the spacing between glyphs was developed.

Linear regression was used to satisfy the minimal objective by predicting the spacings
between glyphs and evaluating the predictions by calculating errors and comparing
them to baselines.

A system modelling both the kerning (via a neural network) of a pair and the track-
ing (via a per font constant) of a font was developed to improve the quality of the
predictions and generalisation capability.

The final system was quantitatively evaluated on a test set and on unseen standard
fonts in terms of the similarity of its predictions to the original standard font spacings.
Additionally, the system was compared to an existing open source tool for automatic
font kerning. Visual evaluation was done by providing figures comparing different
spacing solutions applied to the same text.

The developed model produced better errors than both the existing FontForge auto-
matic kerning solution and the baseline solution in all tested cases of standard fonts
except for font Rockwell where the baseline provided a slightly better solution.

There are a lot of possible further research paths to improving the results, the approach
to the problem in general and practicality of the tool. Some of the possible paths are
outlined in the next section.

55

56 Chapter 8. Conclusion

8.1 Future work

8.1.1 Dataset quality

What the model learns is highly dependent on the training set. Since the training did
not face any overfitting on the pairs, it might be beneficial to train on less but higher
quality data (less but more popular fonts).

In addition, the fonts could be separated into groups of different types and different
models for the different groups trained separately. The results already indicated that
the model sometimes struggles with serif fonts. Italic and more calligraphic fonts could
also be separated.

Finally, it could be beneficial to make sure that a higher percentage of the pairs in the
training set were actually kerned in the original fonts. Kerned pairs are almost sure
to be spaced properly while unkerned pairs might be not because they are unlikely to
appear in English text, the kerning data is incomplete or for other reasons.

8.1.2 Glyph shape representation

The approach taken in this project was measuring the horizontal distances between
the glyph outlines at various heights for every pair of glyphs. While this approach
of representing the whitespace between two glyphs worked and was inspired by the
existing design of an algorithm in FontForge automatic kerning functionality, the usage
and design of it were not fully justified. Other representations could be investigated.
A more direct approach could be to convert a pair of glyphs to one bitmap and feed it
directly to the neural network. The network would probably need more layers to learn
its own internal representation but it might be more expressive and meaningful that the
one enforced in this project.

8.1.3 Different approaches

In this project, glyph pairs were spaced. Another approach that some font designers
take is to take triplets of glyphs and adjust the spacings of the two pairs so that the mid-
dle glyph is visually the same distance away from both of the side glyphs. Going even
further, newer font formats support contextual kerning which allows specific spacing
adjustments for strings of more than two glyphs.

There was an implicit assumption in this project that there is a set of kerning values
for a font that are correct. However, kerning can also be a design choice. Investigation
on clustering fonts with different styles of kerning and whether factoring that in could
help improve the model.

Chapter 9

Plan for next year

The overall topic of the project (“Machine learning of fonts”) is broad. Although, as
described in the previous section, there are still a lot of different ways to keep attacking
the same problem of automatic font spacing and kerning, next year the focus will be
on a different problem in typography.

9.1 Problem description

Not all fonts are created equal. In the wild, especially in fonts where not as much
design effort was put in, a variable number of characters is defined and have glyphs
assigned to them. For example, a certain font might be missing diacritics (such as ö,
š, ø), while another might not have the Euro symbol (C) or the inverted question mark
punctuation symbol (¿).

The absence of some characters, punctuation or symbols might make some fonts sig-
nificantly less desirable or unusable in some contexts even though the look of the font
is good otherwise. The simplest solution is to insert the characters from other fonts but
they might appear out of context and ruin the visual text style and consistency.

The goal is to attempt to solve this problem by designing a machine learning approach
that is capable of learning a font “style” and using that style to generate the required
missing characters.

9.2 Existing tools and approaches

Not a lot of font toolsets explicitly offer the functionality of generating missing glyphs.
No complete tool that would perform the required functionality using machine learning
was found at all.

Some cases of missing characters can be handled more easily. Some font formats, as
well as typesetting software, have methods to combine glyphs [50] and thus produce

57

58 Chapter 9. Plan for next year

a lot of more rarely used diacritic characters. FontForge offers some basic automatic
accented character creation [51] although the exact method is not explained. The im-
plementation of it will need to be inspected directly. Both of these methods do not
handle the harder cases of missing symbols that are not slight modifications of the
existing ones.

There has been some work done on interpolating whole fonts (changing some repre-
sentation of the font style to obtain new fonts). Two such approaches are described
in [52] and [53]. The former uses Gaussian processes to construct a generative man-
ifold of fonts using which it is possible to interpolate and extrapolate some standard
fonts. The latter uses deep learning to train a neural network which can then create a
“font vector” which can then be manipulated to visualise some interpolated fonts or
characters.

9.3 Proposed approach

One approach to try is to train deep neural networks to learn to represent the style of
fonts. Then by using the same, or a different network, generate some missing charac-
ters by using the data of how they should look in other fonts.

Quite a lot of work is needed to set up the learning problem. Similarly to the spacing
project, a dataset will need to be made. Google fonts will likely be used again. It
would probably be easier to develop networks that learn from bitmaps so all the vector
glyphs would need to be converted. The output of the learning models will also be
in bitmap images. To achieve anything close to being practical, bitmaps will need to
be converted back to vector graphics. Some raster-to-vector software (such as [54])
can be used for vectorising bitmaps. It might be the case that a lot of tinkering with
post-processing and vectorisation parameters will be needed to obtain anything useful.

The completion objective will be to predict some held out characters from standard
fonts and quantitatively evaluate the results by calculating errors between the original
and predicted bitmaps. The resulting errors will be compared to some simple baselines
(taking the character from the “closest” font or taking the “averaged” character over
other fonts).

Bibliography

[1] Maria dos Santos Lonsdale, Mary C. Dyson, and Linda Reynolds. Reading in
examination-type situations: the effects of text layout on performance. Journal
of Research in Reading, 29(4):433–453, 2006.

[2] Leyla Akhmadeeva, Ilnar Tukhvatullin, and Boris Veytsman. Do serifs help in
comprehension of printed text? An experiment with Cyrillic readers. Vision
Research, 65:21 – 24, 2012.

[3] Michael L. Bernard, Barbara S. Chaparro, Melissa M. Mills, and Charles G.
Halcomb. Comparing the effects of text size and format on the readibility of
computer-displayed Times New Roman and Arial text . International Journal of
Human-Computer Studies, 59(6):823 – 835, 2003.

[4] Keith Rayner, Timothy J. Slattery, and Nathalie N. Bélanger. Eye movements, the
perceptual span, and reading speed. Psychonomic Bulletin & Review, 17(6):834–
839, 2010.

[5] Yu-Chi Tai, James Sheedy, and John Hayes. Effect of letter spacing on legibility,
eye movements, and reading speed. Journal of Vision, 6(6):994+, 2006.

[6] Donald E Payne. Readability of typewritten material: proportional versus stan-
dard spacing. Visible Language, 1(2):125–136, 1967.

[7] Google. google/fonts: Font files available from Google Fonts. https://github.
com/google/fonts. (Accessed on 25/1/2017).

[8] FontForge Open Source Font Editor. https://fontforge.github.io/en-US/.
(Accessed on 25/01/2017).

[9] Automated Kerning With iKern Typographica. http://typographica.
org/on-typography/automated-kerning-with-ikern/. (Accessed on
05/04/2017).

[10] Typographical Concepts. https://developer.apple.com/
library/content/documentation/StringsTextFonts/Conceptual/
TextAndWebiPhoneOS/TypoFeatures/TextSystemFeatures.html. (Ac-
cessed on 27/03/2017).

[11] Igino Marini. Manifesto iKern: type metrics and engineering spacing (autospac-
ing) and kerning (autokerning) for type designers. http://ikern.com/k1/.
(Accessed on 25/01/2017).

59

60 Bibliography

[12] Igino Marini. Introduction to iKern. http://ikern.com/k1/wp-content/
uploads/iKern_Intro_2016_02_07.pdf. (Accessed on 25/01/2017).

[13] New Fell Types and new iKern site. — Typophile. http://www.typophile.
com/node/46301. (Accessed on 05/04/2017).

[14] Matthew Chen. TypeFacet Autokern. http://charlesmchen.github.io/
typefacet/topics/autokern/index.html. (Accessed on 25/01/2017).

[15] Auto Width and Auto Kern. http://fontforge.github.io/en-US/
documentation/reference/autowidth/. (Accessed on 25/01/2017).

[16] Dutch Type Library. DTL FontTools. http://www.fontmaster.nl/. (Accessed
on 25/01/2017).

[17] KernMaster — PublinkPublink. http://pub-link.com/products/
kernmaster/. (Accessed on 25/01/2017).

[18] FontLab Typographic Tools - font editors and converters - TypeTool. http://
old.fontlab.com/font-editor/typetool/. (Accessed on 25/01/2017).

[19] Font Combiner — Custom web fonts and web icons. http://fontcombiner.
com/create. (Accessed on 27/01/2017).

[20] SIL Open Font License (OFL). http://scripts.sil.org/OFL. (Accessed on
25/01/2017).

[21] Apache License, Version 2.0. https://www.apache.org/licenses/
LICENSE-2.0. (Accessed on 25/01/2017).

[22] Ubuntu Font License v1.0. http://font.ubuntu.com/ufl/
ubuntu-font-licence-1.0.txt. (Accessed on 25/01/2017).

[23] fonttools/fonttools: A library to manipulate font files from Python. https://
github.com/fonttools/fonttools. (Accessed on 25/01/2017).

[24] svg.path 2.2 : Python Package Index. https://pypi.python.org/pypi/svg.
path. (Accessed on 27/01/2017).

[25] 8.6. bisect Array bisection algorithm Python 3.6.1 documentation. https://
docs.python.org/3/library/bisect.html. (Accessed on 05/04/2017).

[26] Developer API — Google Fonts — Google Developers. https://developers.
google.com/fonts/docs/developer_api. (Accessed on 05/04/2017).

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[28] Natural Language Toolkit NLTK 3.0 documentation. http://www.nltk.org/.
(Accessed on 24/02/2017).

Bibliography 61

[29] sklearn.linear model.LinearRegression scikit-learn 0.18.1 documentation.
http://scikit-learn.org/stable/modules/generated/sklearn.
linear_model.LinearRegression.html. (Accessed on 02/03/2017).

[30] sklearn.decomposition.PCA scikit-learn 0.18.1 documentation.
http://scikit-learn.org/stable/modules/generated/sklearn.
decomposition.PCA.html. (Accessed on 06/04/2017).

[31] sklearn.preprocessing.PolynomialFeatures scikit-learn 0.18.1 documenta-
tion. http://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.PolynomialFeatures.html. (Accessed on 03/02/2017).

[32] sklearn.neighbors.KNeighborsRegressor scikit-learn 0.18.1 documenta-
tion. http://scikit-learn.org/stable/modules/generated/sklearn.
neighbors.KNeighborsRegressor.html. (Accessed on 26/03/2017).

[33] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When Is
“Nearest Neighbor” Meaningful?, pages 217–235. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1999.

[34] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Effi-
cient backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer,
2012.

[35] sklearn.neural network.MLPRegressor scikit-learn 0.18.1 documentation.
http://scikit-learn.org/stable/modules/generated/sklearn.
neural_network.MLPRegressor.html. (Accessed on 26/03/2017).

[36] Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted
Boltzmann Machines. In Johannes Frnkranz and Thorsten Joachims, editors,
Proceedings of the 27th International Conference on Machine Learning (ICML-
10), pages 807–814. Omnipress, 2010.

[37] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. ArXiv
e-prints, December 2014.

[38] Tracking Your Type - Fonts.com. https://www.fonts.com/content/
learning/fontology/level-2/text-typography/tracking-your-type.
(Accessed on 06/04/2017).

[39] CSS letter-spacing. http://www.quackit.com/css/properties/css_
letter-spacing.cfm. (Accessed on 28/03/2017).

[40] Keras Documentation. https://keras.io/. (Accessed on 28/03/2017).

[41] TensorFlow. https://www.tensorflow.org/. (Accessed on 28/03/2017).

[42] Lutz Prechelt. Early Stopping — But When?, pages 53–67. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[43] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010.

62 Bibliography

[44] CS231n Convolutional Neural Networks for Visual Recognition. http://
cs231n.github.io/convolutional-networks/#layerpat. (Accessed on
29/03/2017).

[45] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A.
Riedmiller. Striving for Simplicity: The All Convolutional Net. CoRR,
abs/1412.6806, 2014.

[46] minimize scalar(method=golden) SciPy v0.19.0 Reference Guide.
https://docs.scipy.org/doc/scipy/reference/optimize.minimize_
scalar-golden.html#optimize-minimize-scalar-golden. (Accessed on
01/04/2017).

[47] Convert, Edit, Or Compose Bitmap Images @ ImageMagick. https://www.
imagemagick.org/script/index.php. (Accessed on 06/04/2017).

[48] Matplotlib: Python plotting Matplotlib 2.0.0 documentation. http://
matplotlib.org/. (Accessed on 06/04/2017).

[49] PhantomJS — PhantomJS. http://phantomjs.org/. (Accessed on
06/04/2017).

[50] LaTeX/Special Characters - Wikibooks, open books for an open world. https:
//en.wikibooks.org/wiki/LaTeX/Special_Characters#Escaped_codes.
(Accessed on 29/03/2017).

[51] Design With FontForge: Diacritics and Accents. http://
designwithfontforge.com/en-US/Diacritics_and_Accents.html#
FontForge’s_basic. (Accessed on 29/03/2017).

[52] Neill D. F. Campbell and Jan Kautz. Learning a Manifold of Fonts. ACM Trans-
actions on Graphics (SIGGRAPH), 33(4), 2014.

[53] Analyzing 50k fonts using deep neural networks Erik
Bernhardsson. https://erikbern.com/2016/01/21/
analyzing-50k-fonts-using-deep-neural-networks/. (Accessed on
29/03/2017).

[54] Peter Selinger: Potrace. http://potrace.sourceforge.net/. (Accessed on
29/03/2017).

Appendices

63

Appendix A

Visual comparisons

A.1 Standard fonts

Figure A.1: The original and predicted Helvetica font. The model mimics the spacings
quite well as it takes a while to find the differences. To see one difference, note the
pair “rt” in word “quartz”. Also, note the slight kerning on the pair “oT” in the last row in
the predicted font. The original font did not kern the pair most likely due to it not being
common in normal usage. However, the model kerns the pair slightly and is penalised
for it in terms of MSE. It could be argued that the pair should be kerned and the error is
“undeserved”.

65

66 Appendix A. Visual comparisons

Figure A.2: A harder case of kerning the font Baskerville. The FontForge automatic
kerning functionality kerns the capital letters that fit together too closely while the base-
line solution makes the mistake of letting some letters touch each other which reduces
legibility (pairs “jo” and “DO”). The predicted model avoids both issues although makes
a mistake in pair “AV” by not kerning it enough. The triplet “XTY” in word “SIXTY” could
be argued to be spaced better in the predicted version.

A.1. Standard fonts 67

Figure A.3: Font Rockwell. The only font that was predicted better by the baseline
solution than the model in terms of MSE. The most obvious mistakes made by the
model are the spacings in the triplet “PAC” (in word “PACK”) and pair “Vo”. Presumably,
the slab (blocky) nature of the serifs resulted in the baseline solution being able to
produce a reasonable spacing save for some specific pairs (such as “WA” and “AV”).

68 Appendix A. Visual comparisons

A.2 Improved fonts

Some unkerned fonts found in the Google font repository were predicted and compared
below.

Figure A.4: Font TextMeOne from the Google font repository. The predicted version has
the spacings consistency increased in most cases. Particularly note the words “quick”,
“fox” and “PACK”. The spacing is not perfect (The difficult cases in the last row are still
not great) but in a better state than in the original font.

A.2. Improved fonts 69

Figure A.5: Font Sarina from the Google font repository. It shows that the model does
not generalise well to more calligraphic fonts. Since the same tracking value is applied
to both lowercase and uppercase letters, the model cannot distinguish which letters
should be connected and which should be not.

