
DART-IDE: A Latent Diffusion Model of

Articulated and Textured 3D Shapes with

Interpretable Direction Editing

Patrikas Vanagas

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2024

Abstract

Recent advances in generative AI have revolutionised the creation of 2D content but

have lagged in generating 3D models. In this thesis, we introduce Diffusing Articulated

Renderings of Textured Meshes with Interpretable Direction Editing, a novel framework

that integrates diffusion models with the recently proposed Single-View Articulated

Object Reconstruction model for generating articulated and textured 3D meshes. DART-

IDE independently generates and controls shape, articulation, and texture, addressing

current limitations in 3D mesh generation. We also make contributions to latent space

disentanglement, being the first to enable interpretable direction editing specifically in

class-conditional diffusion models, and apply this to DART-IDE, enabling predictable

fine-grained manipulation of the pose of generated meshes. We also propose a new

metric, the Articulated Mesh Pairwise Chamfer Distance, to evaluate the quality and

diversity of generated 3D meshes. Experiments demonstrate that DART-IDE generates

high-quality, diverse 3D meshes with meaningful and predictable edits, offering sig-

nificant advancements over existing models. The proposed methods show promise in

enhancing 3D generative capabilities, opening new avenues for further research.

i

Research Ethics Approval

This project was planned according to the Informatics Research Ethics policy. It did

not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Patrikas Vanagas)

ii

Acknowledgements

I thank my supervisor, Dr Oisin Mac Aodha, for being very responsive and steering

me in the right direction throughout this project, and Mehmet Aygün, who kept the

SAOR code in accessible shape. I am grateful to my family, who have been a constant

source of support and encouragement. I also thank my library companions and friends,

both near and far, for their companionship and for providing the rare, but much-needed

moments of levity. This work has used the resources provided by the Cirrus UK National

Tier-2 HPC Service at Edinburgh Parallel Computing Centre 1 funded by the University

of Edinburgh and EPSRC (EP/P020267/1); I extend my sincere thanks to the Cirrus

support team for their swift and efficient assistance.

1www.cirrus.ac.uk

iii

www.cirrus.ac.uk

Table of Contents

Acronyms & Initialisms vi

1 Introduction 1
1.1 Motivation . 1

1.2 Contributions . 2

1.3 Thesis Outline . 3

2 Foundations 4
2.1 Primer on Computer Vision . 4

2.2 3D Object Reconstruction . 6

2.3 Latent Space Generative Models . 10

3 Diffusion Models 12
3.1 Denoising Diffusion Probabilistic Models 12

3.2 Other Techniques Employed . 15

4 Methodology 21
4.1 Generation Scheme . 21

4.2 Disentanglement Scheme . 26

4.3 Dataset Preparation . 26

4.4 Evaluation Metrics and Training Details 28

5 Results and Discussion 31
5.1 Architectural and Experimental Considerations 31

5.2 Shape and Articulation Conditioning and Generation 33

5.3 Texture Conditioning and Generation 36

5.4 Full Results . 36

5.5 Interpretable Direction Discovery 38

iv

6 Conclusions 39
6.1 Summary . 39

6.2 Limitations & Future Work . 40

Bibliography 41

A Comparison of Original and Upscaled Textures 56

v

Acronyms & Initialisms

DART-IDE Diffusing Articulated Renderings of Textured Meshes with Interpretable

Direction Editing

CNN Convolutional Neural Network

DDPM Denoising Diffusion Probabilistic Model

DDIM Denoising Diffusion Implicit Model

SAOR Single-View Articulated Object Reconstruction

VAE Variational Autoencoder

GAN Generative Adversarial Network

SVR Single-View 3D Object Reconstruction

SSL Self-Supervised Learning

MLP Multi-Layer Perceptron

ELBO Evidence Lower Bound

KLD Kullback–Leibler divergence

LSGM Latent Space Generative Model

CFG Classifier-Free Diffusion Guidance

PCA Principal Component Analysis

AMPCD Average Minimum Pairwise Chamfer Distance

FID Fréchet Inception Distance

NeRF Neural Radiance Field

vi

Chapter 1

Introduction

1.1 Motivation

Recent advances in generative AI for images and videos, particularly with models such

as DALL-E [94], StyleGAN [48], and the recent SORA [76], have enabled unprece-

dented levels of complexity in content generation [100]. However, generative AI has

lagged in the generation of 3D content, despite its vast potential for applications in

gaming, VR/AR, architecture, e-commerce, healthcare, manufacturing, education, and

the arts, where it can revolutionise design, visualisation, and interactive experiences

by enabling the rapid creation of detailed and customisable 3D models for everything

from virtual environments and product prototypes to medical simulations and digital

art ([62], [5]). Progress in 3D AI is hindered by the complexity of 3D representations,

which require handling higher-dimensional data compared to 2D images, the scarcity

of realistic large-scale 3D datasets for training, the challenges in ensuring multiview

consistency in generated models, and the computational intensity of rendering and

optimising 3D content [67]. Additional challenges include the difficulty in generating

compact and topologically accurate parametrisations, the inability to produce detailed

textures and material properties, and the challenges in ensuring consistency and preci-

sion when generating 3D content based on conditional inputs such as labels, text, or

images [71], making it difficult to achieve the same level of quality and diversity in 3D

generation as seen in 2D content generation. In part because of this, few metrics have

been developed for evaluating generated 3D content encoded in meshes, which is the

parameterisation allowing the most down-the-line manipulation, and no work has been

done on interpretable controllability of such generated objects, allowing for predictable

manipulation during generation, where one a priori knows the controlled attribute.

1

Chapter 1. Introduction 2

Another related field, which has seen more progress in the last few years, is that of

image-to-3D models ([72], [73]), where the 3D object is inferred from a single image.

At the same time, progress in the generation of articulated 3D objects from images

has been constrained by the need for extensive supervision, such as multiview images,

keypoint-derived camera poses, or predefined shape assumptions, limiting the scalabil-

ity and flexibility of these methods [125]. One method that has recently successfully

tackled this task by removing some means of supervision is Single-View Articulated

Object Reconstruction (SAOR) [4], the efficient scheme of which allows for quick and

efficient inference of 3D textured and articulated animal meshes learnt from animal

image collections via a self-supervised arrangement. In addition to being fast in in-

ference and providing results of great quality, SAOR interests us because it contains

intermediate latent representations which separately parametrise the shape, articulation

and texture of the resultant 3D object. In light of this, one is tempted to use the recent

advances in powerful generative models to learn the distribution of these latents and

generate inputs to further modules of SAOR, thus turning it from a model which only

works with image conditioning into a fully generative model, where shape, articulation,

and texture generation is done independently.

In particular, Denoising Diffusion Probabilistic Models (DDPMs) [40], having emerged

as a powerful generative paradigm, offer a promising avenue for modelling the complex

distributions of the intermediate latents in SAOR, making it feasible to create a model

capable of generating high-quality, diverse 3D articulated meshes with independent

control over shape, articulation, and texture. This approach not only addresses the limita-

tions of current 3D generative models, which struggle with detailed and conditional 3D

content generation, but also opens new possibilities for (i) making the generative model

class-conditionable, (ii) developing fine-grained, interpretable manipulation of 3D ob-

jects using the latest advancements in disentanglement of DDPMs, (iii) developing 3D

mesh evaluation metrics having a ground truth distribution of original shapes.

1.2 Contributions

Developing our approach, which we coin Diffusing Articulated Renderings of Textured

Meshes with Interpretable Direction Editing (DART-IDE), we make these contributions:

1. A Novel Framework for Generating 3D Meshes: We introduce DART-IDE, a

novel framework that extends the capabilities of SAOR by integrating DDPMs for

Chapter 1. Introduction 3

the generative modelling of articulated and textured 3D meshes. This framework

allows for independent generation and control of shape, articulation, and texture,

addressing the limitations of current 3D generative models in producing high-

quality, diverse, and conditionable 3D content.

2. Interpretable Direction Discovery in Class-Conditional Diffusion Models:

We extend existing diffusion model disentanglement techniques to enable inter-

pretable direction discovery within the latent space of class-conditional models,

and apply it to DART-IDE. This allows interpretable manipulation of generated

meshes across different classes, e.g., adjusting specific attributes in the pose.

3. Development of a New Evaluation Metric: We propose the Average Minimum

Pairwise Chamfer Distance (AMPCD), a novel metric to evaluate generated 3D

meshes. This metric specifically addresses the challenges of assessing generated

articulated objects in terms of both quality and diversity, providing a more robust

and meaningful evaluation compared to existing methods.

4. A Novel Animal Image Dataset: In the development of DART-IDE, we curate

a dataset of 14,352 animal images from 16 classes, on which we expect most

image-to-3D models to perform very well. From this dataset, we construct the

dataset of SAOR latents to train DART-IDE.

To the best of our knowledge, DART-IDE is the first generative 3D mesh model to

have mechanisms to independently generate and manipulate the shape, articulation,

and texture of a mesh. Furthermore, because of our contributions to diffusion model

disentanglement, it is the first to do so in a predictable manner.

1.3 Thesis Outline

This thesis is organised as follows: Chapter 2 provides a foundational background

on computer vision, 3D object reconstruction, and latent space generative models,

focussing on the SAOR model and its integration into DART-IDE. Chapter 3 reviews

the relevant diffusion model theory and advancements we use, setting the stage for

DART-IDE’s architecture. Chapter 4 details the methodology, including the generation

scheme and model architectures, dataset preparation, evaluation metrics, and latent

space disentanglement. Chapter 5 presents and analyses our results. Finally, Chapter 6

concludes with a summary and future directions.

Chapter 2

Foundations

In this chapter, our aim is to provide the reader with the necessary foundations of the

methodologies upon which we set out the project. First, we summarise recent progress

in computer vision, especially based on deep learning. Next, we analyse recent work

mapping images to 3D meshes, especially focussing on SAOR [4], the model that forms

the backbone of our project. Finally, we discuss the technique of latent space generative

models, which we merge with SAOR to create our model, DART-IDE.

2.1 Primer on Computer Vision

Computer vision seeks to enable computers to interpret visual data akin to human per-

ception [110], having initially grown alongside computational human vision theory [81].

Key historical advances have included edge detection, crucial for scene understanding

[21], image pyramids for blending and coarse-to-fine correspondence ([43], [14], [92],

[3]), and global optimisation techniques like graph cuts for dense stereo correspondence

[11]. Feature-based recognition, using models like constellation and pictorial structures,

also greatly enhanced object recognition ([27], [26]).

However, the invention that may have achieved the most practical modern advances is

the Convolutional Neural Network (CNN) [58], excelling due to translational invariance

achieved through convolutional layers that ensure shift-invariant feature detection, and

the advent of deep learning ([60], [56]), enabling to overcome human-level performance

for some detection and classification tasks ([36], [19]). For 3D computer vision, deep

learning has also been employed to enhance tasks such as object detection [135], pose

estimation [108], and semantic segmentation [119], significantly improving the accu-

racy and efficiency of these applications [101].

4

Chapter 2. Foundations 5

Contrary to the techniques mentioned above, generative models aim to learn the under-

lying data distribution p(x) and generate new samples x∼ p(x). These models include

Variational Autoencoders (VAEs) [51], Generative Adversarial Networks (GANs) [31],

Normalizing Flows [96], Energy-Based Models [59], Autoregressive Models [114] and

Diffusion Models [103], each employing distinct methods for learning and sampling

from p(x), thus providing powerful tools for a variety of applications such as image

synthesis, super-resolution, and data augmentation [10]. We discuss models relevant

to our work in more detail in sections Subsect. 2.3 and Chapter 3. Opposite to the

powerful breakthroughs in audio [12], image [66] and text [25], results in 3D object

generation have been rather more humble. Notable results include volumetric pixel

(voxel) generation using VAEs [13] and GANs [124]. Later, GANs have been extended

to create collections of discrete points in 3D space (point clouds) by making the gen-

eration process hierarchical [63] and by discrete patch generation [122]. Furthermore,

works parametrising the object by a collection of vertices, edges and faces (a mesh)

have been proposed using a double VAE structure [28] and geometry-aware 3D GANs

[17].

Non-traditional representations of 3D objects have been gaining traction too. Neural

Radiance Fields (NeRFs) [83], which, using a neural network, parametrise a 3D scene

by representing it as a continuous volumetric function that maps spatial coordinates and

viewing directions to colour and density values, have enabled using large pre-trained

image diffusion models, described in Chapter 3, for generating 3D objects from text

prompts. Notably, Poole et al. [90] have set a new standard by combining NeRFs

with Score Distillation Sampling, effectively utilizing gradients from a pre-trained 2D

diffusion model to fine-tune NeRF parameters. This method allows the generation

of 3D objects from text prompts without relying on large labelled datasets, marking

a significant breakthrough. Subsequent research, such as Wang et al. [121], has fur-

ther refined this process through variational score distillation, while Liu et al. [74]

improved efficiency by synthesizing views from minimal input images using geometric

priors. Gaussian Splatting [49], which uses an explicit scene representation with 3D

Gaussians that are projected onto the image plane for faster rendering rather than a

continuous parametrisation, have demonstrated impressive results; for example, Zhang

et al. [133] demonstrate that progressive densification in Gaussian Splatting allows

faster optimisation compared to NeRFs, while Tang et al. [111] demonstrate that their

Large Multi-View Gaussian Model surpasses previous methods in both resolution and

efficiency, establishing it as a leading framework for high-fidelity 3D content generation

Chapter 2. Foundations 6

from text or single-view images.

However, it is by mastering the mesh generation modus operandi by which we reap the

most advantages; by this parametrisation, we enable the object to be highly optimized

for rendering pipelines, directly define the surface of an object, which is essential for

tasks that require surface detail, and make it easy to manipulate and edit. To the best of

our knowledge, there has been no work that explicitly generates mesh-based represen-

tations that simultaneously model the joint texture distribution using techniques like

UV mapping [106] or similar; furthermore, no mesh-based generator enables on-the-fly

editing with interpretable generation directions. Among the few approaches addressing

articulation in object generation, the NAP method [61] stands out. This framework

generates articulated 3D models using a graph-attention denoising network that captures

the relationships between part geometry and the motion constraints of joints. Despite its

innovative approach, the articulation graphs it produces are relatively basic, especially

when compared to the complexity required for models like animals, and it does not

incorporate texture learning.

2.2 3D Object Reconstruction

Single-View 3D Object Reconstruction (SVR) in computer vision refers to the process

of creating a three-dimensional digital model of an object from two-dimensional images

or other data inputs such as point clouds or depth maps, and the first work that attempts

to do this [97] is usually referred to as the groundwork for future vision work. Despite

modern approaches being rather successful in the quality of the outputs, they require

additional supervision besides images, such as (i) multi-view images of the same object

[129], (ii) camera poses from keypoints [75], (iii) object silhouettes [42], (iv) making

some a priori assumptions about the shape, such as on the object’s template shape or

symmetry ([29], [112], [84]), or (v) using manually defined 3D skeleton supervision

([126], [127]). Therefore, the state of the current field may be summarised as making

strides to remove as much additional supervision as possible while achieving the highest

quality of the generated shapes. Due to this, Self-Supervised Learning (SSL), where a

pretext task is used to produce intermediate representations to be used later, all while

using unannotated data [6], is becoming a more and more promising direction.

SAOR [4] is an SSL method which focuses on textured and articulated animal recon-

struction from 2D images; the task is especially challenging due to animals having

highly deformable bodies. The model outperforms other existing methods that do not

Chapter 2. Foundations 7

Figure 2.1: Overview of the SAOR model architecture and forward propagation (uses

elements from Fig. 1 from [4]). The model predicts shape deformation, articulation,

camera viewpoint, and texture from a single input image using separate encoders and

modules: global latents φtexture and φfeatures are extracted by fenc 2 and fenc 1; these get

decoded by fd, fa, ft and fp, to generate the final output image Î so that it is depicted

from the same viewpoint as the initial image.

use explicit 3D supervision on the Percentage of Correct Keypoints metric for the CUB

dataset [117], and allows for quick inference on limited GPU resources, essential for

our application. Below, we investigate the components of the computation graph for

SAOR, which is crucial for understanding the arrangement of the generative version

of the model. We note that the version of SAOR we use is slightly modified compared

to the one described in the paper - ours uses two separate global encoders, whereas

the original paper used just one. We show the inference stage of SAOR in Fig. 2.1.

The forward propagation begins with the extraction of global image representations,

φfeatures ∈ R512 and φtexture ∈ R512×8×8, from an input image I ∈ R3×128×128 using two

separate ResNet-18 [35] encoders. These global variables are used to predict several

key components: shape deformation, articulation, camera viewpoint, and texture.

1. Shape Prediction: The initial shape is modelled as a sphere mesh S◦ = {sss◦n}N
n=1

where each sss◦n represents the 3D coordinates of a vertex. Sphere initialized mesh being

held in a PyTorch3D object (which holds the 3D coordinates of vertices, triplets speci-

fying the faces and the texture image), the deformed shape S′ is predicted using a field

modelled by coordinate-based Multi-Layer Perceptrons (MLPs), and each vertex gets

transformed as

sss′i = sss◦i + fd(sss◦i ,φim). (2.1)

Here, fd outputs the displacement vector for the initial points s◦i . Given the bilateral

symmetry of most natural objects, only the vertices on the positive side of the xy-plane

Chapter 2. Foundations 8

are deformed, and the deformation is reflected for the vertices on the negative side.

2. Articulation Prediction: Articulation is applied to the deformed shape S′ using a

skeleton-free linear blend skinning [55] method. This allows the model to apply realistic

deformations to the object parts without relying on predefined skeletal structures. The

final articulated shape S is computed as:

S = ξ(S′,A), (2.2)

where ξ is the LBS operation, and A consists of the part assignment matrix W , found

by an additional MLP acting on vertices and φfeatures, which signifies the probability of

each vertex belonging to a part and is later softmaxed, and transformation parameters

π = {zzzk,rrrk, tttk}K
k=1, which include scale zzzk ∈ R3, rotation rk ∈ R3×3, and translation

tttk ∈ R3 for each part k = 12, all found by different MLPs acting on φfeatures. The vertex

positions are articulated based on

sssi =
K

∑
k=1

Wi,kzzzkkk⊙
(
rk(sss′i− ccck)+ tttk

)
, (2.3)

where ccck is the center of part k:

ccck =
∑

N
i=1 sss′i ·Wi,k

∑
N
i=1Wi,k

. (2.4)

This LBS mechanism blends transformations across parts using the weights Wi,k, pro-

ducing smooth and natural articulations that are critical for reconstructing the highly

deformable bodies of animals.

3. Texture Prediction: The texture image T of the object is generated using the φtexture

latent and the faces of the deformed shape. φtexture is first upscaled using a 7-layer CNN

decoder ft from [86]:

T = ft(φtexture), (2.5)

where T ∈ R3×256×256, and is then horizontally mirrored to T ∈ R3×512×256 to satisfy

the bilateral symmetry. This image is directly mapped onto the faces using the 2D

UV coordinate system, where each of the 3 vertices of each face is assigned a UV

coordinate. Additionally, after this step, the coordinates of all vertices get multiplied by

Chapter 2. Foundations 9

a scalar value, predicted from a separate MLP taking in φfeatures, to scale up the size of

the shape.

4. Camera Pose Prediction: The camera pose P, parameterized by a rotation matrix

rp ∈R3×3 and translation ttt p ∈R3, is predicted by separate MLP regressors from φfeatures.

4 possible P’s are guessed, and the most likely one is picked by a separate probability

MLP. The mesh vertices are then rotated and translated by the found configuration.

5. Rendering: Finally, the predicted shape S, texture T , and camera pose P are used to

render the final image Î:

Î = Π(S,T,P) (2.6)

where Π denotes the differentiable rendering operation. The forward propagation

process, thus, allows the SAOR model to predict and reconstruct the 3D shape, texture,

and viewpoint of the object from a single input image.

The model is trained with an end-to-end SSL analysis-by-synthesis framework, that

is, minimizing the discrepancy between the rendered reconstruction image Î and the

input image I from Eq. 2.6, using LSUN [131] horse images for warming up and a

custom dataset of 90k images of 101 animal classes from iNaturalist [44]. The loss

contains linear combinations of terms which penalize (i) Appearance Differences
The L2 RGB pixel value distance between the two images, and difference between

values of activations of a pre-trained VGG-16 CNN [102] which are observed having

passed the two images through (ii) Mask Differences The L2 loss of the segmentation

mask of the original image predicted using an off-the-shelf Segment Anything Model

[53] and one from the rendered image (which does not include the background) (iii)
Depth Differences The L2 loss of the depth predicted from the original image using

an off-the-shelf MiDaS model [9] compared to the one from the rendered image (iv)
Multi-View Inconsistency A swap loss compares the original image to a synthetic one

created by swapping shape encodings between instances, maintaining other attributes.

This ensures consistency across views and prevents degenerate (e.g. flat) 3D shapes

(v) Roughness and Part Assignment Variation The regularization loss, encouraging

equal-sized parts and smooth transitions between them, penalizing sharp edges and

irregular part assignments, to ensure the reconstructed 3D shape is both realistic and

coherent.

Therefore, using off-the-shelf solutions for depth and segmentation predictions only

during training and only assuming unarticulated animal symmetry, SAOR provides

an efficient way to output articulated meshes with textures of great quality during

inference time, well-fitting for our task - inference on a single Nvidia RTX3060 GPU

Chapter 2. Foundations 10

takes around 500 milliseconds, while on an Nvidia V100 GPU it takes milliseconds.

However, we acknowledge concurrent SVR work to SAOR which could have been

used to construct a similar model to DART-IDE. Farm3D [46] solely uses a pre-trained

image generation diffusion model for its synthetic training data, and incorporates it in

a way where the generator is asked to provide the views of an object from different

angles and illumination for virtual multi-view supervision. 3DFauna [69] uses a bank

of possible shapes, coined the Semantic Bank of Skinned Models, which gets optimized

during training to provide approximations for possible shapes to be inferred. Both

models seem to show fewer degeneration cases than SAOR, but at the time of writing,

the code for the models is not yet publicly available, and the inference times stated in

the respective papers are in the range of a few seconds.

2.3 Latent Space Generative Models

Latent Space Generative Models (LSGMs) are generative models in which one learns

to map the input data to a lower-dimensional “latent space” and then generates new data

by sampling from this space, perhaps the best-known example being VAEs, introduced

in Kingma and Welling [51]. Instead of learning to map input data x to a latent

representation z through an encoder as in simple autoencoders and then map z back to

x′ through a decoder, VAEs impose a probabilistic structure by learning a distribution

of latent z, that is, qφ(z|x), which is typically set to be a Gaussian, parametrised by

its mean(s) and standard deviation(s). The structure used is almost identical to a

simple autoencoder, but the bottleneck neurons are set to be stochastic, that is, provide

samples through the mean and standard deviation obtained through the encoder. Due

to the intractable posterior, training is performed by minimising the Evidence Lower

Bound (ELBO)

L = Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
Reconstruction Loss

−Eqφ(z|x)

[
log

qφ(z|x)
p(z)

]
︸ ︷︷ ︸

KL Divergence

, (2.7)

where p(z) is a prior, usually taken as a standard Gaussian N (0, I) [52]. The first term

corresponds to how well the VAE can reconstruct the input data, and in the case of

images, could be the MSE loss between the ground truth and the recovered image.

The second term is the Kullback–Leibler divergence (KLD) between the approximate

posterior and the prior, which acts as a regularizer, encouraging the learned distribution

Chapter 2. Foundations 11

to follow a form close to the prior. Training this type of model allows generating new

data by sampling z from the prior p(z) and passing it through the decoder pθ(x|z).
This has allowed to generate high quality images ([95], [115]), audio ([15], [65]), point

clouds ([1], [132]) and simple meshes [28].

However, modelling and then generating from latent distributions much more compli-

cated than previous examples requires more complex models. Diffusion models, which

have shown impressive results in a variety of modalities and the theory of which we

discuss in the next chapter, have been proposed to be used as an LSGM by Vahdat et al.

[113]. Here, one trains an autoencoder and then trains a diffusion model to recreate

the distribution of intermediate latents. For generation, the generated latents are fed to

the original decoder. For instance, [7] encode object point clouds into a latent space of

R256×1, where a latent diffusion model is employed to learn the distribution of these

latents and generate realistic robotic grasps. Similarly, Pinaya et al. [89] train a 3D

convolutional autoencoder on MRI brain scans with bottleneck tensors of dimension

20×20×28, developing a diffusion model conditioned on factors such as age, sex, and

neuroanatomy to create a synthetic dataset of 100,000 scans. Additionally, Li et al. [68]

adopt a very similar framework to generate realistic DNA sequences.

Chapter 3

Diffusion Models

Diffusion models have recently come to the fore as a powerful approach in machine

learning, particularly for generating high-quality samples by modelling the gradual

noise reduction process [130]. In this chapter, we review the techniques used in

DART-IDE. Specifically, we discuss the theory behind DDPMs and then explore

approaches that make the model faster to train, improve inference efficiency, enable

conditional generation, and disentangle its latent space. We note that we describe the

architectural details of DART-IDE in Chapter 4, as ours has improvements over the

neural networks used in historical papers.

3.1 Denoising Diffusion Probabilistic Models

Diffusion models are a type of generative model inspired by physical nonequilibrium

thermodynamics, which defines a Markov chain, where the probability of each transition

depends only on the current state, not on the sequence of events that preceded it, of

diffusion steps, where Gaussian noise is added to data, and afterwards a reverse process

is learnt to generate new examples from the distribution. Several types of similar models

have been proposed, namely Diffusion Probabilistic Models [103], which explicitly

model the forward and reverse diffusion processes, Noise-Conditioned Score Networks

[105], which directly estimate the gradient of the data distribution conditioned on the

noise, and DDPMs [40], which iteratively denoise data through a learnt reverse process

that gradually removes noise. We focus on the latter, as it is DDPMs that have shown the

most groundbreaking results in most generational domains, from image synthesis [23]

and image segmentation [2] to molecule generation [41]. Generally, the great results

that have been achieved can be explained by the fact that DDPMs are less susceptible

12

Chapter 3. Diffusion Models 13

to mode collapse and non-convergence problems than other models due to the highly

efficient maximisation of likelihood and the gradual nature of denoising [8], allowing

one to efficiently construct very large models trained on large amounts of data.

Introduced in Ho et al. [40], DDPMs require defining a forward diffusion process using

samples from the data distribution x0∼ q(x0). The forward process q(xt |xt−1) is defined

as adding isotropic Gaussian noise to the data sample at times t ∈ T to produce noisy

samples x1, ...,xT , according to a variance schedule {βt ∈ (0,1)}T
t=1, which specifies

the step size. Therefore, the forward process is

q(xt |xt−1) = N (xt ;
√

1−βtxt−1,βtI), (3.1)

and

q(x1:T |x0) =
T

∏
t=1

q(xt |xt−1), (3.2)

where xT is isotropic Gaussian noise too. If one lets αt = 1−βt and ᾱt = ∏
t
i=1 αi, it

can be proven [40] that the t-th sample xt is

q(xt |x0) = N (xt ;
√

ᾱtx0,(1− ᾱt)I). (3.3)

The goal of DDPMs is to successfully learn the reverse diffusion process pθ(xt−1|xt),

to start from Gaussian noise and denoise it and generate new samples from the data

distribution, all while using a neural network with parameters θ. We show both forward

and backward processes in Fig. 3.1. The reverse distribution is Gaussian as well

[79], therefore can be be parametrised by a mean µθ(xt , t) and variance Σθ(xt , t), both

dependent on the timestep, so that

pθ(xt−1|xt) = N (xt−1;µµµθ(xt , t),ΣΣΣθ(xt , t)) (3.4)

and

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1|xt). (3.5)

Reparametrising the equations to make the neural network (which is usually a CNN

U-Net [98], outputs of which are of the same dimensionality as the inputs) εθ to predict

the noise added at each timestep at time t, we can obtain the mean as

Chapter 3. Diffusion Models 14

Figure 3.1: The forward and backward process Markov chain in a DDPM. Fig. 2 from

Ho et al. [40], with additions from Weng [123].

µµµθ(xt , t) =
1
√

αt

(
xt−

1−αt√
1− ᾱt

εεεθ(xt , t)
)
, (3.6)

and then obtain xt−1 as

Thus xt−1 = N (xt−1;
1
√

αt

(
xt−

1−αt√
1− ᾱt

εεεθ(xt , t)
)
,ΣΣΣθ(xt , t)). (3.7)

Using ELBO similarly to Eq. 2.7 to minimize the negative log-likelihood and obtain

the ground truth sample x0 from the true distribution, we aim to minimize the KLD

between two Gaussians [18]. The final optimisation objective turns out [40] to be taking

a random ground truth sample x0 and, uniformly, a timestep index t, and then sampling

an isotropic Gaussian noise of dimensionality of the data, adding it to the sample at that

noise level in accordance with Eq. 3.3, and training the neural network to predict what

noise had been added based on t and the noised xt :

L = Et∼U(1,T),x0∼q(x0),ε∼N (0,I)

[
∥εεε− εεεθ(

√
ᾱtx0 +

√
1− ᾱtεεε, t)∥2

]
. (3.8)

We show the DDPM training algorithm in Alg. 1. Having trained εθ well enough,

one can generate new data points using Eq. 3.7. To accomplish this, one samples an

isotropic Gaussian xT and then using εθ with Eq. 3.7 arrives at a generated x0. However,

besides this, to undeterministically arrive at different x0 at each generation attempt,

at each t, one must sample an additional isotropic Gaussian ε, which is then added

according to (an optionally different) noise schedule σ, which is usually set to βt [79].

The DDPM sampling algorithm is shown in Alg. 2.

Chapter 3. Diffusion Models 15

Algorithm 1 DDPM Training [40]
1: repeat
2: t ∼ Uniform({1, . . . ,T})
3: x0 ∼ q(x0)

4: εεε∼N (0,I)
5: xt ←

√
ᾱtx0 +

√
1− ᾱtεεε

6: Take gradient descent step on ∇θ ∥εεε− εεεθ(xt , t)∥2

7: until converged

Algorithm 2 DDPM Sampling [40]

1: xT ∼N (0,I)
2: for all t from T to 1 do
3: εεε∼N (0,I)
4: µµµ← 1√

αt

(
xt− 1−αt√

1−ᾱt
εεεθ(xt , t)

)
5: xt−1← µµµ+σtεεε

6: end for
7: return x0

3.2 Other Techniques Employed

Since the inception of DDPMs, many techniques have been added to make this class

of models more adaptable and efficient. Here, we first review methods that we have

used to efficiently condition the model on the class label of the generated data point.

Afterwards, we look at means that allow many fewer timesteps than in DDPMs while

still retaining the high quality of generated samples and allow for quicker training.

Finally, we look at some approaches to disentangle the latent space of diffusion models.

3.2.1 Conditional Generation

In this work, we condition our diffusion models on class labels. With DDPMs, Dhariwal

and Nichol [23] were the first to incorporate class information by taking an unconditional

diffusion model and, during sampling, injecting the gradients of a classifier model

fφ(y|xt , t) that had been trained to separate the classes of noised images. Due to the

fact that for a trained denoiser ∇xt logq(xt) =− 1√
1−ᾱt

εεεθ(xt , t), the new prediction of

denoising ε̄θ conditioned on class y becomes

Chapter 3. Diffusion Models 16

ε̄εεθ(xt , t) = εεεθ(xt , t)−
√

1− ᾱt w∇xt log fφ(y|xt), (3.9)

and in each iteration of Alg. 2, the obtained mean would become

µ =
1
√

αt
(xt−

1−αt√
1− x̄t

εθ(xt , t,y))+ωσt∇xt log pφ(c|xt), (3.10)

where ω controls the strength of the guidance, and larger w would be expected to result

in better quality, but less diversity in the samples [33]. However, the downside of the

method is that one cannot use a pre-trained classifier, and it may just be interpreted as

an adversarial attack.

A more traditional conditioning method requiring twice as many diffusion steps, in-

troduced by Ho and Salimans [39], is referred to as Classifier-Free Diffusion Guid-

ance (CFG), and incorporates the output of both a conditional and unconditional diffu-

sion model pass. The conditional diffusion model pθ(x|y) is trained on datapoints paired

with labels c with a model ε(xt , t,c), and from time to time during, the conditional

information gets dropped out, with probability puncond, by setting c← ∅. By Bayes

rule, the full prediction p̃θ becomes

p̃θ(xt|c) ∝ pθ(xt |c)pθ(c|xt)
ω

∝ pθ(xt |c)
[

pθ(xt |c)
pθ(xt)

]
=

pθ(xt |c)ω+1

pθ(xt)ω
, (3.11)

and, in the log space, we obtain

log p̃θ(xt |c) = (ω+1) log pθ(xt |c)−ω log pθ(xt)+C, (3.12)

which results in a sampling algorithm shown in Alg. 3.

3.2.2 Training and Sampling Improvements

Since the increase in popularity of DDPMs, a few ways have been proposed to speed

up sampling, as simple DDPMs require more T ≥ 1000 to learn the data distribution

with the highest fidelity. Of these proposals, the most successful have been Denoising

Diffusion Implicit Models (DDIMs), introduced in Song et al. [104], which we employ

in our work. DDIMs generalize the standard diffusion process by allowing each step to

Chapter 3. Diffusion Models 17

Algorithm 3 CFG Sampling [39]
Require: class label c, guidance strength ω

1: xT ∼N (0,I)
2: for all t from T to 1 do
3: εεε∼N (0,I)
4: ε̃εε← (ω+1)εεεθ(xt , t,c)−ωεεεθ(xt , t) # Two forward passes

5: µµµ← 1√
αt

(
xt− 1−αt√

1−ᾱt
ε̃εε

)
6: xt−1← µµµ+σtεεε

7: end for
8: return x0

Figure 3.2: The DDIM graphical model for accelerated generation. Fig. 2 from Song

et al. [104].

depend not only on the previous step but also on the original data point. This results in

a non-Markovian diffusion process that, while maintaining the same training objective

as DDPMs, significantly accelerates the sampling process. We show this graphical

model in Fig. 3.2 (compare to DDPM in Fig. 3.1). The generative process in DDIMs is

deterministic, allowing for high-quality samples in just a fraction of the steps required

by traditional DDPMs. For a subset of steps T , where s < t, the step then becomes:

qσ,s<t(xs|xt ,x0) = N (xs;
√

ᾱs

(xt−
√

1− ᾱtεθ(xt , t)√
ᾱt

)

+

√
1− ᾱs−σ2

t εθ(xt , t),σ2
t I)

(3.13)

where σt is a float controlling the stochasticity of the process and can be set so that

the process becomes a DDPM. In particular, setting σt = 0, the process becomes fully

deterministic, leading to faster and more consistent sample generation. For a given

sample xt , the next step in the reverse process can be obtained by:

Chapter 3. Diffusion Models 18

xt−1 =
√

αt−1

(
xt−
√

1−αtεθ(xt , t)√
αt

)
︸ ︷︷ ︸

predicted x0

+

√
1−αt−1−σ2

t · εθ(xt , t)︸ ︷︷ ︸
direction pointing to xt

+ σtεt︸︷︷︸
random noise

,

(3.14)

where ε ∼ N (0, I) is just Gaussian noise. Empirically, DDIMs have demonstrated

the ability to generate samples up to 50 times faster than DDPMs, with only a minor

trade-off in sample quality.

Another notable improvement is that of the β noise schedule. When initial DDPMs and

DDIMs models converted the datapoint into pure noise linearly, Nichol and Dhariwal

[85] found that this type of schedule converts images to noise too fast, therefore making

the reverse process difficult to learn. Therefore, it was proposed to use a function

that changes much slower towards the endpoints; this was achieved by using a cosine

schedule, which is

ᾱt =
f (t)
f (0)

, and f (t) = cos
(

t/T + s
1+ s

· π
2

)2

, (3.15)

and βt is obtained from βt = 1− ᾱt
ᾱt−1

.

Finally, Hang et al. [34] notice that diffusion models are often slow to converge partly

by virtue of conflicting optimisation directions between timesteps. To tackle this, they

propose treating diffusion training as a multi-task learning problem and introduce a

novel approach called the Min-SNR-γ loss weighting strategy. This implies the loss for

a timestep t involving a sum over losses from multiple timesteps, that is

L =
T

∑
t=1

ωtLt(θ), (3.16)

where ωt is the respective weight. Defining Signal to Noise Ratio at each of the diffusion

steps as SNR(t) = α2
t

σ2
t
, the weight at each timestep is calculated as

ωt = min{SNR(t),γ}, (3.17)

with the weights being clamped to ensure that no timestep is given too much or too little

emphasis. Here, γ is a predefined threshold that prevents the weight from becoming too

large, which would overly prioritize certain timesteps at the expense of others.

Chapter 3. Diffusion Models 19

3.2.3 Diffusion Model Disentanglement Schemes

Interpretable direction discovery for disentanglement in diffusion models refers to the

process of identifying and isolating specific, meaningful latent directions within the

model’s representation space, which correspond to distinct and semantically under-

standable variations in the generated data, such as changes in object orientation, style,

or attributes, thereby enabling controlled and interpretable manipulation of generated

samples; due to the fact diffusion models are a relatively recent invention, rather few

schemes have been proposed, which we briefly review here.

Kwon et al. [57] were the first to introduce the concept of an asymmetric reverse process,

which discovers a semantic latent space—termed h-space — in pre-trained diffusion

models. h-space is a new latent space derived from the bottleneck features of the

CNN U-Net, which has the shape of an autoencoder, encapsulating high-level semantic

information. The authors modify the reverse process by asymmetrically altering only

certain components of the latent space. The method involves shifting the predicted

noise εθ at each timestep in a controlled manner to adjust the attributes of the generated

image. A small neural network is used to learn an implicit function that generates

the required modifications in h-space for any given timestep and image feature. This

function is trained to optimize the alignment of the generated image with the desired

attribute. Zhang et al. [134] further this approach by proposing the first unsupervised

and learning-based method to identify interpretable directions in h-space. By jointly

optimizing these components, the model spontaneously discovers disentangled and

interpretable directions. This approach is notable for its ability to maintain the fidelity

of the generated samples by using a discriminator network, preventing the discovery of

meaningless and destructive directions.

However, in our work, the most inspiration stems from the work of Haas et al. [32],

who proposed a novel approach to discovering both global and local semantic directions

within h-space for unconditional generation. Their method leverages Principal Com-

ponent Analysis (PCA) to uncover global, interpretable directions, such as pose and

gender, directly from the principal components of the bottleneck features in h-space.

Through many passes of the network, the authors record the h-space activations and

concatenate them, and then decompose them into n principal components for each of

the timesteps. For boosting a certain attribute, at each t, the chosen component vector is

added to the bottleneck activations, creating reproducible, albeit not necessarily fully

disentangled, editing capabilities. This approach is especially attractive due to requiring

Chapter 3. Diffusion Models 20

little modification for a state-of-the-art implementation of a diffusion model and does

not require using an asymmetric process, which has not been proven to deliver better

sample quality.

We acknowledge diffusion disentanglement schemes which are out of our reach due

to the specifics of our model and compute constraints. Park et al. [87] introduce a

method to derive local latent bases by leveraging the pullback metric associated with the

encoding feature maps, allowing for precise image editing by moving within the latent

space along these discovered basis vectors, but their method does not prove to provide

greater results than that of Haas et al. [32] while being more expensive. Furthermore,

two approaches have been introduced for text-prompted diffusion models: Li et al. [64]

present a self-discovery approach that identifies interpretable latent directions in the

h-space of diffusion models without requiring external classifiers or labelled datasets.

Instead, their method uses a modified text prompt and the pre-trained model’s internal

representations to guide the discovery of concept vectors. On the other hand, Dalva

and Yanardag [20] introduce NoiseCLR, an unsupervised contrastive learning-based

framework for discovering interpretable directions in text-to-image diffusion models.

NoiseCLR does not rely on text prompts or labelled data; instead, it uses a small set

of unlabelled images from specific domains to discover latent directions that enable

semantically meaningful and disentangled edits. The latter two may be applicable for

3D generative diffusion models which are being prompted by text.

Chapter 4

Methodology

In this chapter, we describe the methodology we employ to construct DART-IDE. First,

we look at the arrangement used to construct an LSGM from SAOR using generative

diffusion models and their architectures. Then, we discuss the proposed disentanglement

scheme based on the PCA exploration of the h-space. Finally, we look at how the dataset

used was constructed and the evaluation metrics that we have employed.

4.1 Generation Scheme

DART-IDE is based on two separate class-conditioned DDIM generators, the first

responsible for the shape and articulation conditioning, and the second responsible for

texture generation. Optionally, another generator, an addition to the first one, allows for

manipulating the articulation of a set shape. These generators provide input for other

modules of SAOR, where the input encoded by the scrapped modules would otherwise

have been inferred from the input image.

4.1.1 Module Arrangement

We shall refer to the first generator as Gfeatures, and the second as Gtexture; option-

ally, we can use Garticulation to manipulate the articulation separately. According to

the description in Sect. 2.2, Gfeatures generates φfeatures ∈ R512. However, instead of

generating φtexture ∈ R512×8×8 with Gtexture to feed into ft MLPs, we bypass this by

instead feeding an empty tensor φtexture = 0512×8×8 to ft and then rely on Gtexture to

generate T ∈ R3×64×64 images, which then are upscaled to the required 3×256×256

resolution using an off-the-shelf pre-trained 4x super-resolution ESRGAN [118], and

21

Chapter 4. Methodology 22

Figure 4.1: Overview of the DART-IDE model architecture (compare with architecture

of SAOR in Fig. 2.1). It is composed of two class c conditioned DDIM models, where

Gfeatures determines the shape and articulation, and Gtexture determines the texture; op-

tionally, Garticulation has the same architecture and weights as Gfeatures, but may generate

a different articulation. All parts of the generation are modular and independent, and

all of the c labels used may be different. The generated φfeatures vectors are fed into

pre-trained SAOR modules, while the generated undersized texture T ′ is upscaled by a

pre-trained ESRGAN, and then merged with a UV map from a filler tensor.

then doubled by flipping along the right edge to satisfy the symmetry. The mere

propagation of φfeatures, even composed of zeros, allows us to generate the required

symmetry-satisfying UV map, required to associate specific vertices of the mesh with

specific pixels of the texture, and we find that learning to generate T images directly

yields results of much finer quality than generating φtexture. The choice to work on 64

rather than 256 resolution images and then use a super-resolution model is motivated by

computational constraints and is an instance of LSGMs itself. The complete architecture

is shown in Fig. 4.1.1.

Therefore, Gfeatures is trained on (φfeatures,c) and Gfeatures is trained on (downscale(3×
64×64,T),c) tuples respectively, obtained in the procedure described in Sect. 4.3.

Chapter 4. Methodology 23

4.1.2 Model Architectures

Gfeatures generating 1D φfeatures ∈ R512 vectors means departing from traditional 2D

convolutions in U-Net CNNs and working with 1 dimensional convolution operations,

while Gtexture employs a similar but more traditional 2D CNN architecture.

Both architectures use a bottleneck U-Net structure, where the input sample first gets

its number of channels expanded and spatial resolution kept by the initial convolution

in the layer I, then gradually gets reduced in spatial dimension and enlarged in the

channel dimension by “down” blocks D, pass the bottleneck block M, and then undergo

opposite transformations to the original spatial resolution in the “up” blocks U, to finally

be reduced to the original channel number by the F convolution. In this work, we

employ weight-standardised convolutions [91], which means that the weights in the

convolutional filters are normalised by subtracting their mean and dividing by their

standard deviation, that is,

Ŵi, j =
Wi, j−µWi,·

σWi,·
, (4.1)

where Wi, j are the original weights, µWi,· is the mean of the weights in the convolutional

filter, and σWi,· is the standard deviation of the weights in the convolutional filter. This

approach works well in tandem with Group Normalisation [54] by reducing the variance

of the input to subsequent layers. Each of the D, M and U blocks are composed of

two convolutions, each followed by Group Normalisation [128] and SiLU activation

[24]. Group normalisation normalises across groups of channels, improving training

stability. The two convolutional layers are connected by a residual connection [35],

which adds the input of the block to its output, mitigating the vanishing gradient problem.

Furthermore, after each block, we employ the attention mechanism [116], which helps

to focus on the relevant parts of the intermediate representation and is computed as

Attention(Q,K,V) = softmax
(

QKT
√

dk

)
V, (4.2)

where Q, K and V are the query, key and value matrices, respectively, derived from

the input with three additional standard convolutions, and dk is the dimensionality

of the key. Furthermore, skip connections are introduced between D and U blocks of

corresponding dimensions, ensuring that fine-grained details lost during downsampling

are reintroduced in the upsampling phase. These skip connections concatenate (rather

Chapter 4. Methodology 24

than add) feature maps from the downsampling path with those in the upsampling path,

providing the network with both high-level abstract features and low-level details.

To incorporate the class label c and the current timestep t into the network, we inject

the condition into each block with a procedure similar to Feature-wise Linear Modula-

tion [88]. The time information is embedded using a sinusoidal positional embedding

(PE) [116], that is,

PE(t) =
[

sin
(

t
100002i/d

,cos
(

t
100002i/d

))]
, (4.3)

where d is the dimension of the embedding, i indexes the dimensions, and 100002i/d

controls the frequency, ensuring that each of the t’s is represented uniquely while

preserving relative temporal distance information through a periodic signal. The time

embedding is passed through two linear MLPs with GELU [37] non-linearities. On the

other hand, class information is learned using an embedding layer, followed by another

MLP. These two embeddings are concatenated and passed through another MLP with a

SiLU non-linearity, outputting a tensor with a dimension that is twice the desired block

dimension. This tensor is chunked into two components - the first one is multiplied

with the feature map to scale it, while the second chunk is added to the feature map to

shift it, allowing the network to adaptively condition on temporal and class information.

Combined, both models form state-of-the-art diffusion backbones, and in combination

have 109 million parameters, comparable, to, for example, Base BERT [22] in NLP.

Both used CNNs (simplified to residual blocks) and the activation dimensions in the

forward propagation are shown in Fig. 4.1.2. We note that the models could have been

made larger, but limit ourselves to having the largest models while keeping the training

batch size to at least 64 and not running out of VRAM on an NVIDIA V100 GPU, and

have in mind that generally in U-Nets, increasing the depth (number of levels) enhances

the network’s ability to capture multi-scale features and improves gradient flow due

to skip connections, which is usually more beneficial than increasing the number of

channels [77].

Chapter 4. Methodology 25

Figure 4.2: Vertical views of Gfeatures and Gtexture backbone U-Nets, with the former

using 1D and the latter 2D convolutions, annotated with the activation dimensions, where

channel number is followed by the spatial dimension. Each model is composed of an

input convolution, downsampling blocks, bottleneck block, upsampling blocks and the

final convolution. The dotted arrows show the concatenating skip connections, while the

brown arrows show the injection of class c label through trainable embeddings and time

t through sinusoidal embeddings into every block.

Chapter 4. Methodology 26

4.2 Disentanglement Scheme

Haas et al. [32] base their diffusion disentanglement approach on recording and

analysing h-space (bottleneck) activations and then performing PCA on them. However,

this approach only works with diffusion models that are not trained to generate samples

according to some given class. We extend this approach to class-conditional diffusion

models, and this technique works for any kind of backbone neural network.

Due to the fact that in CFG diffusion there are 2T passes to generate every sam-

ple (recall Alg. 3), we propose to generate n final samples and then only record

the h-space activations for the unconditional pass εθ(xt , t), saving a separate ten-

sor for each timestep t, and then finding the direction of largest variance in each

timestep; with this, we hope to discover directions invariant to the class that can be

amplified or reduced. Specifically, having trained the DDIM using Tfeatures = 100

for Gfeatures, we record bottleneck activations using n = 1,024, to obtain a tensor of

shape [n,T,bottleneck channels dim,bottleneck spatial dim(s)]. Consider-

ing V = 10 principal components, we use the Incremental PCA algorithm [70] to obtain

principal components scaled by singular values of shape

[V,T,bottleneck channels dim,bottleneck spatial dim(s)],

by the virtue of

X = UΣVT , (4.4)

where X is the matrix of h-space activations, U contains the principal components, Σ is

the diagonal matrix of singular values, and V contains the right singular vectors. The

principal components are ordered by the amount of variance they explain in the data.

Having picked a component corresponding to some semantic concept v ∈V and making

the DDIM process deterministic (as outlined in Subsect. 3.2.2) to make the generated

samples constant, we can add the vector of the chosen principal component scaled by

a constant scalar ∆h at the required time step t ∈ T to provide meaningful semantic

changes to the generated meshes.

4.3 Dataset Preparation

For training our models, we designed a custom dataset, composed of the subset of

quadruped animal images from iNaturalist [44] that SAOR had been trained, as de-

scribed in Sect. 2.2. Having generated the meshes from the complete set of considered

Chapter 4. Methodology 27

Figure 4.3: Cases of SAOR failing to predict the shape of the animal.

quadruped images, we devise a set of criteria on which the output meshes from SAOR

fail. Rejection criteria include obscured limbs, unextended or strongly bent limbs, the

animal having lay down, or the animal being pictured in such a way that the full length

of its body is not sufficiently shown, such as when the animal is photographed from the

front or back. We show a few cases in which SAOR fails to predict the shape in Fig. 4.3

as examples of images that had been rejected.

We also reject black and white images for modelling the texture distribution more

truthfully. With these criteria, from the initial 31k images, we pick 14,352 training

samples by hand, rejecting around 56% of the original images, and using 16 animal

classes; the least represented category has 437 images, while the most represented one

has 1,529 images. For these images, we save the global latent φfeatures, texture image

T ∈ R3×256×256 and the mesh object, which within itself contains the UV map. We

note that for optimal dataset creation, the image edges were cut down to 102% of the

provided bounding box, contrary to the procedure in SAOR training; furthermore, to

check whether there had been any mistakes in the provided bounding boxes, a quick

KNN clustering check between the cut down and original images with SIFT [78]

extracted features was performed with a 100% accuracy. Afterwards, as the SAOR

encoders require a square input image, the edges had been filled with a white border of

the required size, and the image was scaled down to the required 3×64×64 resolution

using the Lanczos algorithm [80]. Additionally, we note that the pose network fp of

SAOR (recall the architecture in Fig. 2.1) was disabled during the dataset generation,

resulting in meshes that are by default encoded in an approximately constant coordinate

system, always centred approximately around the centre of mass of the animal and by

Chapter 4. Methodology 28

default rendered from a horizontal side view and only being slightly distributed along

the elevation angle. This was done for the shape generation evaluation metric, described

in Sect. 4.4, to perform more reliably.

4.4 Evaluation Metrics and Training Details

Being the first to generate articulated and textured meshes in a generative context, our

methodology needs a unique approach, for which we develop a new metric. Except

for class distributions, we assume that the generated object shape and texture are

independent. To avoid a situation where the training set is just memorised, we use early

stopping [30], that is, while training, we periodically check our metrics and save the

model only when the metric has been improved. On the other hand, to avoid the double

descent phenomenon characteristic of models this large [99], which is characterised by

a nonmonotonic behaviour in which the test error initially decreases, then increases and

finally decreases again as the model capacity grows, we make sure that the patience

parameter is sufficiently large, meaning that a significant number of training iterations

are allowed without improvement in the metric before stopping the training, ensuring

the model has enough time to explore improvements before halting.

For shape generation training, our training procedure consists of learning the distribution

of φfeatures and then periodically generating a certain number of textureless meshes, as

in Fig. 4.1.1, but without Gtexture, and then using our metric for early stopping. We

propose a novel metric, which we coin the AMPCD. First, consider simple Chamfer

distance, which, for two sets of points S1 and S2, bilaterally finds the pairs of points that

are the closest in the opposite set. These distances are then summed and the Chamfer

distance dCD is defined as the sum of these distances across both sets:

dCD(S1,S2) =
1
|S1| ∑

x∈S1

min
y∈S2
∥x− y∥2

2 +
1
|S2| ∑

y∈S2

min
x∈S1
∥x− y∥2

2. (4.5)

Then, for two sets of meshes A = {Ki}
i=|A|
i=1 and B = {Ji}

i=|J|
i=1 , we define AMPCD to

correspond to how well, on average, each of the shapes approximated at least one of the

shapes in the ground truth set and vice versa, picking the shape that got approximated

best as a reference:

dAMPCD(A,B) =
1
|A|

|A|

∑
i=1

min
j∈{1,...,|B|}

dCD(Ki,J j)+
1
|B|

|B|

∑
j=1

min
i∈{1,...,|A|}

dCD(Ki,J j). (4.6)

Chapter 4. Methodology 29

The first term is crucial for understanding if the generated outputs are close to any of the

ground truth meshes, while the second one evaluates how well each ground truth mesh

is represented in the generated set, ensuring that the generated set is diverse enough

to cover the ground truth set. We note that a similar metric could have been devised

using the Hausdorff distance, which is more sensitive to outlier points of the mesh than

the Chamfer distance, but did not find this useful for our dataset. Having turned off fp

during the ground truth mesh generation for the dataset, we find that AMPCD captures

the quality of generated meshes highly efficiently - the smaller the metric, the better the

quality.

For texture generation, we use Fréchet Inception Distance (FID) [38], which has become

the de facto standard metric for evaluating generated image quality and has been the

metric of choice in all papers mentioned in Chapter 3. FID measures the similarity

between the distribution of real images and the distribution of generated images by

comparing their statistics in the feature space of a pre-trained Inception CNN [109].

Specifically, it computes the Fréchet distance between two multivariate Gaussians fitted

to the feature embeddings of real and generated images. These embeddings are derived

from the coding layer of the Inception network, capturing the high-level features of the

images. The FID score is calculated as follows:

dFID((m,C),(mw,Cw)) = ∥m−mw∥2
2 +Tr(C+Cw−2(CCw)

1/2), (4.7)

where m and C are the mean and covariance of the generated images’ embeddings, and

mw and Cw are the mean and covariance of the real images’ embeddings. Lower FID

values indicate that the generated images are more similar to the real images, with a

value of zero representing perfect similarity.

As mentioned in Sect. 4.3, the distribution of classes in the dataset is imbalanced.

Therefore, we take special care when computing the metrics. When calculating AMPCD

for Gfeatures at each evaluation interval, having generated 64 meshes for each of the 16

classes, we take a weighted average throughout the classes to get the final result, to

reflect the distribution of classes in the dataset; i.e. the metric for each class is weighted

by # examples in class
total examples , and they are added together. On the other hand, as FID calculation

is even more expensive and could not be parallelised more, the number of generated

examples for each class is # examples in class×1024
total examples while training Gtexture, and we take the

FID with the whole training set.

We summarize the training and procedural hyperparameters for both models in Tab. 4.1.

Chapter 4. Methodology 30

The decision to reduce DDIM sampling timesteps and U-Net Dimension Multipliers

for Gtexture is largely determined by the computational restraints and the need to still

get a reliable estimate of the metrics while sampling much larger T ’s takes a lot longer

than φfeatures. Controlled by the computational restraints too is the number of generated

samples for checking the metrics; albeit ideally, we would like to generate the number

of samples equal to the number of examples in the dataset, our arrangement is still

statistically significant to a satisfactory extent compared to acceptable approaches in

other work, e.g. for calculating their FIDs, Nichol and Dhariwal [85] generate only

10,000 images to compare to 1,281,167 images in ImageNet64x64 [114]. We vary our

learning rate in two linear segments, from the initial one to the warmup one to the final

one, determined to work empirically. The γ parameter is set from the original work

[34]. Note, however, that in Chapter 5, in order to improve the quality and find the

best combination between sample fidelity and diversity, we do sweep through CFG

parameters of conditional scaling (ω) and probability of dropping class information

during training (puncond), as outlined in Subsect. 3.2.1.

Parameter Gfeatures Gtexture

β schedule cosine

Timesteps 1000

Sampling Timesteps 100 50

Initial Channels 128

U-Net Dimension Multipliers (1, 2, 4, 8) (1, 2, 4)

γ 5

Batch Size 64

Initial LR 0.0003

Warmup Finish LR 0.0002

Final LR 0.0001

LR # Warmup Epochs 15 90

Samples to Check Metric 1024

Metric Patience 15 12

Warmup Epochs 15 90

Table 4.1: Training parameters for Gfeatures and Gtexture. Warmup Epochs refers to the

number of epochs we train for prior to starting to check the required method for early

stopping, while other parameters have been explained in previous sections.

Chapter 5

Results and Discussion

In this chapter, we evaluate the architectural decisions made throughout the development

of DART-IDE, including a hyperparameter sweep to improve model performance. We

also present the results obtained, accompanied by an assessment of the AMPCD metric

and our contributions to the disentanglement of the latent space. Each section is paired

with relevant discussions and analyses to provide deeper insights into our findings. In

our experiments, we utilised FP16 mixed precision training [82] to accelerate training

and used the Adam optimiser [50]. The total computational effort for these experiments

amounted to approximately 700 GPU hours on an NVIDIA V100 GPU.

5.1 Architectural and Experimental Considerations

In this section, we discuss the architectural choices made for class-conditioning of

DART-IDE and the hyperparameter optimisation.

5.1.1 Classifier-Based or Classifier-Free Guidance?

Having implemented the models according to the general methodology in Chapter 4 1,

we begin by making an architectural decision between separate classifier-based guidance

and CFG, described in Subsect. 3.2.1. We are quick to discover that due to the small

size of our dataset, even strong ResNet classifiers with Attention, Batch Normalisation

[45], Dropout [107], and horizontal flip augmentations for T are unable to classify

noisy φfeature vectors and T images to a satisfactory extent, achieving around 50%

1Using the Hugging Face DDPM tutorial (www.huggingface.co/blog/annotated-diffusion)
and Phil Wang’s DDPM repo (www.github.com/lucidrains/denoising-diffusion-pytorch) as
starting points.

31

www.huggingface.co/blog/annotated-diffusion
www.github.com/lucidrains/denoising-diffusion-pytorch

Chapter 5. Results and Discussion 32

and 53% Top-1 accuracies, respectively, with an 80-20 train-validation split. This is

much less than what Dhariwal and Nichol [23] had achieved with their used ImageNet

classifier (64.9% Top-1 accuracy); due to this, and also wanting to be able to make

quick adjustments to the dataset without the need of retraining the classifier, we proceed

with CFG.

5.1.2 Conditional Scaling and Condition Dropping Probability Sweep

Having chosen CFG as the means of conditional generation for DART-IDE, we sweep

through values of guidance strength ω (looking for a fine balance between increasing the

fidelity of the generated samples at the expense of diversity and balancing fidelity and

diversity) and the probability of condition dropping puncond (finding the most effective

balance between the model’s capacity for generating conditional versus unconditional

samples) while using an extensive grid sweep with 3 random seeds. The chosen values

are based on observations from the original work of Ho and Salimans [39], and we are

checking between moderate values, taking into account that both AMPCD and FID

encourage great quality and punish too little diversity in the generated samples.

ω

puncond 0.1 0.3 0.5

0.5 2.38±0.22×10−3 2.07±0.31×10−3 2.27±0.06×10−3

3.0 1.70±0.07×10−3 1.75±0.03×10−3 1.86±0.05×10−3

Table 5.1: The results of Gfeatures hyperparameter sweep with early stopping on AMPCD

using 3 random seeds, with the best result in red.

ω

puncond 0.1 0.3 0.5

0.5 30.55±3.40 32.77±0.91 35.98±4.27

3.0 29.48±3.09 31.72±0.72 35.57±7.24

Table 5.2: The results of Gtexture hyperparameter sweep with early stopping on FID and

using 3 random seeds, with the best result in red.

We observe that for both φfeatures and T image generation, more aggressive guidance

ω = 3.0 generally delivers better early stopping results, while the best combination is

Chapter 5. Results and Discussion 33

obtained with puncond = 0.1. This implies that the data strongly has a conditional struc-

ture, and benefits from the model staying closer to the desired conditional distribution;

furthermore, conditional information is highly informative and necessary for accurate

generation, while the unconditional component of the training should be minimized.

5.2 Shape and Articulation Conditioning and Genera-

tion

In this section, we first look at the untextured meshes generated from DART-IDE, and

briefly assess our new metric, AMPCD. Textured meshes are discussed in Sect. 5.4.

5.2.1 Generated Meshes

The hyperparameter-optimised Gfeatures module of DART-IDE provides a strong model

to generate highly diverse fine-quality articulated shapes, examples of which are shown

in Fig. 5.1. The generation of an untextured mesh takes hundreds of milliseconds on a

single NVIDIA RTX3060 GPU and tens of milliseconds on a V100 GPU.

Figure 5.1: Untextured meshes from 4 classes generated with DART-IDE. Compare with

original meshes from SAOR in Appendix

5.2.2 Assessment of AMPCD as a Metric

A generative ML metric must demonstrate robustness in being directly relevant to

the specific task or application for which the generative model is designed, sensitive

Chapter 5. Results and Discussion 34

enough to detect subtle differences in quality between different outputs, and, especially

for generative models, be able to reflect differences in the diversity of the generated

outputs, all of which have been demonstrated by FID [47]. Furthermore, Carlini et al.

[16] have shown that even though there is no “overfitting” as such in diffusion training

methods, DDPMs may memorise the training data given a dataset too small and too

many training steps, which makes the use of early stopping with a diversity accounting

metric a great scheme. As such, we seek to demonstrate a desired behaviour similar

to that obtained with our novel metric, AMPCD. We show that the second term in

the definition of AMPCD delivers a similar effect to FID by comparing the loss and

AMPCD development throughout epochs in Fig. 5.2, and demonstrate the progression

of the generation trade-off between quality and diversity throughout epochs in Fig. 5.3.

We also show the class-wise distribution of AMPCD with the best hyperparameters

during the early stopping epoch, compared with the number of examples in each class,

in Fig. 5.4. Therefore, we see that AMPCD provides a strong metric, which accounts

for both generation fidelity and diversity and does not require separate consideration of

both aspects, contrary to the minimum matching distance and coverage metrics in Lei

et al. [61].

0 5 10 15 20 25 30 35 40
Epochs

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Lo
ss

 (
da

sh
ed

 li
ne

)

AMPCD and Loss for different puncond and combinations on Gfeatures training
AMPCD (solid)
Loss (dashed)

0.0021

0.0024

0.0027

0.0030

0.0033

0.0036

0.0039

0.0042

0.0045

0.0048

AM
PC

D
 (

so
lid

 li
ne

)

puncond=0.1, =0.5
puncond=0.1, =3.0
puncond=0.3, =0.5
puncond=0.3, =3.0
puncond=0.5, =0.5
puncond=0.5, =3.0

Figure 5.2: AMPCD and the training loss using training settings in Tab. 4.1 throughout

the sweep in Tab. 5.1 for Gfeatures, averaged throughout 3 random seeds. As the DDPM

loss still decreases, AMPCD starts increasing, reflecting the decrease in diversity.

Chapter 5. Results and Discussion 35

Figure 5.3: Shape and articulation generation progression for class C = 1 (”roe deer”)

throughout the epochs with ω = 3.0 and puncond = 0.1, but typical of all combinations.

Early epochs deliver poor quality and little diversity, near early stopping epochs deliver

great quality and great diversity, while very late epochs deliver great quality with very

little diversity, very often “memorising” the most typical poses in the dataset.

Cla
ss

 1

Cla
ss

 2

Cla
ss

 3

Cla
ss

 4

Cla
ss

 5

Cla
ss

 6

Cla
ss

 7

Cla
ss

 8

Cla
ss

 9

Cla
ss

 10

Cla
ss

 11

Cla
ss

 12

Cla
ss

 13

Cla
ss

 14

Cla
ss

 15

Cla
ss

 16

Class

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

AM
PC

D

Gfeatures e.s. class AMPCD Values and Sample Counts (puncond = 0.1, = 3.0)

0

200

400

600

800

1000

1200

1400

1600

Co
un

ts

AMPCD
Class Counts

Figure 5.4: AMPCD distribution on the early stopping epoch with 3 seeds on puncond =

0.1 and ω = 3.0. More class examples may not correspond to a better AMPCD.

Chapter 5. Results and Discussion 36

5.3 Texture Conditioning and Generation

Gtexture is a typical class-conditional image DDIM, and, given the limits on model,

compute, and dataset size, achieved FID 29.48 with 1024 images, which drops to ∼12

when increasing the amount of generated images to 10k, is very respectable. Generating

a single T takes around a minute on an RTX3060 GPU and around 10 seconds on an

A100 GPU, and benefits greatly from parallelisation/batching. The examples T ’ are

shown in Fig. 5.5 (green artefacts are typical of textures generated by SAOR), and we

show examples of non-upscaled and upscaled T ’s in App. A. We note that we could

have performed a similar analysis for FID as for AMPCD in Subsect. 5.2.2, but do not,

as the former is a well-established metric.

Class 0 Class 0 Class 1 Class 1 Class 2 Class 2

Class 3 Class 3 Class 4 Class 4 Class 5 Class 5

Class 6 Class 6 Class 7 Class 7 Class 8 Class 8

Texture Examples

Figure 5.5: Textures T generated with Gtexture of DART-IDE and upscaled with ESRGAN.

5.4 Full Results

When combined, Gfeatures, Gtexture and, optionally, Garticulation make DART-IDE into a

powerful generator, where all three can occur independently, and the class conditioning

of different latents can be different. We show examples of generated meshes in Fig. 5.6,

and possible applications of independent generation of texture and articulation in Fig. 5.7

and Fig. 5.8. The complete generation times depend on DDIM times (Sects. 5.2 and

5.3), while inference times for the SAOR modules being used are negligible.

Chapter 5. Results and Discussion 37

Figure 5.6: Example textured meshes generated by DART-IDE. Green artefacts, typically

seen on the bottom “seam” of the mesh, are typical of textures generated by SAOR.

Figure 5.7: Independent texture generation and transfer from one animal class (giraffe)

to the other (elephant).

Figure 5.8: Independent articulation generation and transfer from one animal class

(giraffe) to the other (elephant), gradually mixing in inputs from Garticulation(c = giraffe).

Chapter 5. Results and Discussion 38

5.5 Interpretable Direction Discovery

We perform interpretable direction discovery on the optimised version of DART-IDE

with the methodology described in Subsect. 4.2. We discover that although uncondi-

tional passes make up just a fraction of all forward propagations, the principal discovered

components of the h-space influence the generated meshes rather consistently across

classes, and, having frozen the forward pass in addition to the modulation, we see

that the components include elongation and the angle of the head (“uprightness” and

“sitedness”), volume of the animal, the side of the body that the curvature is in, the width

of the body, limb proportion, and their joint angles. However, as expected from the work

of Haas et al. [32], the interpretable directions discovered are not fully disentangled

from the other components, and even more so than in the unconditional model. We

show the editing that we can perform with the components discovered in Fig. 5.9.

Figure 5.9: Editing performed on the meshes with PCA of the h-space in the unconditional

passes, where Principal Component 1 corresponds to “uprightness”/“sitedness”; that is,

with more ∆h subtracted, the animal raising its back feet and pulling in its neck, while

the opposite direction makes it sit down and elongate its neck. This change happens

consistently throughout different classes. The coefficients of ±0.25 and ±0.5 were

determined to work reasonably well empirically. We too, note that the editing is not

detached from other attributes, e.g. the arrangement of the legs, and show that adding

the same amount of ∆h may qualitatively influence the meshes to different extents.

Chapter 6

Conclusions

In this final chapter, we first summarise the key findings of the project and the key

contributions we have made. Next, we acknowledge the limitations of our undertaking

and then draw some guidelines for possible future research avenues.

6.1 Summary

In this thesis, we reviewed the recent progress in 3D computer vision and diffusion

models and then developed and introduced a novel framework, DART-IDE, for generat-

ing articulated and textured 3D meshes using DDIM LSGMs, with control over shape,

articulation, and texture. The framework extends the capabilities of existing models, par-

ticularly the SAOR model, to independently generate and control the shape, articulation,

and texture of 3D objects. We have developed state-of-the-art U-Net backbones for our

models, and through rigorous experimentation, we determined the optimal architecture

and hyperparameters, achieving high fidelity and diversity in the generated outputs. We

have demonstrated that DART-IDE can generate high-quality, diverse, and customisable

3D content, being the first model of its kind in the controllability of different modalities.

The versatility of DART-IDE was further demonstrated by successful applications of

independent texture transfer and articulation adjustment across various classes of ani-

mals. Furthermore, we extend the state-of-the-art in interpretable direction discovery in

the latent space of class-conditional diffusion models, extending an existing h-space

method to identify meaningful, albeit not fully disentangled, semantic directions that

can be used to predictably modify generated meshes. We too are the first to demonstrate

h-space-based disentanglement on a modality other than images (here, meshes).

We introduced a new metric, AMPCD, specifically designed to assess the quality and

39

Chapter 6. Conclusions 40

diversity of generated 3D articulated meshes and address the limitations of existing

evaluation methods. This metric has proven to be effective in guiding early stopping

during training, balancing between the quality and diversity of the generated shapes.

Last but not least, we introduce an image dataset, which would help train a model

similar to DART-IDE, but using another backbone rather than SAOR.

In summary, as we expect diffusion models to keep rising in importance (being used

as LSGMs too) in 3D generation, we hope our work makes a valuable contribution in

being able to generate largely controllable meshes of great quality, a new metric, and

advances in interpretable direction discovery.

6.2 Limitations & Future Work

While DART-IDE has made strides, there are limitations, a few of which we note here to

be addressed in future work. First, we note that one can very rarely find large diffusion

models being trained on datasets containing less than 20k samples, which we did here,

limiting the fidelity to which the distribution can be represented (since we were only

using the useful subsets of the data SAOR had been trained on). Furthermore, the

dataset had been rather biased, often portraying the animal with a curvature of the

body to one side rather than the other. As such, the next iteration would have to obtain

additional training data from other sources. For example, it would be really interesting

to retrain a larger version of SAOR with an application to broader categories, e.g.

including non-animal objects, and then repeat our procedure. Furthermore, as discussed

in Subsect. 2.2, when the code is released for 3DFauna [69] and Farm3D [46], it would

be interesting to try them as backbones instead of SAOR, as they should produce better

meshes from more varying angles. As far as disentanglement goes, we could further

expand our analysis to class-specific principal components, but do not because of the

lack of time; here, we would expect class-specific components to be less entangled with

other attributes when editing. However, the direction that we would find most exciting

with the current setup, but with more compute, would be to use CLIP [93] to transform

DART-IDE into a text-promptable model by conditioning its generative processes on

text embeddings. This would allow us to generate and manipulate 3D models directly

from natural language descriptions, making 3D content creation more intuitive and

accessible. Furthermore, this would allow us to use advanced text-prompted diffusion

disentanglement techniques (as described at the end of Subsect. 3.2.3), and we would

obtain the first editable text-to-mesh, rather than text-to-NeRF, generator.

Bibliography

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas.

Learning Representations and Generative Models for 3D Point Clouds, 2018.

URL https://arxiv.org/abs/1707.02392.

[2] Tomer Amit, Tal Shaharbany, Eliya Nachmani, and Lior Wolf. SegDiff: Image

Segmentation with Diffusion Probabilistic Models, 2022. URL https://arxiv.

org/abs/2112.00390.

[3] P. Anandan. A computational framework and an algorithm for the measurement

of visual motion. International Journal of Computer Vision, 2(3):283–310, Jan

1989. ISSN 1573-1405. doi: 10.1007/BF00158167. URL https://doi.org/

10.1007/BF00158167.

[4] Mehmet Aygün and Oisin Mac Aodha. SAOR: Single-View Articulated Object

Reconstruction. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 10382–10391, June 2024.

[5] Song Bai and Jie Li. Progress and Prospects in 3D Generative AI: A Technical

Overview including 3D human, 2024. URL https://arxiv.org/abs/2401.

02620.

[6] Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar,

Tom Goldstein, Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong

Tian, Avi Schwarzschild, Andrew Gordon Wilson, Jonas Geiping, Quentin

Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash, Yann LeCun, and

Micah Goldblum. A cookbook of self-supervised learning, 2023. URL

https://arxiv.org/abs/2304.12210.

[7] Kuldeep R Barad, Andrej Orsula, Antoine Richard, Jan Dentler, Miguel Olivares-

Mendez, and Carol Martinez. GraspLDM: Generative 6-DoF Grasp Synthesis

41

https://arxiv.org/abs/1707.02392
https://arxiv.org/abs/2112.00390
https://arxiv.org/abs/2112.00390
https://doi.org/10.1007/BF00158167
https://doi.org/10.1007/BF00158167
https://arxiv.org/abs/2401.02620
https://arxiv.org/abs/2401.02620
https://arxiv.org/abs/2304.12210

Bibliography 42

using Latent Diffusion Models, 2023. URL https://arxiv.org/abs/2312.

11243.

[8] Reza Bayat. A Study on Sample Diversity in Generative Models: GANs

vs. Diffusion Models, 2023. URL https://openreview.net/forum?id=

BQpCuJoMykZ.

[9] Reiner Birkl, Diana Wofk, and Matthias Müller. MiDaS v3.1 – A Model Zoo

for Robust Monocular Relative Depth Estimation, 2023. URL https://arxiv.

org/abs/2307.14460.

[10] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. Deep

Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing

Flows, Energy-Based and Autoregressive Models. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 44(11):7327–7347, November 2022. ISSN

1939-3539. doi: 10.1109/tpami.2021.3116668. URL http://dx.doi.org/10.

1109/TPAMI.2021.3116668.

[11] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via

graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23

(11):1222–1239, 2001. doi: 10.1109/34.969114.

[12] Matej Božić and Marko Horvat. A Survey of Deep Learning Audio Generation

Methods, 2024. URL https://arxiv.org/abs/2406.00146.

[13] Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. Generative

and Discriminative Voxel Modeling with Convolutional Neural Networks, 2016.

URL https://arxiv.org/abs/1608.04236.

[14] P. Burt and E. Adelson. The Laplacian Pyramid as a Compact Image Code. IEEE

Transactions on Communications, 31(4):532–540, 1983. doi: 10.1109/TCOM.

1983.1095851.

[15] Antoine Caillon and Philippe Esling. RAVE: A variational autoencoder for fast

and high-quality neural audio synthesis, 2021. URL https://arxiv.org/abs/

2111.05011.

[16] Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag,

Florian Tramèr, Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting

https://arxiv.org/abs/2312.11243
https://arxiv.org/abs/2312.11243
https://openreview.net/forum?id=BQpCuJoMykZ
https://openreview.net/forum?id=BQpCuJoMykZ
https://arxiv.org/abs/2307.14460
https://arxiv.org/abs/2307.14460
http://dx.doi.org/10.1109/TPAMI.2021.3116668
http://dx.doi.org/10.1109/TPAMI.2021.3116668
https://arxiv.org/abs/2406.00146
https://arxiv.org/abs/1608.04236
https://arxiv.org/abs/2111.05011
https://arxiv.org/abs/2111.05011

Bibliography 43

Training Data from Diffusion Models, 2023. URL https://arxiv.org/abs/

2301.13188.

[17] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan,

Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh

Khamis, Tero Karras, and Gordon Wetzstein. Efficient Geometry-aware 3D

Generative Adversarial Networks, 2022. URL https://arxiv.org/abs/2112.

07945.

[18] Stanley H. Chan. Tutorial on Diffusion Models for Imaging and Vision, 2024.

URL https://arxiv.org/abs/2403.18103.

[19] Dan Cireşan, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. Multi-

column deep neural network for traffic sign classification. Neural Networks,

32:333–338, 2012. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.

2012.02.023. URL https://www.sciencedirect.com/science/article/

pii/S0893608012000524. Selected Papers from IJCNN 2011.

[20] Yusuf Dalva and Pinar Yanardag. NoiseCLR: A Contrastive Learning Approach

for Unsupervised Discovery of Interpretable Directions in Diffusion Models,

2023. URL https://arxiv.org/abs/2312.05390.

[21] Larry S. Davis. A survey of edge detection techniques. Computer Graphics and

Image Processing, 4(3):248–270, 1975. ISSN 0146-664X. doi: https://doi.org/

10.1016/0146-664X(75)90012-X. URL https://www.sciencedirect.com/

science/article/pii/0146664X7590012X.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding,

2019. URL https://arxiv.org/abs/1810.04805.

[23] Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image

Synthesis, 2021. URL https://arxiv.org/abs/2105.05233.

[24] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-Weighted Linear Units

for Neural Network Function Approximation in Reinforcement Learning, 2017.

URL https://arxiv.org/abs/1702.03118.

[25] Noureen Fatima, Ali Shariq Imran, Zenun Kastrati, Sher Muhammad Daudpota,

and Abdullah Soomro. A Systematic Literature Review on Text Generation

https://arxiv.org/abs/2301.13188
https://arxiv.org/abs/2301.13188
https://arxiv.org/abs/2112.07945
https://arxiv.org/abs/2112.07945
https://arxiv.org/abs/2403.18103
https://www.sciencedirect.com/science/article/pii/S0893608012000524
https://www.sciencedirect.com/science/article/pii/S0893608012000524
https://arxiv.org/abs/2312.05390
https://www.sciencedirect.com/science/article/pii/0146664X7590012X
https://www.sciencedirect.com/science/article/pii/0146664X7590012X
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/1702.03118

Bibliography 44

Using Deep Neural Network Models. IEEE Access, 10:53490–53503, 2022. doi:

10.1109/ACCESS.2022.3174108.

[26] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Pictorial structures for

object recognition. International Journal of Computer Vision, 61(1):55–79,

Jan 2005. ISSN 1573-1405. doi: 10.1023/B:VISI.0000042934.15159.49. URL

https://doi.org/10.1023/B:VISI.0000042934.15159.49.

[27] R. Fergus, P. Perona, and A. Zisserman. Weakly supervised

scale-invariant learning of models for visual recognition. In-

ternational Journal of Computer Vision, 71(3):273–303, 03

2007. URL https://www.proquest.com/scholarly-journals/

weakly-supervised-scale-invariant-learning-models/docview/

1113643283/se-2. Copyright - Springer Science + Business Media, LLC 2006;

Last updated - 2023-11-26.

[28] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and Hao

Zhang. Sdm-net: Deep generative network for structured deformable mesh, 2019.

URL https://arxiv.org/abs/1908.04520.

[29] Shubham Goel, Angjoo Kanazawa, and Jitendra Malik. Shape and Viewpoint

without Keypoints, 2020. URL https://arxiv.org/abs/2007.10982.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. URL http://www.deeplearningbook.org. Book in preparation

for MIT Press.

[31] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversar-

ial Networks, 2014. URL https://arxiv.org/abs/1406.2661.

[32] René Haas, Inbar Huberman-Spiegelglas, Rotem Mulayoff, Stella Graßhof,

Sami S. Brandt, and Tomer Michaeli. Discovering Interpretable Directions

in the Semantic Latent Space of Diffusion Models, 2024. URL https:

//arxiv.org/abs/2303.11073.

[33] Song Han. Lecture Slides in MIT 6.5940, Massachusetts Institute of Technology,

2023.

https://doi.org/10.1023/B:VISI.0000042934.15159.49
https://www.proquest.com/scholarly-journals/weakly-supervised-scale-invariant-learning-models/docview/1113643283/se-2
https://www.proquest.com/scholarly-journals/weakly-supervised-scale-invariant-learning-models/docview/1113643283/se-2
https://www.proquest.com/scholarly-journals/weakly-supervised-scale-invariant-learning-models/docview/1113643283/se-2
https://arxiv.org/abs/1908.04520
https://arxiv.org/abs/2007.10982
http://www.deeplearningbook.org
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2303.11073
https://arxiv.org/abs/2303.11073

Bibliography 45

[34] Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin

Geng, and Baining Guo. Efficient Diffusion Training via Min-SNR Weighting

Strategy, 2024. URL https://arxiv.org/abs/2303.09556.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual

Learning for Image Recognition, 2015. URL https://arxiv.org/abs/1512.

03385.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into

Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,

2015. URL https://arxiv.org/abs/1502.01852.

[37] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs), 2023.

URL https://arxiv.org/abs/1606.08415.

[38] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and

Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a

Local Nash Equilibrium, 2018. URL https://arxiv.org/abs/1706.08500.

[39] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance, 2022. URL

https://arxiv.org/abs/2207.12598.

[40] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic

Models, 2020. URL https://arxiv.org/abs/2006.11239.

[41] Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling.

Equivariant Diffusion for Molecule Generation in 3D, 2022. URL https://

arxiv.org/abs/2203.17003.

[42] Tao Hu, Liwei Wang, Xiaogang Xu, Shu Liu, and Jiaya Jia. Self-supervised

3d mesh reconstruction from single images. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 6002–

6011, June 2021.

[43] G. M. Hunter and K. Steiglitz. Operations on Images Using Quad Trees. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1(02), apr 1979.

ISSN 1939-3539. doi: 10.1109/TPAMI.1979.4766900.

[44] iNaturalist. inaturalist. https://www.inaturalist.org. Accessed: 2024-11-

12.

https://arxiv.org/abs/2303.09556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2203.17003
https://arxiv.org/abs/2203.17003
https://www.inaturalist.org

Bibliography 46

[45] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift, 2015. URL https:

//arxiv.org/abs/1502.03167.

[46] Tomas Jakab, Ruining Li, Shangzhe Wu, Christian Rupprecht, and Andrea

Vedaldi. Farm3D: Learning Articulated 3D Animals by Distilling 2D Diffusion,

2024. URL https://arxiv.org/abs/2304.10535.

[47] Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan

Chakrabarti, and Sanjiv Kumar. Rethinking FID: Towards a Better Evaluation

Metric for Image Generation, 2024. URL https://arxiv.org/abs/2401.

09603.

[48] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture

for Generative Adversarial Networks, 2019. URL https://arxiv.org/abs/

1812.04948.

[49] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.

3D Gaussian Splatting for Real-Time Radiance Field Rendering, 2023. URL

https://arxiv.org/abs/2308.04079.

[50] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-

tion, 2017. URL https://arxiv.org/abs/1412.6980.

[51] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.

URL https://arxiv.org/abs/1312.6114.

[52] Diederik P. Kingma and Max Welling. An introduction to variational autoen-

coders, 2019.

[53] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland,

Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-

Yen Lo, Piotr Dollár, and Ross Girshick. Segment Anything, 2023. URL

https://arxiv.org/abs/2304.02643.

[54] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica

Yung, Sylvain Gelly, and Neil Houlsby. Big Transfer (BiT): General Visual

Representation Learning, 2020. URL https://arxiv.org/abs/1912.11370.

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/2304.10535
https://arxiv.org/abs/2401.09603
https://arxiv.org/abs/2401.09603
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/1912.11370

Bibliography 47

[55] Taku Komura. Lecture Slides in Computer Animation and Visualisation

(INFR11067), University of Edinburgh, February 2020.

[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet

Classification with Deep Convolutional Neural Networks. In F. Pereira,

C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neu-

ral Information Processing Systems, volume 25. Curran Associates, Inc.,

2012. URL https://proceedings.neurips.cc/paper_files/paper/

2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[57] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion Models already have

a Semantic Latent Space, 2023. URL https://arxiv.org/abs/2210.10960.

[58] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

Based Learning Applied to Document Recognition. In Proceedings of the IEEE,

number 11, pages 2278–2324, 1992.

[59] Yann Lecun, Sumit Chopra, Raia Hadsell, Marc Aurelio Ranzato, and Fu Jie

Huang. ”A tutorial on energy-based learning”. MIT Press, 2006.

[60] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521

(7553):436–444, May 2015. ISSN 1476-4687. doi: 10.1038/nature14539. URL

https://doi.org/10.1038/nature14539.

[61] Jiahui Lei, Congyue Deng, Bokui Shen, Leonidas Guibas, and Kostas Daniilidis.

NAP: Neural 3D Articulation Prior, 2023. URL https://arxiv.org/abs/

2305.16315.

[62] Chenghao Li, Chaoning Zhang, Atish Waghwase, Lik-Hang Lee, Francois

Rameau, Yang Yang, Sung-Ho Bae, and Choong Seon Hong. Generative

AI meets 3D: A Survey on Text-to-3D in AIGC Era, 2024. URL https:

//arxiv.org/abs/2305.06131.

[63] Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poczos, and Ruslan

Salakhutdinov. Point Cloud GAN, 2018. URL https://arxiv.org/abs/1810.

05795.

[64] Hang Li, Chengzhi Shen, Philip Torr, Volker Tresp, and Jindong Gu. Self-

Discovering Interpretable Diffusion Latent Directions for Responsible Text-to-

Image Generation, 2024. URL https://arxiv.org/abs/2311.17216.

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/2210.10960
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/2305.16315
https://arxiv.org/abs/2305.16315
https://arxiv.org/abs/2305.06131
https://arxiv.org/abs/2305.06131
https://arxiv.org/abs/1810.05795
https://arxiv.org/abs/1810.05795
https://arxiv.org/abs/2311.17216

Bibliography 48

[65] Jing Li, Di Kang, Wenjie Pei, Xuefei Zhe, Ying Zhang, Zhenyu He, and Linchao

Bao. Audio2Gestures: Generating Diverse Gestures from Speech Audio with

Conditional Variational Autoencoders, 2021. URL https://arxiv.org/abs/

2108.06720.

[66] Jun Li, Chenyang Zhang, Wei Zhu, and Yawei Ren. A Comprehensive Survey

of Image Generation Models Based on Deep Learning. Annals of Data Science,

Jun 2024. ISSN 2198-5812. doi: 10.1007/s40745-024-00544-1. URL https:

//doi.org/10.1007/s40745-024-00544-1.

[67] Xiaoyu Li, Qi Zhang, Di Kang, Weihao Cheng, Yiming Gao, Jingbo Zhang, Zhi-

hao Liang, Jing Liao, Yan-Pei Cao, and Ying Shan. Advances in 3D Generation:

A Survey, 2024. URL https://arxiv.org/abs/2401.17807.

[68] Zehui Li, Yuhao Ni, William A V Beardall, Guoxuan Xia, Akashaditya Das,

Guy-Bart Stan, and Yiren Zhao. DiscDiff: Latent Diffusion Model for DNA

Sequence Generation, 2024. URL https://arxiv.org/abs/2402.06079.

[69] Zizhang Li, Dor Litvak, Ruining Li, Yunzhi Zhang, Tomas Jakab, Christian

Rupprecht, Shangzhe Wu, Andrea Vedaldi, and Jiajun Wu. Learning the 3D

Fauna of the Web, 2024. URL https://arxiv.org/abs/2401.02400.

[70] Jongwoo Lim, David Ross, Ruei-sung Lin, and Ming-Hsuan Yang. Incre-

mental learning for visual tracking. In L. Saul, Y. Weiss, and L. Bottou,

editors, Advances in Neural Information Processing Systems, volume 17.

MIT Press, 2004. URL https://proceedings.neurips.cc/paper_files/

paper/2004/file/f21e255f89e0f258accbe4e984eef486-Paper.pdf.

[71] Jian Liu, Xiaoshui Huang, Tianyu Huang, Lu Chen, Yuenan Hou, Shixiang

Tang, Ziwei Liu, Wanli Ouyang, Wangmeng Zuo, Junjun Jiang, and Xianming

Liu. A Comprehensive Survey on 3D Content Generation, 2024. URL https:

//arxiv.org/abs/2402.01166.

[72] Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue

Wei, Hansheng Chen, Chong Zeng, Jiayuan Gu, and Hao Su. One-2-3-45++:

Fast Single Image to 3D Objects with Consistent Multi-View Generation and 3D

Diffusion, 2023. URL https://arxiv.org/abs/2311.07885.

https://arxiv.org/abs/2108.06720
https://arxiv.org/abs/2108.06720
https://doi.org/10.1007/s40745-024-00544-1
https://doi.org/10.1007/s40745-024-00544-1
https://arxiv.org/abs/2401.17807
https://arxiv.org/abs/2402.06079
https://arxiv.org/abs/2401.02400
https://proceedings.neurips.cc/paper_files/paper/2004/file/f21e255f89e0f258accbe4e984eef486-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/f21e255f89e0f258accbe4e984eef486-Paper.pdf
https://arxiv.org/abs/2402.01166
https://arxiv.org/abs/2402.01166
https://arxiv.org/abs/2311.07885

Bibliography 49

[73] Pengkun Liu, Yikai Wang, Fuchun Sun, Jiafang Li, Hang Xiao, Hongxiang Xue,

and Xinzhou Wang. Isotropic3D: Image-to-3D Generation Based on a Single

CLIP Embedding, 2024. URL https://arxiv.org/abs/2403.10395.

[74] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov,

and Carl Vondrick. Zero-1-to-3: Zero-shot One Image to 3D Object, 2023. URL

https://arxiv.org/abs/2303.11328.

[75] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft Rasterizer: A Dif-

ferentiable Renderer for Image-based 3D Reasoning, 2019. URL https:

//arxiv.org/abs/1904.01786.

[76] Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing

Yuan, Yue Huang, Hanchi Sun, Jianfeng Gao, Lifang He, and Lichao Sun. Sora:

A Review on Background, Technology, Limitations, and Opportunities of Large

Vision Models, 2024. URL https://arxiv.org/abs/2402.17177.

[77] Vincent Loos, Rohit Pardasani, and Navchetan Awasthi. Demystifying the Effect

of Receptive Field Size in U-Net Models for Medical Image Segmentation, 2024.

URL https://arxiv.org/abs/2406.16701.

[78] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.

International Journal of Computer Vision, 60(2):91–110, Nov 2004. ISSN 1573-

1405. doi: 10.1023/B:VISI.0000029664.99615.94. URL https://doi.org/

10.1023/B:VISI.0000029664.99615.94.

[79] Calvin Luo. Understanding Diffusion Models: A Unified Perspective, 2022.

URL https://arxiv.org/abs/2208.11970.

[80] B. N. Madhukar and R. Narendra. ”Lanczos Resampling for the Digital Process-

ing of Remotely Sensed Images”. In Veena S. Chakravarthi, Yasha Jyothi M.

Shirur, and Rekha Prasad, editors, Proceedings of International Conference

on VLSI, Communication, Advanced Devices, Signals and Systems and Net-

working (VCASAN-2013), pages 403–411, India, 2013. Springer India. ISBN

978-81-322-1524-0.

[81] David Marr. Vision: A Computational Investigation into the Human Representa-

tion and Processing of Visual Information. Henry Holt and Co., Inc., New York,

NY, USA, 1982. ISBN 0716715678.

https://arxiv.org/abs/2403.10395
https://arxiv.org/abs/2303.11328
https://arxiv.org/abs/1904.01786
https://arxiv.org/abs/1904.01786
https://arxiv.org/abs/2402.17177
https://arxiv.org/abs/2406.16701
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://arxiv.org/abs/2208.11970

Bibliography 50

[82] Paulius Micikevičius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen,

David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh

Venkatesh, and Hao Wu. Mixed Precision Training, 2018. URL https://

arxiv.org/abs/1710.03740.

[83] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi

Ramamoorthi, and Ren Ng. NeRF: Representing Scenes as Neural Radiance

Fields for View Synthesis, 2020. URL https://arxiv.org/abs/2003.08934.

[84] Tom Monnier, Matthew Fisher, Alexei A. Efros, and Mathieu Aubry. Share With

Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency,

2022. URL https://arxiv.org/abs/2204.10310.

[85] Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic

Models, 2021. URL https://arxiv.org/abs/2102.09672.

[86] Michael Niemeyer and Andreas Geiger. GIRAFFE: Representing Scenes as

Compositional Generative Neural Feature Fields, 2021. URL https://arxiv.

org/abs/2011.12100.

[87] Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung

Uh. Understanding the Latent Space of Diffusion Models through the Lens of

Riemannian Geometry, 2023. URL https://arxiv.org/abs/2307.12868.

[88] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron

Courville. FiLM: Visual Reasoning with a General Conditioning Layer, 2017.

URL https://arxiv.org/abs/1709.07871.

[89] Walter H. L. Pinaya, Petru-Daniel Tudosiu, Jessica Dafflon, Pedro F da Costa,

Virginia Fernandez, Parashkev Nachev, Sebastien Ourselin, and M. Jorge Cardoso.

Brain Imaging Generation with Latent Diffusion Models, 2022. URL https:

//arxiv.org/abs/2209.07162.

[90] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. DreamFusion:

Text-to-3D using 2D Diffusion, 2022. URL https://arxiv.org/abs/2209.

14988.

[91] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Micro-Batch

Training with Batch-Channel Normalization and Weight Standardization, 2020.

URL https://arxiv.org/abs/1903.10520.

https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2204.10310
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2011.12100
https://arxiv.org/abs/2011.12100
https://arxiv.org/abs/2307.12868
https://arxiv.org/abs/1709.07871
https://arxiv.org/abs/2209.07162
https://arxiv.org/abs/2209.07162
https://arxiv.org/abs/2209.14988
https://arxiv.org/abs/2209.14988
https://arxiv.org/abs/1903.10520

Bibliography 51

[92] Lynn H. Quam. Hierarchical warp stereo. In Martin A. Fischler and Os-

car Firschein, editors, Readings in Computer Vision, pages 80–86. Morgan

Kaufmann, San Francisco (CA), 1987. ISBN 978-0-08-051581-6. doi:

https://doi.org/10.1016/B978-0-08-051581-6.50015-5. URL https://www.

sciencedirect.com/science/article/pii/B9780080515816500155.

[93] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, and Ilya Sutskever. Learning Transferable Visual Models

From Natural Language Supervision, 2021. URL https://arxiv.org/abs/

2103.00020.

[94] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec

Radford, Mark Chen, and Ilya Sutskever. Zero-Shot Text-to-Image Generation,

2021. URL https://arxiv.org/abs/2102.12092.

[95] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating Diverse High-

Fidelity Images with VQ-VAE-2, 2019. URL https://arxiv.org/abs/1906.

00446.

[96] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with

normalizing flows, 2016. URL https://arxiv.org/abs/1505.05770.

[97] Lawrence G. Roberts. Machine perception of three-dimensional solids. PhD

thesis, Massachusetts Institute of Technology, USA, 1963.

[98] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation, 2015. URL https://arxiv.org/

abs/1505.04597.

[99] Rylan Schaeffer, Mikail Khona, Zachary Robertson, Akhilan Boopathy, Kateryna

Pistunova, Jason W. Rocks, Ila Rani Fiete, and Oluwasanmi Koyejo. Double

Descent Demystified: Identifying, Interpreting and Ablating the Sources of a

Deep Learning Puzzle, 2023. URL https://arxiv.org/abs/2303.14151.

[100] Sandeep Singh Sengar, Affan Bin Hasan, Sanjay Kumar, and Fiona Carroll.

Generative Artificial Intelligence: A Systematic Review and Applications, 2024.

URL https://arxiv.org/abs/2405.11029.

https://www.sciencedirect.com/science/article/pii/B9780080515816500155
https://www.sciencedirect.com/science/article/pii/B9780080515816500155
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2303.14151
https://arxiv.org/abs/2405.11029

Bibliography 52

[101] Farooq Sijal Shaqwi, Lukman Audah, Mustafa Hamid Hassan, Mo-

hammed Ahmed Jubair, Mohd Helmy Abd Wahab, and Salama A. Mostafa.

A concise review of deep learning deployment in 3d computer vision systems. In

2021 4th International Symposium on Agents, Multi-Agent Systems and Robotics

(ISAMSR), pages 157–160, 2021. doi: 10.1109/ISAMSR53229.2021.9567757.

[102] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for

Large-Scale Image Recognition, 2015. URL https://arxiv.org/abs/1409.

1556.

[103] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli.

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, 2015.

URL https://arxiv.org/abs/1503.03585.

[104] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit

Models, 2022. URL https://arxiv.org/abs/2010.02502.

[105] Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients

of the Data Distribution, 2020. URL https://arxiv.org/abs/1907.05600.

[106] Pratul P. Srinivasan, Stephan J. Garbin, Dor Verbin, Jonathan T. Barron, and Ben

Mildenhall. Nuvo: Neural UV Mapping for Unruly 3D Representations, 2023.

URL https://arxiv.org/abs/2312.05283.

[107] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.

URL http://jmlr.org/papers/v15/srivastava14a.html.

[108] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep High-Resolution

Representation Learning for Human Pose Estimation, 2019. URL https://

arxiv.org/abs/1902.09212.

[109] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

Deeper with Convolutions, 2014. URL https://arxiv.org/abs/1409.4842.

[110] Richard Szeliski. Computer vision algorithms and applications, 2011. URL

http://dx.doi.org/10.1007/978-1-84882-935-0.

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2312.05283
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1902.09212
https://arxiv.org/abs/1902.09212
https://arxiv.org/abs/1409.4842
http://dx.doi.org/10.1007/978-1-84882-935-0

Bibliography 53

[111] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. DreamGaus-

sian: Generative Gaussian Splatting for Efficient 3D Content Creation, 2024.

URL https://arxiv.org/abs/2309.16653.

[112] Shubham Tulsiani, Nilesh Kulkarni, and Abhinav Gupta. Implicit Mesh

Reconstruction from Unannotated Image Collections, 2020. URL https:

//arxiv.org/abs/2007.08504.

[113] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based Generative Modeling

in Latent Space, 2021. URL https://arxiv.org/abs/2106.05931.

[114] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent

Neural Networks, 2016. URL https://arxiv.org/abs/1601.06759.

[115] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural Discrete

Representation Learning, 2018. URL https://arxiv.org/abs/1711.00937.

[116] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You

Need, 2023. URL https://arxiv.org/abs/1706.03762.

[117] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. Caltech-ucsd birds

200. Technical Report CNS-TR-2011-001, California Institute of Technology,

2011.

[118] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang

Jiang. Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images,

2018. URL https://arxiv.org/abs/1804.01654.

[119] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann. SGPN: Simi-

larity Group Proposal Network for 3D Point Cloud Instance Segmentation, 2019.

URL https://arxiv.org/abs/1711.08588.

[120] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong,

Chen Change Loy, Yu Qiao, and Xiaoou Tang. ESRGAN: Enhanced Super-

Resolution Generative Adversarial Networks, 2018. URL https://arxiv.

org/abs/1809.00219.

[121] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and

Jun Zhu. ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation

https://arxiv.org/abs/2309.16653
https://arxiv.org/abs/2007.08504
https://arxiv.org/abs/2007.08504
https://arxiv.org/abs/2106.05931
https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1804.01654
https://arxiv.org/abs/1711.08588
https://arxiv.org/abs/1809.00219
https://arxiv.org/abs/1809.00219

Bibliography 54

with Variational Score Distillation, 2023. URL https://arxiv.org/abs/2305.

16213.

[122] Cheng Wen, Baosheng Yu, Rao Fu, and Dacheng Tao. Patch-Wise Point Cloud

Generation: A Divide-and-Conquer Approach, 2023. URL https://arxiv.

org/abs/2307.12049.

[123] Lilian Weng. What are Diffusion Models?, 2021. URL https://lilianweng.

github.io/posts/2021-07-11-diffusion-models/.

[124] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B.

Tenenbaum. Learning a Probabilistic Latent Space of Object Shapes via 3D

Generative-Adversarial Modeling, 2017. URL https://arxiv.org/abs/1610.

07584.

[125] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. Unsupervised Learning

of Probably Symmetric Deformable 3D Objects from Images in the Wild, 2020.

URL https://arxiv.org/abs/1911.11130.

[126] Shangzhe Wu, Tomas Jakab, Christian Rupprecht, and Andrea Vedaldi. DOVE:

Learning Deformable 3D Objects by Watching Videos, 2022. URL https:

//arxiv.org/abs/2107.10844.

[127] Shangzhe Wu, Ruining Li, Tomas Jakab, Christian Rupprecht, and Andrea

Vedaldi. Magicpony: Learning articulated 3d animals in the wild, 2023. URL

https://arxiv.org/abs/2211.12497.

[128] Yuxin Wu and Kaiming He. Group Normalization, 2018. URL https://arxiv.

org/abs/1803.08494.

[129] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspective

Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D

Supervision, 2017. URL https://arxiv.org/abs/1612.00814.

[130] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue

Zhao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion Models:

A Comprehensive Survey of Methods and Applications, 2024. URL https:

//arxiv.org/abs/2209.00796.

https://arxiv.org/abs/2305.16213
https://arxiv.org/abs/2305.16213
https://arxiv.org/abs/2307.12049
https://arxiv.org/abs/2307.12049
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/abs/1610.07584
https://arxiv.org/abs/1610.07584
https://arxiv.org/abs/1911.11130
https://arxiv.org/abs/2107.10844
https://arxiv.org/abs/2107.10844
https://arxiv.org/abs/2211.12497
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1612.00814
https://arxiv.org/abs/2209.00796
https://arxiv.org/abs/2209.00796

Bibliography 55

[131] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and

Jianxiong Xiao. LSUN: Construction of a Large-scale Image Dataset using Deep

Learning with Humans in the Loop, 2016. URL https://arxiv.org/abs/

1506.03365.

[132] Maciej Zamorski, Maciej Zieba, Piotr Klukowski, Rafal Nowak, Karol Kurach,

Wojciech Stokowiec, and Tomasz Trzcinski. Adversarial autoencoders for com-

pact representations of 3d point clouds, 2019. URL https://arxiv.org/abs/

1811.07605.

[133] Jiahui Zhang, Fangneng Zhan, Muyu Xu, Shijian Lu, and Eric Xing. Fregs:

3d gaussian splatting with progressive frequency regularization, 2024. URL

https://arxiv.org/abs/2403.06908.

[134] Zijian Zhang, Luping Liu, Zhijie Lin, Yichen Zhu, and Zhou Zhao. Unsupervised

Discovery of Interpretable Directions in h-space of Pre-trained Diffusion Models,

2023. URL https://arxiv.org/abs/2310.09912.

[135] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning for Point Cloud

Based 3D Object Detection, 2017. URL https://arxiv.org/abs/1711.

06396.

https://arxiv.org/abs/1506.03365
https://arxiv.org/abs/1506.03365
https://arxiv.org/abs/1811.07605
https://arxiv.org/abs/1811.07605
https://arxiv.org/abs/2403.06908
https://arxiv.org/abs/2310.09912
https://arxiv.org/abs/1711.06396
https://arxiv.org/abs/1711.06396

Appendix A

Comparison of Original and Upscaled

Textures

We compare non-upscaled texture images from the Gtextures part of DART-IDE with

those upscaled using ESRGAN 4X [120] in Fig. A.1.

Class 0 (64x64) Class 1 (64x64) Class 2 (64x64) Class 3 (64x64) Class 4 (64x64)

Class 0 (256x256) Class 1 (256x256) Class 2 (256x256) Class 3 (256x256) Class 4 (256x256)

Texture Comparison: 64x64 vs Upscaled 256x256

Figure A.1: Top - original 3×64×64 textures. Bottom - upscaled 3×256×256 textures.

56

	Acronyms & Initialisms
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Foundations
	Primer on Computer Vision
	3D Object Reconstruction
	Latent Space Generative Models

	Diffusion Models
	Denoising Diffusion Probabilistic Models
	Other Techniques Employed

	Methodology
	Generation Scheme
	Disentanglement Scheme
	Dataset Preparation
	Evaluation Metrics and Training Details

	Results and Discussion
	Architectural and Experimental Considerations
	Shape and Articulation Conditioning and Generation
	Texture Conditioning and Generation
	Full Results
	Interpretable Direction Discovery

	Conclusions
	Summary
	Limitations & Future Work

	Bibliography
	Comparison of Original and Upscaled Textures

