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Abstract

This dissertation explores the use of swap memory, particularly SSDs and Compute

Express Link (CXL) technology, to enhance quantum computing simulations within the

QuEST framework. By benchmarking different configurations, the research reveals that

while SSDs extend memory, they increase execution time due to latency. In contrast,

CXL significantly improves performance by providing faster access to memory. The

findings contribute to optimizing quantum simulations on classical hardware, addressing

challenges in scalability and efficiency. Future research should explore alternative

storage technologies and advanced memory management strategies to further enhance

quantum simulation capabilities.
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Chapter 1

Introduction

Quantum comoputing is an emerging field which has the potential to solve complex

problems that classical computing systems find impossible to solve. On the contrary,

the implementation of the quantum circuit simulations on classical computing systems

is still limited by both hardware and software due to the exponential increase in the

amount of hardware that will be required with the addition of each qubit [1, 2]. The aim

of this dissertation is to address this challenge by investigating the potential benefits of

using swap memory for quantum computing simulations.

This research is primarily directed towards examining the degree to which swap

memory, particularly concerning Solid State Drives (SSDs) or with Compute Express

Link (CXL), could be beneficial in increasing the efficiency and availability of quantum

simulations. This study aims to achieve this by performing a systematic benchmarking

of simulations with different configurations on the swap memory with the aim of estab-

lishing the tradeoff between adding more memory and performance of the simulation.

The analysis will be centered on various performance metrics such as execution time,

CPU power utilization, and general performance to determine the best approach of

running quantum simulations on standard computers with limited physical memory.

1.1 Motivation

Quantum computing holds the promise to enable solutions to complex problems and

hence revolutionize various fields. A significant challenge however remains that the

simulation of the quantum circuits on any classical hardware also remains one of the

key problems in this area. Such a simulation is often needed to test and design quantum

algorithms which should be executed on the real quantum computers. Growing the size
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Chapter 1. Introduction 2

and number of qubits results in increased required memory and computational power in

a two-fold nature, hence making it harder and harder to achieve affordable, large scale,

and accurate simulations [3].

The disadvantages of engineering components become clearer while working with

large quantum systems where the state vector requires extensive memory which grows

exponentially as number of qubits grow. Most of such systems are likely to be greater

than the virtual available physical random access memory (RAM) in most systems,

prompting the need to incorporate swap memory to increase the capabilities of the

hardware.

Swap memory works by using disk storage, like SSDs, to expand the working

memory for larger workloads. On the other hand this has an implication on performance

since it is faster to load data from RAM than from a disk. Improvement of performance

with the help of CXL technology may allow the utilization of larger volumes of memory

with access speed comparable to RAM and thus eliminate the need to use slower SSD

drives as swap memory [4].

However, the use of swap memory in quantum simulations has not been adequately

addressed. This explains the motivation of this dissertation which aims to research

about the optimal use of swap memory in quantum simulations.

The findings in this paper suggest that SSDs, though improve the memory that can

be used, for the simulations, an increase in the time taken to execute the operations

is experienced since they are slower when it comes to access time as compared to

RAM. Rather, the addition of CXL as a swap memory option, positively changes the

performance of the system, through shorter execution time and better utilization of the

CPU.

The following is the outline the structure of the dissertation, organized to deliver

comprehensive understanding of the factors affect the application of swap memory in

quantum computing simulations:

• Chapter 2: Background: This chapter goes ahead to provide the background of the

Quantum Exact Simulation Toolkit (QuEST), swap memory, and benchmarking

and what is known. It touches on the scope of quantum simulations on classical

hardware and the prospect of overcoming this limitation by leveraging storage

devices such as SSD and CXL. The chapter also presents a review of the available

literature including the SnuQS framework which is among those scarce literature

examining the swap memory in quantum simulations.
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• Chapter 3: Methodology: This chapter describes the work undertaken and the

design and implementation of the experiments. It outlines the configurations

performed, the parameters tested, and the complications faced during the simula-

tions.

• Chapter 4. Analysis and Evaluation. This chapter presents the outcomes of the

experiments and provides critical analysis of the data collected. It assesses the

efficiency of several swap memory configurations, explains what this entails for

the future of quantum simulations as well.

• Chapter 5. Conclusion. In the last section of the dissertation, the most important

outcomes of the research performed are highlighted, the scope of limitations of

the particular study are outlined, and recommendations are made on what future

research can be conducted.



Chapter 2

Background

2.1 QuEST Framework

The Quantum Exact Simulation Toolkit (QuEST) is an open-source framework devel-

oped for the classical simulation of quantum circuits. With the advancements made in

quantum computing, the problems considered within the computational complexity of

the quantum circuits steadily deepen, making it increasingly essential to have scalable

and effective tools for quantum simulation. QuEST responds to this need by presenting

a high-performance simulator that is effective in multi-core and distributive computing

settings [5].

QuEST is intended for performing quantum computations on a classical computer

through the emulation of qubits and quantum gates. The framework is implemented in

C language and is optimized for performance by taking advantage of efficient linear

algebra libraries and parallel computing to cope with the exponentially growing state

vector of quantum states. One of these is the ability of QuEST to scale across multiple

nodes in high-performance computing (HPC) making it more powerful to perform

simulations of larger quantum systems than would be feasible on one machine.

The toolkit encompasses support for both single-node (multi-core) and multi-node

(distributed memory) simulations, which is important for managing the intensive mem-

ory demands of quantum simulations. QuEST also provides both single and double-

precision floating-point arithmetic making it flexible to balance between computational

performance and accuracy [6].

Key Features of QuEST:

• Scalability: QuEST is quite flexible and well-prepared for scaling up on both
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Chapter 2. Background 5

single-node and multi-node platforms. For single-node systems, it is implemented

with the support of parallel processing and can employ multi-core CPUs. For

larger simulations, QuEST can distribute the computing process across several

nodes in a cluster, using Message Passing Interface (MPI) to exchange information

between the nodes. This is essential where there is a need to carry out simulations

of very large quantum circuits that one would otherwise find hard to operate on a

conventional desktop computer.

• High Performance: The optimization of the performance speed of QuEST is

enhanced by applying higher-order libraries of linear algebra for example the

use of Intel’s Math Kernel Library (MKL) and the OpenBLAS library. These

libraries help speed up the matrix multiplications that form the backbone of

almost all quantum simulations. QuEST also includes optimizations for low-level

architecture such as reducing memory access latencies and maximizing CPU

usage.

• Extensibility: QuEST has been built such that flexibility is incorporated and

therefore users can create their own quantum gates, noise, and collapse models.

This enables one to optimize the simulations to the specific requirements of

the study where for instance the focus is on how the coherence of the quantum

states would influence the quantum algorithms or evaluating the new methods of

quantum error correction.

• User-Friendly Interface: Besides being aimed at high performance, QuEST

has an easy-to-use API that allows users to use a collection of building blocks to

create quantum circuits. This makes it usable by those who may be not proficient

in parallel computing or high-performance computing (HPC).

• Support for Noise Models: Besides the ideal case of simulating ideal quantum

circuits, QuEST also has support for noise models which can account for the

effects of decoherence and gate errors. This functionality becomes necessary

in examining how quantum algorithms withstand stress in practical conditions

where qubits are susceptible to different forms of noise and errors.

The reason for choosing QuEST as the simulation platform for this research was

based on its performance, scalability, and flexibility. Keeping in mind the objective

of quantifying the performance of quantum computing simulations and investigating

the application of swap memory, QuEST offers the required level for carrying out
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these experiments in a habitable manner. In particular, its capability of handling the

exponential expansion of quantum state vectors even in a distributed environment

suggests its potential to model advanced quantum circuits that are high in processing

power.

Overall, QuEST is one of the state-of-the-art and most complex quantum computer

emulators. QuEST’s capacity to span multi-core and distributed platforms as well as

its user-friendly interface have opened a great opportunity for the objectives of this

research. The following sections will delve into how QuEST was used to simulate

experiments, particularly for the integration of swap memory and the benchmarking of

quantum circuits.

2.2 Swap memory

Swap space or virtual memory is employed in operating systems (OS) to create the

illusion of larger physical memory than what is physically present by temporarily

moving data that is not being used from the RAM to a certain section of the hard drive,

most often referred to as the swap file. The OS will transfer inactive data to swap

space if the current physical memory (RAM) is full. This action helps to free RAM

to perform more urgent tasks. This allows a system to ‘virtualize’ its memory and

support larger loads than if only physical memory were installed [7, 8]. However, a

performance trade-off is often made because of the delay caused by the slower access

speeds of disk storage compared to RAM. A simulation that relies heavily on swap

memory can experience a substantial slowdown, often referred to as ‘thrashing’, caused

by frequent swapping of data between RAM and disk [9]. This can make simulations

impractically slow and may even cause them to fail if the system becomes overwhelmed

by the constant swapping.

In relation to quantum computing simulations, the need for swap memory originates

in because of the size of the quantum state vectors that have to be stored. The size of the

state vector grows exponentially as the number of qubits increase, a quantum system

with ‘n’ qubits has the corresponding state vector of size ‘2n’ [10, 11, 12]. This quickly

goes beyond what physical memory manufacturers have on most systems. For example,

a 30 qubit system needs 8GB of memory to store only the state vector, while a 40 qubit

system needs 8TB of memory, which is not possible with conventional RAM but is

possible with swap memory. Making use of swap memory allows researchers to probe

the behavior of quantum systems that are much larger, as well as test more sophisticated
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algorithms and probe the boundary of classical simulation of quantum processes.

Quantum simulations, especially those with a large number of qubits, can be quite

stressful on the system’s memory. While swap memory can extend classical computers’

inherent limitations in regards to physical memory, it comes at the cost of increased

latency. Hence, the need to understand the trade-offs involved in using the swap memory

in important for optimizing the overall performance of the simulations.

2.2.1 SSD as swap memory

In recent times, it has become easy to notice that solid-state drives (SSDs) have taken

over a large portion of what was previously reserved for the swap file in hard disk

drives (HDDs) because SSDs have the relatively higher data handling efficiency. SSDs

contain flash memory for data storage which helps in rapid read and write operations.

This implies that they can be used as a supplementary form of RAM, particularly for

computational tasks that involve acess to swapped-out data [13, 14].

The benefits of using SSDs as swap memory include:

• Faster Access Times: SSDs are quicker at data retrieval as compared to HDDs,

reducing the performance hit when accessing swapped data.

• Reduced Latency: the delay between data requests and delivery is minimized

when using SSDs, which is important to maintain the efiicieny of the simulation.

• Enhanced Durability: Modern SSDs are more reliable in demanding computa-

tional environments because of their improved durability and lifespan.

However, even with those benefits, the performance of SSD’s remains very inade-

quate when compared to RAM. For that reason, although SSD’s may serve to broaden

the available memory for quantum simulations, they cannot ultimately compensate for

the swiftness of RAM and an appropriate balance must be struck in performance trade

offs [15, 16].

2.2.2 CXL as swap memory

Compute Express Link (CXL) is another new technology that is aimed at enabling

the memory extension and management processes in high-performance computing

environments. CXL is a high speed interconnect that enables the processors to connect
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directly to memory and storage devices with low latency. It aims to allow better sharing

of resources among CPUs, memory, and accelerators like GPUs or FPGAs [17, 18].

CXL offers a significant advancement in how swap memory can be used in quantum

computing simulations. It facilitates the dynamic allocation of memory and allows it

to be shared between different computing elements. This provides near-RAM speed

access to larger pools of memory [19].

The benefits of using CXL as swap memory include:

• Low Latency: CXL significantly reduces the latency associated with accessing

swap memory and is almost as fast as accessing RAM. This is critical to maintain

performance for computations that require rapid data access such as quantum

simulations.

• Memory Pooling: CXL allows memory from multiple devices to be pooled into a

larger unified memory pool which can then be used in a more efficient manner

during the course of simulations.

• Dynamic Memory Allocation: CXL provides the ability to dynamically allocate

memory resources, which in gives more flexibility to the simulations in terms of

memory upscaling or downscaling.

Thus, the balance between large memory size for computations and fast access times

can be resolved through CXL technology in quantum computing simulations. CXL can

enhance the memory space physically available in the system without compromising

the high fast speed necessary for carrying out complex quantum simulations.

This paper focuses on the use of swap memory, specifically in context of utilizing SSDs

and CXL technology, to perform large-scale quantum simulations even with insuffi-

cient physical RAM. However, as the complexity of quantum computing simulations

increases, the need for efficient memory management becomes of greater importance.

The work presented here provides evidence on how well SSDs and CXL can be utilized

as swap memory in the simulation studies conducted using the QuEST framework.

This includes benchmarking the performance impacts, assessing the balance between

speed and memory capacity, and understanding how these technologies could make it

possible to perform bigger quantum simulations. The results of these experiments aim

to contribute to a broader understanding of how to optimize quantum simulations on

classical hardware, particularly in environments with limited computational resources.
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There has been limited research focused on the use of swap memory in quantum

simulations, with the SnuQS framework being one of the few notable studies in this area.

‘SnuQS: Scaling Quantum Circuit Simulation using Storage Devices’ by S. Kim, J. Lee,

and J. Kim [20] aligns with the objectives of this dissertation. This paper proposes the

SnuQS framework that seeks to solve the problem of insufficient physical memory in

classical simulations by deploying SSDs as extensions of the RAM.

SnuQS’s main innovation is in its implementation of sophisticated tiered memory

management which aims to optimize data transfer to and from the RAM and the SSD.

This is made possible by the inclusion of storage devices which make it possible to

model larger quantum circuits than what would otherwise be feasible, due to limitations

in RAM.

This paper aims to add to the concepts SnuQS introduces by studying swap memory

more comprehensively. SnuQS concentrates only on SSDs, whereas this research

examines different storage options and benchmarks their effect on the performance of

the simulations.

2.3 Benchmarking

Benchmarking is essential to evaluate the performance and efficiency of quantum

computing simulations. It is important to assess the effectiveness of frameworks like

QuEST to emulate quantum systems, manage computational resources, and scale with

increasing problem sizes.

Quantum computations are very complex and a simple increase in the number

of qubits results in an increase in the computational resources needed exponentially.

This calls for intensive benchmarking to establish performance levels of the different

approaches to simulation. Benchmarking includes testing the simulators with various

parameters such as the number of qubits, depth of the circuit, noise amount, and

available memory. This process helps identify their strengths, weaknesses, and potential

areas for optimizations, thereby building the understanding of the trade-offs between

speed, accuracy, scalability, and resource consumption [6].

Benchmarking is important to:

• Analyze: Ascertain the efficacy of the resources, such as any of the processors

including the CPU or GPU, or even memory components, being used by a quan-

tum simulator. This evaluation includes measuring execution time consumption,
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memory utilization, and determining how well a quantum circuit simulation can

scale with the increase in the quantum circuit size.

• Compare Accuracy: Evaluate the accuracy of the simulation through a comparison

between their outcome and the predetermined analytical methods or alternative

simulators, which is highly necessary when assessing the approximations as well

as noise models.

• Identify Bottlenecks: Find out the shortfalls of the simulation, which may be in

poor utilization of memory, large use of swap memory, or ineffective mapping of

the workload.

• Guide Optimization: Improve the processes of simulation by inferring informa-

tion from these indexes, which could be in the form of enhancing the algorithms,

reengineering the memory management systems, or considering hardware opti-

mization.

With the progress of quantum computing, benchmarking of this nature and its

reproducibility becomes more important to provide a means of comparing simulators

and evaluating their suitability for real-world applications.

Numerous platforms have been implemented that allow for reproducible bench-

marking of quantum computational simulations. Among them, MQTbench [21] and

Yao benchmark [22] stand out for the advantages they bring to the field. Additionally,

their user-friendliness and easy availability make them accessible tools for research,

facilitating a consistent and reliable benchmarking process.

MQTbench: MQTbench is a set of performance benchmarks proposed by the

Munich Quantum Toolkit (MQT )team, which provides a shared bench for different

types of quantum computation resources. MQTbench takes into consideration the

performance of more than just quantitative metrics of the quantum simulation and

the precision within which computing is performed while emphasizing the potential

for qubit numbers to scale up. It facilitates the assessment of the performance of a

framework within large-scale quantum simulations task evaluation which is crucial

especially when looking at the performance of the framework concerning the memory

limitations [21].

Nonetheless, MQTbench is not capable of performing any benchmarking that em-

ploys single-qubit gates such as Pauli-X and Hadamard which this research specifically

intends to use. Benchmarking with single-qubit gates is important as these are the basic
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components of a quantum circuit and their qualities have a significant effect on the

success and efficiency of quantum computations. The focus on these fundamental gates

helps to understand the essence of the quantum simulation and allows for more accurate

tuning and improvement of the system.

Yao benchmark: Yao is a versatile open-source framework, written in Julia, suitable

for composing and evaluating quantum algorithms. It comprises components for the

building of quantum circuits, quantum dynamics simulations, and benchmarks, as well

as implementing quantum benchmarks. Yao makes it possible to construct a benchmark

for any simulator or quantum hardware and test their performance relative to the

classical simulator or quantum hardware. It is also possible to extend the benchmarks

to accommodate any research needs [22].

Unlike MQTbench, Yao facilitates benchmarking with single-qubit gates, making it

an ideal tool for analyzing fundamental quantum operations. Additionally, Yao inte-

grates Google Benchmark, which adds numerous features such as detailed performance

analysis, customizable benchmarking configurations, and support for complex bench-

marking scenarios. Yao’s modularity and flexibility are particularly advantageous for

the objectives of this paper, specifically in analyzing the performance of QuEST-based

simulations using benchmarks generated through Yao.

Some other benchmarking frameworks that were explored included QASMBench

[23], QUARK [24], PAS [25], HpQC [26] etc.

In essence, benchmarking is crucial to this research and provides a structured

approach to analyzing the QuEST framework’s performance in simulating quantum

circuits. Through detailed benchmarks, this research aims to:

• Quantify Performance: Establish metrics for quantum simulations using execution

time, scalability, and memory usage.

• Evaluate Swap Memory Impact: Focus on the influence of swap memory on the

performance, comparing scenarios with and without it to understand trade-offs.

• Compare storage technologies: Compare the effect of using SSD versus CXL

as swap memory by examining the differences in performance and efficiency

between these technologies.



Chapter 3

Methodology

In this research, the simulations conducted are mainly based on the Pauli X gate since

this is the core quantum computation gate, equivalent to the classical NOT gate, that

serves the function of flipping the state of the qubit. The choice of the Pauli X gate as the

benchmark quantum operation was driven by the primary objective of the experiments to

evaluate the efficacy of the memory management techniques on simulation performance

without the complication of multi-qubit operations or more complex algorithms.

The goal was to monitor the effect of swap memory on the simulation time and

overall efficiiency, especially when the physical memory could not handle the entire

quantum state vector. The design of the experiments was meant to analyze the perfor-

mance benefit or disadvantage of using SSD and CXL for swap memory in different

swappiness configurations.

The basis for all such simulations is embedded in the fact that with the increasing

number of qubits, the quantum state space grows exponentially. For an n qubit system,

the state vector requires 2n complex amplitudes and thus high memory as n gets larger.

Considering this exponential growth, it becomes impractical to physically keep all the

stored information in the RAM state vector beyond a particular number of qubits, thus

it necessitates the inclusion of swap memory for preventing the limitation of the system

capacity.

In order to tackle the memory problem, this work integrates external memory of SSD

and CXL to quantum computing simulations of the QuEST quasi-classical framework.

Compared to traditional hard disks, SSDs (Solid State Drives) have a large large storage

capacity and relatively fast speed as compared to traditional hard drives. On the other

hand CXL (Compute Express Link) is recently developed technology, fast and offers

high memory capacity.

12
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The simulations seek to investigate the following two main frameworks on swap

use over CXL and SSD:

1. SSD-Only Configuration: Here the swap space is entirely used by a SSD and the

aim is to analyse the quantum simulations while relying on SSD as the only mode

to execute overload memory beyond physical RAM.

2. SSD and CXL Configuration: In this setup swap memory is allocated to both

SSD and CXL serving as a swap, but with CXL having the higher priority.

This configuration aims to measure the increase in performance due to the joint

utilization of SSD and a faster memory technology.

The simulations were carried out using the Yao benchmark with QuEST , which

stands out because it is designed with distributed memory systems in mind [5], an

important feature when modeling large quantum systems that exceed the RAM of a

machine. The simulations were run on a high performance computing (HPC) cluster

with a total of 500 GB of physical RAM, 3.6 TB of Solid State Device (SSD) and 128

GB of Compute Express Link (CXL) swap memory.

The deterministic requirements are the memory requirements which can be ex-

pressed as follows:

Memory (in bytes) = 16×2n

where n is the number of qubits. The multiplication by 16 is due to the need to store

complex numbers which themselves comprise a real and an imaginary part, each part

stored as a double precision (8 byte) floating point number respectively. For example:

35 qubits require 16×235 ≈ 512 GB

36 qubits require 16×236 ≈ 1024 GB or 1 TB

When considered all these requirements it is obvious that simulating 35 qubits

does require more than what the 500 GB of physical RAM available can support and

simulation of 36 qubits even surpass the combined RAM and CXL capacity and thus

uses the SSD as a swap. Therefore the swap memory configuration was determinant in

simulating quantum circuits that were beyond the physical RAM, that is, qubits 35 and

36.

SSD-Only Experiments:

• This set of experiments was conducted using only the SSD as swap memory. The

umber of qubits ranged from 4 to 36 whereby the high qubits counts of 35 and 36

required that additional swap memory.
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• The swappiness parameter was modified in steps of 10, with regard to RAM and

swap space allocation. To ensure consistency, each setting was tested multiple

times.

• Performance metrics including execution and CPU time were recorded and an-

alyzed on completion of one of the tasks. Execution time determines the total

simulation time, inlcuding I/O operations while CPU time indicates the amount

of time the central processing unit worked on matters of simulation only, without

any idle periods.

CXL And SSD Experiments:

• In the case where both the CXL memory and the SSD were used for swap memory

allocation, experiments were carried out following the same steps as those for

SSD-only tests with varied swappiness parameter and over a qubit range of 4 to

36.

• The objective was to compare the performance of the CXL and SSD configuration

against the SSD-only setup, focusing on how the prioritized use of CXL influenced

overall simulation efficiency.

• The aim was to analyze the difference made my using the CXL and SSD config-

uration as compared to only using SSD, mainly to note the effect of priortising

CXL on rate of efficiency of simulation as a whole.

A configuration utilizing solely CXL was not tested out since it was clear that

the available 128 GB of CXL would not be enough to simulate 36 qubits as only

35 qubits could be managed with just RAM and CXL. In this regard, there was also

no prioritization of experiments with SSD on top of CXL as there was no notable

sufficiency expected on the performance one would gain by utilizing an SSD only

setup as opposed to an SSD on top of prioritization setup for just the 35 and 36 qubit

simulations.

The swappiness allocation parameter was modified via system configuration control

files with an aim to vary the proportion of physical memory and virtual memory used.

In both configurations described, the swappiness parameter which is an OS parameter

used for controlling the system’s tendency to use swap is adjusted from 10 to 100 in

intervals of 10. This alteration makes it possible to test how aggressive or conservative

memory swapping will impact the performance of the simulations, particularly when
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the system is nearing its memory limits. A low-value swappiness (e. g. 10 or 20) is

useful when data is desired to be kept in RAM, but cases where large swap is on fast

storage devices a larger value (e. g 60 or 70) can be benefitial. The default swappiness

is set to 60, indicating the system to use swap when RAM usage is around 60

Key Challenges Faced:

• During the course of this research, one of the key difficulties that was faced was

the performance drop during the simulation of 35 and 36 qubit. As predicted, they

resorted to the use of swap memory and this negatively affected their performance

in terms of speed and even time taken to complete certain tasks. For example,

performing a simulation of 35 qubits using only an SSD took 25 minutes while

performing a simulation of 36 qubits with the same rig took 2.5 hours to complete.

However, on a CXL and SSD setup, execution time was appreciably less, 35

qubits was done within 15 minutes and 36 was done under 2 hours.

• Another difficulty arose when it was necessary to handle the data locality of the

swap memory. The quantum state vector which is a growing function of the

number of qubits is more dynamically changing and thus in need of frequent

updates throughout the simulation. During this time the system encountered a

problem dubbed ”thrashing” where the CPU has to swap more RAM and SSD

data than actually executes machine instructions, as parts of the state vector that

are being worked upon are stored on the slower swap memory.

• Additionally, challenged were encountered to ensure reproducibility and consis-

tency of results since incorporating swap memory introduces variability. Although

multiple repetitions of the simulations helped solve this issue, the considerable

length of running a simulation posed a challenge on its own.

Some alternative approaches that could be considered include:

• Using Larger Capacity SSDs or NVMe Drives: One possible method could be

replacing the standard SSDs with NVMe drives as they can lower the swap mem-

ory latency. However, this approach was avoided and the research concentrated

on investigating the present hardware configuration [27].

• Adjusting Memory Management Algorithms: Consideration was given to the

possibility of formulating user-specific memory management algorithms within

the operating environment of the computing device. However, this was considered
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to be beyond the objectives of the present study that was geared towards meshing

into the existing tools and settings based in typical HPC setups.

• Conducting such experiments, this research adds to understanding how quantum

computing simulations will perform using swap memory. The results of these

experiments will be further discussed in the next section.



Chapter 4

Results and Evaluation

A series of simulations has been performed using the QuEST framework to understand

the effects of using SSD and CXL as a swap memory on the large-scale quantum

simulations focussing on those with a higher qubit count. The results are provided for

the two cases (‘SSD only’ and ‘CXL with SSD’) in the form of several plots containing

performance indices such as execution time, CPU time, and performance ratio.

4.1 SSD-only Analysis

Figure 4.1: Execution and CPU times for SSD-only Analysis for 4-36 qubits

The analysis starts with the SSD-only configuration where execution and CPU times

are computed at different qubit numbers ranging from 4 to 36. The results, as shown

by figure 4.1, reveal the fact that execution time increases sharply with an increase in

17
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the number of qubits particularly when the system has to use swap memory owing to

low physical RAM. The access time delays incurred by the SSD greatly detracted from

the performance of the simulation and led to longer execution times as the number of

qubits increased.

Figure 4.2: Execution and CPU times for SSD-only Analysis for 33-36 qubits

The corresponding CPU time analysis reveals that the SSD configuration demands

more processing power as the qubit count grows. However, figure 4.2 highlights that

the overall time taken is significantly more than the time the CPU spent executing the

instructions when swap memory is used (number of qubits >= 35). This additional time

is a result of the fact that usage of SSD space as swap memory is rather not efficient

since more memory resources are used and less computations are done. This suggests

that although SSD can volume up the memory available for quantum simulations, it

comes at the price of increased latency. As figure 4.1 depicts, when the number of

qubits gets larger the execution times become extremely undesirable, hence revealing

the disbenefits of relying solely on an SSD in memory intensive quantum simulations.

The results also show that varying the ’swappiness’ parameter did not make a

significant impact on the performance. This is because the simulations reach a state

where swap memory is continuously used and the system’s overall performance is

effected by the speed of swap memory instead of any set OS policy that dictates when

to swap data.
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Figure 4.3: Execution and CPU times for CXL and SSD Analysis for 4-36 qubits

4.2 CXL and SSD Analysis

When CXL is added to the swap memory configuration with SSD, results indicate that

execution time and CPU time improve significantly. Particularly, figures 4.6 and 4.7

depicts that when using swap memory (number of qubits > = 35) computation time

of SSD and CXL indicates that the CXL configuration is the better performer when

compared with SSD-only.

Execution times are shorter because CXL is less latency sensitive and has faster

access speeds, even as the qubit count rises. Additionally, CXL+SSD configuration

has CPU times that are mostly constant over the cycle and are lower than when only

SSD is in use. This stability suggests that CXL benefits both the execution and CPU

time, hence, enabling the system to concentrate on the computation part rather than on

memory swap and management.

Percentage of improvement in execution time due to CXL is shown in figure 4.5.

This is calculated by averaging on the execution times for different swappiness values

and alling the following formula

CXL time−SSD time
SSD time

×100

The data collected for the 35 qubit simulation, which is when the CXL is used, shows

a significant increase in performance (reduction in execution time). The data for

the 36 qubit simulation, which is when SSD is used alongside CXL, shows a dip in

performance and steep increase in execution time (figure 4.4). This highlights the
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Figure 4.4: Execution and CPU times for CXL and SSD Analysis for 33-36 qubits

considerable advantage which CXL offers over its competitors, making the technology

a suitable choice for large scale quantum simulation.

4.3 Evaluation

The results from this study clearly demonstrate that indeed SSD can improve the

available memory for quantum simulation but the performance levels get compromised.

When the number of qubits is high, the weaknesses of disks that depend on SSD only

configurations start to show themselves, and the execution times grow significantly.

The opposite is true when CXL is combined with SSD as it brings about a lot of

improvements in performance. With reduced execution and CPU times and improved

efficiency gains, CXL is a good fit for situations where high efficiency performance

ratios are required but physical RAM is not up to the demand.

Key findings from this evaluation include:

• Scalability: CXL manages the increase of memory related to the increase in the

number of qubits more effectively than the SSD. This scalability is important to

enable quantum simulations to cross the barrier of classical hardware.

• Efficiency: CXL’s reduced execution and CPU times lead to more efficient

simulations, shortening the simulation time and providing more trustworthy

results. This efficiency is of great use in high-performance computing applications

which are time and resource intensive.
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Figure 4.5: Percentage of improvement in execution time due to CXL (33-36 qubits)

• Practical Application: Factors such as the percentage of improvement due to

CXL are very significant in that they are a demonstration of the possible use of

CXL in quantum simulations on large scales. The incorporated architecture will

allow users and researchers to run more advanced simulations without the drastic

slowing down of the system typical of an SSD only system configuration.
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Figure 4.6: Execution time comparison for SSD vs CXL (33-36 qubits)

Figure 4.7: CPU time comparison for SSD vs CXL (33-36 qubits)

Figure 4.8: Average execution and CPU time comparison for SSD vs CXL



Chapter 5

Conclusions

The goal of this research was to examine the potential benefits of swap memory in the

quantum computing simulations performed using the Quantum Exact Simulation Toolkit

(QuEST). This essentially looked into the use of Solid State Drives (SSD) and Compute

Express Link (CXL) technology in order to increase the memory space available and

how this affects the quantum simulations in regard to the increased number of qubits.

There are several significances of this research to the general field of study. First,

it was indicated that swapping memory into power SSDs would enhance the amount

of memory available for the quantum simulations for larger quantum systems which

would require more physical RAM than available in the systems. However, as most

of the added memory was put on SSDs, there were problems because access to SSDs

was many times slower than to RAM, resulting in much longer execution times and

poorer performance of the simulations as the configurations were 35 and later 36 qubits.

The CPU was virtually “thrashing” wherein a vast majority of the operations revolved

around moving data back and forth between the SSD and the CPU, instead of executing

any computations, particularly in the SSD only mode configuration.

On the other hand, the application of CXL technology as a swap memory option

reflected a significant enhancement in performance. CXL can provide near-RAM speed

while enlargening memory spaces. CXL combined with SSDs performed better when

compared to SSDs alone, particularly in qubit rich simulations. This indicates that CXL

technology together with SSDs could be a better way of providing more memory in

quantum simulations without compromising performance. This in particular is of great

relevance regarding the future of simulations of quantum computing on classical systems.

They show that whilst SSDs may be deployed to increase the memory, incorporation

of CXL technology is essential in enhancing performance in such manner that more
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complex and larger quantum simulations may be achieved. These findings enhance

understanding of the challenges and implications of using swap memory that is based

on diverse storage technologies, and also help in the design of more efficient quantum

simulations for environments with memory constraints.

5.1 Future Work

Based upon the results of this thesis, it is possible to state some directions for further

investigations. In particular, it would be interesting to look into the utilization of other

more sophisticated storage solutions such as NVMe drives that have high access speeds.

This would then help in understanding the usability of such swap memory with the

NVMe compared to CXL for effective executing quantum simulations.

The future work could also include designing and incorporating into the simulation

framework some real time memory management strategies. Such algorithms may be

able to suit the evolving nature of quantum state vectors and shield or minimize the

effects of “thrashing” while improving the efficiency of the simulation as a whole.

Furthermore, the use of machine learning to forecast and control the amount of memory

needed at different stages of the simulation, rather than waiting until memory is entirely

used, could also be a way of optimizing resources and improving performance.

Moreover, the scope of the simulations could also be extended to incorporate alge-

braic or linear algebraic quantum algorithms employing multi-qubit circuits, so that

a clearer picture of the performance of the swap memory for various types of compu-

tations may emerge. This would then mean that thorough research could eventually

lead to proper conclusions concerning the application of different memory manage-

ment practices in quantum computer simulation regardless of the benchmarking of a

considerable part of quantum circuits.

Lastly, there may be the possibility of re-evaluating the use of swap memory in a

hybrid quantum-classical computing setting as more advances in quantum computing

hardware are made. This and similar future research aims to investigate how com-

putational resources typically hosted in classical simulation frameworks like QuEST

could find deployment in quantum hardware so as to ease the computational load on the

classical systems and optimize simulation capabilities.
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