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Abstract

Hebbian plasticity alone is unable to account for stable neural function. Regulatory

mechanisms are needed to maintain constancy in neuronal properties amidst Hebbian

synaptic changes. Early computational schemes to constrain runaway excitation have

gained strong empirical grounding, with ‘homeostatic plasticity’ now a topic of ongoing

investigation. Mechanisms of homeostatic plasticity (HP) have largely been studied in

isolation, and their interactions remain poorly understood. We conduct a comparative

analysis across linear, non-linear, and voltage-dependent learning rules in spiking

recurrent neural networks. In systematically removing HP mechanisms from each

network variant, we investigate the minimal set of plasticity mechanisms required

to maintain network stability and support learning under spontaneous and evoked

conditions. The interactions between homeostatic and Hebbian rules are show to

have distinct impacts on network synchrony, regularity, and capacity for stimulus

decorrelation. Future work should explore of a minimal set of plasticity mechanisms

capable of identifying higher-order statistical independence in natural scenes.
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Chapter 1

Introduction

The brain is a complex communication system. Neurons, the functional units of the

brain, relay information via electrical impulses. These signals travel along neural

pathways to be transmitted between neurons at specialized junctions, or synapses. At

the synapse, the electrical signal triggers the release of chemical messengers which

traverse the synaptic cleft and bind to postsynaptic receptors of neighbouring neurons.

This process enables neurons to respond to stimuli, and forms the underlying framework

for perception, cognition, and behaviour. The flow of information in the brain is

therefore dictated by the structure and strength of neuronal connections.

Brain morphology is not fixed; rather, the nervous system is plastic, possessing the

remarkable ability to modify its structural and functional connectivity in response to

experience. A key component of this adaptability is synaptic plasticity, or the ability of

synapses to change in strength and efficacy. Hebb (1949) introduced Hebbian learning,

positing that changes in synaptic strength are driven by the coincident firing of pre-

and postsynaptic neurons. Hebb proposed that if presynaptic neuron A repeatedly and

persistently activates postsynaptic neuron B, neuron A will become more effective

at activating neuron B in the future (colloquially, ‘neurons that fire together, wire

together’). Enhancement in synaptic efficacy is termed Long-Term Potentiation (LTP).

Conversely, if presynaptic neuron A’s activation is weak, infrequent, and/or poorly

coordinated with the postsynaptic neuron B, synaptic strength will decrease, resulting

in Long-Term Depression (LTD).

In isolation, Hebbian learning can destabilize neuronal circuitry. Consider the

correlation-based rule applied to two synaptically coupled neurons: as the synapse

strengthens, presynaptic neuron A increasingly drives postsynaptic neuron B, which

further strengthens the synapse. This positive feedback loop may cause all synapses to

1



Chapter 1. Introduction 2

saturate or, conversely, weaken to the point of complete inactivity. A similar but distinct

issue arises from fluctuations in average synaptic input. Over a neuron’s lifetime, its

baseline synaptic input may vary significantly due to developmental changes, such as

eye-opening. Simple coincident-based synaptic modifications cannot account for how

neurons avoid saturating or falling silent if average inputs rise and fall dramatically.

Therefore, Hebbian plasticity can only be effective if it operates within a framework

of otherwise stable neural function. Davis (2013) writes that “without the existence of

potent mechanisms that stabilize neural function, our capacity to learn and remember

would be lost in the chaos of daily experiential change”. These considerations led to

the augmentation of computational models to include rules which constrain runaway

excitation. Early schemes were ad hoc in nature, being introduced ‘by hand’ and without

a strong adherence to empirical data (Desai, 2003). However, the notion of ‘homeostatic

plasticity’ has since gained a strong empirical grounding.

While recent studies have identified diverse homeostatic plasticity (HP) mechanisms,

the influence of these mechanisms and their interactions is not well understood (Keck

et al., 2017). Further, there is no unified investigative approach, with models within

the field differing in their explanatory aims (Bredenberg & Savin, 2023). This project

provides an overview of well-established HP mechanisms and traditional modelling

approaches before selecting an empirically-grounded recurrent spiking neural network

as a framework for further study. In investigating spontaneous activity, we gain insight

into which homeostatic mechanisms are necessary or sufficient to maintain network

stability. In investigating evoked activity, we gain insight into which mechanisms are

necessary or sufficient to support learning.



Chapter 2

Background

2.1 Mechanisms of homeostatic plasticity

Distinct forms of homeostatic plasticity emerge repeatedly across experimental ap-

proaches (Keck et al., 2017).

2.1.1 Synaptic scaling

Synaptic scaling constrains the total synaptic strength over a neuron, imposed as a

function of postsynaptic activity or total synaptic efficacy. For example, the overall

strength of excitatory synapses can scale up or down depending on whether average

spiking activity is above or below a target value. Therefore, overall activity and total

synaptic strength is kept within set bounds even while individual synaptic weights vary

by Hebbian rules.

Experimental work shows neurons are indeed subject to activity-dependent rescaling

of synapses. For example, the addition of pharmacological agents to neocortical

neuron cultures followed by cell patch recordings show synaptic properties adapt

homeostatically to prolonged exposure to different average levels of synaptic activity;

neocortical pyramidal neurons up-regulate the strengths of excitatory synapses when

firing rates are low, and down-regulate them when firing rates are high (Turrigiano et al.,

1998). The changes in synaptic currents are attributed to changes in the number of

receptors at each synapse, namely AMPA glutamate receptors at excitatory synapses

(Desai, 2003).

Synaptic scaling develops slowly and cumulatively, with several hours of manipula-

tion required to produce measurable changes (Turrigiano, 1999). This indicates neurons

3



Chapter 2. Background 4

can integrate activity over time, rather than responding to activity moment to moment.

Further, scaling is global and (generally) multiplicative, meaning all synaptic weights on

an individual neuron are modified by a single multiplicative scaling factor. Thus, scaling

controls total activation while preserving relative differences between synapses. These

characteristics enable synaptic scaling to work concurrently with Hebbian learning.

2.1.2 Sliding thresholds - BCM theory

BCM models alter a synapse’s capacity for Hebbian modification via an activity-

dependent sliding threshold. This scheme was popularized by Bienenstock, Cooper,

and Munro (BCM), whose learning rule is commonly used to describe the dynamic

adjustment of thresholds over time (Bienenstock et al., 1982). The change in the efficacy

of a synapse depends on a slowly varying time-averaged value of postsynaptic activity,

in addition to instantaneous pre- and postsynaptic activities.

Under BCM theory, whether individual synapses are strengthened or weakened

by presynaptic activity depends on whether postsynaptic activity is above or below

a threshold firing rate. The threshold rate, a crossover point between potentiation

and depression, is itself a slow function of postsynaptic activity. It functions to make

potentiation more likely when average activity is low, and depression when activity is

high (Toyoizumi et al., 2014).

Experimental evidence for BCM theory was obtained by dark rearing rats, and

comparing their retinal ganglion firing to those of rats raised under normal lighting

conditions (Kirkwood et al., 1996). As predicted by the BCM rule, low activity in

dark-reared conditions eased the induction of potentiation and challenged the induction

of depression. There is no consensus on the biological basis of the sliding threshold,

and several mechanisms have been proposed (Fox & Stryker, 2017). BCM theory is

extensively review by (Cooper & Bear, 2012).

2.1.3 Dendritic spine size dynamics

Dendrites extend outward from a neuron’s cell body to receive incoming information. In

the mammalian brain, most excitatory synapses are located on small protrusions arising

from dendrites - termed dendritic spines - which act as electrically isolated micro-

compartments. Spines exhibit both structural and functional plasticity in response to

modified input activity.

It has been shown that dendritic spine size is tightly correlated with synaptic strength
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and that spine size is regulated during synaptic plasticity (Bosch et al., 2014). Spine

morphology is hypothesized to relate to synaptic plasticity via the regulation of Ca2+,

where Ca2+ initiates a biochemical cascade in spine machinery which contributes to

LTP or LTD of the synapse (Suratkal et al., 2021). Biophysical models of pyramidal

neurons show agreement that spines enlarge during LTP and shrink during LTD (Keck

et al., 2017). Further, simulation studies of recurrent networks indicate that fluctuations

in spine size help stabilize network activity by maintaining a spine size distribution

close to the physiological steady-state distribution, while Hebbian plasticity forms and

maintains cell assemblies (Loewenstein et al., 2011).

2.1.4 Rapid changes to inhibition

The homeostatic mechanisms discussed above operate on slow timescales, from a

period of hours to days, and are too slow to account for activity peaks which may

lead to pathological over-excitation (Turrigiano, 2017). In contrast, Hebbian plasticity

can occur on the order of seconds to minutes. Although it is possible to artificially

adjust the timescales of these learning rules to meet the demands of network stability,

rapid mechanisms with biological groundings have also been investigated. One such

mechanism involves altering the activity of inhibitory neurons. Globally balanced

neuronal networks display approximately equal amounts of de- and hyperpolarizing

membrane currents. It is believed that synaptic plasticity at inhibitory synapses plays a

central role in maintaining this balance.

Monocular deprivation in vivo studies indicate rapid disinhibition within cortical

circuitry occurs after sensory deprivation (Gainey & Feldman, 2017). Disinhibition is

likely mediated by NMDA receptor downregulation, confirmed by physiological studies

in slices of prefrontal cortex from rats treated with an NMDAR antagonist (Zhang et al.,

2008). The antagonist produced biochemical changes to the GABA system, resulting in

both reduced amplitude and frequency of inhibitory currents, and increased postsynaptic

excitability. Increased excitability can be properly attributed to the disinhibition as

postsynaptic current properties and intrinsic excitability were not changed.

2.1.5 Intrinsic plasticity

Focusing solely on changes to synaptic strength provides and incomplete window into

the evolution of neural dynamics; the intrinsic electrical properties of individual neurons

can also be modified by experience. How a neuron integrates synaptic input is regulated



Chapter 2. Background 6

Figure 2.1: How intrinsic plasticity might adapt neuronal firing to changes in synaptic

input. Recreated from Desai (2003).

by its distribution of intrinsic ion channels. Altering the magnitude and/or distribution

of intrinsic channels implicates diverse processes including the pattern and rate of firing,

neuronal excitability, and synaptic integration and plasticity (Desai, 2003).

Intrinsic plasticity theory postulates that neurons adapt to changes in activity by

altering how synaptic inputs are transformed into firing rates. This is modelled by a f -I

curve, relating a neuron’s outputted firing rate to the synaptic input it receives, as shown

in Figure 2.1 . At low inputs the neuron will not fire. Likewise, at high inputs the firing

rate will plateau, indicating a saturation point where, despite further increases in input,

the firing rate cannot increase due to biophysical limits. The linear region indicates

where the neuron’s firing is sensitive to changes in input. If synaptic input decreases,

the curve shifts left to prevent the neuron falling silent. Conversely, the curve shifts

right in response to very high input to prevent saturation. In general, the f -I should

shift such that the sensitive linear region corresponds with the average input level.

Neocortical cultures were observed after the addition of pharmacological agents to

evoke low or high firing, confirming the presence of IP in homeostatic regulation (Desai,

2003). The experiments showed pyramidal neurons responded to periods of prolonged

activity deprivation by increasing their intrinsic excitability (by becoming ‘easier to

fire’). The changes in excitability can be attributed to coordinated changes in the density

of intrinsic channel types. Interestingly, the manipulation did not have global effects on

intrinsic currents but rather selectively and coordinately altered the ratio of inward and

outward currents. Therefore, voltage-gated channels are not regulated in isolation but

synergistically such that their combined effort produces the desired firing rate.



Chapter 2. Background 7

2.2 Modelling homeostatic plasticity

2.2.1 Homeostatic balance parameters

Homeostatic mechanisms are required to restore cellular and synaptic activity following

perturbations. In each of the mechanisms described above, HP works to restore a

parameter of neuronal circuitry. O’Leary and Wyllie (2011) propose homeostatic

compensation exemplifies principles of control theory, highlighting the potential for

modelling efforts to depict HP mechanisms in a feedback control system. In particular,

this perspective allows the differentiation between long-term changes to homeostatic

targets, and on-going adjustments in response to Hebbian perturbations.

Experimental evidence is documented for three homeostatic balance parameters;

firing rate, sub-threshold activity, and synaptic weights. Fox and Stryker (2017) suggest

that, when incorporated in an appropriate theoretical model, any of these parameters

may stabilize the network away from pathological dynamics. The concept of firing rate

homeostasis was first observed alongside the discovery of synaptic scaling (Turrigiano et

al., 1998). Subsequent research has consistently shown altering both cellular (Burrone et

al., 2002) and network (Desai et al., 2002) firing rates induces homeostatic mechanisms.

Both in vitro and in vivo studies have demonstrated that neurons recover set-point firing

rates in parallel with the activation of homeostatic mechanisms (Hengen et al., 2013).

BCM theory supports homeostatic modulation of firing rates, as does intrinsic plasticity

paradigms. More recently, Fong et al. (2015) found that sub-threshold changes were

sufficient to induce synaptic scaling. This parameter is relatively unexplored - it has not

been shown whether sub-threshold changes restore activity levels (Fox & Stryker, 2017).

Synaptic weight homeostasis is presented as an alternative to homeostatic regulation

of firing rates (Davis & Bezprozvanny, 2001). Bourne and Harris (2011) hypothesize

that overall synaptic weight is conserved on a dendritic branch to prevent hyperactivity

resulting from the over-strengthening of synapses.

This summary presents a somewhat oversimplified picture of homeostatic balance

parameters. Empirical studies find significance variability; it may be that there is no

simple homeostatic ‘target’ that the networks try to maintain, but rather some other

functionally relevant aspect. Hennig et al. (2011) found that networks try to maintain

population dynamics. In computational simulations, the homeostatic target is largely

determined by the level of detail in the model selected for inquiry.
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2.2.2 Neuronal models

Neuron models simplify and abstract the process of neuronal communication. Neuron

models can be classified by level of biological detail into rate, spiking and biophysical

models. Rate models describe neuronal activity in terms of average firing rates over

time, rather than individual spikes. They simplify the complexity of spike timing

and are therefore more computationally efficient but lacking temporal precision. For

example, the Wilson-Cowan model describes the dynamics of excitatory and inhibitory

populations in terms of their average firing rates (Wilson & Cowan, 1972).

Spiking models simulate the precise timing of action potentials (spikes), captur-

ing the detailed temporal dynamics of individual neurons. Spiking model are more

computationally demanding as they require the integration of differential equations

which govern synaptic membrane potential over time. The leaky integrate-and-fire (LIF)

model is a popular spiking paradigm, which models input integration until a threshold

is reached, triggering a spike.

Biophysical models are the most complex of neuron model classes. They aim to

accurately simulate the biological processes underlying neuronal activity by modelling

the activity of ion channels which alter synaptic membrane potentials. The Hodgkin-

Huxley model is the prototypical biophysical model, describing how action potentials

are generated by the dynamics of sodium and potassium channels. Biophysical models

may also simulate neurons with multiple compartments (e.g., dendrite, soma, axon)

to capture spatial dynamics in neuronal signalling. Predictably, these models require

significant computational resources.

2.2.3 Literature review

The vast array of model types, target parameters, learning rules, and homeostatic
mechanisms can be overwhelming. To aid in the synthesis of existing knowledge, Table
2.1 compiles publications which develop a model of a homeostatic plasticity mechanism
alone, or integrated with a form of Hebbian learning in a neuronal network.

Paper Model Type Plasticity Balance Parame-

ter(s)

von der Mals-

burg, 1973

Rate Hebbian correlation-based synaptic

plasticity, synaptic normalization

(SN)

Firing rate
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Paper Model Type Plasticity Balance Parame-

ter(s)

Miller and

MacKay, 1994

Mathematical Hebbian correlation-based synaptic

plasticity, multiplicative and subtrac-

tive SN

Synaptic weight

Lazar et al.,

2009

Spiking Spike-timing dependent plasticity

(STDP), SN, intrinsic plasticity (IP)

Firing rate

Litwin-Kumar

and Doiron,

2014

Spiking Voltage-dependent STDP, inhibitory

synaptic plasticity (iSTDP), subtrac-

tive SN

Firing rate

Zenke et al.,

2013

Spiking ‘Metaplastic’ triplet-STDP, SN Firing rate

Elliott and

Shadbolt, 2002

Mathematical Non-linear Hebbian growth rule,

“emergent” multiplicative SN

Energy minimization

Wu and Yam-

aguchi, 2006

‘Phase’/spiking Asymmetrical STDP. Regulates sat-

uration level (maximum synaptic

weight) and learning rate (synaptic

plasticity speed)

Firing rate

Finelli et al.,

2008

Biophysical STDP, spike-rate dependent timing

(SRDP)

Specificity of

Kenyon cells to

meaningful oodors

(KC targets)

Chen et al.,

2013

Biophysical Postsynaptic energy potential ex-

presses changes in synaptic weights

Metabolic energy

Kempter et al.,

1999

Spiking Asymmetric STDP Spike-spike correla-

tions

Soures et al.,

2017

Spiking STDP, SN, IP Firing rate, threshold

voltage

Tetzlaff et al.,

2011

Rate Hebbian and Anti-Hebbian learn-

ing, SN (weight-independent, linear

weight dependence, and non-linear

weight dependence)

Firing rate

Toyoizumi

et al., 2013

Rate Synaptic strength is the product of

synapse-specific Hebbian factor and

a postsynaptic-cell-specific homeo-

static factor, BCM rule, multiplicative

SN

Firing rate

Sweeney et al.,

2015

Biophysical STDP, diffusive and non-diffusive

homeostasis

Firing rate
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Paper Model Type Plasticity Balance Parame-

ter(s)

Xu et al., 2024 Spiking Short-term plasticity (STP),

experience-dependent adaptive

SN

Gradient signals reg-

ulated by a corre-

sponding scaling fac-

tor

Benuskova and

Abraham, 2007

Spiking STDP with BCM sliding threshold Firing rate

Pfister and Ger-

stner, 2006

Spiking Triplet STDP Firing rate

Shouval et al.,

2002

Biophysical STDP, calcium levels alters firing

threshold (IP)

Firing rate

Abbott et al.,

1997

Spiking Inhibition/internal plasticity; short-

term dynamic depression provides

an automatic, dynamic gain-control

mechanism

Firing rate

Koulakov et al.,

2009

Mathematical Multiplicative Hebb-like learning rule,

re-normalization of the principle

eigenvalue (equivalent to SN)

Firing rate distri-

bution, synaptic

strength distribution

Mongillo et al.,

2018

Spiking Hebbian and anti-Hebbian learning

rules, IP

Firing rate distribu-

tion

Papa et al.,

2017

Spiking STDP, structural plasticity, inhibitory

STDP, SN, IP

Firing rate

Table 2.1: Snapshot of Hebbian and homeostatic plasticity modelling efforts to date.

Table 2.1 is not a comprehensive resource; rather, it can be considered a ‘snapshot’

into the field. It confirms homeostatic targets are dependent on the level of biophysical

detail included in network composition. For example, Sweeney et al. (2015) develop a

model of homeostatic control which balances levels of nitric oxide, a gaseous signalling

molecule omitted in more abstract neuron models. The number of biophysical models

increase in recent years, often building on rate models by reformulating the learning

rules within a biologically plausible context. However, firing rate remains the most

prevalent homeostatic balance parameter across model types.

In their review, Keck et al. (2017) identify that the field would benefit from tighter

interactions between theoreticians and experimentalists, with a focus on detailed mecha-

nistic work. Several researchers are shown to emulate this approach. For example, Chen

et al. (2013) conduct in vitro experiments of pyramidal cells from rat visual cortices

and develop a cortical neuron model with properties matching their experimental data.



Chapter 3

Model Specifications

The following experimental work explores three recurrent spiking neural networks,

each integrating a Hebbian learning rule with prototypical homeostatic mechanisms.

The networks share a common base architecture, adapted from Klos et al. (2018),

and publicly available at https://github.com/chklos/lifsorn-seqlearn. All simulations

were performed using Python, leveraging the Brian simulator developed for modelling

spiking neural networks (Brian2, 2024). All parameters used in simulations are available

in Appendix A.

3.1 Network architecture

The base model, developed by Miner and Triesch (2016) and adapted by Klos et

al. (2018), is a recurrent spiking neural network representing a small rectangular

grid of L5 rodent visual cortex. The model consists of NE = 1000 excitatory and

NI = 0.2xNE = 200 inhibitory leaky integrate-and-fire neurons with conductance-based

synapses and Gaussian membrane noise. The 2500 µm× 1000 µm grid is randomly

populated by neurons with distance-dependent connectivity, where a neuron is more

likely to connect with neighbouring neurons than with distant neurons, in accordance

with experimental data (Song et al., 2005). Distant-dependent connectivity for arbitrary

excitatory neuron ne is shown in Fig 3.1.

3.2 Neuron and synapse model

The membrane potential Vn of neuron n evolves according to subthreshold leaky

integrate-and-fire dynamics governed by

11
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Figure 3.1: Distribution of neurons on the 2D. Blue lines show all connections projecting

from an excitatory neuron ne.

dVn

dt
(t) =−Vn(t)−EL

τ

−
(ge,n(t)+gext,n(t))(Vn(t)−Ee)

τ

−
gi,n(t)(Vn(t)−Ei)

τ
+

σζ(t)√
τ

(3.1)

where dVn
dt (t) is the rate of change of the membrane potential Vn with respect to

time, EL is the resting potential, ge,n(t) is the excitatory synaptic conductance, gext,n(t)

is the external synaptic conductance, Ee is the excitatory reversal potential, gi,n(t) is

the inhibitory synaptic conductance, Ei is the inhibitory reversal potential, ζx(t) is

Gaussian white noise, σ(t) is the standard deviation of the Gaussian noise, and τ ms

is the membrane time constant. Recurrent excitatory synapses are subject to synaptic

plasticity, with excitatory synaptic conductance is determined by

dge,n

dt
(t) =

ge,n(t)
τe

+∑
me

W eff
men(t)∑

fme

δ
(
t − t fme

− tmen
)

(3.2)

where dge,n
dt (t) is the rate of change of the excitatory synaptic conductance ge,n with

respect to time, τe is the synaptic time constant for excitatory connections, W eff
men(t) is

the dimensionless effective connection weight between neuron me and neuron n, tmen is

the conduction delay between neuron me and neuron n, and fme indexes the spike times
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of neuron me. Inhibitory synaptic conductance is governed by

dgi,n

dt
(t) =

gi,n(t)
τi

+∑
mi

Wmin ∑
fmi

δ

(
t − t fmi

− τmin

)
(3.3)

where dgi,n
dt (t) is the rate of change of the inhibitory synaptic conductance gi,n with

respect to time, τi is the synaptic time constant for inhibitory connections, Wmin(t) is

the connection weight between neuron mi and neuron n, tmin is the conduction delay

between neuron me and neuron n, and fmi indexes the spike times of neuron mi. When

the membrane potential rises above a threshold potential (V ¿Vt), the neuron model fires

a spike and the membrane threshold is returned to a reset potential.

3.3 Plasticity mechanisms

3.3.1 Structural plasticity

Structural plasticity functions via two network operations which grow new and prune

weak recurrent excitatory connections. Synaptic growth is implemented by adding a

random number of synaptic connections once per simulation second with weak initial

weightings, while synaptic pruning is modelled by eliminating all connections whose

weight falls below a set threshold once per second. Synaptic growth and pruning

function to achieve a target recurrent excitatory network sparsity.

Recurrent excitatory connections are assigned a probability according to their

distance from neuron ne, determined from a Gaussian probability function with a mean

of 0µm and a half width of 200µm, and drawn from this distribution to determine new

synapse growth. Connections are populated and pruned throughout a 400s ‘growth’

phase, during which sparsity reaches an equilibrium at target value. Sparsity parameters

are in agreement with experimentally observed values of the L5 of the rodent cortex

(Thomson et al., 2002).

3.3.2 Short-term plasticity

Short-term plasticity (STP) modulates Wmene(t) depending on the short-term firing

history of the presynaptic neuron me. Short-term facilitation ume(t) dynamics are

governed by

dume

dt
(t) =

U −ume(t)
τ f

+U(1−ume(t))∑
fme

δ(t − t fme
− tee) (3.4)
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where tee is the conduction delay between excitatory neurons, U is the increment of

ume(t) produced by a presynaptic spike, τ f is the facilitation timescale, fme indexes the

presynaptic spikes, and t− indicates the time prior to spike arrival at the synapse. The

first term U−ume(t)
τ f

describes the gradual return of ume(t) to its baseline value U over

time. The second term U(1−ume(t))∑ fme
δ(t − t fme

− tee) represents the instantaneous

change to ume(t) when a presynaptic spike arrives at the synapse. Likewise, depression

xme(t) dynamics evolve according to

dxme

dt
(t) =

1− xme(t)
τd

+ xme(t)ume(t)∑
fme

δ(t − t fme
− tee) (3.5)

The effective connection weight when a spike arrives at a synapse is therefore

determined by

W e f f
mene

(t) =Wmene(t)×ume(t)× xme(t) (3.6)

STP will temporarily decrease synaptic strength after repeated spikes at presynaptic

neuron. The mechanism of STP synaptic depression may be motivated by a depletion

of resources necessary for transmission at the synapse; if the presynaptic neurons fires

repeatedly in quick succession, resources are used faster than they can be replenished,

leading to progressive reduction in the availability of vesicles. This process is captured

by a decrease in xme .

3.3.3 Synaptic normalization

Synaptic normalization (SN) scales the total synaptic drive such that the total incoming

weight for each excitatory neuron is constant. It updates all recurrent excitatory weights

once per second according to

Wmene(t)→Wtotal(ne)
Wmene(t)

∑me Wmene

(3.7)

where Wtotal(ne) is the target total input for ne. Wtotal(ne) is calculated by multi-

plying the size of the incoming neuron population by a sparsity parameter, the mean

synapse strength, and Z, the integral of a normal distribution centered at the neuron’s

position over the network distribution

Z =
∫ 0 mm

2500 mm
dx

∫ 0 mm

1000 mm
dy

1
2πσ2 exp

(
−(x− xne)

2 +(y− yne)
2

2σ2

)
(3.8)

where xne is the position of neuron ne and σ is the half-width of the Gaussian

probability function. Z is used to assign distance-dependent probability to each possible
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connection, accounting for the increased number of connections formed by central

neurons versus neurons close to the grid boundaries. That is, without Z mean weights

of connections projecting to peripheral neurons would be higher than mean weights

of connections projecting to central neurons. Other connection types are similarly

normalized prior to simulation runtime.

3.3.4 Intrinsic plasticity

Intrinsic plasticity (IP) regulates the firing threshold VT,ne(t) of each excitatory neuron

ne. The threshold is updated at every simulation time-step according to

VT,ne(t)→VT,ne(t)+ηIP(Nspikes −hIP) (3.9)

where Nspikes = 1 if ne spiked in the previous time-step and 0 otherwise, ηIP is

the learning rate, hIP = rtarget ∗∆tsim is the target number of spikes per update interval,

and rtarget is the target firing rate. IP differs from the other plasticity mechanisms

in that it stabilizes network activity at the level of the individual neuron. However,

the mechanism is simplistic as it assigns the same target firing rate to each neuron.

IP conceptually functions in the same manner as the biologically observed spike-rate

adaptation, which reduces neural firing in response to continuous input.

3.4 Model variants

3.4.1 LIF-SORN

In the leaky integrate-and-fire self-organizing neural network (LIF-SORN) base model,

neurons modify their synaptic strength according to a simple spike-timing-dependent

plasticity (STDP) rule, which modifies the synaptic weight Wmene(t) between excitatory

neurons me and ne according to

∆Wmene = ∑
fme

∑
jne

W (t − t fme
− tee) (3.10)

fme indexes the presynaptic spikes, jne indexes the postsynaptic spikes, and tee is the

conduction delay between excitatory neurons. This equation sums the contributions

of all presynaptic and postsynaptic spike pairs, adjusted by the STDP window func-

tion. The STDP window function determines the weight change based on the timing
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difference ∆t = t − t fme
− tee as follows

W (∆t) =


A+ exp

(
− ∆t

τ+

)
if ∆t > 0

A− exp
(

∆t
τ−

)
if ∆t < 0

0 if ∆t = 0

(3.11)

where A+ and A− are potentiation and depression amplitudes, and τ+ and τ− are

time constants for potentiation and depression.

3.4.2 LIF-SORN-i

The notation used to describe the LIF-SORN STDP mechanism obscures some relevant

computational details. Directly simulating equation 3.10 - by summing over all pairs of

spikes - is both inefficient and physiologically unrealistic. A more practical approach

involves defining ‘traces’ of pre- and postsynaptic activity. This formulation relies on

the assumption that the arrival of the spike at a synapse leaves a trace of some quantity

which decays exponentially over time. This could be interpreted as the quantity of

neurotransmitter which is bound to postsynaptic receptors.

When a presynaptic spike occurs before a postsynaptic spike, the change in weight

is proportional to an amplitude parameter (A+) and the value of the presynaptic trace

at the moment of the postsynaptic spike, which decays according to τ+. Likewise,

when a postsynaptic spike occurs before a presynaptic spike, the change in weight is

proportional to an amplitude parameter A−, and the value of the postsynaptic trace at

the moment of the presynaptic spike, which decays according to τ−. The decay of the

synaptic traces is described by the differential equations:

τ+
d
dt

a+me
=−a+me

+δ(t − tme) (3.12)

τ−
d
dt

a−ne
=−ane +δ(t − tne) (3.13)

Integrating the differential equation results in standard exponential functions

a+me
(t) = exp

(
−∆t

τ+

)
for t > tme (3.14)

a−ne
(t) = exp

(
∆t
τ+

)
for t > tne (3.15)
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Therefore the total weight change is calculated:

d
dt

wmene = Aprea+me
δ(−∆t)+Aposta−ne

δ(∆t)

where the weight change is a linear sum of the traces evaluated at the time of

the secondary spike, multiplied by the corresponding amplitude parameter. In their

implementation, Klos et al. (2018) encode the trace update equal to the amplitude of

potentiation or depression:

a+me
= A+ and a−ne

= A− (3.16)

This results in a rapidly fluctuating trace, show in Figure 3.2. We alter trace encoding

to allow incremental trace updates according to:

a+me
= a+me

+A+ and a−ne
= a−ne

+A− (3.17)

This adjustment enables trace behaviour to accumulate, shown in Figure 3.3.

Figure 3.2: LIF-SORN LTP and LTD traces. Figure 3.3: LIF-SORN-i LTP and LTD traces

This modification has interesting implications for network dynamics. When traces

a+me
and a−ne

are reset to a fixed value (A+ or A−) upon each spike pair event, the synaptic

weight change depends only on the most recent spike timing. When traces are allowed

to accumulate, the weight change depends upon a sum of contributions from multiple

spike pair events. This model can be tied to empirical work demonstrating that in visual

cortical slices, the contribution of each spike pair to synaptic modification depends

not only on the interval between the pair, but also on the timing of preceding spikes

(Froemke & Dan, 2002).
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3.4.3 LIF-SORN-c

The simple STDP learning rules introduced above have been critiqued as insufficient

in capturing all the necessary factors required to induce Hebbian learning in relying

solely on the temporal window in which spiking occurs. Rather, the requirement for

synaptic modification may be ‘protected’ by multiple conditions which must be met

before weights can be persistently altered (Lisman & Spruston, 2005). Empirical study

shows that LTD versus LTP induction depend on the level of depolarization of the

postsynaptic membrane, indicating a complex relationship between rate and timing not

captured by classical STDP (Artola et al., 1990).

Clopath et al. (2010) propose a model of spike-timing-dependent plasticity in

which synaptic changes are influenced by the postsynaptic membrane potential s(t).

Their modelling efforts successfully reproduce biological phenomena which cannot be

accounted for in traditional models of STDP. This approach has been highlighted as

a promising area for future research by Miner and Triesch (2016) and has also been

investigated by (Rubisch, 2024). The voltage-dependent learning mechanism proposed

by Clopath et al., 2010 was integrated into the LIF-SORN, replacing the classical STDP

mechanism.

Voltage-based models compute changes in synaptic weight by comparing a voltage

variable against depression and potentiation thresholds. To remain consistent with a

large body of experimental data which indicates that synaptic depression and potentia-

tion occur via distinct pathways, Clopath et al. (2010) use separate additive contributions

to the plasticity rule for LTD versus LTP. LTD is triggered if presynaptic spike arrival

occurs while the membrane potential of the postsynaptic neuron is slightly depolarized

(above a threshold θ−), while LTP occurs if the postsynaptic membrane potential is

substantially depolarized (above a second threshold θ+). Mathematically, the plasticity

rule differentiates momentary voltage s and low-pass filtered voltage variables s̄− and

s̄+, denoting temporal averages over recent synaptic history.

3.4.3.1 LTD

Presynaptic spike arrival at neuron ne from neuron me depresses the synaptic weight

Wmene(t) proportional to the average postsynaptic depolarization s̄−(t) according to

τ−
d
dt

s̄−(t) = s̄−(t)+ s(t) (3.18)

s̄−(t) is a low-pass filtered version of the post-synaptic membrane potential with a time

constant τ−. Synaptic depression is therefore modelled as
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∆W−
mene

(t) =−ALT DXne(t)[s̄−(t)−θ−]+ if wne¿wmin (3.19)

where ALT D is a constant amplitude parameter, Xne = ∑n δ(t − tn
ne
) describes spike train

at the synapse, ne is the index of the synapse and n is an index that counts the spike,

and []+ brackets indicate a rectification filter such that any value s̄− < θ− does not

cause synaptic depression. Rectification ensures that postsynaptic depolarization must

exceed a threshold θ− to establish synaptic depression, in agreement with experimental

findings (Gerstner & Kistler, 2002). Therefore, LTD occurs if the average voltage of s̄−
is above rest (wmin = 0) at the moment of presynaptic spike arrival.

3.4.3.2 LTP

The LTP synaptic trace x̄ne(t) decays exponentially in the absence of presynaptic spikes,

with temporal dynamics described by

τx
d
dt

x̄ne(t) =−x̄ne +Xne(t) (3.20)

where Xne is the spike train, and τx is the time constant of the exponential decay.

Potentiation of Wmene(t) is proportional to trace x̄ne(t) according to

d
dt

W+
ne
(t) = ALTP x̄ne(t) [s(t)−θ+]+ [s̄+(t)−θ−]+ if wne < wmax (3.21)

where s̄+ is another low-pass filtered version of s(t) with a shorter time constant

τ+ than s̄−. Potentiation therefore occurs if a) the momentary voltage s(t) is above the

threshold θ+ (this condition is fulfilled during action potential firing) b) the average

voltage s̄+(t) surpasses the threshold θ− (fulfilled if there has been a depolarization

in the recent past) and c) the trace x̄ from a previous presynaptic event is nonzero

(fulfilled when a presynpatic spike arrived at the synapse a few milliseconds previously).

Combined, the weight update rule can be written

d
dt

Wne(t) =−ALT DXne(t)[s̄−(t)−θ−]+ALTP x̄ne(t) [s(t)−θ+]+ [s̄+(t)−θ−]+

if 0 < wne < wmax

(3.22)
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Experiments

4.1 Network properties

In the absence of external stimuli, cortical networks exhibit asynchronous irregular

spiking (Cooper et al., 2004). Synchrony refers to the joint spiking of neurons and is

quantified by the pairwise correlation coefficient between neurons m and n:

cmn =
cov(Cm,Cn)√

Var(Cm)Var(Cn)
(4.1)

where Cm is the time series of spike counts of neuron m. The pairwise (or Pearson)

correlation coefficient ranges from -1 to 1, where cmn = 1 indicates a perfect positive

correlation where neurons fire in a synchronized manner and cmn = 0 indicates no

linear correlation, or no firing pattern synchrony. Regularity describes the variability of

spiking of individual neurons. The Poisson process is well-suited for modeling irregular

spiking, not accounting for a neuron’s refractory period (Abbott & Dayan, 2001) . In

a Poisson process, the time between consecutive events - or interspike interval (ISI) -

follows an exponential distribution, and the coefficient of variation (CV) - measuring

the variability in the number of events relative to the mean number of events - is 1.

Prior to exploratory simulations, the LIF-SORN was reduced ten-fold to ease

computational expense and increase the number of simulations that could be run. The

network growth phase was abstracted out such that the network could be initialized

with post-growth recurrent excitatory weights, and the magnitude of synaptic weights

were increased tenfold to account for decreased connectivity in the reduced network. To

validate that the network retained asynchronous irregular firing, basic network properties

of the original (NE = 1000) and reduced (NE = 100) networks were characterized in

the absence of external input.

20
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4.1.1 LIF-SORN

Figure 4.1: LIF-SORN recurrent excitatory weight dynamics (top) and final distributions

(bottom). NE = 1000 left, NE = 100 right.

Figure 4.2: Population firing rates across model size. NE = 1000 left, NE = 100 right.

The networks operate in a fluctuation-driven regime, marked by a balance in exci-

tatory and inhibitory inputs such that the mean membrane potential fluctuates below

firing thresholds. Activity is driven by random variation about the mean, characterized

by low firing rates, irregular spiking, and lognormal weight distributions (Petersen &

Berg, 2016). Shown in Figure 4.2, reducing the size of the network results in a shift in

the firing rates and oscillatory behaviour of the neuron populations. Slow oscillatory

behaviour is introduced to the average population firing rates, with the inhibitory neuron

population shadowing activity in the excitatory population. As recurrent excitation

increases, as does excitation to the inhibitory neuron population. In response, inhibitory

neuron firing increases, feeding inhibition back to the excitatory population. These

dynamics are enhanced in the small network as as a result of the sparse connectivity;

fewer neurons to communicate changes in firing rates slows the dynamic response of
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the network. Importantly, reduction in network size does not dramatically alter the

Poisson-like characteristics of neuron spike trains, although the network shows a degree

of synchronicity in a small subset of excitatory neurons (where cmn =0.1 to 0.3). In

both networks, the strength of individual recurrent excitatory synaptic weights continue

to fluctuate while the connection fraction remains stable.

4.1.2 LIF-SORN-i

Figure 4.3: LIF-SORN-i excitatory spike trains (left) and population firing rates (right).

The LIF-SORN-i enters into a synchronous firing regime in the absence of external

input, shown in Figure 4.3. Firing rates are in accordance with the excitatory target

firing rate imposed by intrinsic plasticity. Recurrent excitatory weight dynamics are

stable, with rates fluctuating within the midrange of possible values, seen in Figure 4.5.

4.1.3 LIF-SORN-c

Figure 4.4: LIF-SORN-c excitatory cmn, ISI, and CV distributions (left) and spike trains

(right).
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Figure 4.5: Recurrent excitatory weight dynamics (top) and final distributions (bottom)

across models. LIF-SORN-i left, LIF-SORN-c right.

The LIF-SORN-c displays prototypical asynchronous, irregular spiking with slowly

oscillating average firing rates at low frequencies; coefficient of correlation, interspike

interval, and coefficient of variations distributions are akin to those of a Poisson distri-

bution, show in Figure 4.4. Recurrent excitatory synaptic weights converge to a narrow

range of values (> 2), as seen in Figure 4.5.

4.2 Plasticity mechanism knockouts

Miner and Triesch (2016) provide a summary of LIF-SORN network behaviour in the

absence of individual plasticity mechanisms, reproduced in Table 4.1.

Mechanism Removal Result

SN Weights converge at synaptic maximum or fall below synaptic

threshold and are pruned.

IP Required fine tuning of threshold for stable activity. Failure

to tune thresholds leads to silent or “epileptic” networks.

STP “Epileptic” behaviour leading to structural breakdown.

Table 4.1: Results of plasticity mechanism removal from the LIF-SORN (NE = 1000),

recreated from Miner and Triesch (2016).

We investigate how the reduced LIF-SORN variants behave in the absence of

the three regulatory mechanisms outlined above. In assessing network stability we

examine if it demonstrates a) a relatively constant average firing rate within acceptable

biophysical limits, b) steady plastic recurrent excitatory (E) weight dynamics and c)
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asynchronous irregular firing. Network behaviour was assessed via population firing

rates, neuron spike-trains, cmn, ISI, and CV distributions, and recurrent E weight

dynamics. All plots not provided below are available in Appendix B.

4.2.1 LIF-SORN

Results are summarized in Table 4.2.

LIF-SORN no SN no IP no STP

Behaviour Stationary oscillating fir-

ing rates (>15 Hz) af-

ter initial peak in activity

(>20 Hz). Synchronous

spiking in E population

(cmn = 0 to 0.8). Super-

exponential decay of ISIs.

CV distribution heavily

right-skewed from 1. Re-

current E weights rapidly

diverge toward synaptic

weight extrema.

Tapering rapidly fluctu-

ating rates (>600 Hz).

Some synchronous firing

(cmnright skewed). Sub-

set of E neurons fire con-

tinuously (ISI ≃ 0 s). CV

distribution centered at

6.5. Erratic E weight dy-

namics.

Rapid average rates

(>6000 Hz) after initial

peak (>10,000 Hz).

Excessive firing; neurons

fire continuously or

are silent in E popula-

tion. All I neurons fire

continuously (ISI ≃ 0

s). E weights either

fixed across simulation

or diverge to synaptic

extrema.

Conclusions Network able to maintain

low stable firing rates,

but compromises asyn-

chronous regime. Be-

haviour is driven by a

population of recurrent

excitatory neurons with

very strong recurrent con-

nectivity firing in syn-

chrony.

Network displays exces-

sive firing in the absence

of IP. Rate behaviour sug-

gests balanced E/I net-

work.

Network is not sta-

ble in the absence of

STP; strongly epileptic

behaviour and break-

down of eTOe weight

dynamics.

Table 4.2: Results of plasticity mechanism removal from the LIF-SORN (NE = 100).

4.2.2 LIF-SORN-i

Mechanism knockouts are investigated for the LIF-SORN-i with results summarized in
Table 4.3.
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Figure 4.6: LIF-SORN E spike trains (left) and recurrent weights (right) with SN removed.

Figure 4.7: LIF-SORN E spike trains (left) and recurrent weights (right) with IP removed.

LIF-SORN-i no SN no IP no STP

Behaviour Highly synchronous E

firing (cmn = 0 to 0.8).

Rates approach station-

ary oscillatory dynamics

(> 12 Hz) after initial

slow fluctuations (>20

Hz). E weights grow

slowly to synaptic ex-

trema.

Fast oscillating rate av-

erages exponentially de-

cay to >200 Hz. Spike

train and cmn do not show

synchrony. All neurons

fire frequently, subset of

E and I neurons fire very

rapidly. Some E weights

diverge early to extrema.

Initial peak in E fir-

ing (≃10,000 Hz); drops

to silent E network by

40s. I population fires

at ≃5000 Hz). Break-

down of E weight dy-

namics; rapid oscilla-

tions followed by con-

stant weights.

Conclusions Network is stable due to

imposed synaptic maxi-

mum. Strongly recurrent

excitatory network firing

in total synchrony.

Network displays stable

behaviour at high fre-

quencies.

Network is not stable in

absence of STP. Highly

epileptic behaviour.

Table 4.3: Results of plasticity mechanism removal from the LIF-SORN-i.
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Figure 4.8: LIF-SORN-i E spike trains (left) and population firing rates (right) with IP

removed.

4.2.3 LIF-SORN-c

Knockout simulations were replicated for the LIF-SORN-c. Results are summarized in
Table 4.4.

LIF-SORN-c no SN no IP no STP

Behaviour Inhibition dominated

network; inhibitory

neurons fire maximally,

excitatory neurons are

largely silent. Recur-

rent E weights show

’staircase’ behaviour

(weights plateau and

then surge in subgroups

of population). Surges

coincide with small

spikes in E activity.

Stationary E and I rates

exhibit large-amplitude

tightly-coupled oscilla-

tions (A ≃ 3000 Hz).

Firing asynchronous

(cmn distribution cen-

tered at 0.1) yet highly

regular (ISIs = 0 to 0.3

s). E weights move in

a spastic manner at low

values.

Rapid average rates (I

>6000 Hz, E ≃10,000

Hz). All neurons in net-

work fire continuously

(ISI ≃ 0 s). Recurrent E

weights converge to nar-

row range of values and

do not fluctuate.

Conclusions Breakdown of network

dynamics. Persistent

inhibitory activity sug-

gests feedback loop.

Highly active fluctuating

regime. Network able to

maintain some stability

in absence of IP.

Network is unstable in

absence of STP; re-

quired to limit LTP in

recurrent E population

and avoid mean-driven

regime.

Table 4.4: Results of plasticity mechanism removal from the LIF-SORN-c.
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Figure 4.9: LIF-SORN-c population firing rates (left) and recurrent E weights (right) with

SN removed.

Figure 4.10: LIF-SORN-c population rates in the no IP (left) and no STP (right) conditions.

4.2.4 Discussion

Trace accumulation is responsible for the synchronous behavior observed in the LIF-

SORN-i baseline condition, shown in Figure 4.3. The additive nature of the trace updates

allows for stronger and more sustained changes in synaptic weights based on spike

timing. When multiple presynaptic spikes occur in close proximity to a postsynaptic

spike, the accumulated trace values result in larger LTP updates. Strengthening the

recurrent synapse further enables spikes in close temporal proximity, increasing LTP

and so on. This positive feedback loop reinforces the recurrent firing and promotes

synchronization.

The removal of synaptic normalization from the LIF-SORN and LIF-SORN-i is also

shown to promote synchrony. Across these models, the removal of SN alters network

dynamics but does not compromise overall stability. Neurons fire together at regular

intervals while adhering to biophysical constraints, shown in Figure 4.6. The growth

of synaptic weights towards their maximum is driven by recurrent excitation. In the

absence of SN to maintain a constant total synaptic drive, synaptic weights increase

as long as coincident firing occurs. Firing is driven by a subset of excitatory neurons

with strong recurrent connections spiking in synchrony. It is important to note that the
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networks would likely exhibit epileptic behavior if the artificially imposed minimum

and maximum firing rates were removed alongside synaptic normalization.

Across models, the removal of intrinsic plasticity does not significantly increase

network synchrony; instead, it broadens the spectrum of firing rates. A small subset of

excitatory and inhibitory neurons display elevated firing rates, approximately five times

higher than their respective populations, as shown in Figures 4.7 and 4.8. Under baseline

conditions, IP caps these firing rates, preventing any single neuron’s activity from

dominating the network. Without IP, this rate limitation is lifted, leading to increased

excitatory firing rates and a rapid rise in a subset of recurrent excitatory weights.

Despite these alterations, the population rates continue to fluctuate in near symmetry,

with closely matched amplitudes indicating dynamic oscillatory behavior driven by

balanced excitation and inhibition, as illustrated in Figure 4.10. The LIF-SORN and

LIF-SORN-i networks further demonstrate adaptive capacity, with average population

firing rates gradually decaying over time (Figure 4.8), suggesting a progression toward

steady-state activity. While some recurrent excitatory weights approach the synaptic

maximum (Figure 4.7), the remaining weights fluctuate rapidly, contributing to the

network’s homeostatic regulation.

The removal of short-term plasticity induces epileptic behaviour in the LIF-SORN

and LIF-SORN-c. Neurons fire between 2000 and 10,000 Hz (Figure 4.10), ignoring

imposed refractory periods. This suggests that STP exerts a stronger regulatory influence

on recurrent excitation than SN or IP. The loss of STP may shift the network to a mean-

driven regime, in which the membrane potential resides above spike threshold and drives

average network activity, leading to higher firing rates and regular spiking (Petersen &

Berg, 2016) . This shift is typically associated with an imbalance in E/I activity. As the

strongly recurrent excitatory population self-amplifies, the fixed inhibitory population

fails to adequately counterbalance the excitatory activity in the absence of STP. Future

work could explore introducing plasticity to inhibitory synapses, allowing inhibitory

neurons and their targets to sustain co-activity and potentially maintain a fluctuation-

driven regime in the absence of STP.

Post hoc analysis revealed that low (> 12 Hz) stationary oscillating rates and

asynchronous irregular firing could be artificially restored by reducing the synaptic

weight maximum by a factor of 10 to counteract the removal of IP, and by a factor of 100

to counteract the removal of STP. These observations indicate the network might sustain

retain baseline stability in the absence of IP and STP under certain paramterizations,

however further study is required to make robust conclusions.
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Two deviations from the trends described above were observed; both the LIF-

SORN-i in the absence of STP, and the LIF-SORN-c in the absence of SN, resulted in a

pathologically inhibition-dominated network, where all I neurons fired maximally and E

neurons fell silent within the first few seconds of simulation. During this initial period,

recurrent excitatory weights display a sharp increase, leading to a rise in the average

excitatory firing rate. To mitigate the effects of runaway recurrent excitation, intrinsic

plasticity likely causes a substantial increase in the firing threshold of excitatory neurons.

Following, recurrent excitatory weights exhibit a ‘staircase’ pattern, characterized by

periods of stagnation followed by surges towards the synaptic maximum (see Figure

4.9). These surges occur when spontaneous activity drives E neuron voltage above the

elevated threshold set by IP. The increases in E weights correspond to small spikes in E

activity, which then drop to 0 Hz due to dominant inhibitory activity. The stagnation of

the recurrent weights coincides with the excitatory firing rate falling to zero; once E

activity is suppressed, spontaneous activity is not able to initiate firing and the network

cannot learn/recover from silence. Meanwhile, the firing rate of the inhibitory population

remains unchanged. Despite the expectation that the I population would become inactive

without excitatory input, recurrent inhibitory firing may reach postsynaptic membranes

at times when the membrane potential is below the inhibitory reversal potential, resulting

in a depolarizing (positive) current. This condition can sustain or even enhance neural

activity in the absence of excitation. We speculate that the simulations which elicit

pathological inhibition introduce a configuration where inhibitory spike arrives at the

postsynaptic membrane when the membrane potential is below the reversal potential,

eliciting an excitatory effect. As such, both stability and structural integrity are lost.

Finally, the interaction of the voltage-dependent plasticity rule and IP has several

interesting implications for network dynamics. In general, it makes the network more

‘sensitive’ to manipulation. This sensitivity can be attributed to mismatch between Heb-

bian and homeostatic criteria. The LIF-SORN’s intrinsic plasticity mechanism works

to maintain a target firing rate in excitatory neurons whereas the voltage-dependent

learning rule is dependent on the (instantaneous) postsynaptic membrane potential to

elicit LTP updates. The mismatch in criteria results in opposing effects. For instance,

when an excitatory neuron fires above target (> 3 Hz), IP increases its threshold mem-

brane potential in an attempt to limit activity. Subsequently, the neuron’s subthreshold

membrane potential increases. The LTP update is proportional to the instantaneous

membrane potential. Therefore, when LTP criterion are met, the weight update is exag-

gerated, and recurrent excitation is facilitated, and IP must increase the spike threshold
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and so on.

Furthermore, in all simulations exhibiting stable activity, the recurrent excitatory

weights in the LIF-SORN-c were driven down and stabilized at low values (see Figure

4.5). It is likely that the imposed target firing rate is incompatible with the voltage-

dependent plasticity rule as at low frequencies. Classic correlation-based learning does

not care about membrane potential, updating synaptic weights whenever coincident

firing occurs within a specified time-frame. It therefore handles low frequency ranges

well. Conversely, voltage-dependence imposes an additional requirement on LTP

updates, specifying that the instantaneous post-synaptic membrane must be above a

threshold θ+. The network likely experiences silent learning periods, where coincident

firing occurs, but does not result in LTP, as average membrane potential does not exceed

this threshold. LTD is not gated by such harsh criterion, and drives recurrent excitatory

weights down.

4.3 Ocular Dominance

The ability to distinguish similar, yet distinct patterns of sensory input is core fea-

ture of the nervous system (Cayco-Gajic et al., 2017). To assess if the models could

develop meaningful connectivity structure to sensory input, a biologically relevant

input paradigm was employed. Ocular dominance (OD) - the differential activation of

neurons by visual stimuli to each eye - is a well-documented physiological phenomenon.

Empirical studies show retinal waves - brief, high-frequency events propagating from

the retina to the primary visual cortex - drive ocular segregation prior to eye-opening

(Ackman et al., 2012). Activity is highly correlated within a retina, and decorrelated be-

tween retinas. To simulate these conditions, a population of Poisson neurons, separated

into two subgroups firing at random alternating intervals, was inputted to the network

(Rubisch, 2024). Active input neurons fire at a mean activity of 50 Hz and all remaining

non-active neurons fire with background activity of 5 Hz, guaranteeing high correlation

within - and limiting correlation between - subgroups, as shown in Figure 4.11.

Excitatory neurons develop ‘preferences’ towards one of the input neuron subgroups

by demonstrating differential activation to subgroup firing. Preferences are quantified

by the preference score Di, which compares the summed strength of all synapses per

input subgroup according to

Di = (
0.5N

∑
j=0

wi j −
N

∑
j=0.5N

wi j/
N

∑
j=0

wi j) (4.2)
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Figure 4.11: Ocular dominance paradigm. Taken with permission from (Rubisch, 2024)

.

Upon initialization of input synapses, any preferences Di ̸= 0 are caused by ran-

dom initialization, and synapse connectivity should refine throughout the simulation

duration. The feedforward synapse strengths, and preferences score Di distributions,

were calculated and plotted at regular simulation intervals for each model/mechanism

knockout regime, as demonstrated Figure 4.12. Note that synapses connecting input

neurons firing in the second subgroup to the E population are negated for distinction in

the matrices below.

Figure 4.12: Input (pre) to E (post) neuron weights and corresponding preference score

distributions over time.

The baseline behaviour of the LIF-SORN, LIF-SORN-i, and LIF-SORN-c are

assessed in response to the simulated retinal wave inputs.The networks are initialized

and run for 15 seconds to allow the excitatory and inhibitory populations to reach steady-

state firing rates before input synapses are established. Since input neurons feed only

into the excitatory population, this initially leads to an increase in excitatory activity.

The subsequent potentiation of recurrent weights then drives an increase in inhibitory

population activity. As the inhibitory influence becomes stronger than the excitatory

feed-forward drive, it suppresses the excitatory neurons, resulting in simultaneous peaks

in both excitatory and inhibitory activity, as illustrated in Figure 4.13.

4.3.1 Baseline performance

Results across model variants are summarized in Table 4.5. All plots not provided in
text are available in Appendix C.
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Figure 4.13: Input synapse initialization at t = 15 s, and corresponding E/I rate activity.

Figure 4.14: Input (pre) to E (post) neuron synapse weights and preference score

distributions at simulation endpoint. LIF-SORN (left) and LIF-SORN-c (right).

Model Behaviour Conclusions

LIF-SORN E neurons develop strong preferences (Di ± 1)

to one input subgroup gradually. A small num-

ber of preferences converge to Di = 0. Input

weights show distinct segregation between weight

extremes early in simulation time. Weak recurrent

E activity. Recurrent E weights distributed across

moderate values.

LIF-SORN is effective in

performing the ocular seg-

regation input task.

LIF-SORN-i E neurons develop strong preferences (Di ±1) to

one input subgroup rapidly. A small number of

neuron preferences converge to Di = 0. Input

weights show deviate to extrema very early in sim-

ulation time. Moderate recurrent E activity.

LIF-SORN-i is effective in

performing the ocular seg-

regation input task.

LIF-SORN-c E neurons develop weak or moderate preference

(Di±> 0.5) to one input subgroup rapidly, or pref-

erences score converges to Di = 0. Input weights

driven to the synaptic maximum.

LIF-SORN-c is not effec-

tive in performing the ocu-

lar segregation task under

the given parameters.

Table 4.5: Ocular dominance results across model variants.

4.3.2 Plasticity mechanism knockouts

The input segregation results of the LIF-SORN, LIF-SORN-i, and LIF-SORN-c net-

works across mechanism knockouts are summarized in Table 4.6.
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Model no SN no IP no STP

LIF-SORN E neurons develop strong

preferences (Di ± 1) to

one input subgroup grad-

ually. Recurrent E activ-

ity elevated compared to

baseline. Input synapses

rapidly deviate to synap-

tic extremes. Recurrent

E weights distributed

across wide range of val-

ues.

E neurons develop weak

or moderate preference

(Di±> 0.5) to one input

subgroup rapidly, or

show no preference

(Di = 0). Strong current

E and I connectivity.

Input weights spike

immediately to synaptic

maximum. E weights are

distributed at synaptic

maximum at simulation

end.

E neurons develop weak

or moderate preference

(Di±> 0.5) to one input

subgroup rapidly, or

show no preference

(Di = 0). E weights

oscillate at synaptic max-

imum before dropping

to weak values. Weak

recurrent E activity.

Input weights immedi-

ately deviate to synaptic

extremes and stagnate.

LIF-SORN-i E neurons develop strong

preferences (Di ± 1)

to one input subgroup

rapidly. Recurrent E

activity elevated com-

pared to baseline. Input

synapses rapidly deviate

to synaptic extremes.

Recurrent E weights

distributed across wide

range of values.

E neurons develop strong

preferences (Di ± 1)

to one input subgroup

gradually and erratically.

Very sparse eTOe con-

nectivity, strong iTOi

connectivity. Input and

recurrent E weights

oscillate between synap-

tic extrema throughout

simulation.

Some evidence of prefer-

ence development. Input

matrices indicate weak

feedforward connectivity.

Some neurons develop

strong preferences while

most do not change from

initialization preference.

Input and E weights os-

cillate and then stag-

nate/plateau early in sim-

ulation.

LIF-SORN-c Excitatory neurons de-

velop weak or moderate

preference (Di± > 0.5)

to one input subgroup

rapidly, or show no pref-

erence (Di = 0). Weights

at (Di ± 1) are initializa-

tion artifact. Recurrent E

weights highly active, all

weights grow to synaptic

maximum. Input weights

deviate to synaptic ex-

trema.

E neurons favour one in-

put subgroup preferen-

tially and fluctate contin-

uously. Input weights

driven to synaptic mini-

mum. E weights driven

to synaptic minimum.

Weak sparse recurrent E

activity, strong recurrent

I activity.

E neurons develop weak

preference (Di± > 0.5),

show no preference

(Di = 0), or do not

change from initializa-

tion preference (weights

at (Di ± 1) are initializa-

tion artifact). Epileptic

recurrent E excitation.

Input and recurrent E

weights surge to synaptic

maximum immediately.

Table 4.6: Ocular dominance results across model variants with plasticity mechanisms

removed.
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Figure 4.15: E neuron preferences scores over time. LIF-SORN baseline (left) and

LIF-SORN with SN removed (right).

Figure 4.16: Recurrent weight matrices at simulation end. LIF-SORN baseline (left) and

LIF-SORN with SN removed (right).

4.3.3 Discussion

All models show long-term firing rate stability with the introduction of external input

(Figure 4.13). The LIF-SORN and LIF-SORN-i effectively decorrelate inputs in the

baseline condition. The behavior of the LIF-SORN-c network is distinct, with poor input

decorrelation contrasted to the LIF-SORN in Figure 4.14. It is likely the low-frequency

regime, which enforces weak recurrent E weights, impairs the network’s capacity to

detect significant correlations in external input. This limitation is evident in both

baseline and no-SN ocular dominance conditions, where neurons predominantly exhibit

weak preference scores and respond to both input subgroups. When IP is removed, the

LIF-SORN-c is shown to develop strong (Di > ±0.5) preferences. However, this is

not representative of effective input decorrelation as recurrent network activity drives

feedforward synapses to ≃ 0. The preference distribution is an artifact of recurrent

network dynamics, rather than a genuine reflection of input decorrelation.
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Figure 4.17: LIF-SORN-i preference scores (left) and recurrent weight dynamics (right)

with STP removed.

The removal of synaptic normalization is the only HP mechanism knockout in

which the LIF-SORN retains the ability to develop strong input segregation. Figure

4.15 plots a random cohort of excitatory neuron preferences over time in the baseline

and no-SN conditions, demonstrating that the absence of SN reduces the number of E

neurons which equally prefer each input subgroup by the simulation endpoint. The more

complete input segregation can be attributed to the increase in recurrent E synchrony

known to be induced by the absence of SN. By recruiting neurons into synchronous

firing patterns, the network effectively amplifies the signals from the input subgroups.

Recurrent E weight dynamics demonstrate elevated synaptic strengthening compared to

baseline (Figure 4.16). As a result, neurons which may otherwise avoid segregation are

more likely to develop strong connections with particular input subgroups, rather than

forming weaker, non-specific connections across multiple groups. This behaviour is also

demonstrated across the baseline and no-SN conditions in the LIF-SORN-i network, as

well as when comparing the baseline conditions of the LIF-SORN and LIF-SORN-i.

An increase in network synchrony driven by runaway recurrent excitation consistently

correlates to faster and more complete input segregation. This finding is supported

by modelling efforts which show recurrent networks amplify pattern decorrelation in

comparison to feedforward networks (Wiechert et al., 2010).

The removal of intrinsic plasticity demonstrates varied effects across models. The

LIF-SORN is not able to develop strong input preferences. Rather, preferences scores

converge from initialization to Di± > 0.5, with Di ± 1 shown to be an artifact of

initialization. Compared to baseline performance, the no-IP condition shows highly

active recurrent E and I networks. We also observe from earlier analysis that the

removal of IP substantially increases network firing, but does not increase synchrony.

It is likely that the very strong recurrent E activity (E firing rates spike to >600 Hz,

see Table 4.2), far outweighs the 50 Hz input frequencies. In the absence of excess
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synchrony, the network cannot decorrelate feedforward inputs, as network activity is

driven by dominant E/I recurrent dynamics. This behaviour is contrasted with the

LIF-SORN-i in the absence of IP, wherein some neurons are able to develop strong

input preferences. However, neuron preferences are somewhat erratic; after diverging to

Di ±1, neurons may show a reversal in preference, or return to the mid-line. The same

explanatory factors apply to the LIF-SORN-i; elevated network synchrony drives input

segregation while elevated E and I recurrent dynamics override feedforward inputs.

Elevated baseline synchrony gives the LIF-SORN-i a ‘fighting chance’ in the presence

of dominant E/I dynamics, where the LIF-SORN has none.

In the absence of STP, none of the networks effectively decorrelate feedforward

inputs. STP has been demonstrated to exert the most significant regulatory influence on

network behavior, with its removal resulting in excessively high population firing rates,

continuous firing, and a disruption in recurrent excitatory synapse dynamics. Among

the models, the LIF-SORN-i stands out as the only network demonstrating some degree

of input decorrelation in a small subset of excitatory neurons early in the simulation.

Correspondingly, a subset of recurrent excitatory and input weights oscillate before

stagnating, show in Figure 4.17. The preferences of all other neurons are fixed from

initialization. It is probable that the simulated retinal waves initially influence network

connectivity before the effects of recurrent activity overshadow their impact.
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Conclusions

This paper investigated the interactions between Hebbian and homeostatic plasticity in

simulated neural networks. To address complexity within the field, Table 2.1 compiled

commonly referenced modeling studies and abstracted pertinent trends. We introduced

the reduced LIF-SORN network, and two novel model variants, and investigated how

small changes in network composition affect behaviour and stability. The reduced

LIF-SORN is shown to preserve network properties characteristic of the original model,

maintaining a fluctuation-driven regime. The LIF-SORN-c and LIF-SORN-i networks

alter the classical spike-timing dependent plasticity rule by introducing postsynaptic

membrane voltage dependence and incremental potentiation and depression trace up-

dates, respectively. The networks were comparatively assessed through the systematic

knockout of the synaptic normalization, intrinsic plasticity, and short-term plasticity

homeostatic mechanisms in response to spontaneous and input-driven firing.

Several themes can be drawn from this experimental work. Under the simulated

parameters, synaptic normalization is often necessary to maintain asynchronous firing

but not network stability. Intrinsic plasticity is necessary to limit runaway firing and

network regularity, and indirectly facilitates firing asynchrony. Short-term plasticity

is often both necessary and sufficient to maintain valid recurrent excitatory dynamics.

However, stability could be enforced by placing strict maximum weight values on

the recurrent excitatory synapses. Sweeps through parameter space are a necessary

direction of future work to make robust generalized claims about network stability

under these manipulations.

The interplay between voltage-dependent LTP and the variable excitatory spiking

threshold makes the LIF-SORN-c network’s learning dynamics more context-sensitive

and variable than its voltage-independent counterparts. In low-frequency regimes,

37
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LTD dominates over LTP, driving recurrent excitatory weights down and limiting the

network’s ability to learn effectively in response to external inputs. The original paper

from Clopath et al. (2010) employs homogeneous Hebbian and homeostatic plasticity

mechanisms, with the neuron model directly controlling membrane potential statistics.

This approach likely eases parameter tuning, and avoids entering into parameter spaces

where the mechanisms amplify each other’s effects to the detriment of model stability,

as seen in the heterogeneous approach investigated above. This further serves to

demonstrate the importance of selecting appropriate homeostatic balance parameters in

investigating spiking network dynamics.

The LIF-SORN and LIF-SORN-c networks lie in asynchronous irregular fluctuation-

driven regimes in the absence of induced activity. The addition of cumulative trace

updates introduced the potential for feedback loops in network learning. In amplifying

LTP, the LIF-SORN-i demonstrates spontaneous synchrony. While this synchrony was

shown to have a ‘protective’ effect on input segregation efficacy, this STDP mechanism

may not be biologically valid. Empirical work by Froemke and Dan (2002) demonstrates

that, while synaptic modification depends on the timing of preceding spikes beyond the

interval of the most recent spike pair, the efficacy of each spike in synaptic modification

is suppressed by spikes in the same neuron in recent history. This non-linearity is

effectively captured by triplet learning rules, which use three spikes (triplets) instead of

pairs to induce potentiation. While the voltage-dependent learning rule employed above

does account for the effects of previous spikes upon the weight change induced by the

most recent spike pair, in future work we recommend simulating a simple triplet-spiking

model, to differentiate the impact of voltage-dependence and non-linear trace effects.

Gjorgjieva et al. (2011) presents a promising candidate for such an investigation.

Finally, decorrelation is a fundamental strategy to improve neural codes, aiming to

reduce redundancies and distribute neuronal activity patterns more evenly over coding

space to extract small differences from overlapping sensory inputs. How recurrent

spiking neural networks achieve input decorrelation remains an open question in the

field (Wiechert et al., 2010). Principle component analysis (PCA)-like strategies are

sufficient for capturing data structures in which linear pairwise correlations are the

most important form of statistical dependence, such as in the ocular dominance task

simulated above. However, natural stimuli contain higher-order data structures which

are not well captured by orthogonal components. For instance, lines and edges cannot

be characterized by linear pairwise statistics (Olshausen & Field, 1996).

In presenting the network with non-linearly separable source factors, such as in the
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stripes-and-bars problem (Foldiak, 2002), the network would need to extract indepen-

dent factors from higher-dimensional data, akin to independent component analysis

(ICA)-like strategies. Exploring the minimal set of learning rules required to achieve

ICA-like encoding of natural stimuli is a valuable avenue for future research. Although

the challenge of understanding how plasticity rules can implement ICA-like strate-

gies remains, Savin et al. (2010) propose a promising candidate model that involves

interactions between STDP, IP, and, and SN.
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Appendix A

Modelling Parameters

Parameter Value Description

Base Parameters

length T 2500 µm Sheet length

height T 1000 µm Sheet height

size T [2500, 1000] µm Sheet size

N e 100 Excitatory population size

N i 0.2 * N e Inhibitory population size

Neuron Parameters

σ noise 16 mV Noise amplitude

τ 20 ms Membrane time constant

Vr e -70 mV Excitatory reset potential

Vr i -60 mV Inhibitory reset potential

El -60 mV Resting potential

Vti 30 mV Minus maximum initial threshold voltage

Vtvar 5 mV Maximum initial threshold voltage swing

Vvi 50 mV Minus maximum initial voltage

Vvar 20 mV Maximum initial voltage swing

Vvi i 50 mV Minus maximum initial inhibitory voltage

Vvar i 20 mV Maximum initial inhibitory voltage swing

Vt i -48 mV Threshold of inhibitory neurons

Synapse Parameters

width T 200 µm Growth radius

sparse eTOe 0.1 Target recurrent excitatory sparseness

sparse iTOe 0.1 Inhibitory to excitatory sparseness

sparse eTOi 0.1 Excitatory to inhibitory sparseness

sparse iTOi 0.5 Inhibitory to inhibitory sparseness

wi eTOe 8 Target e → e weight

wi eTOi 1.5 Initial e → i weight
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Parameter Value Description

wi iTOe 4 Initial i → e weight

wi iTOi 4 Initial i → i weight

delay eTOe 3 ms e → e latency

delay eTOi 1 ms e → i latency

delay iTOe 2 ms i → e latency

delay iTOi 2 ms i → i latency

τ e 3 ms EPSP time constant

τ i 5 ms IPSP time constant

Ee 0 mV Reversal potential for excitation

Ei -80 mV Reversal potential for inhibition

STDP Parameters

τ pre 15 ms Pre-before-post STDP time constant

τ post 30 ms Post-before-pre STDP time constant

A p 0.48 Potentiating STDP learning rate

A d -0.24 Depressing STDP learning rate

STP Parameters

U 0.04 Facilitation increment

τ f 2000 ms Facilitation time constant

τ d 500 ms Depression time constant

Intrinsic Plasticity Parameters

h ip 3 Hz Target rate

η ip 0.1 mV IP learning rate

Synaptic Normalization Parameters

total in eTOe N e * sparse eTOe *

wi eTOe

Total e → e synaptic input

total in iTOe N i * sparse iTOe *

wi iTOe

Total i → e synaptic input

total in eTOi N e * sparse eTOi *

wi eTOi

Total e → i synaptic input

total in iTOi N i * sparse iTOi *

wi iTOi

Total i → i synaptic input

Structural Plasticity Parameters

spinitial 1e−2 Initial weight for newly created synapses

zero cut 1e−3 Zero pruning cutoff

sp rate 6000 Stochastic rate of new synapse production

Clopath STDP Parameters

g 0.067 Gain parameter

τs 15 ms Synaptic time constant

τm 10 ms Membrane time constant

τp 7 ms Potentiation time constant

A d 0.01 Depression rate



Appendix A. Modelling Parameters 49

Parameter Value Description

A p 0.0002 Potentiation rate

θm -75 mV Depression threshold voltage

θp -68 mV Potentiation threshold voltage

η 1 Learning rate

τw 1 ms Time constant for synaptic weight changes

LT Pmod 1 Long-Term Potentiation modulation

LT Dmod 1 Long-Term Depression modulation

minw 0 Minimum synaptic weight

maxw total in eTOe Maximum synaptic weight



Appendix B

Spontaneous network behaviour

B.1 Baseline

Figure B.1: Baseline population firing rates. LIF-SORN left, LIF-SORN-i center, LIF-

SORN-c right.

Figure B.2: Baseline cmn, ISI, and CV distributions. LIF-SORN left, LIF-SORN-i center,

LIF-SORN-c right.

Figure B.3: Baseline recurrent excitatory weight dynamics. LIF-SORN left, LIF-SORN-i

center, LIF-SORN-c right.

50



Appendix B. Spontaneous network behaviour 51

Figure B.4: Baseline E/I spike trains and firing rate distributions. LIF-SORN left, LIF-

SORN-i center, LIF-SORN-c right

B.2 No synaptic normalization

Figure B.5: Population firing rates with SN removed. LIF-SORN left, LIF-SORN-i center,

LIF-SORN-c right.

Figure B.6: cmn, ISI, and CV distributions with SN removed. LIF-SORN left, LIF-SORN-i

center, LIF-SORN-c right.
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Figure B.7: Recurrent excitatory weight dynamics with SN removed. LIF-SORN left,

LIF-SORN-i center, LIF-SORN-c right.

Figure B.8: E/I spike trains and firing rate distributions with SN removed. LIF-SORN left,

LIF-SORN-i center, LIF-SORN-c right

B.3 No intrinsic plasticity

Figure B.9: Population firing rates with IP removed. LIF-SORN left, LIF-SORN-i center,

LIF-SORN-c right.
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Figure B.10: cmn, ISI, and CV distributions with IP removed. LIF-SORN left, LIF-SORN-i

center, LIF-SORN-c right.

Figure B.11: Recurrent excitatory weight dynamics with IP removed. LIF-SORN left,

LIF-SORN-i center, LIF-SORN-c right.

Figure B.12: E/I spike trains and firing rate distributions with IP removed. LIF-SORN left,

LIF-SORN-i center, LIF-SORN-c right



Appendix B. Spontaneous network behaviour 54

B.4 No spike-timing plasticity

Figure B.13: Population firing rates with STP removed. LIF-SORN left, LIF-SORN-i

center, LIF-SORN-c right.

Figure B.14: cmn, ISI, and CV distributions with STP removed. LIF-SORN left, LIF-

SORN-i center, LIF-SORN-c right.

Figure B.15: Recurrent excitatory weight dynamics with STP removed. LIF-SORN left,

LIF-SORN-i center, LIF-SORN-c right.



Appendix B. Spontaneous network behaviour 55

Figure B.16: E/I spike trains and firing rate distributions with STP removed. LIF-SORN

left, LIF-SORN-i center, LIF-SORN-c right
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Evoked network behaviour

C.1 Baseline

Figure C.1: Baseline input synapse matrices and corresponding E neurons preference

score distributions over time. LIF-SORN left, LIF-SORN-i center, LIF-SORN-c right.
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Figure C.2: Baseline input synapse matrices and corresponding E neurons preference

score distributions at simulation end. LIF-SORN left, LIF-SORN-i center, LIF-SORN-c

right.

Figure C.3: Baseline E neuron preferences over time. LIF-SORN left, LIF-SORN-i center,

LIF-SORN-c right.

Figure C.4: Baseline recurrent weight matrices at simulation end. LIF-SORN left, LIF-

SORN-i center, LIF-SORN-c right.

Figure C.5: Baseline recurrent E weight dynamics. LIF-SORN left, LIF-SORN-i center,

LIF-SORN-c right.
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Figure C.6: Baseline input weight dynamics. LIF-SORN left, LIF-SORN-i center, LIF-

SORN-c right.

C.2 No synaptic normalization

Figure C.7: Input synapse matrices and corresponding E neurons preference score

distributions over time with SN removed. LIF-SORN left, LIF-SORN-i center, LIF-SORN-c

right.
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Figure C.8: Input synapse matrices and corresponding E neurons preference score

distributions at simulation end with SN removed. LIF-SORN left, LIF-SORN-i center,

LIF-SORN-c right.

Figure C.9: E neuron preferences over time with SN removed. LIF-SORN left, LIF-

SORN-i center, LIF-SORN-c right.

Figure C.10: Recurrent weight matrices at simulation end with SN removed. LIF-SORN

left, LIF-SORN-i center, LIF-SORN-c right.

Figure C.11: Recurrent E weight dynamics with SN removed. LIF-SORN left, LIF-SORN-i

center, LIF-SORN-c right.
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Figure C.12: Input weight dynamics with SN removed. LIF-SORN left, LIF-SORN-i

center, LIF-SORN-c right.

C.3 No intrinsic plasticity

Figure C.13: Input synapse matrices and corresponding E neurons preference score

distributions over time with IP removed. LIF-SORN left, LIF-SORN-i center, LIF-SORN-c

right.
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Figure C.14: Input synapse matrices and corresponding E neurons preference score

distributions at simulation end with IP removed. LIF-SORN left, LIF-SORN-i center,

LIF-SORN-c right.

Figure C.15: E neuron preferences over time with IP. LIF-SORN left, LIF-SORN-i center,

LIF-SORN-c right.

Figure C.16: Recurrent weight matrices at simulation end with IP removed. LIF-SORN

left, LIF-SORN-i center, LIF-SORN-c right.

Figure C.17: Recurrent E weight dynamics with IP removed. LIF-SORN left, LIF-SORN-i

center, LIF-SORN-c right.
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Figure C.18: Input weight dynamics with IP removed. LIF-SORN left, LIF-SORN-i center,

LIF-SORN-c right.

C.4 No spike-timing plasticity

Figure C.19: Input synapse matrices and corresponding E neurons preference score

distributions over time with STP removed. LIF-SORN left, LIF-SORN-i center, LIF-SORN-

c right.
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Figure C.20: Input synapse matrices and corresponding E neurons preference score

distributions at simulation end with STP removed. LIF-SORN left, LIF-SORN-i center,

LIF-SORN-c right.

Figure C.21: E neuron preferences over time with STP removed. LIF-SORN left, LIF-

SORN-i center, LIF-SORN-c right.

Figure C.22: Recurrent weight matrices at simulation end with STP removed. LIF-SORN

left, LIF-SORN-i center, LIF-SORN-c right.

Figure C.23: Recurrent E weight dynamics with STP removed. LIF-SORN left, LIF-

SORN-i center, LIF-SORN-c right.
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Figure C.24: Input weight dynamics with STP removed. LIF-SORN left, LIF-SORN-i

center, LIF-SORN-c right.
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