
Efficient Multi-Stream Machine Learning on

Apache Flink

Harsh
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2024

Abstract

Across numerous sectors, a pressing demand has risen for real-time machine learning

model training, a pivotal requirement for swift decision-making. Extensive research

has been conducted to address challenges such as concept drift, class imbalance, and

other pertinent issues. A critical challenge within this domain is the effective joining

of the pipeline with streams containing correlated data, which enriches the dataset

with more correlations and thereby enables algorithms to learn better Multivariate

Linear Regression models. However, the computational cost associated with join and

aggregation operations presents a significant obstacle, rendering real-time learning

difficult to achieve. This project seeks to optimize training times for incremental

learning within data pipelines by utilizing the ideas of the Factorized incremental view

maintenance (F-IVM) framework to function within distributed and multi-threaded

environments provided by Apache Flink. By leveraging the factorization capabilities

inherent in the F-IVM framework, the project aims to substantially reduce computational

overhead, thereby advancing the feasibility of real-time machine learning.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Harsh)

ii

Acknowledgements

The most valuable lessons are learned through the process of making decisions, experi-

menting, and understanding where mistakes were made. It is only through recognizing

what doesn’t work that one becomes capable of discerning what does.

I am deeply grateful to my supervisor for his unwavering guidance and support, and also

for providing me with the opportunity to work on a project with significant potential for

exploration and real-world application that has enriched me with many lessons.

I would also like to express my heartfelt gratitude to my parents, grandparents, and

sister for their continuous encouragement and inspiration, which have been instrumental

in helping me achieve my goals.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Research Objective . 2

1.3 Project Overview . 3

1.4 Overview of Contributions . 3

1.5 Key Takeaways . 4

1.6 Dissertation Structure . 4

2 Background 5
2.1 Preliminaries . 5

2.2 Previous Works . 7

2.3 FIVM . 9

2.3.1 Fundamentals . 9

2.3.2 Variable Orders, View Tree and Delta Tree 10

2.4 Batch Gradient Descent Using Covariance Matrix 11

2.5 Apache Flink and Continuous Queries 14

3 Fundamental Blocks 15
3.1 Architecture . 15

3.2 Source . 16

3.3 Variable Orders . 16

3.4 View Tree . 17

3.5 Updates and Delta Trees . 19

3.5.1 The Delta Tree Construction 20

4 Optimisations 22
4.1 Covariance Computation With Sharing 22

4.1.1 Intuition . 23

iv

4.2 Custom GROUP BY and JOIN Operation 24

4.3 Condensed Payloads . 27

4.4 Computation on the Condensed Payload 28

4.4.1 Scalar Multiplication . 29

4.4.2 Reducing Redundancy in Cross-Product Calculation 29

4.5 Delayed and Combined Lifting . 30

4.6 A New Query Planning Strategy . 31

4.7 Multi-Threading . 32

5 Evaluation 33
5.1 Comparison With Other Implementations 34

5.2 Multi-Threading . 37

6 Conclusion 39
6.1 Future Work . 40

A First appendix 45
A.1 Specifications . 45

A.1.1 Machine . 45

A.1.2 Dataset . 46

A.2 Job Graphs . 46

A.2.1 Housing dataset . 46

A.2.2 SSB dataset . 47

A.2.3 TPC-H dataset . 47

A.3 Standard Deviations . 48

A.4 Mean . 52

A.5 Algorithms . 55

v

Chapter 1

Introduction

1.1 Motivation

The volume of data being collected today has long surpassed the capacity of humans

to manually analyze it. Consequently, machine learning is increasingly employed to

bridge the gap between the rate at which data is gathered and the speed at which it is

analyzed. This shift underscores the necessity for real-time analytics, which enables

swift responses to evolving patterns within the data. In most cases, data is sourced from

multiple streams, often containing correlated data, which, when integrated, enrich the

dataset and enhance the ability of machine learning algorithms to identify and learn

from these correlations. This integration is typically achieved by executing SQL queries

where streams function as relational tables subject to continuous, but small, updates.

Though originally designed for static databases, the prevailing approach in practice is

to first generate the query result and subsequently run the machine learning training on

it. However, this process introduces a costly export/import step, which significantly

hampers real-time analytics. Recent advancements, such as Morpheus [23] and F[32],

address this issue by factorizing computations and pushing the operations below arbi-

trary joins, effectively reducing the number of tuples involved in the joins and improving

performance.

Given this expectation of real-time analytics, re-executing queries from scratch on

updates is an untenable solution. Thus, to meet the demands for low latency and high

throughput in model updates, incremental computation techniques are employed. In-

cremental View Maintenance (IVM)[13, 21] is one such technique, where queries are

decomposed into smaller subqueries that generate partial results or views. Rather than

re-computing from scratch, it focuses on updating only the affected views, thereby

1

Chapter 1. Introduction 2

enhancing efficiency. One such framework that leverages IVM is Factorised Incremental

View Maintenance (F-IVM) [19]. It integrates both IVM and push-down techniques to

achieve orders of magnitude faster performance compared to older methods.

However, these algorithms have been demonstrated only on single-core systems. Mean-

while, in the real world, the scale of data is so vast that it far exceeds the processing

capabilities of single-core systems, necessitating the use of both vertical and horizontal

scaling. Earlier attempts usually required complex implementations for queries or

worked only on a window of data. In contrast, Apache Flink[10] offers a more advanced

solution by supporting the execution of SQL queries over streaming data without the

need for windowing, and it also supports Incremental View Maintenance. However, the

techniques currently used in Flink for IVM are relatively primitive.

This project seeks to bridge this gap by porting concepts from the state-of-the-art F-IVM

approach to a scalable, distributed platform like Apache Flink. By doing so, it aims to

advance the field of real-time analytics and bring database processing into the realm of

extreme computing.

1.2 Research Objective

This research investigates an innovative approach for deploying a real-time supervised

machine learning algorithm on integrated data streams by borrowing concepts from

the state-of-the-art Factorised Incremental View Maintenance (F-IVM) technique to

produce the improvements. By the means of the following, the project aims to ascertain

the benefits achieved by the integration of F-IVM with stream processing and parallel

processing over the inbuilt IVM implementation of Flink and an approach having SQL

query with quadratic aggregates:

1. Development of a scalable architecture for processing joined data streams in

real-time by an efficient implementation of F-IVM.

2. Creation of a query plan by conversion of variable orders into View Trees and

Delta Trees.

3. Enhance the computational efficiency of F-IVM by incorporating parallel pro-

cessing capabilities, leveraging the multi-threaded execution model inherent in

Apache Flink’s architecture.

By doing the above, the project aims to explore impacts and answer the following:-

Chapter 1. Introduction 3

• RQ1: How does our pipeline, which uses FIVM to train a Multivariate Linear

Regression model, compare to the pipeline that uses Flink’s View Maintenance

algorithm for the same purpose?

• RQ2: Does moving to multicore provide any meaningful improvement?

• RQ3: If successful, what are the limitations of multi-threading?

1.3 Project Overview

This project is composed of three key components. First, a pair of tools—exporter and

importer for Variable Order, a concept analogous to logical query plans. These tools

enable users to export variable orders into an Object file and subsequently load any

persisted variable order. Second, the ViewTree constructor - optimizes the variable

order to generate View Trees which are a hierarchy of Views depicting a physical plan

for query evaluation. Third, the DeltaTree constructor - materializes the views in the

ViewTree to handle updates efficiently. It is also the component that implements the

generated plan and also integrates the pre-computations for linear model training.

Figure 1.1: Overview

1.4 Overview of Contributions

F-IVM, originally designed for DBToaster, serves as a compiler that optimizes the tasks

by generating specialized code. Thus, adapting F-IVM to stream-based processing

systems like Apache Flink presented unique challenges due to differing constraints and

coding paradigms. Significant effort was invested in tailoring F-IVM concepts to Flink.

Firstly, the ViewTree algorithm was modified to support query merging to reduce the

Chapter 1. Introduction 4

number of costly GroupBy operations. Secondly, a custom operator (Section 4.2) was

created which merged the group-by and join operations to significantly reduce memory

consumption. However, this involved a significant effort to guarantee consistency,

thus a concept of retraction was implemented to maintain the guarantee. Thirdly, as

F-IVM maps each tuple to a payload containing intermediate computations that lead

to potentially large cumulative sizes, thus techniques such as local-global context and

delayed lifting (Section 4.3) were introduced. Lastly, a close competitor - F/SQL was

also implemented for benchmarking.

1.5 Key Takeaways

The evaluation of F-IVM within Apache Flink underscores its clear advantages over

traditional methods. F-IVM consistently outperforms both the Naive approach and

F/SQL in processing speed and memory efficiency, making it a more effective solution

for real-time data stream processing. This success is driven by its optimized use of ring

payloads, variable ordering, and efficient state management.

In contrast, even though F/SQL benefits from SQL query optimizations, its performance

is significantly hindered by the complexity of its numeric aggregation operations,

leading to substantial delays in job graph creation and higher memory usage.

F-IVM also scales well with multi-core processors, though performance gains plateau

beyond 32 cores. This limitation is largely dependent on the nature of the data rather

than being specific to F-IVM. Additionally, we observed that stream-based solutions,

including F-IVM, generally require considerably more memory, highlighting a common

challenge in real-time data processing.

1.6 Dissertation Structure

The rest of the report is organized into four chapters: Chapter 2 provides essential

background knowledge, reviews the field’s history, and discusses the limitations of

previous approaches. Chapter 3 details the integration of F-IVM concepts into Apache

Flink, focusing on the core components. Chapter 4 covers intuitions behind calculations

and optimizations. Chapter 5 evaluates the implementation’s strengths and weaknesses

through comparisons with other techniques. Finally, Chapter 6 concludes with a

summary and recommendations for future work.

Chapter 2

Background

This chapter goes over the basic concepts in this field and explores different approaches,

explaining how they connect to or differ from this work. This is later augmented with

project-specific knowledge.

2.1 Preliminaries

This section provides foundational concepts and techniques essential for understanding

the subsequent discussions. It begins by introducing techniques for storing the data in

databases.

Star and Snowflake Schemas are two such ways of arranging the data that aim to

reduce redundancy, optimize storage, and simplify tuple updates by means of data

normalization [33].

Redundancy is common in databases, often manifesting as strongly correlated attributes.

This redundancy not only takes up space but also makes updates more complex, requir-

ing changes to all rows that share the same attribute. Normalization resolves this by

retaining only the unique attributes and storing the rest in a separate dimension table,

linked to the main fact table, exemplifying a star or a snowflake pattern. In turn, this

method allows updates to be made in a single row only i.e. the dimension table.

The star schema is a straightforward method of organizing data, where the fact table

is directly linked to the dimension tables. This single level of normalisation enhances

query performance by reducing the number of joins. However, this efficiency comes at

the cost of storage optimization, as dimension tables may contain redundant data.

In contrast, the snowflake schema further normalizes dimension tables into sub-dimension

tables, reducing redundancy and improving storage efficiency. However, this hierarchi-

5

Chapter 2. Background 6

cal structure introduces additional complexity. To retrieve enriched tuples, dimension

tables must be reconstructed from their sub-dimension tables before joining with the

fact table. This extra step can lead to slower query performance due to the increased

number of joins.

Once a choice is made and the database is established, the data inside it can then be

utilized for many purposes. One such application is Machine Learning.

Machine Learning [7] is a field of study in Artificial Intelligence concerned with the

use and development of algorithms that learn and improve on a performance metric on a

task, as it gains more experience i.e. as it iterates through data/feedback. Multivariable
Linear Regression being one of the most prominent examples. It is a technique of

predicting the outcome of a dependent variable given two or more independent variables,

under the assumption of low correlation of dependent variables with each other. The

aim is to figure out some mathematical relation that the data contains, which is achieved

by assigning coefficients to the independent variables and learning those coefficients.

However, to be able to execute such tasks, first data is required to be extracted from

databases by means of queries. These queries can be expensive and are usually opti-

mized by using views.

A View is a table in a database that is created by combining data from other tables,

known as base relations. Views can be materialized, which means their results are stored

in the database instead of being recalculated every time they’re needed. This allows

for the creation of index structures on the materialized view, making data access much

faster. However, when the underlying tables are modified—through deletions, insertions,

or updates—the content of the view can be affected. Recalculating the entire view from

scratch can be inefficient, so a more practical approach is based on the principle of

inertia. This method assumes that only a small part of the view changes when the base

tables are updated, making it cheaper to compute just these changes. Algorithms that

focus on updating only the affected parts of a view in response to changes in the base

tables are known as Incremental View Maintenance algorithms.
One example of such an algorithm is F-IVM which under the hood uses the concept of

rings.

Rings [3] are algebraic structures which are an abelian group of sets each of which is

accompanied by 4 components - two binary operations + & ∗ that are analogous to ad-

dition and multiplication operations on numbers, an additive identity 0, a multiplicative

identity 1; satisfying the following axioms for a set R s.t. a,b,c ∈ R:

1. commutativity: a + b = b + a

Chapter 2. Background 7

2. associativity: (a + b) + c = a + (b + c) and (a∗b)∗ c = a∗ (b∗ c)

3. identity: a+0 = 0+a = a and a∗1 = 1∗a = a

4. distributivity: a∗ (b+ c) = a∗b+a∗ c and (a+b)∗ c = a∗ c+b∗ c

5. additive inverse: for each a ∈ R,∃−a ∈ R such that a+(−a) = (−a)+a = 0

2.2 Previous Works

This section covers the predecessors of F-IVM and how attempts are being made to

train Machine Learning models by executing queries on streams of data.

Stream query processing has been a long ongoing journey. Originally, attempts were

made to use traditional databases, but they suffer from high query latency despite having

support for Incremental View Maintenance (IVM). The journey began with D. Carney

et al.[11] creating a system that can process streams of data. Further attempts followed,

notably by D. J. Abadi et al.[1] and S. R. Madden (tinyDB) [24], who created Stream

Processing Engines to optimize the resource usage for processing. However, since

their memory is limited to fixed window size, they are unable to manage long-lived

data. Meanwhile, tinyDB doesn’t even support ACID properties. These efforts are then

succeeded by DBToaster[21], a compiler for SQL queries that delivered a significant

performance boost, with improvements ranging from 3 to 6 orders of magnitude. How-

ever, just like others it also shared a common issue with scalability - all these engines

are essentially restricted to a single core.

The data ingestion rates have already outpaced the capabilities of single-threaded com-

putation, thus inducing the need for Scalable Stream Query Processing. Projects

like MillWheel [2], S4 [26], and Heron [22] introduced multithreaded, multi-computer

continuous query processing. Unfortunately, they offer only low-level processing which

means the burden of expression and implementation of complex queries lies on the

developers. Meanwhile works like Naiad[25] and Trill[12] do support them but use

limited flat LINQ-style queries and additionally also support incremental computation

of queries but leave its implementation to the developer. Spark Streaming [4] does

support SQL queries but only simpler ones and just like tinyDB[24] etc, works only on

windows of data. Apache Flink [10], a more modern framework, has support for more

complex queries and unlike Spark streaming, which treats streams as micro-batches,

it is a true streaming processing framework. Lastly, the latest development in this

Chapter 2. Background 8

area is SepJoin [37], which focuses on enhancing performance by optimizing the data

placement strategy used by Flink, a direction that differs from our primary focus.

This ability of databases to store and process large-scale data has invoked a curiosity

about their applicability in the field of Machine Learning. Originally, the journey began

from static databases, with foundational contributions from [8] and [18]. These systems

integrate statistical packages with the database, performing all joins and aggregations

before passing the data to the statistical package. However, the computational cost of

these joins, particularly cross-products, made real-time evaluations impractical [5]. To

address this challenge, efforts like Morpheus [23] and LMFAO [31] were developed,

focusing on factorizing and optimizing the computations of statistical algorithms by

pushing them below the joins and aggregations. This approach significantly reduced

unnecessary computations, such as cartesian products, and thereby decreased the overall

computational complexity [5, 28]. Another related field of research is machine learning

in streaming scenarios, as explored in works like [6]. This research direction addresses

challenges such as concept drift [36] and resource management in streaming contexts,

which is orthogonal to our work. Our focus is primarily on eliminating redundant com-

putations that arise from joining and aggregating multiple data streams, and secondarily,

on removing redundant computations within the core logic of a specific class of machine

learning algorithms, namely linear regression.

The data is being collected at such a vast scale that databases are continuously under up-

dations. Thus, simultaneously research efforts are being made for 3 decades to address

the challenge of evolving databases through Incremental View Maintenance (IVM).

IVM comprises a set of algorithms and techniques initially introduced in foundational

papers such as [17, 9, 34, 13], collectively known as First-order IVM. Subsequent

advancements led to the development of recursive IVM, exemplified by DBToaster

[21], with these efforts culminating in the state-of-the-art approach represented by

F-IVM[19]. Recursive IVM uses one materialization hierarchy per relation in the query,

whereas, on the other side, FIVM uses one view tree for all relations. The former can

thus have much larger space requirements and update times. A key advantage of F-IVM

is its ability to share computations. When dealing with complex aggregations, F-IVM

breaks down the process by pushing the aggregation past the join operations. Instead of

recomputing everything from scratch at the parent level, intermediate computations are

shared, improving efficiency. Unfortunately, other approaches lack this computation

sharing and rely on numerous additional queries to maintain intermediate results. In

constrast, First-order IVM does not take advantage of data factorization at all[38]. Addi-

Chapter 2. Background 9

tionally, while First-order IVM computes changes on the fly without using extra views,

Recursive IVM tends to rely on too many additional views. Meanwhile, F-IVM strikes

a balance by carefully selecting a minimal set of views for computation, optimizing

both performance and resource usage. Hence, is considered to be superior.

2.3 FIVM

Factorised-Incremental View Maintenance (F-IVM) [19] is an approach for view main-

tenance designed to keep computed analytics in synchronisation with the changes

in the underlying database. This section covers 3 fundamentals behind its superior

performance and how they are realised.

2.3.1 Fundamentals

The performance of F-IVM has been attributed to 3 components, namely: Higher-

order Incremental View Maintenance, which simplifies and accelerates complex query

handling; Factorized Computation and Data Representation, which optimizes query

algorithms; and Ring Abstraction, which offers flexible computation through diverse

algebraic structures.

1. Higher-order Incremental View Maintenance: The first-order IVM algorithms

are essentially simple and direct formulas designed to identify the adjustments

required in the View in response to an incoming change. However, due to their

simplicity, they are limited in how complex queries they can handle and in

such cases are not efficient. Meanwhile, as a higher-order algorithm, F-IVM

decomposes the task into a tree of views that progressively simplifies towards

the leaf nodes. Consequently, the complexity of maintenance is reduced which

can substantially speed up the task. This behaviour is shared by Fully recursive

IVM algorithms as well. However, they decompose the task until only the most

primitive views are left, while FIVM achieves a balance between the (storage

and computational) overhead added by more but simpler views and complexity in

updating fewer but complicated views. In practice, FIVM achieves two orders of

magnitude better performance.

2. Factorized Computation and Data Representation: Instead of performing analyti-

cal computation on the result of the query, FIVM utilizes the query algorithms

Chapter 2. Background 10

([20], [5], [28]) that provide the best complexities such as pushing aggregates

past join and factorized representations.

3. Ring abstraction: This is the major benefit of FIVM over others. It maps keys

(tuples) to payload (elements of Ring). In key space, two tasks could be using the

same join and aggregation operations however, in payload space different ring

elements and operations can be selected which enables the same query to perform

distinct tasks. For instance, on the same query, one Ring can be used to compute

matrix multiplication where the Ring element is the matrix represented by the

tuple, on the other hand, a degree-m based matrix Ring can be used to compute

the covariance matrix. As a result, FIVM can be used to perform any analytical

computation as long as it is attached with an appropriate sum and ring product

operation.

Further, F-IVM also leverages distributed computation of aggregates. Often, queries

compute the duplicate computations independently, thus wasting resources. However,

F-IVM in such cases only computes the common sub-expression once and re-uses them

whenever required.

These capabilities are effectively implemented through View Trees and Delta Trees,

which will be further elaborated in the following sections.

2.3.2 Variable Orders, View Tree and Delta Tree

Figure 2.1: (Left) Variable order ω of the natural join of the relations R[B,E], S[A,B,C,D],

T[E,G], U[E,F]; (middle) View Tree over ω; (right) Delta Tree where coloured lines

represent update paths.

Traditional query evaluation relies on query plans that determine the sequence

in which relations are joined. In contrast, variable orders [28], a concept similar to

query plans, dictate the sequence in which variables should be marginalized instead of

Chapter 2. Background 11

focusing on relations first. As compared to the former, for every join variable, it joins

all the relations sharing that variable, usually preferring to marginalize those variables

first that are not involved in a join, as can be seen in Fig. 2.1. Further, this strategy

has been shown to be worst-case optimal by [27] and hence, F-IVM employs variable

orders instead.

Formally, a variable order ω is a pair of 1) a rooted forest, with one node per vari-

able 2) a dependency function (dep) that identifies the ancestors sharing a relation

with at least one variable in the subtree rooted at a given node. For instance in Fig.

2.1: dep(A) = /0; dep(B) = {A}; dep(C) = {A,B}; dep(D) = {A,B,C,D}; dep(E) =

{B}; dep(F) = {A}; dep(G) = {A,F}; dep(H) = {F}. Intuitively, these dependencies

determine which variables must be preserved for use in ancestor nodes.

In the next step, F-IVM produces a View Tree which is a tree of queries (views) that are

created to optimize the computation of the query. The View Tree utilize the information

carried by variable order to describe the structure of marginalization and to decide

which attribute computation should be pushed below joins. As can be seen Fig. 2.1 in

the middle, it decides to create a View VRS that marginalises variable ’B’ while grouping

by ’A’, denoted by V @B
RS [A]. To ensure that the query can directly access data from the

tables, F-IVM employs an Extended Variable Order, which augments the leaves with

input relations, enabling the View Tree to include queries for those relations.

Now, when a relation is updated, all views along the path from that relation to the root

are affected. Thus, unlike traditional query evaluation, incremental maintenance neces-

sitates the materialization of these queries (or views) to avoid recomputing the entire

intermediate result. Consequently, F-IVM transforms the View Tree into a Delta Tree,

where all affected nodes along the path are replaced by Delta views. These delta views

support incremental maintenance by leveraging materialization, potentially reducing

the update time for each view from quadratic to constant. In Fig. 2.1 the update paths

depict that an update to one relation only affects the views along its update path and for

the rest, materialised views are used. Along the path, each view is replaced by delta

views, annotated by δ, which are small tables containing just the updates.

2.4 Batch Gradient Descent Using Covariance Matrix

This section explores the theory behind training a machine learning model in a single

pass over a dataset using the concept of a covariance matrix which was originally

presented by [32]. It also highlights key properties of the covariance matrix that are

Chapter 2. Background 12

utilized in this project to achieve tight integration of machine learning and streams.

Consider a set of tables that, when joined, form a training dataset of size m:

{(y(1),x(1)1 , ...,x(1)n), ...,(y(m),x(m)
1 , ...,x(m)

n)}

wherein, the value y(i) represents the target variable and x(i)j represents the n feature/de-

pendent variables.

The goal of a Linear Regression model is to learn the parameters θ = {θ0,θ1...θn} of a

linear function:

hθ(x) = θ0 +θ1x1 + ...+θnxn

such that given some unseen values for {x1...xn} it can predict the target variable

y = hθ(x).

Usually, to simplify and facilitate computation through vectorization, a constant feature,

x0 = 1 is introduced which converts the formula into hθ(x) = Σn
j=0θ jx j.

To learn this linear function, the process begins with random initial values for the pa-

rameters, followed by iterative minimization of the loss, which measures the difference

between the actual target values and the predicted values. There are several methods to

compute this loss, with the most prominent being the Mean Squared Error (MSE):

J(θ) =
1

2m
Σ

m
i=1(hθ(x(i))− yi)

2

This learning process involves traversing the loss function space to locate its minima

by consistently following the gradients at the current position on the surface. This

approach is known as gradient descent (GD):

∀0≤ l ≤ n : θ j := θl−α
δ

δθl
J(θ) {where α = learningrate}

:= θl−α

m

∑
i=1

(
n

∑
j=0

θ jx
(i)
j − yi)x

(i)
l

It is of two main varieties, namely batch GD and stochastic GD. While the former

updates the parameter only after iterating through all the data, the latter updates the

parameters after every few examples, thus instead of updating once, updates happen

multiple times when iterating through the dataset. However, both do iterate over the

entire dataset multiple times.

Gradient descent can be conceptualized as consisting of two main components: (1) the

computation of sum aggregates, and (2) the convergence of the parameters. As a result,

these processes can be executed independently. But first further simplification can be

Chapter 2. Background 13

made by considering target variable y as the n+1th feature and assigning a constant

parameter θn+1 =−1 to it:

∀0≤ l ≤ n : θ j := θl−α

m

∑
i=1

1+n

∑
j=0

θ jx
(i)
j x(i)l

:= θl−α

1+n

∑
j=0

θ j

m

∑
i=1

x(i)j x(i)l [as θ j is independent of i]

:= θl−α

1+n

∑
j=0

θ j×Covariance[j, l]

As a result of this decomposition, instead of iterating over the entire dataset, we are now

required to compute the covariance matrix only once. This covariance matrix accounts

for the interactions SUM(x j ∗ xl) of variables x j and xl with continuous domains. More

precisely, it quantifies the degree of correlation for each pair of features (or feature and

label) in the data. Thus, by using covariant matrix a O(m(n+1)) operation is converted

to an O((n+1)2) where n << m.

Further, this covariance matrix also carries 3 desirable properties:-

1. covariance matrix is symmetric across primary diagonal:

Covariance[j, l] =Covariance[j, l] ∀ j, l

2. The computation for populating the covariance matrix commutes with the union

of K partitions of the dataset:

Covariance =
K

∑
k

Covariancek

where Covariancek is the matrix for kth partition

3. The computation also commutes with projection i.e. if a model needs to be

trained only on a subset of features, say from j′ to j′′, then, new covariance matrix

Covariance′ is just a sub-matrix from row j′ to j′′ and columns j′ to j′′:

Covariance′ =Covariance[j′ : j′′, j′ : j′′]

These latter two properties are particularly advantageous for distributed processing. By

partitioning streams based on certain attributes or the number of rows, the covariance

computations can be parallelized across different machines. Subsequently, the results

from these parallel computations can be combined to form the final covariance matrix.

Chapter 2. Background 14

2.5 Apache Flink and Continuous Queries

Figure 2.2: Flink components

Apache Flink is a distributed processing engine specifically designed to manage both

bounded and unbounded data streams, with the expectation of near-real-time process-

ing. An unbounded stream is characterized by the absence of a definitive endpoint,

precluding the assumption that all requisite data has been received at any given moment.

Consequently, Flink employs a processing model that promptly handles the incoming

data and subsequently refines the output. In contrast, bounded streams, which have a

finite endpoint, are processed only once all the data has arrived.

Flink also supports database-like operations, such as joins and aggregations, within a

streaming context. However, unlike traditional databases, Flink treats tables as infinite

sequences of tuples, known as Dynamic Tables, where each stream record is interpreted

as an insert or modification. Consequently, queries in Flink are continuous, meaning

the results are updated perpetually. To bridge the gap between SQL queries on streams

and traditional database tables, Flink uses a concept analogous to Materialized Views

and updates the results using an IVM algorithm called Eager View Maintenance. This

capability, along with support for dynamic tables, makes Flink suitable for streaming

applications.

Now, broadly, Flink’s processing is managed by three main components (Fig. 2.2):

the Job Manager, which distributes work and coordinates communication, and the

Task Manager, which executes computations. Lastly, the Client, which submits the

user-defined program, optimizes the Job Graph—representing the dataflow of sources,

transformations, and sinks—and sends it to the Job Manager for execution which then

transfers it to the Task Managers. They further then connect to data sources, subsequent

tasks, or sinks to collectively execute the job.

Chapter 3

Fundamental Blocks

This chapter outlines the integration of F-IVM into Apache Flink, emphasizing the

key components involved in its implementation. The chapter begins with an overview

of the system architecture, highlighting the implementation choices made within the

Flink platform, particularly the use of the DataStream API. It then delves into the role

of Variable Orders in optimizing query plans and managing incremental updates. The

View Tree structure is examined next, illustrating its role in organizing and maintaining

a hierarchical query framework for efficient computations. Finally, the Delta Tree

is discussed, emphasizing its function to compute covariance matrix by minimizing

recomputation and propagating changes effectively. Each section provides a detailed

analysis of these components and their integration within the system.

3.1 Architecture

Apache Flink offers two primary methods for defining processing pipelines: the Rela-

tional API and the DataStream API. The former provides an SQL-like interface, thus

providing access to a lot of inbuilt operations such as join, group-by etc. Further, it also

includes a Query planner which incorporates optimizations for query planning, all a

user has to do is to just define the task. However, due to this declarative nature, a lot

of low-level control has to be relinquished. The Datastream API is Flink’s alternative

means to attain complete control over the data processing but it comes at the cost of

losing the Relational API’s optimizations.

In this project, both approaches were explored. Since Flink employs classical query

plans, while F-IVM utilizes Variable Order and additionally, also involves mapping of

tuples to elements of a Ring, thus both APIs required substantial adaptation. However,

15

Chapter 3. Fundamental Blocks 16

table API uses an inefficient combination of join and group-by operation (covered in

Section 3) and didn’t support the use of dual input operators which are essential for any

custom join implementation. Further, it uses boxed Java Data types instead of primitive

causing large memory use. Data types are extremely critical components considering

the number of tuples. We originally worked with BigDecimal type, and after moving

to the primitive double type we saw a 2/3rd decrease in memory consumption and 10

times faster performance. Considering the limitations the move to custom operator was

necessary.

The system developed in this project comprises four main components to create a Job

Graph: a Source, a Variable Order importer, a View Tree Generator, and a Delta Tree

Generator. Additionally, it includes an operator for computing Linear Regression.

3.2 Source

Any Apache Flink project begins with data ingestion from a source. This project offers

two approaches:

1. JDBC Connection: Flink’s JDBC connector for the Table API allows for the

creation of virtual views linked to a PostgreSQL [35] database, mirroring the

schema of the underlying tables. Once created, these are then accessed by

executing a “SELECT *” query on them.

2. Postgres-CDC: Unlike JDBC, which reads data only at query time, this method

continuously monitors and captures ongoing changes by using Debezium [14] to

read PostgreSQL’s Write-Ahead Log (WAL).

Postgres-CDC requires an expensive initial database snapshot to read existing data

protecting it from changes until ingestion, but since this project simulates streams from

static datasets without updates, the JDBC option was chosen to avoid the overhead.

With data ingestion methods set, the next focus is on importing Variable Orders.

3.3 Variable Orders

As discussed in section 2.3, the variable orders are an alternative to classical query plans

used by F-IVM due to their worst-case optimal time complexity. However, finding a

good variable order is a hard problem, but since there exist systems like DB-Toaster

Chapter 3. Fundamental Blocks 17

[21] that provide a robust implementation to identify the variable order, we are taking

variable orders as an input to our system.

VariableOrder

Attributes

+ isRelation : boolean

+ variableName : String

+ relations : List<String>

+ children : List<VariableOrder>

+ shouldStopPushdown : boolean

Figure 3.1: UML for Variable Order Node

To facilitate this, two utilities have been

provided - Variable Order Exporter and Im-

porter. The former can be used to provide

a variable order and it then exports the Java

class hierarchy in a txt file. Later while creat-

ing the Job Graph, the importer can be used

to import these txt files and pass it as an in-

put to the View Tree creation algorithm. The

class hierarchy is a tree of VariableOrder

nodes containing the structure mentioned in

Figure 3.1. If required, the generator component of other systems such as DBToaster

can be utilized by extending the exporter.

3.4 View Tree

The View Tree Construction Algorithm [Appendix:1] is designed to recursively build

a hierarchical structure known as the View Tree, using a Depth First Search approach.

This View Tree captures the dependencies and relationships among variables within

a given query plan. While the algorithm adheres to the core principles outlined in

the F-IVM framework, it has been significantly adapted to integrate with our Variable

Order and Delta Tree structures. These modifications not only ensure compatibility

but also introduce several optimizations, enhancing the overall efficiency of the view

maintenance process. It’s recursion body is explained below and the visualisation of the

produced tree is presented in Fig. 2.1.

1. Base Case - Leaf Node Construction: A leaf node represents a relation in the

extended variable order, thus a ViewTree node is created with its reference.

2. Recursive Case - Non-Leaf Node Construction: When VariableOrder w has

children, it indicates that the node could be a target for marginalisation, the

algorithm then proceeds to create a ViewTree node but this time copies relevant

metadata, including the variable name, relations involved, and any child nodes.

Chapter 3. Fundamental Blocks 18

• Child Node Processing: Each node in the ViewTree maintains a mapping of

ancestor variables and their associated relations. This algorithm creates such

a map, copies the ancestor information received from its parent and adds the

variable and relation represented by itself. The updated map is then passed

to the child nodes, enabling them to track their ancestors. The algorithm

recursively processes each child node to build their respective ViewTree

nodes. Additionally, each node also tracks all marginalized variables from

its descendants, which is further explained in Section 4.3.

3. Determining Free and Marginalized Variables: After processing all child nodes,

the algorithm identifies the set of free variables for the current node—those needed

for further computation and not marginalized by the query. This determination

is crucial for the F-IVM algorithm as it impacts how views are incrementally

maintained. At any node, these are those variables that are returned by the result

of queries at children and are either required by some ancestor belonging to the

same relation as a child (identified by the getDeps method) or are free at the root

itself. All the variables that are not free are then marked for marginalization.

Additionally, a special flag, shouldStopPushdown, is introduced to prevent

unnecessary marginalization at this and child nodes, with detailed reasoning

present in Section 4.6.

4. Tree Compression: To optimize the View Tree, the algorithm compresses the tree

structure by merging nodes. If a node has a single child that is not a leaf node (i.e.,

does not represent a relation directly), the algorithm consolidates the child node

into the current node. This compression reduces the tree’s depth and simplifies

its structure, improving the efficiency of the F-IVM process by minimizing the

number of intermediate nodes which in turn reduces the nodes that are required

to be maintained. As can been in Fig. 2.1, the view tree contains two nodes

V @C
S [A,B] and V @D

S [A,B] which only perform marginalization, thus there’s no

need to maintain these two independently, hence are compressed to form the

resulting ViewTree shown in Fig. 3.2

5. Returning the Constructed Node: Finally, after processing all child nodes, deter-

mining free and marginalized variables, and applying tree compression where

applicable, the algorithm returns the constructed ViewTree node. This node rep-

resents the entire subtree rooted at the current VariableOrder node, containing

all necessary information for efficient view maintenance.

Chapter 3. Fundamental Blocks 19

Figure 3.2: Compressed View Tree with ancestors map as annotation.

6. The getDeps Function: The getDeps function, used within the main construction

algorithm, calculates the dependencies of a node by traversing the subtree rooted

at that node. It identifies all relations in the subtree and uses the ancestors map to

determine which variables the current node depends on. This function is crucial

for ensuring that the View Tree accurately captures all dependencies necessary for

correct incremental maintenance. For instance, in Fig. 3.2, V @B
RS [A] has relation R

& S as its children, so it will look into its ancestor map to find A as its dependency.

Once the view tree is constructed it is then forwarded to the DeltaView constructor for

the construction of the actual updation queries.

3.5 Updates and Delta Trees

A typical query processing lifecycle involves two key phases: evaluation and main-

tenance. The evaluation phase operates on a top-down, pull-based model, where the

query is executed at the root node, which in turn recursively pulls data from child

nodes. Conversely, the maintenance phase follows a bottom-up, push-based model,

where updates originate at the leaves and propagate upward to their parent nodes. In the

context of streaming data, streams are connected directly to the leaf nodes, and each

incoming data packet is treated as an update. As a result, in a streaming environment,

the evaluation phase is absent; every data packet is considered an update, with the first

packet acting as an update to an initially empty table. Consequently, the ViewTree phase

lacked any query creation and thus, only delta queries exist in this implementation. The

following passage theoretically covers delta tree construction while the next subsection

covers it practically.

While constructing a delta tree, a view node V representing a relation R under updates is

simply replaced by a delta node δV representing the stream of update δR i.e. δV = δR.

Chapter 3. Fundamental Blocks 20

In case, there are no updates to a view then its delta view is assigned to be empty i.e.

δR = /0. For others i.e. views defined using operators, [19] mentions the following

formulas for deriving the delta view:

δ(V1⊎V2) = δV1⊎δV2

δ(V1⊗V2) = (δV1⊗V2)⊎ (V1⊗δV2)⊎ (δV1⊗δV2)

δ(⊕X) =⊕X δV

(3.1)

However, in Flink, an operator such as ’connect’, which connects two streams together,

only processes data from one side at a time. As a result, at any point in time, one

of the two delta views will be null (say δV2 = /0). Thus, By using the identities

/0⊎V =V ⊎ /0 =V and /0⊗V =V ⊗ /0 = /0, equations 3.1 gets simplified to:-

δ(V1⊎V2) = δV1 and δ(V1⊗V2) = δV1⊗V2 and δ(⊕X) =⊕X δV (3.2)

This simplification reduces the operations to a straightforward application of the ring

product and addition operations (Section 4.1) to delta views.

3.5.1 The Delta Tree Construction

This section covers the implementation of DeltaTree (Alg. 2) which is encapsulated in

the ‘DeltaTreeForStreams‘ class. The primary role of this class is to construct a delta

tree that represents the hierarchical structure of a relational query plan. Each node in

this tree can either correspond to a base relation or an intermediate result derived from

joining multiple relations. The construction function is a recursive function that accepts

4 arguments - (1) tau: the node of the view tree for which a delta view needs to be

created (2) relations: a map of relations names and the Table object that provides access

to the respective table (3) attributeIdx: a map between attribute and the index that should

be assigned to it in the covariance matrix (4) tEnv: the Flink’s StreamTableEnvironment

that facilitates the conversion between Table object and DataStream.

These arguments are then processed as follows:

1. Base Case- The construction process begins by checking whether a node directly

corresponds to a relation. In this scenario, the node is initialized with the corre-

sponding relation’s stream (fetched from the ‘relations‘ map), and converted into

a DataStream using the ‘StreamTableEnvironment‘. This stream serves as the

foundation upon which subsequent operations are built.

Chapter 3. Fundamental Blocks 21

2. Recursive case- For non-base cases, where the node represents a more complex

operation (such as a join or aggregation), the algorithm recursively constructs

child nodes. These children represent the sub-queries or sub-relations involved in

the operation. The recursive construction ensures that the tree accurately captures

the hierarchical nature of the query, where each node’s output may serve as input

to its parent node.

3. Management of Free and Marginalized Variables - One of the key features of

the algorithm is its ability to manage free and marginalized variables efficiently

via the use of information provided by the ViewTree nodes. Marginalization

ensures only the necessary data is propagated through the tree. This careful

management reduces the computational overhead by minimizing the amount of

data that needs to be maintained and processed at each step. At the same time, it

ensures that all necessary variables are preserved until they are no longer needed,

at which point they are eliminated. For instance, the delta tree in Fig. 2.1 contains

marginalisation queries at each node.

4. Delta View Creation and join Operations- The creation of delta views, as imple-

mented in the ‘createDeltaView‘ method [Algorithm 2], is where the actual stream

processing logic is applied. This method handles the task of joining multiple data

streams, which may represent different parts of the query. The algorithm uses a

custom implementation of Equi-join and Group-by operations [Section: 4.2] that

merges the stream and the carried payload. By means of the ring operations of a

covariance structure, these operations are performed in a manner such that not

only the partial computations of both sides are preserved but the cross-correlation

between the variables is also computed.

5. Novel Optimization: At each node, rather than creating a large covariance matrix

that incorporates the knowledge about all the variables, we create a smaller

covariance matrix that only has a local context. In order to do so, we create

an ‘attributeIdx‘ like HashMap that consists only of local mappings and also a

HashMap that maps these new local indexes to the indexes of global(i.e. parent)

context, provided by ‘attributeIdx‘. Section 4.3 explains it in more detail.

Once all the operations on the streams are configured for covariance computation, the

final stream from the root delta node is attached to the linear regression model that

learns the hyperparameter using concepts defined in Section 2.4.

Chapter 4

Optimisations

This chapter delves deeper into various concepts utilized to incrementally and optimally

compute the covariance matrix. It begins by discussing which ring was picked and

how it computes the matrix. Then, the discussion moves to the custom operator created

to improve speed and reduce memory consumption. Afterwards, the focus shifts to

how payloads themselves were compressed to consume significantly less space. This is

followed by an intuition to minimise the number of intermediate tuples by means of

a new query plan strategy. Later, it moves on to discuss how redundant computations

were removed and finally, how multithreading works in this project.

4.1 Covariance Computation With Sharing

The process of computing any task in F-IVM begins by selecting a Ring and mapping

all the tuples (called keys) to the elements of that Ring (called payload). Later, queries

are defined using join and aggregation functions. These aggregations are computations

on the payloads by means of Ring operations and primitive SQL operations such as

projections on keys. This project trains Linear Regression models through a covariance

matrix which is computed by using a covariance structure of degree-m over Real

numbers R [19].

This Ring of covariance structure is a set where elements are a triple of (R,Rm,Rm×m)

where Rm represents a vector of size m and Rm×m represents a m×m matrix of real

numbers. It carries the additive identity 0 = (0,0m,0m×m), where the first index carries

the real number zero, 2nd and 3rd indexes are a vector and a matrix of size m and

m×m, respectively, of the real number 0. Further, it carries the multiplicative identity

1 = (1,0m,0m×m) where 1st index instead carries the real number 1. Finally, the sum

22

Chapter 4. Optimisations 23

(denoted as +ring) and product (denoted as ∗ring) operations between two elements

a = (ca,sa,Qa) and b = (cb,sb,Qb) are defined as:

a+ring b = (ca + cb,sa + sb,qa +qb)

a∗ring b = (ca ∗ cb,cb ∗ sa + ca ∗ sb,cb ∗Qa + ca ∗Qb + sa ∗ sT
b + sb ∗ sT

a)
(4.1)

Here, + and ∗ represent scalar addition, element-wise matrix addition, scalar multipli-

cation, matrix multiplication and cross-product operations on real numbers, vectors and

matrices accordingly.

The first element of this triple is a scaler which represents the number of rows, the

second is called linear aggregate where the ith element represents the sum of ith attribute

across all tuples and finally, the last one is the quadratic aggregate which is the covari-

ance matrix itself and contains the correlation between all pairs of the attributes.

Now, the second requirement i.e. SQL query to compute covariances for n+1 variable

across t tables becomes:

1 SELECT +c(g0(bias)∗ring g1(X1)∗ring ...∗gn(Xn)) FROM table_1 NATURAL

JOIN table_2 NATURAL JOIN table_t;

where bias will have a value of 1 (real number) for all the tuples. Further, gi represents

a lifting function. The role of this lifting function is to convert the given value from

the domain of the dataset into the domain of our Ring. It is defined as gi(x) = (1,si =

x,Qi = x∗ x); where si = x represents setting value x at ith index of 0m and Qi = x∗ x

implies setting x2 at ith column of ith row in matrix 0m×m.

4.1.1 Intuition

This section intuitively explains how the above two elements - Ring and the Query,

enable training of the Machine Learning model.

The application of the lifting operation can be seen as computing the covariance over a

table containing just that one tuple have one attribute carrying value x. Hence the first

entry in the tuple is 1. Now, the sum of the ith attribute would be x itself and since no

other attribute exists, thus their sums are registered as 0. Finally, the last entry represents

the correlation of ith feature with itself thus, x2 is registered at index (i, i). Further, since

no other variable exists in the context of this marginalization, the correlation with other

features is marked with 0. These values are then passed to Ring operations.

First, the sum operation can be seen as utilizing the distributive property of the covari-

ance matrix (Section 2.4) to merge the covariance matrices of all the tuples in the group.

Chapter 4. Optimisations 24

Meanwhile, the count and sum of the table resulting from the union of two tables would

simply be the sum of counts and the sum of the sum of both tables.

Second, the product operation consists of three components:-

1. Scalar multiplication ci ∗Q j: It is obvious that a tuple belonging to the second

table is present in the result of the equi-join operation as many times as the

number of tuples in the first table having the same value for the join attribute (say

ca). Thus, if a tuple is present cb times in the second table. In the join result,

the covariance for two attributes xi & x j would be ∑
ca∗cb
i x jxl . Now, we know an

entry in the quadratic aggregate represents the product of value for two attributes

j & l summed across cb rows i.e. Q[j, l] = ∑
cb
i=1 x jxl . Thus, the duplicates created

as a result of join can be integrated by using the count from the left table i.e.

ca ∗∑
cb
i=1 xix j = ∑

ca∗cb
i=1 xix j which is the same as before.

2. Outer product si ∗ sT
j : The above only corrected existing covariances but didn’t

calculate the covariance between variables from the left and right tables. Thus,

the outer product is utilized to introduce these cross-correlations. The intuition

can be gained mathematically by writing linear aggregates as sa[j] = ∑
ca
i=1 x j =

ca∗x j and sb[l] =∑
cb
i=1 xl = cb∗xl . This means that their product in outer-product

would be ca ∗ x j ∗ cb ∗ xl = ca ∗ cb ∗ x j ∗ xl = (number tuples after joining ∗x j ∗ xl),

which is the formula for covariance.

3. The element-wise sum of all the components: Scalar multiples caQb and cbQa

only introduce covariants from their own tables but lack correlation across the

tables. Meanwhile, outer products sasT
b and sbsT

a introduce correlation across the

tables but lack the former. Thus, the distributive property of the covariance matrix

is again utilized to merge them together to create a matrix containing all.

Once generated, this matrix is then used to train the Linear Regression model as

explained in Section 2.4.

4.2 Custom GROUP BY and JOIN Operation

Joins are already costly in databases, but in streaming environments, they become even

more expensive. Since streams are continuous, it’s impossible to predict when—or

if—the counterpart tuple from stream 2 will appear to match a tuple in stream 1. For

instance, if tuple A with value X1 is at the front of stream 1, and stream 2 has a different

Chapter 4. Optimisations 25

Figure 4.1: Apache Flink Job Graph

value at the front, we can’t be certain that no counterpart for A exists. Tuple B, matching

X1, might appear later. Additionally, even if tuple B is present, another tuple with X1

might arrive in the future, making it a candidate for joining. Therefore, tuple A must be

stored in memory to ensure it’s available for matching, and the same applies to tuples

in stream 2. This necessitates holding both streams entirely in memory, leading to

significant memory demands. Similarly, the Group By operation must store all groups

in memory since it’s uncertain whether all tuples in a group have been received, further

increasing the cost.

On examining the View/Delta Tree creation (e.g. Figure 4.1), it’s clear that a join

operation is always preceded by a group-by operation. As noted, a Group By stores its

output, while a join stores its input, leading to redundant data storage since the output

of one is the input for the other. This redundancy burdens the memory. So, to resolve

this, a custom implementation was developed to merge these operations, eliminating

duplication and enhancing efficiency by avoiding the transfer of tuples between the two,

thus reducing distribution, serialization, and deserialization overhead.

Further improvements were achieved by leveraging specific knowledge about the

queries, which consisted solely of equi-joins. First, a hashmap was used to partition

tuples by the join key, allowing for O(1) lookup operations. Second, the aggregation

process was then divided into two parts. First, a partial marginalization operator called

the ”compression operator” [Algorithm 5], was introduced. This operator lifts and

projects out any variables requiring marginalization before the group-by operation and

applies the ring product to merge all existing covariance structures, leading to significant

savings in transmission costs. Second, a leaner group-by operator was created, focusing

solely on grouping and using the ring sum to merge structures across all its tuples.

However, there exists one latent problem with the streaming scenario. Due to the uncer-

tainty about the future, the group-by operation cannot wait for all tuples to be collected

and thus immediately outputs intermediate aggregation results. Consequently, all subse-

quent aggregations, joins, and operations are based on these interim results. When the

group-by operation receives a new tuple for an existing group, it must update the result,

Chapter 4. Optimisations 26

transmit the update, and notify downstream operators to revert the previous effect. This

is achieved by tagging the tuples as either UPDATE BEFORE or UPDATE AFTER.

The former maps the current tuple to a negative payload (element-wise multiplication

with -1) to retract the side effect while the latter carries the new updated value. This

algorithm [Algorithm 3] is an follows:-

The operation starts by initializing key variables, including the join attribute and group-

ing attributes (free variables). To avoid conflicts, different names are assigned to the

payload depending on whether the data is from the left or right side of the join. Then,

the row is processed to generate a key for the HashMap, based on the group-by attributes

if present; otherwise, the key is derived from all attributes except the payload.

Once the key is generated, the algorithm checks for existing tuples with the same

values for free variables to retrieve old payloads for the current group. It then finds

the counterpart for the join operation, which is always preceded by a KeyBy operation

on the join attribute, ensuring that the state is partitioned accordingly. Flink is smart

enough that it only provides access to the relevant partition of state. This means all the

entries in the current state will be the counterpart for the input tuple, thus the algorithm

doesn’t need any special checks and so, it simply iterates over all the retrieved rows

from the right table’s state, joining them with the left side’s tuple.

If the group-by operation is enabled and an existing mapped value is found, an inter-

mediate output with RowKind set to UPDATE BEFORE is generated to retract the

previous state. This involves re-joining old tuples with counterparts from the other table,

ensuring exact replication of tuples. Note that it can never be the case that the other side

table has a new tuple which was never joined with the current table’s outdated tuple.

This is conjectured due to the fact that this said tuple can only be present in the other

table’s state if it got joined with all the tuples in this current table’s state.

The algorithm then computes the payload using either an accumulator or a retrac-

tor, depending on whether the current row represents an insertion (INSERT or UP-

DATE AFTER) or a retraction (DELETE or UPDATE BEFORE). The latter is per-

formed by leveraging the distributivity over the union property (Section 2.4) of the

covariance matrix to perform element-wise subtraction of the new payload from the

existing one. This updated state is then stored back in the current table’s state, which

then can be used for both - to find the computed value of the state and to maintain the

current table for performing joins with newer tuples. Afterwards, the new row is joined

with tuples of the other side to produce a new UPDATE AFTER row which contains

the new updated value. This new row is then transmitted.

Chapter 4. Optimisations 27

In the case of join-only operation, the functionality is very different. No payload com-

putation takes place during the join operation, thus in this case there exists no concept

of old and new payload values. Hence, no special UPDATE BEFORE request is created.

The algorithm just performs the join operation, producing the final output row which is

then emitted. This emitted row carries the same kind as the input. If it was a retraction

message, then it behaves as if replicating whatever was emitted in past, but with a

payload meant for retraction. It then goes on to delete such a tuple from its state as

retraction represents erasing what has been done in the past. In other cases, the join

operation behaves normally according to what has been discussed previously.

4.3 Condensed Payloads

As outlined in Section 2.4, the covariance matrix is an n× n matrix, but due to its

symmetry, much of the data is redundant. While the matrix size increases quadratically

with each added feature, the memory requirement grows cubically since every tuple

stores this matrix. To mitigate this inefficiency, we implemented a flattened structure

inspired by a C++-like style, storing only the lower triangular part of the covariance

matrix. This reduces the storage requirement from n2 to n(n+1)
2 space.

Further, Java stores 2D arrays as an array of pointers to 1D arrays, requiring two heap

accesses (AALOAD and IASTORE) per index operation. While flattened arrays may

seem to negate these benefits due to the arithmetic needed for indexing, by leveraging

the pattern in our ring, the algorithms were written in a way so that only sequential

access is performed as much as possible. Also enabling it to benefit from spatial locality

i.e. a process where CPUs while fetching anything from the memory, fetch the nearby

data as well. To measure the difference, a simple script was executed that simulated

the number of operations of one of our experiments. It consisted of 40 million accesses

to two arrays containing 2500 elements, one being 1D and the other being 2D. After

the test, we recorded that 2D arrays were 100 times slower. Further, as the covariance

structure is a Triple, thus wrapping it in a Tuple class would have also added a lot of

memory overhead that is associated with all non-primitive data structures. To address

this, we integrated constant and linear aggregates into our flattened array, structured as

follows: the 0th index for the constant, the next n items for linear aggregates, and the

remainder for quadratic aggregates stored in row-major order.

Another novel finding is that F-IVM always uses a constant payload size which implies

that even if only a single variable has been marginalized, the key will be mapped to a

Chapter 4. Optimisations 28

tuple containing a correlation of all the pairs. Since we haven’t marginalized others,

these correlations will be zero. As it’s usually the case that the starting stages always

contain the largest number of tuples, a lot of precious memory space is wasted on

useless data. To address this, we introduced a local-global context, treating each subtree

in a Delta Tree as an independent dataset. A subtree marginalizing 10 variables assumes

only 10 exist for model training, utilizing a degree-10 covariance structure. As the flow

progresses to the parent tree, which marginalizes 5 more variables, the covariance struc-

ture expands to degree-15. This approach reduces data usage by 4.5 times compared to

using a degree-15 ring throughout, which is particularly beneficial in complex schemas

like Star and Snowflake where the final join result schema is much larger than individual

sub-dimension tables. The pseudocode for this algorithm is provided in Algorithms 1,2.

In Algorithm 1, during the backtracking step of the top-down recursion (Lines 20-23),

the number of variables marginalized across all descendant subtrees is captured, which

is essential for adjusting the covariance structures as the process moves up the tree.

Algorithm 2 then maps each attribute to its index in the subtree’s covariance structure

(Lines 12-17). The parent node then instructs its child nodes via the localAttributeIdx

map, guiding the organization of the covariance matrix. This ensures that variables

marginalized at the parent node do not interfere with others, allowing accurate covari-

ance computation with previously marginalized variables (Lines 22-34).

4.4 Computation on the Condensed Payload

When scaling up existing payloads to a larger covariance structure, the typical method

involves creating an empty array for each payload and transferring all data into it.

Additionally, whenever a variable is marginalized, a new payload must be created

first. Creating another such temporary array solely to store the scaled-up version can

lead to substantial memory spikes, increasing memory demands. To address this, the

distributive property of the covariance matrix can be leveraged to directly integrate the

scaled result into the final array, thereby conserving valuable memory resources.

Another notable issue is that the covariance matrix is physically a flattened array,

whereas logically, it functions as a 2D matrix. To reconcile this discrepancy, it is neces-

sary to map the indexes appropriately to the flattened structure. Thus, Ring operations

are required to be modified to support this. However, since Ring Sum is used as an

aggregate operation, it only works with the same dimensional data thus, only the ring

product is modified. The approach is as follows:

Chapter 4. Optimisations 29

For the multiplication of scalars c, the ring product operation is straightforward. How-

ever, for linear aggregates, two operations are involved. The first is a scalar multiplica-

tion with the aggregate, which can be performed on the fly and is trivial. The second

involves the element-wise addition of the linear aggregates of both operands. However,

before performing this addition, the indexes must be mapped to the correct location.

This mapping can be achieved using the formula:

destination idx = globalMapping[attribute number]+1

The value is incremented by one to account for the fact that the 0th index stores the

scalar c for the structure, causing all elements to be shifted to the right by one.

In contrast, the product for quadratic aggregates is more complex. This computation

can be divided into three components: 1) adding caQb to the result, 2) computing sasT
b ,

and 3) computing sT
b Qa; which are discussed in the next subsections.

4.4.1 Scalar Multiplication

For the caQb term, the challenge arises from the logical 2D indexing. The global

mapping identifies which row and column should correspond to which row and column

in the result, but since the underlying structure is 1D, direct usage is not feasible.

However, by utilizing the row-major order formula employed in C++, the destination

index can be identified as follows:

dest ith row = globalMapping[row number]

dest jth column = globalMapping[column number]

offset = 1+ len of linear aggregates

destination idx = offset+dest jth column+dest ith row× (dest ith row+1)/2

Here, the offset denotes the index from which the quadratic aggregates begin.

4.4.2 Reducing Redundancy in Cross-Product Calculation

Initially, sa and sb are n-dimensional vectors, and their cross-product yields an n×n

matrix. The ring product operation involves two such cross-products. However, by

exploiting the matrix properties (AT)T = A and (AB)T = BT AT , it can be seen that

sasT
b = (sbsT

a)
T . Thus, only one cross-product needs to be computed. Furthermore,

since the cross-product involves only two elements at a time to produce a single element

of the result, the computation can be performed on the fly, eliminating the need to create

Chapter 4. Optimisations 30

a temporary n×n matrix. However, this introduces a complication with the reduced

covariance structure. The linear aggregate sb is of size m, where m ⊂ n, their outer

product would be of incorrect length. Creating a temporary array to scale it to size n

would add unnecessary computational costs. Therefore, an algorithm was devised to

calculate the product without generating a temporary array. Since a matrix is being

element-wise added with its transpose, the result will be a symmetric matrix. This

makes the upper triangle along the primary diagonal, redundant.

Considering all of the above points only sbsT
a is computed. When its transpose is taken,

the upper triangle becomes the lower triangle. Now, when sbsT
a and (sbsT

a)
T are summed

up, the lower triangle of the final result is the sum of the lower triangle of sbsT
a and the

mirror image of its upper triangle. As both halves function differently, the computation

is divided into two parts - 1) computing the lower triangle, adding it to the result and

2) computing the upper triangle, swapping its index and adding in the result. During

iteration, since sb is smaller, the missing variable is assumed to be zero. Thus, in the

cross-product, the respective rows contribute nothing to the computation and can be

disregarded. This allows iteration over sb using pointer i, while the product is computed

with elements of sa one at a time and added to the row given by the ’globalMap’ (say

k) instead of the ith index. Further, instead of iterating over sa only until ith index,

iteration will continue until globalMap[i] as in the final covariance matrix, kth attribute

needs to have covariances with first k attributes. The pseudo-code for the algorithm can

be referenced in Algorithm 4.

4.5 Delayed and Combined Lifting

One of the main issues with F-IVM is that during ingestion, it maps keys (tuples) to

the payload 1 from the Ring, as discussed in Section 4.1. This payload, represented

as (1,0m,0m×m), essentially stores nothing but consumes memory on the order of

O(1+m+m× (m+ 1)/2). Initially, since no operations exist in the tables, the first

operator stores the entire payload in its state, leading to significant memory usage.

However, as this payload is the ring’s multiplicative identity, when the first lifting

variable merges with it via the ring product operation, the result is just the lifted value

itself. This suggests that assigning such a payload is unnecessary. Consequently, the first

marginalization operation was modified to not expect any existing payload, resulting in

memory improvements on the order of O(m2t) where t is number of tuples.

Further, in the original view tree algorithm, each view marginalizes one variable at a

Chapter 4. Optimisations 31

time. However, with the compression optimization, a view now marginalizes multiple

variables simultaneously. Thus, Lifting each variable individually can create large

intermediate structures, which are later merged to form a single structure representing

covariances. Now, each lifting operation can be seen as finding covariances of a dataset

consisting of only a single feature. Similarly, all these variables can be taken together

as one dataset and covariances can be computed afterwards. Thus, we alter the Ring

product function to accept any number of arguments, if those are variables to be lifted

then a count function is applied to find the constant of our covariance structures, ’sum’

operation is applied, to each variable independently, to get an array of sums i.e. linear

aggregates and lastly, the covariance matrix is calculated using the covariance formula

Cov(X ,Y) = 1
n ∑

n
i=1 Xi ∗Yi (with division at the time of linear regression operation).

In DBToaster’s original F-IVM implementation, the recommended approach was to

maintain a HashMap of keys and payloads. This project, however, incorporates the

payload directly into the rows themselves. Since Flink creates new rows after every

operation, adding the payload does not incur additional costs and avoids the overhead

of accessing and storing the HashMap. This approach also aligns with Flink’s multi-

threaded nature, where operators cannot share states with one another.

4.6 A New Query Planning Strategy

A marginalization operation involves three key steps: lifting the variable to produce a

Ring element, merging this element with the tuple’s payload, and performing aggrega-

tion and grouping. Consider a scenario where a batch of n variables is marginalized in

the initial operation. The new Ring element will then have a size of O(1+n+n× n+1
2).

Further, If the grouping operation produces g groups, instead of saving O(gn) by remov-

ing attributes, the operation results in an increase of O(g×n× (n+1)/2). Therefore, if

memory usage is a concern, the following formula can be used at each marginalization

step to assess its advantage:

cost1 + cost2 < r1 ∗ (n1 + f1)+ r2 ∗ (n2 + f2)

where cost1 = g1 ∗ (1+n1 +n1 ∗ (n1 +1)/2+ f1),

cost2 = g2 ∗ (1+n2 +n1 ∗ (n1 +2)/2+ f2)

where for stream i: gi = |groups| ni = |marginalized variables| fi = |free variables|
ri = |rows|. The formula is based on the intuitive idea that after marginalization, each

stream produces a tuple with a size equal to the sum of the covariance structure and

Chapter 4. Optimisations 32

the remaining attributes. Now, since a join operation is involved, both outputs will

have to be stored. Instead, if no group by operation is performed, both inputs will be

stored. Thus, the size of states is compared in both scenarios, with the benefit essentially

depending on how many groups the group-by operation produces. However, by not

pushing down the aggregation, any underlying cartesian products can cause the result to

become costly, thus it should also be a consideration. In our case, this is not an issue

because we use equi-joins.

As can be seen in the UML of the variable orders, each node has a STOPPUSHDOWN

flag. After analysis, the end user can set this flag to True, instructing the system not to

perform the group-by operation on the children below.

4.7 Multi-Threading

Apache Flink is a framework designed to handle data streams at any scale, making it a

distributed processing engine by nature. Flink executes each operator in a job graph on

an independent Java thread, which enables parallelism and distribution across multiple

machines. To be precise, rather than assigning a thread to each operator, it assigns

a thread to each Task, where a task is a combination of operators that are executed

sequentially. Often, a stateless operator succeeds a stateful one and since stateless

transformations are usually lightweight, Flink merges two or more operators to increase

throughput by reducing thread-to-thread handover and buffering. This project availed

the benefits of this by dividing our custom operator (Section 4.2) into a compression

operation and the main operator. The compress operation is defined using the stateless

‘MapFunction‘, which allows merging payloads and reducing transmission size. Further,

by being stateless, it gets chained to previous operations providing more savings.

Flink also introduces parallelism by splitting operators into operator subtasks, allowing

stream partitions to be processed independently. Operators like ‘KeyBy‘ partition a

stream into sub-streams, each handled by different threads. However, there are cases

where an operator should be divided into only a limited number of instances. This

can be controlled by explicitly setting the parallelism level of the operator. In this

project, operator parallelism was carefully configured for accuracy. For instance, the

final custom group-by/join operator was set to a parallelism of one to ensure correct

covariance calculations, with various levels tested to balance performance, as discussed

in the next chapter.

Chapter 5

Evaluation

This section provides a thorough evaluation of the proposed methodology for integrating

F-IVM strategies within Apache Flink. Its primary objective is to evaluate the effec-

tiveness, performance, and scalability of F-IVM in real-time data stream processing

through a series of experiments on Flink V1.19.1.

These experiments are performed on a machine with 64 threads on 3 datasets -

The Housing [32] dataset, which is structured in a Star Schema, consists of six relations:

House, Shop, Institution, Restaurant, Demographics, and Transport, with a single join

variable and 26 non-join variables. The results are computed using a variable order

where each path includes variables from only one relation, except at the root, where all

paths intersect on a join variable.

Next, the TPC-H [15] dataset, originally created for the industry-standard TPC-H

benchmark, includes eight relations: Lineitem, Orders, Customer, Nation, Region,

Partsupp, Part, and Supplier, organized in a Snowflake schema. However, given that the

dataset initially had one-to-many relations with joins primarily on keys, it did not benefit

from pushdown operations. Thus, to adapt this dataset for the experiments, it is first

generated via dbgen [16] with a scale factor of 0.5 and later scaled up by duplicating

the dimension tables. However, later the number of attributes were reduced from 53 to

37 to minimize computational requirements (refer to Section 5.1). Lastly, the variable

order (Appendix A.2) was created according to intuition in 4.6, which resulted in a 10%

reduction in the number of intermediate tuples and 20% in execution time.

Finally, SSB [29], a dataset based on TPC-H but adapted for Star Schema, consists of 5

tables - Customer, Dates, Lineorder, Part, Supplier. This was generated using ssb-dbgen

[30] with a scale factor of 2. Similar to TPC-H, it faced the same challenges and was

treated with the same duplication strategy and reduction of attributes from 54 to 37.

33

Chapter 5. Evaluation 34

Here also, the variable order was chosen with a similar strategy as for TPC-H (Appendix

A.2.2).

Lastly, two restrictions were applied to these experiments. First, the focus was solely di-

rected towards covariance matrix computation, as the Linear Regression sub-pipeline is

common across all methods and is usually fine-tuned according to specific requirements,

such as placement on different machines capable of GPU-based computing. Addition-

ally, since these datasets are synthetic, the learned parameters either way would not

be representative of real-world scenarios. Second, these experiments were performed

with Mini-Batching turned off, which is a feature that is used to remove redundant pairs

of data (Section 6.1). Since it offers general improvements, Mini-Batching could be

applied to any pipeline containing an aggregation operation, thus uniformly reducing

the number of records across all 3 methods. Further, since F/SQL and F-IVM produce

the same number of tuples, the effect will be the same for both. Consequently, the

timing data is presented only for comparison purposes and is not indicative of the extact

execution time. So, it should only be used as a measure of the ratio of improvement.

To answer the research questions, the experiments are divided into two categories -

Comparison with other implementations and Multi-threading.

5.1 Comparison With Other Implementations

This section addresses RQ1 by comparing our implementation of F-IVM with both a

Naive approach and F/SQL [32] across the three datasets. Alongside F-IVM, we also

implemented F/SQL as a sub-project to serve as a benchmark for comparison. F/SQL,

like F-IVM, leverages the symmetric and distributive properties of the covariance matrix

to generate SQL queries with primitive aggregation functions, thus, benefiting from

query optimization techniques such as pushdown operations. This makes F/SQL the

closest competitor to the F-IVM approach. In contrast, the Naive implementation

is very different as it computes the covariance matrix only after the join operation.

Housing SSB TPC-H

Naive 15.34 s 35.26 min 28.97 min

F/SQL 34.24 s 91 min - 65% 24.22 min

F-IVM-Flink 7.16 s 6.57 min 2.26 min

Figure 5.1: Performance on three datasets

Table 5.1 presents a com-

parison of the Job comple-

tion time for three methods.

As can be seen, F-IVM sig-

nificantly outperforms the

other methods. Surprisingly,

F/SQL fared even worse than Naive implementation. This could be attributed to the

Chapter 5. Evaluation 35

fact that F/SQL contain a quadratic number of aggregates which Flink then maintains

in separate states, resulting in increased state access times. This, combined with the

exponential number of records generated by each group-by operator update (Section

6.1), leads to slower computation and hence, lower throughput. While F-IVM also faces

this issue, it incurs significantly lower computational overhead due to the use of ring

payloads and other optimizations (Chapter 4), resulting in orders of magnitude higher

throughput (Fig. 5.5). On the other side, the Naive approach also enjoys a significantly

higher throughput, however since it needs to perform computations on the join results,

the gained performance is negated by the large number of tuples needed to be processed.

In contrast, F/SQL fairs better in TPC-H due to the lower number of tuples, which

reduces intermediate tuples to 1/3rd.

It is also worth highlighting that, in the case of F/SQL, the Job Graph creation is a very

expensive process, consuming up to 30 minutes (for 51 attributes) to even begin the

task and sometimes failing altogether. Thus, the number of features was reduced to 37,

even after which it took a few minutes. In contrast, both the Naive approach and F-IVM

create their job graphs in seconds. This substantial overhead for F/SQL arises from the

quadratic number of aggregates in each query, which exponentially increases the plan

search space and complicates the job graph generation.

The trend observed in job completion time is also reflected in heap usage (Fig. 5.2).

Although both F-IVM and F/SQL handle the same number of aggregate computations,

F-IVM performs much better and is closer to the Naive implementation. Initially, both

F/SQL and F-IVM shared a common issue discussed in Section 4.2, where the group-by

and join operators stored their states independently, despite containing the same data.

However, by introducing a custom join operator and storing the payload in a primitive

format, Flink’s memory usage decreased significantly. This problem of duplicacy is

exacerbated by redundant tuples, leading to sudden memory peaks, which represent

intermediate storage used during computation. Since F/SQL already consumes more

memory, sudden peaks can cause out-of-memory errors. In comparison, the Naive

implementation had the least memory usage as it does not suffer from this problem due

to not involving aggregation operations. However, particularly in the case of the TPCH

dataset, it consumed significantly more heap space than F/SQL itself. Unsurprisingly,

the minima are still the least amongst all three due to the same reasoning as above.

Meanwhile, the peaks shoots up due to the high throughput of the join operations that

delay garbage cleaning of the intermediate covariance matrices. This issue is only

visible in TPC-H dataset as it produces 211 million rows from a join of 5 million rows,

Chapter 5. Evaluation 36

Figure 5.2: Heap Usage (GB) of the three algorithms for Housing, SSB and TPC-H

Dataset

Chapter 5. Evaluation 37

a factor 38.77 times while SSB scales by 14.76 times. Lastly, F-IVM depicted better

improvements in TPC-H, as compared to other datasets, due to the use of variable order

which produced a better query plan than Flink’s own query planner [Appendix: A.2.3].

To summarise, F-IVM outperforms the other methods in terms of throughput and

processing time, though it incurs a comparatively small memory cost but still significant

compared to the Naive implementation. For instance, SSB originally is 2 GB in size

while F-IVM consumes 8̃0GB for computation. However, this is much better than

storing the entire join result, which would have been >200GB.

5.2 Multi-Threading

This section addresses RQ2 and RQ3 by exploring the performance improvements from

increasing the number of cores. The experiments were conducted using the taskset

instruction to restrict CPU affinity. Additionally, since Apache Flink creates instances

of an operator based on the number of task slots in the task managers, the number of task

slots was matched to the number of cores.

Housing SSB TPC-H

1 25.33 s 51.03 min 29.56 min

2 18.52 s 63.09 min 23.84 min

4 11.15 s 20.98 min 10.82 min

8 8.49 s 12.37 min 3.80 min

16 7.21 s 9.57 min 2.68 min

32 6.98 s 7.18 min 2.28 min

64 7.3 s 6.57 min 2.26 min

Figure 5.3: Performance with different parallelism

As apparent from Table 5.3, the im-

plementation scales effectively from

a single core version to 64 cores, cre-

ating an improvement of 3.6, 7.8,

and 13.0 times for Housing, SSB &

TPCH datasets (respectively). How-

ever, the performance gains appear to

plateau when moving from 32 cores

to 64 cores. Upon further investiga-

tion, it was found that this depends

significantly on the data as well as the hardware.

By the nature of the distributed processing, there’s always a requirement for a single-

threaded aggregator that collates all the parallel partial computations, which in our case

is the final group-by operator (Fig. 4.1). It had 100% utilization of the assigned CPU

core but still was not able to keep up with the influx of tuples caused by the increase in

parallelism of the previous operators. Thus, it started producing backpressure to slow

down the input. Therefore signifying the importance of single-core performance.

To assess the increase in performance of the preceding operator due to an increase

in parallelism without the bottleneck operators, experiments were conducted after re-

Chapter 5. Evaluation 38

moving the last aggregation operator and with a parallelism of 32. This analysis, as

shown in Figure 5.4, reveals that after the initialization phase, all the operators were not

under 100% load, implying low usage even with 32 cores. Consequently explaining

why a move towards 64 cores didn’t yield improvements. Surprisingly, at first look the

Housing dataset seems to disobey the trend. However, the resulting graph is only like

such because the task duration was small enough that all operators finished during the

initialization phase itself, which itself becomes longer due to the increase in parallelism.

Finally, since Flink assigns one operator instance to one core and one or more groups to

one operator instance, thus to optimally use multithreading, it is essential that the load

is well-distributed across the operators i.e. all groups should have a similar number of

tuples. In our case the standard deviation of load across all the operators is very low

(Appendix: A.3) which reinforces that 32 cores is the final limit for these datasets.

Figure 5.4: Mean busy times

(ms per sec) for each operator

Figure 5.5: Throughput comparison

across the 3 datasets

Chapter 6

Conclusion

This project was undertaken with the vision of reducing the overhead incurred on the

stream processing side to train machine learning models using join operations. The

focus was primarily on eliminating redundant computations that arise from joining and

aggregating multiple data streams and secondarily, on removing redundant computa-

tions within the core logic of linear regression. The former was achieved by porting

concepts of the Factorised-Incremental View Maintenance framework, while the latter

was achieved by using covariance matrices to reduce the iterations over the data.

The project initially explored implementation using the Table-API and User-Defined

Functions (UDFs). However, due to limitations such as high memory usage and less

freedom in the implementation of UDFs, the project moved to the DataStream API,

which allowed for greater flexibility. Herein, a custom join/group-by operation was

created and many other optimizations such as reducing the payload size, sequential

access, delaying and combining lifting operations etc were made. Throughout the

project as minute things as the datatypes were carefully selected to reduce the overhead.

This transition improved performance significantly but required manual implementation

of many features, some of which had to be left for future work ex mini-batching.

The experimentation consisted of 3 datasets - Housing, TPC-H and SSB. All vary either

in size, attributes or schema. These experiments depicted significant improvements in

terms of memory pressure and execution time. Surprisingly, though Naive generally had

lower constant memory required, in some cases its intermediate consumption peaked

even above the rest of the two. The F-IVM-Flink had mostly limited peaks, while

F/SQL had the highest minimas indicating that its intermediate results are larger in size

(in case the Mini-Batching feature is disabled). Despite the significant improvements, it

can be concluded that the streaming process inherently is a very expensive operation in

39

Chapter 6. Conclusion 40

terms of memory requirement due to intermediate results being required to be stored at

every join/group-by operation, consuming memory up to 20 times the dataset.

Lastly, in terms of scalability, the performance increased significantly creating up to

13x improvements. However, there exists a plateau at 32 cores, which on further in-

vestigation revealed that the system was already easily handling the data with 32 cores

which obviously means increasing core count further will not be beneficial. It was also

discussed how data needs to be well-balanced across groups to gain from increasing

core counts. Further experimentation revealed a limitation around the last aggregation

operation, where the results from all the pipelines are merged together. For now, this

last operator can only be processed by a single thread and thus has an upper limit on

how many tuples it can process.

Despite these limitations, the system demonstrated major improvements and is ex-

pected to continue improving once the enhancements discussed in the next section are

implemented.

6.1 Future Work

Throughout the execution of this project, multiple areas of improvement were identified.

Most prominent being mini-batching, more particularly the concept of Folding.

Folding is a technique that uses a buffer to detect and disregard UPDATE AFTER

requests that are followed by UPDATE BEFORE requests. This situation often arises

when an update to a group is quickly followed by another update to the same group.

Since each update carries the full payload rather than just the deltas, the initial update

request can be ignored, which saves a pair of UPDATE BEFORE and UPDATE AFTER,

each of which further creates 2 more records, thus creating exponentially many requests.

Hence, this implementation can save a significant amount of requests.

making it difficult to identify the necessary changes for the next operator. To address

this, a retraction request is typically made to clear the state of the following operator.

However, exploring the pattern of ring product operations could allow the system to

send only delta-updates, eliminating the need for UPDATE BEFORE.

Finally, as noted in the section 5.2, the last aggregation operation presents a significant

bottleneck in Group-By implementations. In Flink, this operation essentially computes

just the element-wise sum. A custom multithreaded operator could be developed to

distribute certain partitions across different threads, though the challenge would lie in

rejoining them. To manage this, order metadata would need to be appended.

Bibliography

[1] Abadi, D. J., Ahmad, Y., Balazinska, M., et al. : The Design of the borealis

stream processing engine. In: CIDR, pp. 277–289 (2005).

[2] Akidau, T., Balikov, A., Bekiroglu, K., et al. : Millwheel: fault-tolerant stream

processing at internet scale. PVLDB. 6(11), pp. 1033–1044 (2013).

[3] Anderson, M., Feil, T. : A first course in abstract algebra: rings, groups, and

fields. Chapman and Hall/CRC (2005).

[4] Armbrust, M., Xin, R. S., Lian, C., et al. : Spark SQL: relational data processing

in spark. In: SIGMOD, pp. 1383–1394 (2015).

[5] Bakibayev, N., Kočiský, T., Olteanu, D., Závodný, J. : Aggregation and

ordering in factorised databases. PVLDB. 6(14), 1990–2001 (2013).

[6] Bifet, A., Gavalda, R., Holmes, G., Pfahringer, B. : Machine learning for data

streams: with practical examples in moa. MIT press (2023).

[7] Bishop, C. M. : Pattern recognition and machine learning. Springer (2006).

[8] Brown, P. G. : Overview of SciDB: large scale array storage, processing and

analysis. In: SIGMOID, pp. 963–968 (2010).

[9] Buneman, P., Clemons, E. K. : Efficiently monitoring relational databases. ACM

Trans. Database Syst. 4(3), pp. 368–382 (1979).

[10] Carbone, P., Katsifodimos, A., Ewen, S., et al. : Apache Flink™: Stream and

Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38(4), pp. 28–38

(2015).

41

BIBLIOGRAPHY 42

[11] Carney, D., Çetintemel, U., Cherniack, M., et al. : Monitoring streams - a new

class of data management applications. In: PVLDB, pp. 215–226 (2002).

[12] Chandramouli, B., Goldstein, J., Barnett, M., et al. : Trill: a high-performance

incremental query processor for diverse analytics. In: PVLDB, pp. 401–412

(2014).

[13] Chirkova, R., Yang, J. : Materialized views. Found. & Trends in DB. 4(4),

pp. 295–405 (2012).

[14] Community, D.: Debezium. Accessed: 2024-08-15. 2024. URL: https : / /

debezium.io/.

[15] Council, T. P. P.: TPC Benchmark™ H (TPC-H) Standard Specification, Revision

2.17.3. http://www.tpc.org/tpch/. Last accessed on 2024-08-26. 2021.

[16] Electrum, Tpc-h tools. https://github.com/electrum/tpch-dbgen. Ac-

cessed: 2024-08-23. 2024.

[17] Gupta, A., Mumick, I. S., Subrahmanian, V. S. : Maintaining views incremen-

tally. In: SIGMOID, pp. 157–166 (1993).

[18] Hellerstein, J. M., Ré, C., Schoppmann, F., et al. : The MADlib analytics

library: or mad skills, the sql. PVLDB. 5(12), 1700–1711 (2012).

[19] Kara, A., Nikolic, M., Olteanu, D., Zhang, H. : F-IVM: analytics over relational

databases under updates. VLDB J. 33(4), pp. 903–929 (2023).

[20] Khamis, M. A., Ngo, H. Q., Rudra, A. : FAQ: questions asked frequently. In:

PODS, pp. 13–28 (2016).

[21] Koch, C., Ahmad, Y., Kennedy, O., et al. : DBToaster: higher-order delta

processing for dynamic, frequently fresh views. VLDB J. 23(2), pp. 253–278

(2014).

[22] Kulkarni, S., Bhagat, N., Fu, M., et al. : Twitter Heron: stream processing at

scale. In: SIGMOID, pp. 239–250 (2015).

BIBLIOGRAPHY 43

[23] Kumar, A., Naughton, J., Patel, J. M. : Learning generalized linear models over

normalized data. In: SIGMOD, pp. 1969–1984 (2015).

[24] Madden, S. R., Franklin, M. J., Hellerstein, J. M., Hong, W. : TinyDB:

an acquisitional query processing system for sensor networks. TODS. 30(1),

122–173 (2005).

[25] Murray, D. G., McSherry, F., Isaacs, R., et al. : Naiad: a timely dataflow system.

In: SOSP, pp. 439–455 (2013).

[26] Neumeyer, L., Robbins, B., Nair, A., Kesari, A. : S4: distributed stream

computing platform. In: ICDW, pp. 170–177 (2010).

[27] Ngo, H. Q., Ré, C., Rudra, A. : Skew strikes back: new developments in the

theory of join algorithms. SIGMOD Rec. 42(4), pp. 5–16 (2014).

[28] Olteanu, D., Závodný, J. : Size bounds for factorised representations of query

results. TODS. 40(1), 2:1–2:44 (2015).

[29] O’Neil, P., O’Neil, E., Chen, X. : The Star Schema Benchmark and Augmented

Fact Table Indexing. In: TPCTC, pp. 237–252 (2009).

[30] Rozenberg, E.: Ssb-dbgen: star schema benchmark data set generator. https:

//github.com/eyalroz/ssb-dbgen.git. Version 1.0. 2024.

[31] Schleich, M., Olteanu, D., Abo Khamis, M., Ngo, H. Q., Nguyen, X. : A

layered aggregate engine for analytics workloads. In: SIGMOD, pp. 1642–1659

(2019).

[32] Schleich, M., Olteanu, D., Ciucanu, R. : Learning linear regression models

over factorized joins. In: SIGMOID, pp. 3–18 (2016).

[33] Shin, S., Sanders, G. L. : Denormalization strategies for data retrieval from data

warehouses. Decis. Support Syst. 42(1), pp. 267–282 (2006).

[34] Shmueli, O., Itai, A. : Maintenance of views. In: SIGMOID, pp. 240–255

(1984).

BIBLIOGRAPHY 44

[35] The PostgreSQL Global Development Group, Postgresql. Accessed: 2024-08-19.

2024. URL: https://www.postgresql.org/.

[36] Tsymbal, A. : The problem of concept drift: definitions and related work. SCSS.
106(2), p. 58 (2004).

[37] Wang, Q., Zuo, D., Zhang, Z., Chen, S., Liu, T. : SepJoin: a distributed stream

join system with low latency and high throughput. In: ICPADS, pp. 633–640

(2022).

[38] Zhao, W., Rusu, F., Dong, B., Wu, K., Nugent, P. : Incremental view mainte-

nance over array data. In: SIGMOD, pp. 139–154 (2017).

Appendix A

First appendix

A.1 Specifications

This section covers the detailed specifications about the configuration of the machine

and the dataset used to perform the experiments.

A.1.1 Machine

The project utilized the University of Edinburgh’s DICE system to gain access to one

of their compute machines. This machine consisted of 2 CPUs attached in NUMA

configuration with 540GB of memory in total. Each of these CPUs had the following

configuration:-

Specification Details

Model AMD EPYC 7302

Cores 16

Threads 32

Base Clock 3.0 GHz

Boost Clock 3.3 GHz

L3 Cache 128 MB

TDP 155 W

Process Technology 7 nm

Table A.1: Basic Specifications of the used CPU

45

Appendix A. First appendix 46

A.1.2 Dataset

The project worked with 3 datasets, namely - Housing, TPC-H and SSB datasets. The

following table provides further information.

Dataset #Tuples #Relations #Join Vars #Non-Join Vars

Housing 1.6M 6 1 26

SSB 192M 5 4 33

TPC-H 211M 8 6 31

Table A.2: Description about the 3 dataset used

A.2 Job Graphs

This section presents the final Job Graphs created by all three techniques for all three

datasets. The Job graphs for F-IVM-Flink closely replicate the Variable orders. Thus,

can be used to deduce the variable orders.

A.2.1 Housing dataset

Figure A.1: Job Graph Created by the Naive algorithm for the Housing dataset

Figure A.2: Job Graph Created by the F/SQL algorithm for the Housing dataset

Appendix A. First appendix 47

Figure A.3: Job Graph Created by the F-IVM-Flink algorithm for the Housing dataset

A.2.2 SSB dataset

Figure A.4: Job Graph Created by the Naive algorithm for the SSB dataset

Figure A.5: Job Graph Created by the F/SQL algorithm for the SSB dataset

Figure A.6: Job Graph Created by the F-IVM-Flink algorithm for the SSB dataset

A.2.3 TPC-H dataset

Figure A.7: Job Graph Created by the Naive algorithm for the TPC-H dataset

Appendix A. First appendix 48

Figure A.8: Job Graph Created by the F/SQL algorithm for the TPC-H dataset

Figure A.9: Job Graph Created by the F-IVM-Flink algorithm for the TPC-H dataset

A.3 Standard Deviations

This section presents the standard deviation between the time that each sub-task of

operators spends computing per second. As discussed earlier, all operators are not under

full load except the Housing dataset, however, since it’s a small dataset, it gets processed

very close to the initial phase itself. Since the values are very low, this implies that the

load is well-balanced within an operator.

Appendix A. First appendix 49

Figure A.10: Standard Deviation of all the operators for the Housing dataset with

parallelism of 64

Figure A.11: Standard Deviation of all the operators for the SSB dataset with parallelism

of 64

Appendix A. First appendix 50

Figure A.12: Standard Deviation of all the operators for the TPC-H dataset with paral-

lelism of 64

Figure A.13: Standard Deviation of all the operators for the Housing dataset with

parallelism of 32

Appendix A. First appendix 51

Figure A.14: Standard Deviation of all the operators for the SSB dataset with parallelism

of 32

Figure A.15: Standard Deviation of all the operators for the TPC-H dataset with paral-

lelism of 32

Appendix A. First appendix 52

A.4 Mean

This section presents the mean values for the time that each operator spends computing

per second. As discussed earlier, all operators are not under full load except the Housing

dataset, however, since it’s a small dataset, it gets processed very close to the initial

phase itself.

Figure A.16: Mean busy time (ms per s) of all the operators for the Housing dataset with

parallelism of 64

Appendix A. First appendix 53

Figure A.17: Mean busy time (ms per s) of all the operators for the SSB dataset with

parallelism of 64

Figure A.18: Mean busy time (ms per s) of all the operators for the TPC-H dataset with

parallelism of 64

Appendix A. First appendix 54

Figure A.19: Mean busy time (ms per s) of all the operators for the Housing dataset with

parallelism of 32

Figure A.20: Mean busy time (ms per s) of all the operators for the SSB dataset with

parallelism of 32

Appendix A. First appendix 55

Figure A.21: Mean busy time (ms per s) of all the operators for the TPC-H dataset with

parallelism of 32

A.5 Algorithms

This section presents the pseudocode for the algorithms mentioned in the previous

sections.

Appendix A. First appendix 56

Algorithm 1 View Tree Construction Algorithm
1: function CONSTRUCT(w,F,ancestors)

2: if w.isRelation then
3: node← new ViewTree()

4: node.relations←{w.relations[0]}
5: node.id← ”R[”+w.relations[0]+ ”]”

6: return node

7: end if
8: node← new ViewTree(w.variableName if |w.children|> 1 else /0)

9: node.id← ”V at ”+w.variableName+ ” ”+ join(w.relations)

10: R← /0

11: for all child ∈ w.children do
12: ancestorsClone← Clone(ancestors)

13: for all r ∈ w.relations do
14: ancestorsClone[r]← ancestorsClone[r]∪{w.variableName}
15: end for
16: childNode← Construct(child,F,ancestorsClone)

17: childNode.parent← node

18: node.children← node.children∪{childNode}
19: R← R∪ child.relations

20: node.variablesBelowMe←
node.variablesBelowMe∪childNode.variablesBelowMe

21: if childNode.marginalizedVariables ̸= /0 then
22: node.variablesBelowMe←

node.variablesBelowMe∪ childNode.marginalizedVariables

23: end if
24: end for

Appendix A. First appendix 57

25: if |w.children|> 1 then
26: node.isJoin← True

27: end if
28: K←

⋃
child∈node.children child.freeVariables

29: L← K

30: if w.shouldStopPushdown then
31: K← K∪{w.variableName}
32: else
33: K← K∩F

34: end if
35: K← K∪getDeps(w,ancestors)

36: L← L\K

37: node.freeVariables← List(K)

38: node.targetVariables←{w.variableName}
39: node.relations← List(R)

40: if ¬w.shouldStopPushdown∧w.variableName /∈ F then
41: L← L∪{w.variableName}
42: node.marginalizedVariables← List(L)

43: end if
44: if |node.children|= 1∧¬node.children[0].doesRepresentARelation() then
45: child← node.children[0]

46: if child.isJoin then
47: node.children←{child}
48: else
49: node.marginalizedVariables←

node.marginalizedVariables∪child.marginalizedVariables

50: node.targetVariables← node.targetVariables∪ child.targetVariables

51: if |node.children|> 1 then
52: node.relations← node.relations∪ child.relations

53: end if
54: node.children← node.children∪ child.children

55: end if
56: end if
57: return node

58: end function

Appendix A. First appendix 58

59: function GETDEPS(w,ancestors)

60: Rs← /0

61: Q← Queue()

62: Q.add(w)

63: while ¬Q.isEmpty() do
64: current← Q.remove()

65: Rs← Rs∪ current.relations

66: if ¬current.isRelation then
67: Q.addAll(current.children)

68: end if
69: end while
70: Rs← Rs∩ ancestors.keySet()

71: deps← /0

72: for all r ∈ Rs do
73: deps← deps∪ ancestors[r]

74: end for
75: return deps

76: end function

Appendix A. First appendix 59

Algorithm 2 Constructing Delta Tree for Stream Processing
1: function CONSTRUCTTREE(τ,r,attributeIdx, tEnv)

2: if τ represents a relation then
3: Create a new node node of type DeltaTreeForStream

4: node.stream← TODATASTREAM(r[τ.relations[0]+ ”Streamed”].stream)

5: return node

6: end if
7: deltaTree← DELTATREEFORSTREAM(τ)

8: deltaTree. f reeVariables← τ. f reeVariables

9: Initialize localToGlobalAttributeMapping←{}
10: Initialize attrIdxInCurrContext←{}
11: idxForAttrIdxInCurrContext← 0

12: for all attr ∈ τ.marginalizedVariables do
13: attrIdxInCurrContext[attr]← idxForAttrIdxInCurrContext++

14: end for
15: for all attr ∈ τ.variablesBelowMe do
16: attrIdxInCurrContext[attr]← idxForAttrIdxInCurrContext++

17: end for
18: hasDeltaChild← f alse

19: childIdx← 0

20: for all child ∈ τ.children do
21: hasDeltaChild← true

22: Initialize localAttributeIdx←{}
23: if child.marginalizedVariables ̸= null then
24: currChildVariablesToIndex←

SORTEDSET(child.variablesBelowMe.marginalizedVariables)

25: currLocalToGlobalMapping←
new array of size |currChildVariablesToIndex|

26: idx← 0

27: for all var ∈ currChildVariablesToIndex do
28: if var ∈ child.marginalizedVariables then
29: localAttributeIdx[var]← idx

30: end if
31: currLocalToGlobalMapping[idx++]←

attrIdxInCurrContext[var]

32: end for
33: localToGlobalAttributeMapping[childIdx]←

1.5emcurrLocalToGlobalMapping

34: end if

Appendix A. First appendix 60

35: streamingChild← CONSTRUCTTREE(child,r, localAttributeIdx, tEnv)

36: Add streamingChild to deltaTree.children

37: childIdx++

38: end for
39: if hasDeltaChild then
40: deltaTree.stream←CREATEDELTAVIEW(deltaTree,attrIdxInCurrContext,

localToGlobalAttributeMapping, |attrIdxInCurrContext|, tEnv)

41: end if
42: return deltaTree

43: end function

44: function CREATEDELTAVIEW(root,attributeIdx, localToGlobalAttributeMapping,

noO f Features, tEnv)

45: tablesToJoin← [child.id for each child ∈ root.children]

46: if |root.children|= 1 then
47: stream← root.children[0].stream

48: else
49: stream← root.children[0].stream

50: f reeVariables1← root.children[0]. f reeVariables

51: for i← 1 to |root.children|−1 do
52: stream← stream.keyBy(new JoinKeySelector(root. joinVariable))

53:

54: stream← stream.connect(

root.children[i].stream.keyBy(new JoinKeySelector(root.joinVariable))

)
55: stream← stream. f latMap(

new UDFsForStream.customJoinAndGoupBy(

root.joinVariable, freeVariables1, root.children[i].freeVariables, i

))
56: f reeVariables1← null

57: end for
58: end if
59: stream← stream.map(new MarginalisationFirstHalf(

root.marginalizedVariables,root. f reeVariables, |root.children|,attributeIdx,

localToGlobalAttributeMapping,noO f Features))

60: return stream

61: end function

Appendix A. First appendix 61

Algorithm 3 Custom Join and GroupBy Operation
1: Input:

row: New tuple from either stream

out: Collector to output results

stateForTable1: MapState for table 1

stateForTable2: MapState for table 2

groupByAttributes: Optional group-by attributes

isLeft: Boolean flag indicating the left table

2: Initialization:
3: myMappedValueName ← if isLeft then ”mappedValue” else ”mappedValue” +

indexFor2ndTable

4: otherSideMappedValueName←if isLeft then ”mappedValue”+ indexFor2ndTable

else ”mappedValue”

5: key← Concatenate relevant attributes of row

6: inputRowKind← row.getKind()

7: row.setKind(INSERT)

8: oldMappedValue← stateForTable1.get(key).getField(”mappedValue”) if exists

9: leftHalf← Row with selected attributes from row

10: rightHalf←{}
11: while otherSideRow← stateForTable2.values().next() do
12: output← Row with fields from otherSideRow

13: if groupByAttributes ̸= null and oldMappedValue ̸= null then
14: output← join(output, leftHalf)

15: output.setField(myMappedValueName, oldMappedValue)

16: output.setKind(UPDATE BEFORE)

17: out.collect(output)

18: end if
19: rightHalf.add(output)

20: end while
21: if groupByAttributes==null and oldMappedValue==null and isRe-

tract(inputRowKind) then
22: throw Error: “Retraction for unseen tuple in Join operation.”

23: end if

Appendix A. First appendix 62

24: Update oldMappedValue:

25: if groupByAttributes ̸= null then
26: incomingMappedValue← row.getField(”mappedValue”)

27: if oldMappedValue = null then
28: oldMappedValue← new accumulator array

29: end if
30: if isRetract(inputRowKind) then
31: UDFsForStream.ringSum.retract(

oldMappedValue, incomingMappedValue)

32: else
33: UDFsForStream.ringSum.accumulate(

oldMappedValue, incomingMappedValue)

34: end if
35: newMappedValue← oldMappedValue

36: leftHalf.setField(”mappedValue”, newMappedValue)

37: stateForTable1.put(key, Row.copy(leftHalf))

38: else
39: if isRetract(inputRowKind) then
40: stateForTable1.remove(key)

41: else
42: stateForTable1.put(key, Row.copy(leftHalf))

43: end if
44: end if
45: if !isLeft then
46: leftHalf.setField(myMappedValueName, leftHalf.getField(”mappedValue”))

47: end if
48: for all rowTable2 ∈ rightHalf do
49: output← join(leftHalf, rowTable2)

50: output.setKind(UPDATE AFTER if groupByAttributes else inputRowKind)

51: out.collect(output)

52: end for

Appendix A. First appendix 63

Algorithm 4 Compute Cross-Correlation for Quadratic Aggregates
1: function COMPUTECROSSCORRELATION(a,b,stA,endA,stB,endB,res,g)

2: Input:
3: a: Covariance structure a

4: b: Covariance structure b

5: stA, endA: Start and end+1 indices of linear aggregates in a
6: stB, endB: Start and end+1 indices of linear aggregates in b
7: res: Covariance structure storing the result of the Ring product operation

8: g: Mapping of indices of attributes in child covariance structure to those of

parents

9: aLen← endA− stA

10: o f f set← 1+aLen

11: bLen← endB− stB

12: for i← 0 to bLen−1 do
13: mappedIdx← g[i]

14: f lattendedRow← o f f set + mappedIdx×(mappedIdx+1)
2

15: for j← 0 to mappedIdx−1 do
16: f lattenedLocation← f lattendedRow+ j

17: res[f lattenedLocation] ← res[f lattenedLocation] + b[stB + i] ×
a[stA+ j]

18: end for
19: end for
20: for i← 0 to bLen−1 do
21: mappedIdx← g[i]

22: for j← mappedIdx to aLen−1 do
23: f lattenedLocation← o f f set + j×(j+1)

2 +mappedIdx

24: res[f lattenedLocation] ← res[f lattenedLocation] + b[stB + i] ×
a[stA+ j]

25: end for
26: end for
27: return res
28: end function

Appendix A. First appendix 64

Algorithm 5 Compression Operator for Marginalization and Ring Product Calculation
Require: marginalizedAttributes: Attributes to be marginalized

Require: freeVariables: Variables to output

Require: numInstancesMapped: Instances of mapped attributes

Require: attributeIdx: Mapping of attribute names to indices

Require: localToGlobalMapping: Local to global attribute index mapping

Require: numFeatures: Number of features

1: function COMPRESSIONOPERATOR(marginalizedAttributes, freeVariables,

numInstancesMapped, attributeIdx, localToGlobalMapping, numFeatures)

2: if marginalizedAttributes ̸= null then
3: marginalisedAttributes← marginalizedAttributes.toArray()

4: numAttributesToMarginalize← marginalizedAttributes.size()

5: end if
6: if freeVariables ̸= null then
7: variablesToOutput← freeVariables.toArray()

8: end if
9: numInstancesMapped← numInstancesMapped

10: localAttributeIdx← attributeIdx

11: localToGlobalMapping← localToGlobalMapping

12: numFeatures← numFeatures

13:

14: function MAP(val)

15: originalSize← val.getArity()

16: inputRowKind← val.getKind()

17: hasMappedValue← val.getFieldNames(true).contains(”mappedValue”)

18: valuesToMarginalize← new double[numAttributesToMarginalize]

19: idxForMarginalizedValues← new int[numAttributesToMarginalize]

20: for i← 0 to numAttributesToMarginalize −1 do
21: idxForMarginalizedValues[i]←

localAttributeIdx.get(marginalisedAttributes[i])

22: valuesToMarginalize[i]←
(val.getField(marginalisedAttributes[i]) instanceof Integer

? (int)val.getField(marginalisedAttributes[i])

: (double)val.getField(marginalisedAttributes[i])

23: end for

Appendix A. First appendix 65

24: if hasMappedValue then
25: allMappedValueAttributes← new double[numInstancesMapped][]

26: allMappedValueAttributes[0]←
(double[]) val.getField(”mappedValue”)

27: for j← 1 to numInstancesMapped −1 do

28: allMappedValueAttributes[j]←(double[]) val.getField(

”mappedValue ” + j)

29: end for
30: else
31: allMappedValueAttributes← null

32: end if
33: mappedValues← UDFsForStream.ringProduct.eval(

idxForMarginalizedValues, valuesToMarginalize,

allMappedValueAttributes, localToGlobalMapping, numFeatures)

34: output← Row.withNames(inputRowKind)

35: for each key in variablesToOutput do
36: output.setField(key, (double)val.getField(key))

37: end for
38: output.setField(”mappedValue”, mappedValues)

39: return output

40: end function

Appendix A. First appendix 66

Algorithm 6 Ring Product
1: function PRODUCTFORMAPPEDVALUESOFCHIL-

DREN(noOfFeaturesInCurrContext, localToGlobalAttributeMapping, payloads)

2: aggregateLen ← 1 + noO f FeaturesInCurrContext +
noO f FeaturesInCurrContext·(noO f FeaturesInCurrContext+1)

2

3: a← payloads[0]

4: len← length of payloads

5: for childIdx← 1 to len−1 do
6: res← new array of size aggregateLen

7: b← payloads[childIdx]

8: globalMappingsForChild← localToGlobalAttributeMapping[childIdx−
1]

9: numberO f FeaturesInCurrChild← length of globalMappingsForChild

10: res[0]← a[0] ·b[0]
11: idxInCurr← 1

12: for j← 0 to numberO f FeaturesInCurrChild−1 do
13: destMapping← globalMappingsForChild[j]+1

14: res[destMapping]← a[0] ·b[idxInCurr++]

15: end for
16: for j← 1 to noO f FeaturesInCurrContext do
17: res[j]← res[j]+b[0] ·a[j]
18: end for
19: // Computing −bC ·aQ +aC ·bQ

20: for i← 0 to numberO f FeaturesInCurrChild−1 do
21: destI← globalMappingsForChild[i]

22: for j← 0 to i do
23: destJ← globalMappingsForChild[j]

24: res
[

destI·(destI+1)
2 +destJ+1+noO f FeaturesInCurrContext

]
←

a[0] ·b[idxInCurr++]

25: end for
26: end for
27: lim← aggregateLen

28: for j← 1+noO f FeaturesInCurrContext to lim−1 do
29: res[j]← res[j]+b[0] ·a[j]
30: end for
31: // Adding to previous −aS ·bT

S + sb · sT
a =0

Appendix A. First appendix 67

32: res←Matrix.elementWiseSum(

res,

Matrix.computeCrossCoRelationForQuadraticAggregates(

a,b,1,1+noOfFeaturesInCurrContext,1,1+numberO f FeaturesInCurrChild,

globalMappingsForChild),

1+noO f FeaturesInCurrContext,

!App.useObjectReuse

)

33: a← res

34: end for
35: return a

36: end function
37: function EVAL(idxForMarginalisedValues, row, allMappedValueAttributes, local-

ToGlobalAttributeMapping, noOfFeatures)

38: n← 1+noO f Features+ noO f Features·(noO f Features+1)
2

39: aggregateForLi f ted← new array of size n

40: len← length of row

41: for idx← 0 to len−1 do
42: attributeIdx← idxForMarginalisedValues[idx]

43: value← row[idx]

44: aggregateForLi f ted[1+attributeIdx]← value

45: end for
46: aggregateForLi f ted[0]← 1.0

47: // Compute s1T ·S2+ s2T ·S1

48: idxForQuad← 1+noO f Features

49: for j← 1 to noO f Features do
50: for k← 1 to j do
51: aggregateForLi f ted[idxForQuad + +] ← aggregateForLi f ted[j] ·

aggregateForLi f ted[k]

52: end for
53: end for

Appendix A. First appendix 68

54: if allMappedValueAttributes ̸= null and
length of allMappedValueAttributes ̸= 0 then

55: payloads← new array of size (1+ length of allMappedValueAttributes)

56: payloads[0]← aggregateForLi f ted

57: for i← 0 to length of allMappedValueAttributes - 1 do
58: payloads[i+1]← allMappedValueAttributes[i]

59: end for
60: f inalres← productForMappedValuesOfChildren(

noO f Features, localToGlobalAttributeMapping, payloads

)

61: else
62: f inalres← aggregateForLi f ted

63: end if
64: return f inalres

65: end function

Appendix A. First appendix 69

Algorithm 7 Gradient Descent for Parameter Optimization
Require: covarianceMatrix: Covariance matrix computed by the project

Require: θ: Previously learned values for the parameters

Require: learning rate: Learning rate α

Require: num epochs: Number of epochs N

1: function GRADIENTDESCENT(covarianceMatrix,θ, learning rate,num epochs)

2: n← length(θ)

3: for epoch← 0 to num epochs−1 do
4: ∆θ← 0
5: for thetaIdx← 0 to n−1 do
6: if thetaIdx = this.attributeToPredict then
7: ∆θ[thetaIdx]← 0

8: continue
9: end if

10: val← 0

11: for featureIdx← 0 to n−1 do
12: i← thetaIdx

13: j← featureIdx

14: if j > i then
15: swap(i, j)

16: end if
17: location← i·(i+1)

2 + j

18: val← val +θ[featureIdx] · covarianceMatrix[location]

19: end for
20: ∆θ[thetaIdx]← val

21: end for
22: for i← 0 to n−1 do
23: if i = this.attributeToPredict then
24: continue
25: end if
26: step← ∆θ[i] · learning rate

27: θ[i]← θ[i]− step

28: end for
29: end for
30: return θ

31: end function

