
Conversational Question Answering over

Knowledge Graphs based on Semantic

Retrieval and Large Language Model

Haowen Ji

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Data Science

School of Informatics

University of Edinburgh

2024

Abstract

Conversational Question Answering over Knowledge Graphs (KGQA) is a critical task

that focuses on developing systems capable of understanding and responding to user

questions within an ongoing dialogue context. The answers are exclusively based on

Knowledge Graphs (KGs), ensuring precise and reliable responses when user questions

are correctly interpreted and executed. However, KGQA presents unique challenges due

to large subgraphs extracted from the knowledge graph, which can contain thousands

of triples per user question, making it difficult for semantic parsing models to work

effectively.

This paper proposes to improve a two-stage approach that integrates retrieval tech-

niques to truncate subgraphs, ensuring their quality and reducing their size. We explore

the effectiveness of LLMs in generating SPARQL queries based on these truncated sub-

graphs. Experiments on a stratified sample of the SPICE dataset reveal that the retrieval

method effectively captures relevant information for simple questions, while the accu-

mulated subgraph approach improves performance for indirect questions. Fine-tuned

LLMs demonstrate strong ability to extract information from context and supplement

it to the current question, and generate SPARQL queries. Performance variability

across question types highlights the challenges associated with complex reasoning

tasks. Future research should focus on improving retrieval methods, developing dy-

namic subgraph truncation techniques, enhancing LLM performance, and incorporating

answer-sensitive knowledge generation. This work paves the way for more efficient,

accurate, and scalable conversational KGQA systems.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Haowen Ji)

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Laura Perez-

Beltrachini, for her invaluable support and guidance throughout this project. Her

insightful instruction, thoughtful direction, and consistent communication through nu-

merous emails and weekly meetings have been instrumental in shaping this work. I

deeply appreciate her patience and kindness, which have greatly contributed to the

success of this endeavor.

iii

Table of Contents

1 Introduction 1

2 Related Work 5
2.1 Datasets for KGQA . 5

2.2 Approaches to KGQA . 7

2.2.1 Retrieval Based Approaches 7

2.2.2 Semantic Parsing Approaches 7

2.2.3 LLM-based Approaches . 8

3 Methodology 10
3.1 Formal Problem Definition . 10

3.2 Semantic Parser Architecture . 10

3.3 Retrieval Model . 12

3.4 Large Language Model for Query Generation 13

4 Experiments and Performance Evaluation 14
4.1 Experiment Settings . 14

4.2 Evaluation Metrics . 14

4.3 Data Preparation . 15

4.3.1 Data Pre-processing . 15

4.3.2 Dataset Analysis . 17

4.4 Results of retrieval . 18

4.5 Large Language Model Approach 23

4.5.1 Model Selection and Configuration 23

4.5.2 Prompt Engineering . 24

4.5.3 Model Fine-tuning . 26

4.5.4 LLM Performance Analysis 28

iv

5 Conclusions 34

Bibliography 37

A Retrieval model fine-tune 40

v

Chapter 1

Introduction

Conversational Question Answering over Knowledge Graphs (KGQA) is a critical

task in natural language processing, focusing on developing systems capable of un-

derstanding and responding to user questions within an ongoing dialogue context. As

the answers are exclusively based on Knowledge Graphs (KGs), the QA system will

deliver responses that are both precise and reliable if it can correctly interpret and

execute user questions. This distinguishes it from non-KG-based QA systems, which

typically generate answers based on patterns learned from their inherent training data

[5], potentially resulting in less accurate or contextually appropriate responses.

In a Conversational KGQA system based on semantic parsing, the user questions

are translated into a formal query and executed against a KG to obtain responses. Perez

et al. [15] introduced the SPICE dataset, which integrates conversational turns with

semantic parsing, i.e., it contains translations of user natural language questions into

SPARQL queries over the Wikidata KG. Figure 1.1 shows an example extracted from

the dataset illustrating the dataset format and how the translation works. To translate

from user questions into SPARQL most of the existing approaches proceed in two

stages [7, 13, 15]. First, Named Entity Recognition (NER) and Named Entity Linking

(NEL) [8] are used to identify entities in each conversation turn. NER is locating and

classifying named entities (such as names of people, organizations, locations, etc.) in

the question text (e.g., Ferrara), while NEL involves mapping these identified entity

mentions to their corresponding entity symbols in a KG (e.g., Q13362). In the example

in Figure 1.1, the named entity cannot be found in the current turn Tcurret , because the

Ferrara entity is been referred to as the ’administrative territory’. The CQA system

should utilise the information from T1 and T2 to solve the co-reference problem and

resolve ’administrative territory’ to Ferrara and Q13362 as the KG entity.

1

Chapter 1. Introduction 2

Then, from these entity symbols, a KG subgraph is extracted for each question

constructed by taking these entities’ neighbourhoods in the KG. Note that a KG can be

seen as a set of triples of the form (subject, relation, object).1 For instance, (Soroca,

sister-town, Ferrara) is a triple in the KG where Soroca is the named entity appearing

in the subject position, Ferrara is the object entity, and sister-town is the relation. Given

that a KG such as Wikidata contains thousands of relations and types and millions of

entities and relationships, these steps enable the semantic parsing model to work on

relevant KG portions. In the second stage, a sequence-to-sequence model will predict

SPARQL queries from input user questions using only the elements in the subgraph as

target vocabulary (in addition to SPARQL keywords). Thus, taking a subgraph permits

improving the accuracy and efficiency of the semantic parsing process.

Figure 1.1: An illustration of the conversational question answering application

However, the extracted subgraphs can still be quite large even if we only extracted

the linked named entities and their neighbours, sometimes encompassing up to 4,000

triples per user question, which exceeds the input size limits of the BERT model. To

address this, Perez et al. [15] addressed this issue by applying a method that randomly

linearises and truncates the extracted subgraphs. This truncation approach can lead to

the loss of valuable information.

Additionally, their approach uses a BERT-based model to translate natural language

1https://en.wikipedia.org/wiki/Resource Description Framework

Chapter 1. Introduction 3

questions and KG triples into executable SPARQL queries. Recent advancements in

Large Language Models (LLMs) have shown promise in this area, with Schneider et

al. [19] demonstrating the efficiency of fine-tuned open-source models in generating

SPARQL queries. However, their approach relies on the set of gold triples as input

for SPARQL query generation, which is typically very small (only contains around

two triples or less) and not available at test time when users enter new questions. KG

subgraphs are often very large with thousands of triples. Even with the application

of the retrieval methods to truncate the subgraph, it can still be much larger than the

set of gold triples. Consequently, an LLM prompt including the entire subgraph plus

the conversation history will be very long, making it difficult to get the appropriate

information from the context and slowing down the execution.

Therefore, the goal of this project is to improve the two-stage approach for conver-

sational KGQA. The primary objectives include:

• Truncating the Excessively Large Subgraph: The project seeks to enhance

the performance and efficiency of the conversational KGQA system by utilising

retrieval-based methods to extract the best top-k KG triples.

• Exploring the Use of LLMs: The project aims to explore the use of LLMs for

semantic parsing. We compare the performance of the LLM-based parser against

the BERT-based model in [15] over the extracted subgraph. Then we compare

the LLM-based paser with the entire subgraph versus the truncated subgraphs.

Given these two objectives, this project has the following contributions:

• Implement and test a full pipeline for translating natural language questions to

SPARQL queries with LLMs, assessing the effectiveness of the LLM in generating

SPARQL queries.

• Implement and evaluate a retrieval method to truncate extracted KG subgraphs.

Many experiments are done around it (accumulate the subgraph, fine-tune the

embedding).

• Evaluation of LLM in SPARQL generation, exploring the effect of fine-tuning

and different input subgraph sizes.

The rest of the thesis is structured as follows: Chapter 2 introduces the related work

on datasets, approaches, and challenges in KGQA. Chapter 3 presents the two-stage

methodology, consisting of subgraph truncation using a retrieval model and SPARQL

Chapter 1. Introduction 4

query generation using an LLM. Chapter 4 describes the experiments, including setup,

metrics, data preparation, and results for both the retrieval stage and LLM-based query

generation, comparing the proposed approach with state-of-the-art methods. Chapter

5 concludes the thesis by summarizing the main findings, contributions, and future

work directions, such as improving retrieval methods, developing dynamic subgraph

truncation techniques, enhancing LLM performance, adapting fine-tuning for retrieval,

and incorporating answer-sensitive knowledge generation.

Chapter 2

Related Work

2.1 Datasets for KGQA

For the conversational KG-QA task, specialized factoid QA datasets are essential

[4]. These datasets, tailored for responses based on factual data within KGs, address

contextual complexities inherent in such tasks. Among these, the CSQA dataset [17]

stands out due to its integration of complex queries necessitating both quantitative and

logical reasoning.

SPICE [15] enhances the CSQA dialogues [17] by incorporating executable SPARQL

queries over the Wikidata KG. SPICE includes 197,000 multi-turn conversational in-

stances between users and an assistant agent, each linked to SPARQL queries that

yield answers from a static Wikidata snapshot. This dataset ensures comprehensive

semantic and answer-based evaluation of QA performance across dialogues. It also

tackles diverse complex question types, including logical, quantitative, comparative,

and basic reasoning, thereby providing a robust platform for developing and testing

knowledge-driven conversational QA agents. Thus the SPICE dataset is adopted as the

main dataset to run experiments in this project.

To better understand the performance of the conversational KGQA system, it is

essential to consider the different types of questions present in the SPICE dataset. The

SPARQL queries in SPICE can be broadly categorized into two main types: simple ques-

tions and reasoning questions [15]. Simple questions are direct factoid questions that

seek information about one or more entities. For example, ”Which party is Michel Phlip-

ponneau affiliated with?” is a simple question. The simple questions have three types:

simple questions, simple questions (coreferenced), and simple questions (ellipsis).

On the other hand, reasoning questions are more complex, demanding the use

5

Chapter 2. Related Work 6

Figure 2.1: Types of questions in both CSQA[17] and SPICE [15], from [17]

of numerical and logical operators. Figure 2.1, adapted from the CSQA paper [17],

illustrates the various types of reasoning questions in the SPICE dataset, along with

example questions for each type. These question types include comparative reasoning,

logical reasoning, quantitative reasoning, and verification questions. In particular,

we split quantitative reasoning into two sub-types: quantitative reasoning (all) and

quantitative reasoning (count), following the scheme of SPICE. This distinction is made

because the count type has different SPARQL query results than the other forms of

quantitative reasoning. The count type only involves counting, while the quantitative

reasoning (all) type encompasses all other forms of quantitative reasoning except

counting. The same distinction is made for comparative reasoning.

Furthermore, to investigate the problem of incomplete information, we further

split each question type into direct and indirect categories. Direct questions explicitly

express all the information necessary to answer the question within the current turn,

while indirect questions are incomplete, potentially involving phenomena such as co-

reference, ellipsis, or other implicit information. To answer indirect questions, the

Chapter 2. Related Work 7

information from the current turn alone is insufficient; we need to refer back to the

conversational history. In particular, we look at simple questions split into three types:

simple question (direct), which only includes direct questions, and simple question

(co-reference) and simple question (ellipsis), which only includes indirect questions.

By examining the system’s performance across these different question types, we can

gain valuable insights into its strengths and weaknesses in handling various forms of

reasoning.

2.2 Approaches to KGQA

2.2.1 Retrieval Based Approaches

The retrieval-based method, such as [17], relies heavily on embeddings and similarity

measures to find answers directly from the knowledge graph (KG) in response to user

questions. The approach involves encoding both the questions and the KG entities into

a shared vector space where the similarity between them can be computed. The retrieval

process essentially matches the encoded query to the most similar KG entities, aiming

to find the correct answers.

This method works effectively for straightforward queries where the answer can

be directly retrieved based on similarity. However, it encounters significant challenges

when dealing with more complex queries that require operations like aggregation (e.g.,

counting, and finding maximum values). Since the approach is designed around retrieval,

it lacks the inherent capability to perform such operations, requiring additional ad-hoc

programming to handle these cases. This limitation underscores the need for more

sophisticated methods capable of executing these operations directly, rather than relying

solely on similarity-based retrieval.

Thus, while effective for direct retrieval tasks, this method falls short in scenarios

requiring aggregation, reflecting the need for more advanced techniques capable of

performing such operations natively within the KGQA framework.

2.2.2 Semantic Parsing Approaches

Semantic parsing methods for KG question answering aim to convert natural language

queries into executable logical forms, such as SPARQL queries, which can be used to

retrieve answers from KGs [7, 13, 15, 16].

Chapter 2. Related Work 8

The process typically begins with a question understanding module that performs

linguistic analysis to determine the semantics and syntax necessary for parsing the

input question, like recognising named entities. This module may also incorporate

conversational context to enhance the representation of the question, thereby improving

the accuracy of the subsequent parsing. Once the linguistic analysis is complete, the

information gathered is used to extract from the KG. This step involves retrieving a

subgraph from the full KG, which contains relevant information centred around the

entities mentioned in the query. However, a significant challenge here is that these

subgraphs can be quite large due to the numerous neighbouring nodes connected to any

given entity. The next stage is handled by a logical parsing module, which converts

elements in the extracted subgraph and the corresponding semantic information into an

executable logical form, such as SPARQL. The logical form is executed on the KB to

accurately obtain the final answers.

The effectiveness of the final SPARQL query heavily depends on the quality of

the subgraph. If the target elements are not included in the subgraph, the model

cannot generate a correct SPARQL query, leading to incorrect or incomplete answers.

This challenge is particularly pronounced in conversational question answering, where

questions in later turns often require information from previous turns. Incorporating

relevant information from earlier turns into the current subgraph is a complex task that

can significantly impact the system’s performance.

Conversely, if the subgraph contains too much irrelevant information, it can over-

whelm the model, resulting in poorer performance. This also challenges the input

limitations of the SPARQL generation model, where large and complex inputs may

exceed processing capacities and reduce the accuracy of the final query.

2.2.3 LLM-based Approaches

Recent work by Schneider et al. [19] explores the use of large language models (LLMs)

to generate SPARQL queries in the context of semantic parsing. Their approach involves

feeding the LLM a natural language question along with a gold subgraph (normally only

contains two or fewer triples), which is an optimally small and targeted subset of the KG

containing only the necessary elements to answer the query. Their study demonstrates

that LLMs can effectively generate accurate SPARQL queries and that performance can

be further improved through few-shot prompting and fine-tuning techniques.

However, this method’s reliance on a gold subgraph poses challenges in real-world

Chapter 2. Related Work 9

scenarios, where such precise subgraphs are not available. In practice, the subgraph

derived from natural language inputs is often larger and can introduce noise and com-

plicate the LLM parsing task. This raises concerns about the model’s robustness when

dealing with more complex, unfiltered subgraphs, showing the need for further research

to evaluate LLM performance in these more challenging, realistic conditions.

To address the limitations of purely retrieval-based methods in handling questions

that require aggregation and logical operations, this thesis adopts a semantic parsing

approach as the baseline. However, previous work in semantic parsing has faced

challenges related to large and noisy subgraphs extracted from knowledge graphs,

which can hinder the performance of the parsing models. Inspired by the success of

retrieval methods in identifying relevant information, we propose integrating retrieval

techniques to truncate and refine the subgraph, ensuring its quality and reducing its

size to a manageable level. In the context of conversational QA, where preserving

information from the conversational history is crucial, we also investigate the impact of

accumulating the subgraph across each turn. Furthermore, we explore the effectiveness

of LLMs in generating SPARQL queries based on these truncated subgraphs, leveraging

their advanced language understanding and generation capabilities.

Chapter 3

Methodology

This chapter presents a comprehensive description of our proposed approach for con-

versational semantic parsing over KGs. We begin with a formal problem definition,

followed by a detailed exposition of our system architecture and its constituent modules.

3.1 Formal Problem Definition

We address the semantic parsing task within a multi-turn question-answering dialogue

system. Our objective is to accurately interpret user questions and generate appropriate

formal queries for execution against a knowledge graph. Let D = (d1,d2, . . . ,d|D|)

represent a sequence of dialogue turns, where each turn dt represents a user-system

interaction. Each interaction consists of a user question xt and the corresponding system

answer at . The conversation context ct for the current turn t is defined as the set of all

previous interactions di : i < t. Given the previous interaction dt , its associated context

ct , and the current user question xt , our primary objective is to generate a SPARQL

query yt , which should accurately represent the semantic intent of xt and, when executed

against the knowledge graph K , produce the appropriate system response.

3.2 Semantic Parser Architecture

The semantic parsing approach [10, 15] that we will improve employs a two-stage

architecture as illustrated in Figure 3.1.

10

Chapter 3. Methodology 11

Figure 3.1: Conversational KGQA system architecture

Stage 1: subgraph Extraction, Truncation

From the current user question, the system first extracts the subgraph from the complete

KG. Let K = (V ,E) denote the complete KG, where V represents the set of vertices

and E the set of edges. Thus, a KG encompasses a set of triples (v,e,v′) with v,v′ ∈ V
and e ∈ E . The initial stage of the system performs the following operations:

1. Subgraph Extraction[10, 15]: A subgraph Gs = (Vs,Es) is extracted from K
by extracting the one-hop neighborhood for each named entity (determined via

NER/NEL) in the current user question xt . Formally,

Gs = (v,e,v′) ∈ G | v,v′ ∈ Vr (3.1)

where Vr ⊂ V is the set of named entities and one-hop neighbor types.

2. subgraph Truncation (contribution in this work): We propose a retrieval (i.e.,

ranking) method R to truncate Gs to k most relevant triples. Let Gt denote the

truncated subgraph:

Gt = R (Gs,k) (3.2)

Chapter 3. Methodology 12

Stage 2: SPARQL Query Generation

The second stage utilizes a LLM Φ to generate SPARQL queries. As illustrated

in Figure 3.1, given the conversation history ct , current user question xt , and

truncated subgraph Gt , the LLM generates a SPARQL query yt :

yt = Φ(ct ,xt ,Gt) (3.3)

3.3 Retrieval Model

To address the challenges posed by large subgraphs, we propose a retrieval method that

truncates the subgraph based on semantic similarity with the natural language question.

We use a sentence encoder model E to encode both the user question xt and triples ti
in the KG subgraph Gs. The similarity between the question and each triple in Gs is

computed as:

sim(xt , ti) = cos(E(xt),E(ti)) (3.4)

where cos denotes the cosine similarity function, E(xt) is the embedding of the user

question, and E(ti) is the embedding of a KG triple in Gs. To obtain triple embeddings,

we convert KG triples ti into a string of the form ’subject, relation, object’ before

passing them through the encoder.

Currently, truncation is applied to the subgraph Gs, which is smaller than the

complete KG K and may be influenced by preceding NER and NEL steps (if these

steps are inaccurate, then the extracted subgraph will also be inaccurate). Future work

will involve applying retrieval directly to the entire KG, and one method [1] is discussed

in detail in Section 5.

We utilize DistilBERT [18] as our sentence encoder due to its efficiency and effective

balance between performance and computational cost. DistilBERT is a streamlined

version of the BERT model, created through knowledge distillation. This process

reduces the model size by approximately 40% and accelerates runtime by about 60%,

while preserving over 95% of BERT’s performance. This reduction in model size and

computational demands makes DistilBERT particularly suitable for environments with

limited resources. In conjunction with DistilBERT, we employ the FAISS [6] (Facebook

AI Similarity Search) library to perform similarity searches using cosine similarity.

FAISS employs efficient indexing to organise and quickly access vectors, reducing the

search space. By utilizing FAISS, we benefit from its scalability and speed in retrieving

relevant sentence embeddings, enhancing the overall efficiency of our system.

Chapter 3. Methodology 13

3.4 Large Language Model for Query Generation

The truncated subgraph Gt obtained from the retrieval stage is used in conjunction

with an LLM to generate SPARQL queries. We formulate the query generation task as

follows. Given the conversation history ct , current question xt , and truncated subgraph

Gt , we construct a prompt P:

P = fprompt(ct ,xt ,Gt) (3.5)

where fprompt is a function that formats the inputs into a suitable prompt for the LLM.

The SPARQL query yt is then generated by the LLM Φ:

yt = Φ(P) (3.6)

We employ a fine-tuned version of an LLM for this task, optimizing it for SPARQL

query generation in the context of conversational question answering over knowledge

graphs.

The model selected for generating SPARQL queries from the truncated subgraph Gt

is the LLaMA 3-8b-instruct model 1. This choice is driven by several considerations.

Firstly, the task involves fine-tuning, making it essential to select an open-source

model that can be run locally to ensure flexibility and control over the training process.

Secondly, due to the high computational cost associated with running large models, a

smaller, more efficient version is preferred. The instruct variant of the LLaMA 3-8b

model is particularly well-suited for this task because it is fine-tuned to follow complex

instructions and interpret detailed prompts with high precision. Its enhanced capability

to understand and execute nuanced instructions enables it to effectively transform the

formatted prompt P into the desired SPARQL query yt .

By integrating our retrieval-based subgraph truncation with the fine-tuned LLM, we

establish a comprehensive pipeline for conversational semantic parsing, addressing the

challenges in QA systems over large-scale KGs.

1https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Chapter 4

Experiments and Performance

Evaluation

4.1 Experiment Settings

All experiments were conducted on an NVIDIA A10G GPU, providing robust hard-

ware acceleration for deep learning tasks. This GPU has 24 GB of memory, which

significantly enhances the performance of model training and inference, especially for

computationally intensive operations like generating SPARQL queries through LLM.

4.2 Evaluation Metrics

Our project methodology encompasses two distinct stages, necessitating different

evaluation metrics. For the initial retrieval stage, we employ two primary metrics: Hit
Rate and Set Recall. Hit Rate quantifies the model’s ability to precisely retrieve the

gold KG triples within the top-k retrieved results. Specifically, a retrieval is considered

a ”hit” if all the gold triples are included in the top k triples.

To assess the model’s performance in identifying relevant knowledge graph elements,

we utilize set recall. This metric is calculated as follows:

Set Recall =
|Set(Topk Triples)∩Set(Gold Triples)|

|Set(Gold Triples)|
(4.1)

where triples are decomposed into their constituent elements. This metric provides

insights into the model’s capacity to retrieve pertinent KG elements, even if the exact

triple structure is not preserved.

14

Chapter 4. Experiments and Performance Evaluation 15

For the second stage, which involves the actual generation of SPARQL queries, we

employ the Exact Match (EM) metric. This evaluation criterion assesses the model’s

ability to produce SPARQL queries that precisely match the gold queries.1

4.3 Data Preparation

The SPICE dataset [15] forms the foundation of our experimental work. This dataset

encompasses a diverse range of conversational interactions, each consisting of a se-

quence of user questions [x1,x2, ...,xt], contextual information, corresponding SPARQL

queries, and system responses.

4.3.1 Data Pre-processing

For the KG subgraph extraction we use the scripts provided by [15] (steps 1-3 are

taken from [15]). For our proposed retrieval step, our required pre-processing aims to

transform the raw subgraph from step (3) into a format appropriate for triple retrieval

(steps 4-5). The pipeline comprises several key steps:

1. NER: A NER technique identifies and extracts named entities from user questions

(e.g., Ferrara). We use the String Match method from [15].

2. NEL: The identified entities are then linked to KG entity identifies (IDs), e.g.,

Q13362.

3. Subgraph Extraction: A subgraph by extracting one-hop neighbors of the linked

entities within the KG.

4. Entity Labeling: A local SQLite database is utilized to contain KG entity IDs

with their corresponding natural language descriptions (i.e., labels).

5. Subgraph Formatting for Retrieval: The subgraph extraction process yields

three distinct subgraph types: local subgraph, local subgraph nel, and type subgraph.

To enhance the completeness of our knowledge representation, we merge the

local subgraph and local subgraph nel into a comprehensive subgraph structure.

The resulting subgraph is structured as follows:

1Note that there exists the execution-based F1 metric for this stage (i.e., execute the predicted SPARQL
query and compare the obtained results with the gold answers). But this metric requires the installation
of a SPARQL server and execution of the queries so we leave this metric for future work.

Chapter 4. Experiments and Performance Evaluation 16

1 {
2 "subgraph": {
3 "entity id":{
4 "subject":{
5 "relation id":{"type id"}
6 }
7 "object":{
8 "relation id": {"type id"}
9 }

10 }
11 }
12 }

The extracted subgraph in our study adopts a triple structure of the form (entity,

relation, type), different from the conventional (entity, relation, entity) representa-

tion. For instance, instead of a triple like (Paris, is-capital, France), the subgraph

extraction produces (Paris, is-capital, Country). This design choice aligns more

closely with the required structure of SPARQL queries, and it also potentially

facilitates efficient query processing by including the type (Country) instead of

enumerating all the concrete entities from the KG that are countries.

For the retrieval step proposed in this work, we concatenate labels for entities,

relations, and types in a triple. For subject-type triples, we format triples as the

following string ’type, relation, entity’, while object-type triples are formatted as

’entity, relation, type’. To address the specific requirements of Verification and

Quantitative Reasoning question types, we format the corresponding subgraphs

as the string ’entity, relation, entity’, as these question categories uniquely involve

(entity, relation, entity) triples.

The type subgraph, which exclusively contains type and relation information, is

formatted as the string ’type, relation’ and ’relation, type’.

Throughout the subgraph formatting process, we prioritize data cleaning and

normalization. Entity, type, and relation IDs are systematically converted to

natural language labels using our SQLite database (step 4 above).

Chapter 4. Experiments and Performance Evaluation 17

4.3.2 Dataset Analysis

The SPICE dataset is big with many dialogues and interactions. Thus, to run experiments

faster, we created a stratified sample of 2,000 dialogues from the SPICE dataset. This

subset maintains the distribution of question types present in the full dataset, ensuring

a representative sample for our analyses. Recognizing the potential for incomplete

information in individual conversation turns due to phenomena such as co-reference

and ellipsis, we investigated two approaches to subgraph construction:

1. Current Turn Subgraph: This approach considers only the triples related to the

current conversational turn.

2. Accumulated Subgraph: This method aggregates triples across all previous

turns in the conversation, providing a more comprehensive context.

Note that, these two subgraphs are extracted via NER/NEL entities. The subgraphs

constructed using these methods appear to be relatively small in terms of the number

of triples. This can be attributed to the accuracy limitations of the NER/NEL system

employed. However, the size and information richness of these subgraphs can be

expanded by considering not just a single ID for each named entity during the NEL

step, but instead taking the top-n IDs or even all IDs associated with each entity.

To assess the efficacy of subgraph truncation, we conduct an analysis to determine

an upper bound, i.e., before truncation, whether the gold triples corresponding to each

user question xt are present within the extracted subgraphs Gs to begin with. We define

a ”Hit@all” as the presence of the gold triples within the subgraph Gs. Table 4.1

presents a detailed comparison of these two subgraph construction methods across

various question types and categories. The columns in Table 4.1 include Hit@all, Set

Recall, Average(Avg) subgraph size, and Standard Deviation (Std) of the subgraph size

for current and accumulated triples approaches.

The comparative analysis of current turn subgraphs and accumulated subgraphs

reveals several notable trends. Accumulated subgraphs consistently exhibit higher Set

Recall values across nearly all question types and categories, indicating that accumulat-

ing triples over multiple turns enables the subgraph to capture a more comprehensive set

of relevant KG elements to carry out SPARQL query generation. This improvement is

particularly evident for indirect question types, such as Simple Question (Coreference)

and Logical reasoning (indirect). Moreover, for reasoning types such as Logical Reason-

ing, Quantitative Reasoning, and Comparative Reasoning, the accumulated subgraphs

Chapter 4. Experiments and Performance Evaluation 18

Question Type Category
Current Triples Accumulated Triples

of Q
Hit@all Set Recall Avg Std Hit@all Set Recall Avg Std

Simple Question (Direct) Direct 0.5338 0.5920 70 180 0.5439 0.6595 243 497 5838

Simple Question (Coreference) Indirect 0.0396 0.0348 7 40 0.0632 0.3250 183 424 3482

Simple Question (Ellipsis) Indirect 0.4986 0.5511 6 21 0.5188 0.6467 246 467 735

Logical Reasoning
Direct 0.4211 0.6603 80 157 0.4333 0.7280 371 547 824

Indirect 0.0000 0.3873 3 4 0.3846 0.6275 132 351 52

Verification (Boolean) Direct 0.8275 0.9779 152 421 0.8275 0.9850 433 787 1519

Quantitative Reasoning (All) Direct 0.0000 0.0000 1 13 0.0469 0.3475 265 475 1216

Quantitative Reasoning (Count)
Direct 0.1965 0.2722 87 220 0.2185 0.4887 381 602 1730

Indirect 0.3472 0.3746 7 44 0.3673 0.5787 368 609 648

Comparative Reasoning (All)
Direct 0.1450 0.2850 113 208 0.2257 0.5229 427 662 731

Indirect 0.1116 0.2553 18 104 0.2744 0.5462 412 645 475

Comparative Reasoning (Count)
Direct 0.1325 0.2875 111 204 0.2265 0.5142 416 556 702

Indirect 0.0688 0.2553 18 104 0.2538 0.5313 412 566 465

Table 4.1: Comparison of current turn subgraph and accumulated subgraph characteris-

tics

show substantial improvements in both Hit@all and Set Recall metrics. This suggests

that accumulating information is particularly beneficial for questions requiring multi-

step reasoning or comparison. The superior performance of accumulated subgraphs can

be attributed to their ability to retain relevant information from previous turns, providing

a more comprehensive context for parsing the current question. The implications of

these two subgraph construction methods on retrieval performance are further explored

in Section 4.4.

However, it is important to note that the average number of triples in the accumulated

subgraphs is consistently higher than in the current turn subgraphs, often by a factor of

3-4 times or more. While this increased context richness can be beneficial for question

answering, it comes at the cost of increased computational complexity. This trade-off

between information comprehensiveness and efficiency warrants careful consideration

in the design and implementation of KGQA systems.

4.4 Results of retrieval

This section presents and analyzes the results of our retrieval model. We evaluate

the model’s performance across various question types and categories, using metrics

introduced at Section4.2 for different subgraph construction approaches.

Chapter 4. Experiments and Performance Evaluation 19

Experimental Setup We conducted experiments using a subset of the SPICE dataset.

The retrieval model, based on DistilBERT, was tasked with truncating subgraphs to

retrieve the most relevant triples for each user question. We use Hit@k to denote the

proportion of queries where the correct triple is retrieved within the top k results, and

Recall@k to denote the proportion of relevant KB symbols retrieved within the top k

results, and we also count the number of the questions for each question type as # of Q

Results Analysis We examined the top 5, 20, and 100 triples for the experiment. The

result is in Table 4.2.

Question Type Category
Current Triples Accumulated Triples

of Q
Hit@5 Hit@20 Hit@100 Hit@All Hit@5 Hit@20 Hit@100 Hit@All

Simple Question (Direct) Direct 0.4629 0.5094 0.5257 0.5338 0.4468 0.5086 0.5259 0.5439 5838

Simple Question (Coreference) Indirect 0.0213 0.0362 0.0385 0.0396 0.0260 0.0366 0.0488 0.0632 3482

Simple Question (Ellipsis) Indirect 0.4220 0.4856 0.4960 0.4986 0.3865 0.4831 0.4997 0.5188 735

Logical Reasoning
Direct 0.2694 0.3956 0.4138 0.4211 0.2184 0.3811 0.4126 0.4333 824

Indirect 0.0000 0.0000 0.0000 0.0000 0.0385 0.2692 0.3462 0.3846 52

Verification (Boolean) Direct 0.0566 0.0612 0.0612 0.8275 0.0566 0.0599 0.0612 0.8275 1519

Quantitative Reasoning (All) Direct 0.0000 0.0000 0.0000 0.0000 0.0049 0.0115 0.0288 0.0469 1216

Quantitative Reasoning (Count)
Direct 0.1208 0.1642 0.1821 0.1965 0.1127 0.1613 0.1884 0.2185 1730

Indirect 0.2577 0.3272 0.3395 0.3472 0.2130 0.3102 0.3364 0.3673 648

Comparative Reasoning (All)
Direct 0.0219 0.0971 0.1245 0.1450 0.0260 0.1053 0.1696 0.2257 731

Indirect 0.0379 0.0779 0.0842 0.1116 0.0042 0.0442 0.1221 0.2947 475

Comparative Reasoning (Count)
Direct 0.0185 0.0755 0.1068 0.1325 0.0214 0.0855 0.1538 0.2265 702

Indirect 0.0194 0.0495 0.0559 0.0688 0.0086 0.0430 0.1011 0.2538 465

a) hit rate comparison between current triples and accumulated triples

Question Type Category
Current Triples Accumulated Triples

of Q
Rec@5 Rec@20 Rec@100 Rec@All Rec@5 Rec@20 Rec@100 Rec@All

Simple Question (Direct) Direct 0.5541 0.5804 0.5882 0.5918 0.5586 0.6123 0.6383 0.6598 5838

Simple Question (Coreference) Indirect 0.0267 0.0342 0.0354 0.0361 0.1878 0.2512 0.3037 0.3350 3482

Simple Question (Ellipsis) Indirect 0.4917 0.5366 0.5435 0.5439 0.5080 0.6119 0.6507 0.6751 735

Logical Reasoning
Direct 0.6049 0.6504 0.6578 0.6603 0.5879 0.6729 0.6967 0.7332 824

Indirect 0.3333 0.3873 0.3873 0.3873 0.4167 0.5588 0.5980 0.6275 52

Verification (Boolean) Direct 0.3364 0.3568 0.3601 0.9779 0.3477 0.3952 0.4207 0.9850 1519

Quantitative Reasoning (All) Direct 0.0007 0.0010 0.0010 0.0010 0.1773 0.2527 0.3087 0.3475 1216

Quantitative Reasoning (Count)
Direct 0.2318 0.2561 0.2663 0.2722 0.3094 0.3862 0.4372 0.4887 1730

Indirect 0.3260 0.3648 0.3712 0.3746 0.3584 0.4798 0.5393 0.5787 648

Comparative Reasoning (All)
Direct 0.2152 0.2590 0.2763 0.2875 0.2974 0.4031 0.4725 0.5229 731

Indirect 0.1706 0.2209 0.2495 0.2553 0.2330 0.3762 0.4965 0.5646 475

Comparative Reasoning (Count)
Direct 0.2094 0.2541 0.2738 0.2838 0.2957 0.3907 0.4647 0.5142 702

Indirect 0.1409 0.1883 0.2008 0.2047 0.2146 0.3522 0.4595 0.5313 465

b) set recall comparison between current triples and accumulated triples, Rec represent

Set Recall

Table 4.2: Comparison between current triples subgraph and accumulated triples sub-

graph. The Hit@All and Recall@all are italicized, and the best value in the All are bold;

the best value among the experiments are also bold

Chapter 4. Experiments and Performance Evaluation 20

Effectiveness of the Retrieval Method The retrieval method exhibits strong per-

formance in terms of both hit rate and set recall for simple questions. In the ”Simple

Question (Direct)” category, the current triples subgraph achieves a Hit@5 of 0.4629

and a Hit@20 of 0.5094, indicating that the correct answer is retrieved within the top 5

and 20 triples for a substantial portion of the questions. Moreover, the Set Recall@5 and

Set Recall@20 values for this category are 0.5541 and 0.5804, respectively, suggesting

that the necessary elements for answering the question are often found within the top

retrieved triples. Similarly, the ”Simple Question (Ellipsis)” category shows impressive

results, with Hit@5 and Hit@20 values of 0.4220 and 0.4856, and Set Recall@5 and

Set Recall@20 values of 0.4917 and 0.5366, respectively. These results are close to

their upper bounds (Hit@All, Set Recall@All), demonstrating the effectiveness of the

retrieval method in capturing both the correct answer and the necessary elements for

simple questions.

For more complex reasoning questions, such as those in the ”Logical Reasoning”

and ”Comparative Reasoning” categories, the hit rate performance is lower at top 5 and

top 20 but improves at top 100. This suggests that the gold answer may not always

receive a high ranking in the retrieval process. However, the set recall values remain

high for these questions, often approaching the upper bound (Set Recall@All) within the

top 20 retrieved triples. For instance, in the ”Comparative Reasoning (Count)” category

for indirect questions, the Set Recall@20 is 0.1883, close to the Set Recall@All of

0.2047. This indicates that while the exact correct triple may not always be retrieved

in the truncated subgraph, the necessary elements for answering the question are still

present within the subgraph.

Based on these findings, we can conclude that the retrieval method is effective for

the subgraph truncation task. However, to further enhance the search and ensure that the

gold triples are ranked at the top, improvements in the embedding or search method may

be necessary. To address this, we conducted experiments on fine-tuning the embedding

with the aim of improving performance. However, the results did not surpass those

obtained using the off-the-shelf embedding model. As a result, we have included the

fine-tuning experiments in the Appendix for reference.

Effectiveness and Limitations of the Accumulated Subgraph The accumulated

subgraph approach demonstrates significant improvements in performance for many in-

direct questions. In the ”Simple Question (Coreference)” category, the Set Recall@100

increases from 0.0354 for the current triples subgraph to 0.3037 for the accumulated

Chapter 4. Experiments and Performance Evaluation 21

subgraph. The ”Quantitative Reasoning (Count)” category for indirect questions also

shows a substantial improvement, with the Set Recall@100 increasing from 0.3712

to 0.5393. These results suggest that the accumulated subgraph, when combined with

retrieval, can effectively capture more information from previous turns and mitigate the

issue of incomplete (implicit) information as the conversation progresses.

However, it is noteworthy that for some question types, the hit rate for the accumu-

lated subgraph is lower compared to the current triples subgraph. This can be attributed

to the increased size of the accumulated subgraph, which makes it more challenging to

accurately search for specific information. Nevertheless, the set recall values for the

accumulated triples method consistently surpass those of the current triples method

across all question types and categories, indicating that even if the exact correct triple

is not retrieved, the accumulated subgraph still contains the necessary KB elements to

formulate the SPARQL query.

The comparison between the two types of subgraphs reflects the advantages of the

accumulated approach. As the conversation progresses, the accumulated subgraph can

provide a more comprehensive knowledge base for answering questions by incorporating

information from previous turns. However, it is important to note that as the triples

accumulate over turns, the subgraph can become very large towards the end of the

conversation. This poses challenges in terms of efficiently searching for relevant

information within the expanded subgraph. To address these challenges, we could apply

our truncation method for dynamic truncation that can maintain a manageable size of

the subgraph throughout the conversation.

Evaluating Retrieval Performance with Gold Entities Although the retrieval method

has proven to be effective, it is important to acknowledge that the subgraphs extracted

using NER and NEL techniques often lack a significant number of gold triples, as

shown in Table 4.1. This limitation can hinder the accurate evaluation of the retrieval

method’s performance.

To assess the retrieval method’s effectiveness in isolation, we decided to conduct

an evaluation using a KG subgraph Gs extracted via gold entities (i.e., use the dataset

annotated entities instead of NER/NEL). By using gold entities, we ensure that the

subgraph contains all the necessary entities referenced in the conversation, including

those from previous turns (and their corresponding neighboods). This approach allows

us to evaluate the retrieval performance under the best possible conditions, eliminating

the impact of missing entities on the retrieval process.

Chapter 4. Experiments and Performance Evaluation 22

However, it is important to note that using gold entities is not realistic in real-world

scenarios or at test time. In practical applications, we do not have access to gold entities,

as they are not readily available during the conversation. Instead, the system must rely

on the entities extracted using NER and NEL techniques or other techniques. One

direction of the future work is to directly extract triples from KG without the NER and

NEL methods [1], which is dicussed in Section 5.

Table 4.3 presents the results of applying the retrieval methods to the subgraphs

visa gold entities. In this table, we use percentage values to represent the recall,

distinguishing it from the hit rates

Question Type Category Hit@5 Rec@5 (%) Hit@20 Rec@20 (%) Hit@100 Rec@100 (%) Hit@All Rec@All (%)

Simple Question (Direct) Direct 0.7575 90.38 0.8974 96.87 0.9692 99.15 0.9981 100.00

Simple Question (Coreference) Indirect 0.1176 42.30 0.2680 67.98 0.5798 91.22 0.8548 100.00

Simple Question (Ellipsis) Indirect 0.6303 79.38 0.8385 93.04 0.9435 98.02 1.0000 100.00

Logical Reasoning
Direct 0.5364 87.94 0.9175 98.60 0.9964 99.95 1.0000 100.00

Indirect 0.1154 67.65 0.4231 95.10 0.8846 98.04 1.0000 100.00

Verification (Boolean) Direct 0.4240 79.99 0.6162 92.79 0.7156 97.91 0.8282 99.77

Quantitative Reasoning (All) Direct 0.0321 45.20 0.1209 65.18 0.3248 81.97 0.7064 92.29

Quantitative Reasoning (Count)
Direct 0.2988 66.00 0.4821 82.39 0.6636 93.58 0.8786 98.53

Indirect 0.4877 71.58 0.7207 88.20 0.8827 97.00 1.0000 100.00

Comparative Reasoning (All)
Direct 0.0547 55.35 0.2367 78.15 0.5458 92.07 0.9207 98.39

Indirect 0.0295 36.79 0.0968 63.02 0.3811 86.25 0.7558 95.74

Comparative Reasoning (Count)
Direct 0.0527 53.35 0.1980 75.95 0.5570 92.51 0.9274 98.38

Indirect 0.0516 38.38 0.1312 61.29 0.3269 78.80 0.5634 87.16

Table 4.3: Retreival Performance on the Subgraph visa Gold Entities

This results of the retriever in isolation with subgraph via gold entities show that

performance is low when user questions have underspecified inforation (ellipsis/coref-

erence) or are long and complex. Also, is important to point out that although the Hit

Rate is moderate, the Set Recall looks better and indicates that the KG elements are

somehow present.

The results show that the retriever’s performance varies depending on the question

type and complexity when using subgraphs with gold entities. For simple direct

questions, the retriever achieves high hit rates and recall values, with Hit@100 reaching

0.9692 and Rec@100 at 99.15%. However, the performance decreases for questions

with underspecified information, such as those involving coreference or ellipsis. For

example, in the ”Simple Question (Coreference)” category, the Hit@100 is 0.5798, and

the Rec@100 is 91.22%, indicating that the retriever struggles to find the exact correct

triples for these question types.

Similarly, the retriever’s performance is lower for long and complex questions, such

as those in the ”Comparative Reasoning” and ”Quantitative Reasoning” categories. For

instance, in the ”Comparative Reasoning (All)” category for indirect questions, the

Chapter 4. Experiments and Performance Evaluation 23

Hit@100 is only 0.3811, while the Rec@100 is 86.25%. This shows that the retriever

faces challenges in accurately identifying the relevant triples for these complex question

types.

It is important to note that although the hit rates may be moderate in some cases,

the recall values are generally higher, indicating that the necessary KG elements are

present in the subgraphs. For example, in the ”Logical Reasoning” category for indirect

questions, the Hit@100 is 0.8846, but the Rec@100 is 98.04%, suggesting that the

subgraph contains the required information to answer the question, even if the exact

correct triple is not always ranked at the top k.

We adopted the top 20 truncated subgraphs for further experiments with LLM

SPARQL generation. We want to explore LLM performance with the different input

subgraph sizes.

4.5 Large Language Model Approach

4.5.1 Model Selection and Configuration

In this study, we explore the application of LLMs to convert natural language questions

and KG triples into executable SPARQL queries. Our approach builds upon recent

advancements in LLM capabilities, as demonstrated by Schneider et al. [19], who

showed the efficiency of fine-tuned open-source models in SPARQL query generation.

Model Architecture We selected the Llama3 architecture as our base model due to

its robust performance in various natural language processing tasks, as discussed in

Section3.4. The Llama3 model’s architecture, characterized by its extensive parameteri-

zation, multi-head self-attention mechanisms, and deep transformer layers, provides a

suitable foundation for our task of translating complex semantic structures into struc-

tured SPARQL queries. Its ability to capture intricate language patterns and maintain

contextual coherence across long sequences [20] makes it particularly effective for

handling the requirements of our SPARQL generation task.

Input Strategies To comprehensively evaluate the model’s performance under differ-

ent input conditions, we explored three distinct subgraph strategies:

• Gold subgraph: Given in the SPICE dataset, it contains exactly the set of triples

needed to build the SPARQL query.

Chapter 4. Experiments and Performance Evaluation 24

• Full subgraph (extracted via gold entity annotations): It includes the entire

extracted subgraph via gold entity annotations, which can be extensive, containing

up to 4000 triples for complex questions (as shown in Table 4.3).

• Truncated subgraph (top-20 triples): To test the performance of LLMs with

respect to the KG subgraph sizes, we choose to use the subgraph via gold entities,

and truncate it to top-20 triples.

Model Variants and Fine-tuning To thoroughly investigate the impact of the different

input subgraphs and task-specific training, we developed and evaluated four distinct

model variants:

• Base Llama3: The unmodified Llama3 model, serves as a baseline to assess the

effectiveness of fine-tuning.

• Llama3-Gold: Fine-tuned on gold subgraph inputs, optimizing for concise and

highly relevant semantic information.

• Llama3-Full: Adapted to process full subgraph inputs, potentially capturing

more comprehensive semantic context at the cost of increased computational

demands.

• Llama3-Top20: Specialized for the top-20 triple representation, balancing infor-

mation richness and computational efficiency.

4.5.2 Prompt Engineering

Prompt Techniques In the realm of LLM-based query generation, two primary

prompting techniques are commonly employed: zero-shot and few-shot learning [3].

Zero-shot learning requires the model to perform a task without any task-specific

examples, relying solely on its pre-trained knowledge and the given instructions. In

contrast, few-shot learning provides the model with a small number of examples to

guide its understanding of the task.

While few-shot learning has been shown to improve the performance of base

language models [2], it is not as effective when applied to fine-tuned models. Our

preliminary experiments revealed that using few-shot prompts with fine-tuned models

actually led to a decrease in performance. This observation is consistent with the

findings of [14], who noted that fine-tuned models may not benefit from few-shot

Chapter 4. Experiments and Performance Evaluation 25

examples, as they have already acquired task-specific knowledge during the fine-tuning

process.

Furthermore, incorporating few-shot examples in the prompt can substantially

increase the token count, especially for complex queries like comparative tasks. This

increased input size can potentially cause issues related to context window limitations

and higher computational costs [12].

Considering that our models are fine-tuned for specific tasks, using few-shot prompts

would be counterproductive. The fine-tuning process has already equipped the models

with the necessary task-specific knowledge. Therefore, we chose to employ a zero-

shot approach in our experimental setting, prioritizing efficiency and leveraging the

specialized knowledge acquired during fine-tuning.

Prompt Structure Our zero-shot prompt was carefully designed to provide clear

instructions and context for the SPARQL query generation task. The prompt structure

is as follows:

System: Construct a SPARQL query based on the ’Input question:’ using
the provided ’Entities:’, ’Relations:’, and ’Types:’. Refer to the ’Conversa-
tion history:’ to address any issues with incomplete information, such as
coreferences or ellipses. Ensure the query is compatible with the Wikidata
knowledge graph, utilizing only ids and excluding labels. Prefixes like
’wdt’ and ’wd’ are already defined, so do not redefine them. Use ’?x’ as the
variable in the query, and do not include any language tags or additional
comments. Only return the SPARQL query.

User: Conversation history: {conversation history}
Input question: {question}
Entities: {entities}
Relations: {relations}
Types: {types}

This prompt structure, totalling 156 tokens in length, was designed to optimize the

balance between providing comprehensive instructions and minimizing input size.

Input Optimization To enhance the model’s performance and mitigate potential

issues with input size limitations, we implemented several optimization strategies: 1.

Conversation History: The inclusion of previous conversation turns provides crucial

context for resolving ambiguities, such as co-references or ellipses, that may be present

in the current question; 2. Structured Triple Decomposition: Rather than inputting

full KG subgraphs, we decomposed the structured triples into three distinct categories:

Chapter 4. Experiments and Performance Evaluation 26

entities, relations, and types. This approach not only reduces input size but also

leverages the LLM’s inherent ability for logical reasoning and structure comprehension;

3. Identifier-Label Pairing: Each item in the entities, relations, and types lists is

presented in an {id, label} format. This pairing allows the model to utilize both the

unique identifiers required for SPARQL query construction and the human-readable

labels that may aid in semantic understanding.

This optimized input structure aims to strike a balance between providing compre-

hensive information and maintaining a manageable input size, thereby enabling the

model to generate accurate SPARQL queries efficiently.

4.5.3 Model Fine-tuning

To optimize our LLM for SPARQL query generation, we conducted a comprehensive

fine-tuning process using three distinct datasets derived from the SPICE dataset, each

comprising 2,964 samples that maintained the original data distribution.

Fine-tuning Configuration We employed the Low-Rank Adaptation (LoRA) tech-

nique [9] for efficient fine-tuning of the Llama-3-8b-Instruct base model, a variant of

the LLaMA 3 architecture optimized for instruction-following tasks. Key configuration

details include:

• Maximum Sequence Length: 5,000 tokens, chosen to accommodate the poten-

tially large input sizes from full subgraphs.

• LoRA Rank (r): 32, the number of trainable parameters that balance adaptability

and computational efficiency.

• Learning Rate: 2e-4, with a linear scheduler to promote stable convergence.

• Batch Size: 5 per device with 4 gradient accumulation steps, effectively creating

a larger virtual batch size to improve training stability.

These parameters were carefully selected to optimize the model’s ability to learn

complex tasks while managing computational resources effectively.

Training Process and Analysis We fine-tuned three separate models, each corre-

sponding to a different input representation strategy: gold subgraph, full subgraph, and

Chapter 4. Experiments and Performance Evaluation 27

top-20 triples. The training process was monitored using both training and validation

loss metrics, with evaluations conducted every 20 steps over three epochs.

Figure 4.1 illustrates the training and validation loss curves for each model variant,

revealing significant differences in learning dynamics across the three input representa-

tion strategies.

Figure 4.1: Training and Validation Loss Curves for Different Input Representations

The gold subgraph model demonstrated the most rapid convergence and achieved

the lowest final loss values (training: 0.298900, validation: 0.353659). This superior

performance can be attributed to the concise and highly relevant information provided by

gold subgraphs, allowing the model to quickly learn the essential patterns for accurate

SPARQL query generation. The steep initial decline in both training and validation

loss suggests that the model efficiently captured the core relationships between natural

language questions and their corresponding SPARQL representations.

In contrast, the full subgraph model struggled to converge, with both training and

validation losses remaining high throughout the process (final training: 2.466000,

validation: 2.351645). This poor performance indicates that the sheer volume of

information in full subgraphs, which can include up to 4,000 triples, overwhelmed the

model’s capacity to extract relevant patterns for query generation. The consistently

high loss values suggest that the model may have been unable to effectively distinguish

between crucial and information within the expansive subgraphs, leading to suboptimal

query formulation.

Chapter 4. Experiments and Performance Evaluation 28

The top-20 triples model presented an intriguing middle ground. While not converg-

ing as rapidly as the gold subgraph model, it showed steady improvement throughout

training, achieving final loss values (training: 0.381200, validation: 0.424139) that

were significantly closer to the gold subgraph model than to the full subgraph model.

This performance indicates that the top-20 triples selection strategy effectively bal-

ances information richness and model tractability, providing sufficient context for query

generation without overwhelming the model’s learning capacity.

These divergent outcomes reflect the importance of input sizes in fine-tuning LLMs

for specialized tasks like SPARQL query generation. The superior performance of

the gold subgraph model highlights the value of concise, relevant input in facilitating

efficient learning. Conversely, the full subgraph model’s poor convergence demonstrates

that an abundance of information can be detrimental, potentially obscuring the essential

patterns necessary for effective query generation.

The respectable performance of the top-20 triples model suggests a promising

direction for practical applications. It indicates that the retrieval method over large

knowledge graphs can yield effective results, potentially offering a scalable approach for

interfacing LLMs with extensive knowledge bases without sacrificing query generation

accuracy.

4.5.4 LLM Performance Analysis

Table 4.4 presents the Exact Match (EM) accuracy for our LLM experiments across

various question types and categories. The table compares the performance of three

model variants: MG (gold subgraphs), MA (full subgraphs), and M20 (top 20 triples)

and their fine-tuned version: FMG (fine-tuned with gold subgraph), FMA (fine-tuned

with full subgraph), and FM20 (fine-tuned with top 20 triples). For each variant, we

report the EM accuracy (M) for the base model and the EM accuracy for the fine-tuned

model (FM), along with the average input triples amount (Size), which corresponds to

the subgraph size, and the number of questions in each question type (#o f Q)

Results Analysis by Inputs The results reveal a landscape of model performance

across different question types and input representations. Notably, all base models (MG,

MA, and M20) consistently achieved 0% EM accuracy across all question types, which

is accorded with the results in [19], as shown in Table 4.5. This outcome suggests

that the base models, which were fine-tuned for chat instructions, struggle to generate

Chapter 4. Experiments and Performance Evaluation 29

Question Type Category MG FMG SizeG MA FMA SizeA M20 FM20 Size20 #o f Q

Simple Question (Direct) Direct 0 0.9368 310 0 0 2351 0 0.7371 453 5855

Simple Question (Coreference)
Direct 0 0.5823 357 0 0 3846 0 0.2701 525 881

Indirect 0 0.9289 293 0 0 2954 0 0.4722 438 2785

Simple Question (Ellipsis)
Direct 0 0.9850 319 0 0 2555 0 0.7421 483 667

Indirect 0 1.0000 346 0 0 3097 0 0.3235 469 68

Verification (Boolean)
Direct 0 0.2159 347 0 0 3212 0 0.0704 525 1519

Indirect - - - - - - - - - -

Logical Reasoning
Direct 0 0.8711 378 0 0 4080 0 0.4992 518 1280

Indirect 0 0.5616 325 0 0 1711 0 0.3014 473 73

Quantitative Reasoning
Direct 0 0.5901 368 0 0 3563 0 0.3602 513 2757

Indirect 0 0.8457 363 0 0 2226 0 0.6096 508 648

Comparative Reasoning
Direct 0 0.3990 407 0 0 3194 0 0.2358 541 1213

Indirect 0 0.4351 415 0 0 2015 0 0.2319 579 940

Overall - 0 0.7410 336 0 0 2923 0 0.4813 489 18686

Table 4.4: Exact Match (EM) accuracy for LLM experiments. The table compares the

base and fine-tuned (F) performance of three model variants: MG, MA, and M20, along

with the average number of input triples (Size) and number of questions in each question

type (# of Q).

syntactically correct SPARQL queries, a task that is quite different from their original

training objective. This finding suggests that pre-trained LLMs still require targeted

fine-tuning to bridge the gap between semantic understanding and the generation of

syntactically correct SPARQL queries, which requires specialized knowledge and skills

that are not inherently present in the base models.

However, a markedly different picture emerges when examining the performance of

the fine-tuned models (FMG, FMA, and FM20). The fine-tuned gold subgraph model

(FMG) significantly outperformed the other variants across most question types, with

particularly strong results for simpler questions and those involving coreference or

ellipsis. For instance, in the ”Simple Question” category, MFG achieved an impressive

94.95% accuracy for direct questions and 66.56% for indirect questions. This stark

improvement demonstrates the critical role of fine-tuning in enabling the model to

generate accurate SPARQL queries.

In contrast, the fine-tuned full subgraph model (MFA) consistently showed 0%

accuracy, aligning with our training observations where this model struggled to converge

due to information overload. After investigating some responses from this model, we

found that it frequently gives responses that is no relevant to SPARQL generation, like

”Do you mean ...”. This under-performance is likely related to the significantly longer

input lengths for this model – often 2-3 times longer than the other variants.

Chapter 4. Experiments and Performance Evaluation 30

The fine-tuned top-20 triples model (FM20) did not perform as well as the gold

subgraph model but still achieved commendable results. Although its overall perfor-

mance was lower than that of the gold subgraph model, FM20 demonstrated significant

potential, particularly in handling simpler question types. For instance, it achieved an

accuracy of 74.79% for direct simple questions, indicating that the strategy of selecting

the most relevant triples may offer a viable approach for balancing information richness

and model performance in real-world scenarios where gold subgraphs are not available.

The performance difference between FM20 and FMA also underscores the critical

importance of input quality over quantity in this task. This observation aligns with

our training results and reinforces the idea that carefully curated input is crucial for

effective query generation. Thus, it proves that efficient methods for subgraph retrieval

and truncation are promising. The retrieval approach could serve as a baseline for

developing more sophisticated subgraph selection methods that balance information

content with model tractability.

Results Analysis by Question Types Surprisingly, in some cases, the FMG and

FM20 models have better performance on indirect questions than direct questions.

When an input indirect question does not provide enough information for generating

the SPARQL query, it indicates that the LLM is extracting information from the context

and supplementing it to the current question. This demonstrates the effectiveness of the

LLM in understanding and utilizing contextual information.

Performance variability across question types offers further insights into the models’

capabilities. Simple questions and those involving basic linguistic phenomena, such as

coreference and ellipsis, generally achieved higher accuracy. In contrast, more complex

reasoning tasks proved more challenging. For instance, comparative reasoning questions

saw notably lower accuracies (39.90% for direct and 43.51% for indirect questions with

FMG), highlighting the increased difficulty in translating complex logical structures

into query form.

It is worth noting that the SPARQL queries for complex questions tend to be

significantly longer and more intricate compared to those for simple questions. The

increased length and complexity of these queries make them more susceptible to

syntactical errors during the translation process. This observation further emphasizes

the challenges associated with handling complex reasoning tasks and the need for

robust models capable of generating accurate and well-formed SPARQL queries in such

scenarios.

Chapter 4. Experiments and Performance Evaluation 31

Results Comparison with Other Methods We compare our results with those from

the study by [19], which explores the effectiveness of fine-tuned LLMs in SPARQL

generation with gold subgraphs, as shown in Table 4.5. Both studies demonstrate that

fine-tuned models (LoRA-7B and FMG) achieve better performance compared to their

base counterparts (LLaMA-7B and MG), highlighting the effectiveness of fine-tuning

in improving the models’ ability to generate accurate SPARQL queries. While the

LoRA-7B model achieves impressive results on simple questions and logical reasoning

tasks, it struggles with comparative reasoning, obtaining 0% exact match scores. In

contrast, our FMG model achieves 39.90% and 43.51% exact match scores on direct and

indirect comparative reasoning questions, respectively, suggesting that our fine-tuned

model has a better grasp of comparative reasoning than the LoRA-7B model. Moreover,

our model fine-tuned on truncated subgraphs via gold entities, FM20, still maintains

23.58% and 23.19% EM rates for comparative reasoning tasks.

It is important to note that the study by [19] used a larger training dataset of

30,000 samples, while we used only 3,000 samples due to computational constraints.

This difference in training data size may contribute to the performance discrepancies

observed between the two studies. The larger training dataset used by [19] likely

enabled their models to learn from a more diverse set of examples, potentially leading to

better generalization and performance in certain question types. Despite the differences

in training data size, the ability of our FMG and FM20 models to handle comparative

reasoning questions demonstrates the effectiveness of our fine-tuning approach. Further

research is needed to investigate the impact of training data size on model performance.

To make the system more practical, additional research on how LLMs perform without

gold subgraphs, relying only on truncated subgraphs obtained through Named Entity

Recognition (NER) and Named Entity Linking (NEL), is necessary to explore the

feasibility and scalability of the approach in real-world scenarios.

Question Type LLaMA-7B EM LoRA-7B EM

Simple Question (Direct) 0.000 0.970

Simple Question (Coreference) 0.000 0.867

Simple Question (Ellipsis) 0.000 0.754

Logical Reasoning (All) 0.000 0.926

Verification (Boolean) (All) 0.000 0.851

Comparative Reasoning (All) 0.000 0.000

Quantitative Reasoning (Count) (All) 0.000 0.561

Table 4.5: Zero-Shot Exact Match (EM) Scores for LLaMA-7B and LoRA-7B from the

Study of [19]

We also compares our results with the BertSPS and BertSPA models from [15], as

Chapter 4. Experiments and Performance Evaluation 32

shown in Table 4.6. Our FMG model, which has access to gold subgraphs, achieves

a higher overall performance (74.10% EM) compared to the BertSPS model (70.96%

EM). This suggests that our fine-tuned LLM approach is more effective in generating

accurate SPARQL queries compared to the BERT-based model when both have access

to gold subgraphs. Furthermore, our FMG model also outperforms the BertSPS model

in several question types, such as simple questions (direct and ellipsis) and comparative

reasoning.

Question Type BertSPS EM BertSPA EM

Clarification 77.69 76.58

Logical Reasoning (All) 66.89 28.61

Quantitative Reasoning (All) 66.40 59.01

Comparative Reasoning (All) 73.80 39.37

Simple Question (Coreferenced) 69.87 58.83

Simple Question (Direct) 80.69 58.71

Simple Question (Ellipsis) 71.67 50.90

Verification (Boolean) 62.62 24.90

Quantitative Reasoning (Count) 73.20 48.44

Comparative Reasoning (Count) 66.79 40.67

Overall 70.96 48.60

Table 4.6: Exact Match (EM) Scores for BertSPS and BertSPA from [15]

On the other hand, the BertSPA model, which relies on NER and NEL for entity

identification, exhibits a significant drop in performance compared to BertSPS, with an

overall EM score of 48.60%. This performance gap highlights the challenges associated

with using NER and NEL for entity identification in SPARQL generation tasks, and the

amount of triples might influence the performance. Similarly, our FM20 model, which

is fine-tuned on truncated subgraphs obtained through gold entities, achieves an overall

EM score of 48.13%, comparable to BertSPA’s performance. This suggests that both

approaches still face challenges in dealing with full subgraphs or truncated subgraphs.

It is worth noting that the BertSPS and BertSPA models demonstrate higher perfor-

mance in logical reasoning and verification (Boolean) question types compared to our

models. This indicates that the BERT-based models may have an advantage in handling

these specific reasoning tasks.

The comparison with the BertSPS and BertSPA models highlights the strengths of

our fine-tuned LLM approach, particularly when given access to gold subgraphs. While

the BERT-based models excel in certain question types, our FMG model demonstrates

overall superior performance, especially in comparative reasoning and simple questions.

Chapter 4. Experiments and Performance Evaluation 33

Further research is needed to investigate the strengths and weaknesses of various

approaches and to develop models that can effectively handle a wide range of question

types and reasoning tasks, even in the absence of gold subgraphs.

Chapter 5

Conclusions

In this project, we aim at improving the two-stage approach for conversational KGQA

by addressing the challenges associated with large subgraphs extracted from KGs. Our

proposed methodology involved integrating retrieval techniques to truncate and refine

the subgraphs, ensuring their quality and reducing their size to a manageable level.

Additionally, we explored the effectiveness of Large Language Models (LLMs) in

generating SPARQL queries based on these truncated subgraphs.

Our experiments, conducted on a stratified sample of the SPICE dataset, yielded

several key findings. First, the retrieval method proved effective in truncating subgraphs

and capturing relevant information for simple questions. However, its performance was

lower for complex reasoning questions, indicating the need for improvements in the

embedding or search method. Second, the accumulated subgraph approach demon-

strated significant improvements in performance for indirect questions by incorporating

information from previous turns, mitigating the issue of incomplete information as the

conversation progressed. Third, fine-tuned LLMs significantly outperformed their base

counterparts in generating accurate SPARQL queries. The fine-tuned gold subgraph

model (FMG) exhibited the best performance, particularly for simpler questions and

those involving coreference or ellipsis. The fine-tuned top-20 triples model (FM20)

showed commendable results, indicating the potential of selecting the most relevant

triples for balancing information richness and model performance. Fourth, LLMs

demonstrated the ability to extract information from context and supplement it to the

current question, leading to better performance on indirect questions compared to direct

questions in some cases. Finally, performance variability across question types high-

lighted the challenges associated with handling complex reasoning tasks and the need

for robust models capable of generating accurate and well-formed SPARQL queries in

34

Chapter 5. Conclusions 35

such scenarios.

Future Work Our findings open up several directions for future research in conversa-

tional KGQA.

• First, improving retrieval methods should be a key focus. One promising ap-

proach is to utilise a graph-structured representation to aggregate information

about a question and its context, as demonstrated by [11]. By injecting graph

embeddings directly into the LLM and learning them end-to-end, the LLM’s

reasoning capabilities can be enhanced. Additionally, incorporating a memory

module to track and update past evidence as the conversation evolves can provide

robustness against noise and retrieval errors. Another direction for improvement

is to explore direct fact retrieval methods, such as the DiFaR framework proposed

by Ba. This approach bypasses the need for NER/NEL by directly retrieving facts

from the KG based on their representational similarities with the input text. By

embedding all facts in the knowledge graph onto a dense embedding space and

using a reranker to contextualize the input text and the fact jointly, the DiFaR

framework has shown significant improvements over the traditional three-step

approach. Investigating the integration of such direct fact retrieval methods into

our conversational KGQA system could enhance its scalability and practicality in

real-world scenarios.

• Second, developing dynamic subgraph truncation techniques that can maintain a

manageable size of the subgraph throughout the conversation while preserving

crucial information is an important area for future research. As conversations

progress and triples accumulate, the subgraph can become very large, posing

challenges in efficiently searching for relevant information.

• Third, further investigation into the impact of training data size on LLM perfor-

mance and the development of models that can effectively handle a wide range

of question types and reasoning tasks, even in the absence of gold subgraphs, is

necessary. Exploring the strengths and weaknesses of various LLM architectures

and fine-tuning strategies could lead to more robust and versatile models for

conversational KGQA.

• Finally, incorporating answer-sensitive KG-to-Text methods, such as the Retrieve-

Rewrite-Answer framework proposed by Wu et al. (2023), could enhance the

Chapter 5. Conclusions 36

performance of LLMs in conversational KGQA. Their approach transforms KG

knowledge into well-textualized statements that are most informative for KGQA.

By generating textual knowledge that is specifically tailored to the question at

hand, LLMs can be provided with more targeted and relevant information for

generating accurate SPARQL queries. Integrating answer-sensitive knowledge

generation into our conversational KGQA system could potentially help bridge

the gap between the structured knowledge in the KG and the natural language

understanding capabilities of LLMs. By providing LLMs with well-formed,

informative textual representations of the relevant KG knowledge, we can leverage

their strong language understanding and generation capabilities to produce more

accurate and contextually appropriate SPARQL queries, ultimately improving the

overall performance of the conversational KGQA system.

Bibliography

[1] Jinheon Baek, Alham Fikri Aji, Jens Lehmann, and Sung Ju Hwang. Direct

fact retrieval from knowledge graphs without entity linking. arXiv preprint

arXiv:2305.12416, 2023.

[2] Tom B Brown. Language models are few-shot learners. arXiv preprint

ArXiv:2005.14165, 2020.

[3] Jiaoyan Chen, Yuxia Geng, Zhuo Chen, Jeff Z Pan, Yuan He, Wen Zhang, Ian

Horrocks, and Huajun Chen. Zero-shot and few-shot learning with knowledge

graphs: A comprehensive survey. Proceedings of the IEEE, 111(6):653–685,

2023.

[4] Philipp Christmann, Rishiraj Saha Roy, Abdalghani Abujabal, Jyotsna Singh,

and Gerhard Weikum. Look before you hop: Conversational question answering

over knowledge graphs using judicious context expansion. In Proceedings of the

28th ACM International Conference on Information and Knowledge Management,

pages 729–738, 2019.

[5] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805, 2018.

[6] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,

Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The

faiss library. arXiv preprint arXiv:2401.08281, 2024.

[7] Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and

Yu Su. Beyond i.i.d.: Three levels of generalization for question answering on

knowledge bases. In Proceedings of the Web Conference 2021, WWW ’21, page

3477–3488, New York, NY, USA, 2021. Association for Computing Machinery.

37

Bibliography 38

[8] Ben Hachey, Will Radford, Joel Nothman, Matthew Honnibal, and James R.

Curran. Evaluating entity linking with wikipedia. Artificial Intelligence, 194:130–

150, 2013. Artificial Intelligence, Wikipedia and Semi-Structured Resources.

[9] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language

models. arXiv preprint arXiv:2106.09685, 2021.

[10] Parag Jain and Mirella Lapata. Conversational semantic parsing using dynamic

context graphs. arXiv preprint arXiv:2305.06164, 2023.

[11] Parag Jain and Mirella Lapata. Integrating large language models with graph-based

reasoning for conversational question answering. arXiv preprint arXiv:2407.09506,

2024.

[12] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and

Graham Neubig. Pre-train, prompt, and predict: A systematic survey of prompting

methods in natural language processing. ACM Computing Surveys, 55(9):1–35,

2023.

[13] Pierre Marion, Pawel Nowak, and Francesco Piccinno. Structured context and

high-coverage grammar for conversational question answering over knowledge

graphs. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott

Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical Methods

in Natural Language Processing, pages 8813–8829, Online and Punta Cana,

Dominican Republic, November 2021. Association for Computational Linguistics.

[14] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh

Hajishirzi, and Luke Zettlemoyer. Rethinking the role of demonstrations: What

makes in-context learning work? arXiv preprint arXiv:2202.12837, 2022.

[15] Laura Perez-Beltrachini, Parag Jain, Emilio Monti, and Mirella Lapata. Seman-

tic parsing for conversational question answering over knowledge graphs. In

Andreas Vlachos and Isabelle Augenstein, editors, Proceedings of the 17th Con-

ference of the European Chapter of the Association for Computational Linguistics,

pages 2507–2522, Dubrovnik, Croatia, May 2023. Association for Computational

Linguistics.

Bibliography 39

[16] Siva Reddy, Mirella Lapata, and Mark Steedman. Large-scale semantic parsing

without question-answer pairs. Transactions of the Association for Computational

Linguistics, 2:377–392, 2014.

[17] Amrita Saha, Vardaan Pahuja, Mitesh Khapra, Karthik Sankaranarayanan, and

Sarath Chandar. Complex sequential question answering: Towards learning to

converse over linked question answer pairs with a knowledge graph. In Sheila

McIlraith and Kilian Weinberger, editors, Proceedings of the Thirty-Second AAAI

Conference on Artificial Intelligence (AAAI-18), pages 705–713, New Orleans,

Louisiana, USA, 2018. AAAI Press.

[18] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert,

a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint

arXiv:1910.01108, 2019.

[19] Phillip Schneider, Manuel Klettner, Kristiina Jokinen, Elena Simperl, and Florian

Matthes. Evaluating large language models in semantic parsing for conversational

question answering over knowledge graphs. In Proceedings of the 16th Inter-

national Conference on Agents and Artificial Intelligence - Volume 3: ICAART,

pages 807–814. INSTICC, SciTePress, 2024.

[20] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. Llama: Open and efficient foundation language models. arXiv

preprint arXiv:2302.13971, 2023.

Appendix A

Retrieval model fine-tune

To enhance the performance of our retrieval model, we fine-tuned a DistilBERT model

for the specific task of question-triple matching. As the final results do not surpass the

DistilBert embedding model, we put it in the Appendix for reference.

We framed the task as a binary classification task, where the model learns to

distinguish between relevant (positive) and irrelevant (negative) question-triple pairs.

For the training dataset, we concatenated user questions with their corresponding

gold triples to create positive samples. Negative samples were generated by pairing

questions with randomly selected, irrelevant triples. The final dataset comprised 62,384

examples, with an equal distribution of positive and negative samples.

We utilized the DistilBERT-base-uncased model and tokenizer from the Hugging

Face Transformers library. The model was fine-tuned using the following configuration:

• Batch size: 16 (per device)

• Learning rate: 2e-5 with linear warm-up

• Number of epochs: 3

• Optimizer: AdamW with weight decay of 0.1

• Mixed precision training (FP16)

• Gradient accumulation steps: 2

The training process employed early stopping with a patience of 3 and a threshold

of 0.0001. We used a linear learning rate scheduler with warm-up steps. During the

training, the training logs reveal a steady decrease in both training and validation loss

over the course of the fine-tuning process. The training loss decreased from an initial

40

Appendix A. Retrieval model fine-tune 41

value of 0.1829 to 0.0385 by the 3900th step, while the validation loss reduced from

0.1568 to 0.0856, indicating that the model was learning to distinguish between relevant

and irrelevant question-triple pairs.

Question Type Category
Hit@20 Hit@20 (Fine-tuned)

Hit rate Recall Hit rate Recall

Simple Question (Direct)
Direct 0.9298 0.9696 0.3347 0.6227

Indirect 0.5669 0.9043 0.0573 0.4944

Simple Question (Coreferenced)
Direct 0.3144 0.6384 0.0840 0.4123

Indirect 0.2526 0.6934 0.1065 0.5521

Quantitative Reasoning (All) Direct 0.1209 0.6518 0.0173 0.5112

Logical Reasoning (All)
Direct 0.9175 0.9860 0.0400 0.4530

Indirect 0.4231 0.9510 0.1731 0.6863

Comparative Reasoning (All)
Direct 0.2367 0.7815 0.0356 0.5803

Indirect 0.0968 0.6302 0.0632 0.5691

Verification (Boolean) (All) Direct 0.6162 0.9279 0.0513 0.4703

Quantitative Reasoning (Count) (All)
Direct 0.4821 0.8239 0.0659 0.5458

Indirect 0.7207 0.8820 0.4691 0.7380

Simple Question (Ellipsis)
Direct 0.8966 0.9493 0.3178 0.6129

Indirect 0.3235 0.6716 0.2059 0.7206

Comparative Reasoning (Count) (All)
Direct 0.1980 0.7595 0.0342 0.5948

Indirect 0.1312 0.6129 0.0817 0.5161

Table A.1: Comparison of Hit@20 (Comma) vs Hit@20 (Fine-tuned) Models

However, when we compare the performance of the fine-tuned model with the base

DistilBERT model (Table 1), we observe a significant drop in performance across all

question types and categories. For instance, in the Simple Question (Direct) category,

the hit rate at 20 decreased from 0.9298 to 0.3347 for direct questions, and from 0.5669

to 0.0573 for indirect questions.

The performance degradation can be primarily attributed to two key factors. First,

there’s a significant task mismatch between the fine-tuning objective and the actual

application. While the model was trained on a binary classification task with individual

query-triple pairs, the real-world application involves retrieving relevant triples from

large subgraphs containing thousands of triples. This disparity in scale and complexity

between training and application environments likely contributed to the model’s poor

generalization. Second, the data quality, particularly in the generation of negative

samples, may not adequately represent the challenges faced in the actual retrieval

task. With entities potentially associated with numerous triples in the application, the

Appendix A. Retrieval model fine-tune 42

training data might not have captured the nuanced discrimination required in real-world

scenarios.

For future work, we propose adapting the fine-tuning process to better align with the

actual retrieval task. This could involve training on larger contexts that include multiple

triples per query, more closely mimicking the structure of the subgraphs encountered in

the application. Additionally, improving the negative sampling strategy to generate more

challenging and diverse examples, especially considering the many-to-one relationship

between triples and entities, could enhance the model’s discriminative capabilities in

complex, real-world knowledge graphs.

