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Abstract

Organizations often use Large Language Model (LLM) APIs for tasks like customer

support, which can be expensive and pose data privacy risks. To mitigate this, a

neural caching framework that uses a smaller, locally run student model trained on the

LLM’s outputs has been proposed and studied by previous literature (Ramı́rez et al.,

2023). However, this research performed a complete retraining of the student model

to update it, which is inefficient. In this work, we explore a range of Incremental

Learning (IL) techniques for efficient neural caching with a focus on classification

tasks. IL allows models to adapt to new information without forgetting previously

learned knowledge. Our experiments suggest that the IL method, Replay improves the

computational efficiency of neural caching by reducing FLOPs and training time by

approximately 40% in static data streams and 30% in dynamic data streams compared

to complete retraining with minimal performance tradeoffs.
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Chapter 1

Introduction

1.1 Motivation

Large Language Models (LLMs) possess advanced capabilities in understanding natural

language. They undergo pre-training on an extensive corpus of text data, during which

they acquire knowledge of various language patterns and structures. After pre-training,

these models are fine-tuned for tasks such as text classification, generation or question

answering. However, the financial cost of training and maintaining LLMs is significant,

making it inaccessible for many organizations. LLMs can perform tasks without prior

task-specific training by understanding the context from the input, making them versatile

and adaptable across various applications.

LLM subscriptions allow organizations to use LLMs through APIs, with charges

applied per call. For instance, customer support chatbots in organizations leverage

LLMs to understand user intentions and offer appropriate assistance (Ham et al., 2020).

As time goes on, the prompts provided to the LLM may become repetitive. Moreover,

this approach also reveals the organization’s entire request stream to the LLM provider.

To tackle cost and data privacy concerns, a new framework has been studied where

a smaller, locally run model, called the student model, is periodically trained using

outputs from the LLM, or teacher model (Ramı́rez et al., 2023). This method, referred

to as neural caching, enables the student model to manage requests on its own, cutting

costs while maintaining similar performance.

The key element of neural caching is a policy or instance selection criteria that

determine whether a user request should be processed by the student or the teacher.

Ramı́rez et al. (2023) shows the efficacy of Active Learning (AL) (Settles, 2009) based

selection criteria for neural caching on a stationary or static (i.i.d) stream of requests.
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Chapter 1. Introduction 2

However, this study updated the student model with complete re-training as new LLM

annotated data arrived, which is suboptimal. Additionally, in real-world scenarios, the

distribution of requests is dynamic and is likely to change over time (Cacciarelli and

Kulahci, 2023; Gama et al., 2014). Incremental Learning (IL) explores methods that

strike a better balance between performance and efficiency, where models adapt to new

data without forgetting previous knowledge. Thus, in this work, we aim to study IL

methods to perform neural caching efficiently for both static and dynamic data streams.

We also aim to study the effect of various policies for neural caching on a dynamic

stream of requests.

Our incremental neural caching process begins with a student model generating a

response to an incoming query. The policy determines whether to use the student’s

response or to invoke an LLM. LLM responses are stored in a cache and later used to

incrementally distil the LLM’s knowledge to the student model. Figure 1.1 describes

the incremental neural caching process.

Figure 1.1: A single iteration of Incremental Neural Caching.

1.2 Objectives

The objectives of the project mainly include:

• To study the use of Incremental Learning (IL) methods in the context of neural

caching for Large Language Model (LLM) requests, applying incremental online
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knowledge distillation to reduce expensive LLM calls.

• To evaluate the efficiency and performance trade-offs of incremental learning

approaches in neural caching across static and dynamic data streams.

• To evaluate and analyze the performance of various policies including AL-based

policies for incremental neural caching.

1.3 Key Contributions

This research makes several key contributions to the field of incremental learning and

neural caching.

• We introduce a novel application of incremental learning for neural caching of

LLM requests.

• We show that incremental learning approaches offer significant efficiency gains

with minimal performance trade-offs.

• Our findings reveal that the IL method, Replay is particularly effective for incre-

mental learning in neural caching of static and dynamic data streams.

• The research empirically proves that AL-based policies improve performance

over baseline policies for incremental neural caching of static and dynamic data

streams.

1.4 Structure of the research

The dissertation is structured as follows:

1. Introduction: This chapter introduces the motivation behind the research on

incremental neural caching and outlines the key objectives and contributions of

the research.

2. Background: This chapter provides a review of relevant literature, including

an overview of neural caching and various instance selection criteria, as well as

continual and incremental learning methods.
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3. Description of the Work Undertaken: This chapter details the conceptual design

and implementation of the project. It covers the neural caching framework, the

incremental learning methods employed, the datasets used, the implementation

specifics of the experiments and the evaluation criteria.

4. Experiments: This chapter presents the experiments conducted on both static and

dynamic data streams, outlining the motivation behind each experiment, followed

by the results and their subsequent discussions.

5. Conclusions: The final chapter summarizes the research findings, discusses the

limitations of the research, and offers suggestions for future work.



Chapter 2

Background

This chapter reviews the background literature relevant to the research. Section 2.1

introduces neural caching and explores various instance selection criteria discussed in

the literature. Section 2.2 covers continual and incremental learning, along with an

overview of IL methods.

2.1 Neural caching

The goal of neural caching is to enhance the system’s online accuracy while effectively

training the student model. The implementation of neural caching by Stogiannidis

et al. (2023) uses a kNN classifier as the student model. This model is simple since it

does not require retraining. As the dataset expands, the kNN classifier’s requirement

to access the entire dataset for each decision presents substantial memory challenges,

highlighting the trade-off between simplicity and scalability in the model. Ramı́rez

et al. (2023) assesses various active learning-based selection criteria for the policy, with

Margin Sampling and Query by Committee demonstrating consistent benefits across

tasks and budgets. Budget is the maximum number of API calls the student model

can make to the LLM. The paper shows the efficacy of AL-based policies over static

policies like Front-loading. In this context, the neural caching setup is an online form of

Active Learning with Knowledge Distillation. Both Active Learning (Settles, 2009) and

Knowledge Distillation (Bucilua, Caruana, and Niculescu-Mizil, 2006; Hinton, Vinyals,

and Dean, 2015) aim to optimize the final accuracy of the student model, whereas the

neural caching problem seeks to optimize the online accuracy of the entire setup.

Knowledge distillation (KD): KD (Bucilua, Caruana, and Niculescu-Mizil, 2006;

Hinton, Vinyals, and Dean, 2015) involves training a smaller model on the larger

5
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model’s predictions to mimic it. Here, LLM’s knowledge is continuously transferred to

the student model.

Active Learning (AL) AL (Settles, 2009), primarily involves the selection of the

most informative data samples for training, which human experts typically annotate.

The neural caching framework uses a variant of active learning known as stream-

based selective sampling. This method examines each consecutive unlabeled instance

individually, allowing the student to assign a label or query the teacher for each data

point.

2.1.1 Instance Selection Criteria

Active Learning (AL) metrics have already been shown to work well as instance

selection criteria (policy) for neural caching (Ramı́rez et al., 2023). The remainder

of this section outlines the AL metrics studied by Ramı́rez et al. (2023), which are

followed in this work as well.

Front-loading (FR) involves using the entire annotation budget at the start by

labeling all instances with the Large Language Model (LLM). After the budget is

exhausted, the student model handles all subsequent queries independently.

Margin Sampling (MS) (Scheffer, Decomain, and Wrobel, 2001) focuses on select-

ing examples where the difference between the probabilities of the top two predicted

labels by the student model is the largest. The margin is calculated as:

Margin(xi) = logP(yi = k∗1|xi)− logP(yi = k∗2|xi) (2.1)

where k∗1 and k∗2 represent the first and second most likely labels, as determined by the

probability distribution P(yi|xi) calculated by the student model. Recent evaluations by

Schröder, Niekler, and Potthast (2021) have confirmed the efficacy of MS, particularly

highlighting its superior performance with Transformer models (Devlin et al., 2019) in

an offline, pool-based setting.

Prediction Entropy (PE) (Roy and McCallum, 2001) is one of the most commonly

used uncertainty sampling strategies in active learning. The key idea is to select

instances that have the highest entropy in their predicted output distribution, as these

are likely to be the most informative for the model since the model is uncertain about

these instances. Prediction entropy is calculated as:

Entropy(xi) =−∑
j

P(yi = k∗j | xi) logP(yi = k∗j | xi) (2.2)
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Query by Committee (QBC) selects instances based on the level of disagreement

among a committee of models (Seung, Opper, and Sompolinsky, 1992). The committee

consists of four previous student models in addition to the current student model, which

is presumed to be the best performing. The key idea behind QBC is that instances,

where committee members disagree, are likely to be informative, as they represent areas

of uncertainty in the model space. The disagreement is measured by calculating the

percentage of committee members who oppose the current student’s response.

Coreset (CS) is an active learning approach that aims to select a subset of data

points that approximates the full dataset while minimizing redundancy and maximizing

representativeness (Sener and Savarese, 2018). To implement Coreset in neural caching

setup, an encoder is used to obtain the embedding representation of the new instance.

Next, the cosine similarity between the new input’s embedding and the embeddings of

previous examples is computed. If the similarity with the most similar past instance xi

annotated by the LLM falls below a specified threshold s, a new annotation is requested

from the LLM. To obtain the embeddings, an average of the encoder representation

across tokens is usually taken, as this has been proven effective in sentence embedding

benchmarks (Ni et al., 2022).

2.2 Continual Learning

Continual learning (CL) allows machine learning models to adapt continuously to

new data and enables learning from a stream of information. The main challenge CL

addresses is catastrophic forgetting (McCloskey and Cohen, 1989), which occurs when

a neural network loses old knowledge as it learns new information. CL is typically

designed to address challenges in environments where data distribution changes over

time, which leads to catastrophic forgetting in the model. Neural networks are especially

prone to this issue, often overfitting to recent data at the expense of earlier knowledge

(Parisi et al., 2019). The current study does not explicitly focus on these dynamic

distributions. However, we speculate that the advantages of CL and Incremental

Learning (IL) approaches, which mitigate catastrophic forgetting, would be beneficial

for efficient caching of static and dynamic data streams.

There are two basic approaches to learning with a continuous stream of data (Ver-

wimp et al., 2023). The first, incrementally training or fine-tuning a model only with

new data, often leads to suboptimal results as models may overly adapt to the latest data.

The second approach involves retraining a model on all accumulated data. However, this
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is undesirable due to high computational and memory costs. Existing neural caching

frameworks were only evaluated by retraining the student model from scratch as new

data became available. Continual Learning (CL) explores methods that strike a better

balance between performance and efficiency.

As noted by Harun et al. (2023), most continual learning techniques are not pri-

marily designed to optimize computational efficiency. However, they demonstrate

that it is possible to reduce training times significantly while maintaining comparable

performance levels. Effective implementation of continual learning techniques could

drastically cut both the financial costs and the substantial carbon emissions typically

associated with retraining models from scratch (Amodei and Hernandez, 2023), without

sacrificing accuracy.

2.2.1 Incremental Learning

Incremental learning is a crucial aspect of continual learning, where models adapt to

new information without forgetting previously learned knowledge. This approach is

particularly relevant in scenarios where data arrives sequentially and complete retrain-

ing is impractical due to computational or memory constraints (Parisi et al., 2019).

Incremental learning is more narrowly focused on updating models on batches of new

data incrementally in an efficient way, while continual learning encompasses a broader

range of scenarios, including domain shifts, task adaptation and lifelong learning in

non-stationary environments.

The primary goal of incremental learning is to prevent catastrophic forgetting and

ensure the model can learn over time without requiring full retraining. However, in

our neural caching setup, the emphasis is on maintaining reasonable online and final

accuracy of the student model. While incremental learning may not always achieve the

highest accuracy, its strength lies in its ability to adapt to new data efficiently, which

is crucial in real-world applications. Incremental learning methods can be broadly

classified as follows (Biesialska, Biesialska, and Costa-Jussa, 2020):

Regularization-based methods: These approaches add constraints to balance the

performance in old and new tasks. These approaches involve adding an extra term

to the loss function during training to penalize changes to model parameters that are

crucial for previous tasks. A common implementation involves adding a quadratic

penalty to the loss function, penalizing the variation of each parameter based on its

contribution or ”importance” to performing old tasks. The importance can be computed
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using the Fisher information matrix (FIM), such as in Elastic Weight Consolidation

(EWC) (Kirkpatrick et al., 2017). EWC is a parameter regularization-based approach

for incremental learning. EWC helps neural networks preserve prior knowledge by

slowing down updates to weights that are crucial for previous tasks. EWC supports

continual learning in neural networks, allowing them to learn new tasks sequentially

without forgetting previously learned tasks. EWC uses the following loss function:

L = LB +∑
i

λ

2
Fii(θi−θ

∗
A,i)

2

where LB is the loss for the new task, λ is a hyperparameter, Fii is the diagonal of the

Fisher Information Matrix, and θ∗A,i are the optimal parameters for the previous task.

Rotated EWC (R-EWC) (Liu et al., 2018) improves EWC by rotating the parameter

space to better diagonalize the Fisher Information Matrix. Additionally, numerous

efforts have focused on designing better online importance measures. For instance,

Synaptic Intelligence (SI) (Zenke, Poole, and Ganguli, 2017) estimates parameter

importance by tracking their contribution to the total loss change. Memory Aware

Synapses (MAS) (Aljundi et al., 2018) measures parameter importance based on output

function sensitivity. RWalk (Chaudhry et al., 2018) combines the regularization terms

of SI (Zenke, Poole, and Ganguli, 2017) and EWC (Kirkpatrick et al., 2017) to integrate

their advantages. Interestingly, these importance measurements have been shown

to approximate the FIM (Nguyen et al., 2018), despite originating from different

motivations.

Rehearsal Methods: These methods maintain a memory of past data samples,

which are periodically replayed to the model while learning new tasks. This helps

the model retain knowledge from previous tasks. Variants of this approach include

pseudo-rehearsal methods, which generate synthetic data resembling past experiences

instead of storing actual data. iCaRL (Rebuffi et al., 2017) combines replay with

distillation to maintain performance on old tasks while learning new ones. The paper

presents a method for class-incremental learning that prevents catastrophic forgetting

by combining representation learning with a nearest-mean-of-exemplars classification

strategy. iCaRL stores a fixed number of exemplars from past classes and uses these to

update the model as new classes are introduced. The approach integrates knowledge

distillation and exemplar rehearsal to maintain accuracy across both new and previously

learned classes.

LAMOL (Sun, Ho, and Lee, 2020) enables a language model to learn new tasks
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while generating pseudo-data from previous tasks, effectively using these pseudo-

samples to replay old tasks and maintain performance across multiple tasks. Masson

D’Autume et al. (2019) uses an episodic memory model that performs sparse experience

replay and local adaptation for CL in text classification and question answering.

Memory replay or simply Replay involves storing and replaying a subset of past

data. By preserving a memory of past experiences, replay enables incremental learning

while avoiding catastrophic forgetting of previously acquired knowledge (Hayes et al.,

2020). To perform continuous learning without resetting the model and to preserve

knowledge across the entire data stream, a replay buffer is used to store a subset of

previously seen examples. The buffer size can fixed to a percentage of the total budget.

When the buffer reaches its capacity, an eviction policy can used to remove older or

less important examples. Random works well as the eviction policy based on previous

research (Chaudhry et al., 2018; Hayes et al., 2020; Wu et al., 2019). The size of the

replay buffer can be tuned to balance memory usage, computation time, and preservation

of past task performance.

Architectural methods: These involve altering the model’s architecture to prevent

forgetting. One common strategy is to freeze the parameters related to earlier tasks while

allowing new parameters or modules to be added for subsequent tasks. Progressive

Neural Networks (Rusu et al., 2016) is an example of this strategy, where new neural

”columns” are added for new tasks while freezing previous ones.

Having discussed the theoretical background, the next chapter will explain the

design and implementation details of the research.



Chapter 3

Description of the work undertaken

This chapter outlines the conceptual design and implementation details of the research.

Section 3.1 introduces the neural caching problem, followed by Section 3.2, which

covers the incremental learning methods studied in this research. Section 3.3 describes

the datasets used, while Section 3.4 provides implementation details for the experiments.

Finally, Section 3.5 discusses the evaluation metrics used to assess the experiments.

3.1 Neural caching

In this work, we specifically focus on classification tasks rather than free text generation

to address practical problems like routing user requests and answering factual questions

similar to Ramı́rez et al. (2023). This focus allows us to use established Active Learning

methods without modifications and avoids the complexities associated with evaluating

text generation, as highlighted by Celikyilmaz, Clark, and Gao (2021). By doing so,

we ensure our approach is both practical and effective for real-world classification

challenges. Our neural caching system aims to generate class labels for a sequence

of inputs (x1, . . . ,xn) from the input space X . The student model is updated using

Incremental Learning (IL) methods after every f processed request, where f represents

the frequency of model updates. The proposed system simulates a stream of requests,

processing each in real-time through either the student model or the LLM, based on the

established policy. During the learning phase, access to ground truth is not assumed to

replicate a fully automated online scenario. This setup facilitates the exploration of the

trade-offs between performance and efficiency. The entire incremental caching process

is illustrated in Figure 1.1, and the algorithm is detailed in Algorithm 1.

11
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Figure 3.1: Visual comparison between complete retraining studied in Ramı́rez et al.

(2023) and incremental learning methods studied in this research for incremental neural

caching. The square boxes indicate the student model being trained on LLM annotated

data with darker colour signifying better performance on validation data.

3.2 Incremental Learning Methods

We use incremental learning with Elastic Weight Consolidation and Replay for incre-

mental neural caching.

Incremental learning (Finetuning): In this training method, the model is not reset

to scratch during training. This means the model’s parameters are continuously updated

as new data arrives, rather than being reinitialized. As new data points are used to

update the model, they are temporarily stored in a small cache. After the model is

updated using those examples, they are quickly removed from the cache. This allows

the model to learn from the most recent data without storing large amounts of historical

data. When used with dynamic data streams, this method could be vulnerable to the

catastrophic forgetting (McCloskey and Cohen, 1989) issue due to the lack of additional

learning constraints. However, in a static data stream, the model may not suffer from

the forgetting problem if the training set is sufficiently large, as the distribution of the

training set would be closer to the true distribution. This method serves as our baseline

for incremental approaches as it is the simplest form of incremental learning.

Elastic Weight Consolidation (EWC): EWC helps balance retaining previously

learned knowledge while adapting to new data, ensuring consistent performance across

all data, even when tasks remain unchanged. EWC was originally designed for scenarios
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where tasks are changing, particularly in multi-task learning environments. However,

we chose to employ EWC since it may help prevent the model from overfitting to recent

data points, which is a risk in online learning scenarios. We assume a sequence of tasks

exists, although, in our setup, we will use EWC to retain knowledge of the model from

the previous training iteration. That is, we’ll use EWC to protect knowledge from the

previous version of the student model instead of a different task. At each retraining step,

before updating the model, we compute the Fisher Information Matrix F for the current

model parameters. The Fisher matrix represents the importance of each parameter to

the model’s current performance. The parameters of the new model are updated based

on the matrix F.

We implemented a simplified version of EWC. In this approach, we don’t maintain a

history of past model parameters or keep track of multiple Fisher Information Matrices.

Instead, we only use the most recent set of parameters and the corresponding Fisher

Information Matrix. This streamlined version focuses on preserving knowledge from

the immediately preceding training iteration, rather than accounting for multiple past

states of the model. Since most of our experiments involved static data streams, the

standard EWC, which stores the entire history of parameters and FIMs for all training

iterations may be inefficient for our scenario.

Replay: In this training method, a replay buffer or cache is used to store a subset of

previously seen examples to mitigate forgetting (Hayes et al., 2020). As new examples

arrive, they are used to update the student model. Simultaneously, a batch of examples

from the replay buffer is also used for training. This combination of new and replayed

examples helps mitigate catastrophic forgetting.

The replay buffer is similar to the exemplar set in iCaRL (Rebuffi et al., 2017).

iCaRL stores class prototypes for classification in incremental learning, while the replay

method in this research doesn’t organize examples by class and uses stored examples for

retraining a language model. iCaRL is tailored for class-incremental learning, whereas

the replay method is more versatile and applicable to various language tasks beyond

class-based scenarios. Also, Masson D’Autume et al. (2019) uses sparse experience

replay which is similar to our approach. However, it includes a local adaptation

phase and uses a key network for retrieval, unlike our replay method, which lacks

local adaptation and relies on random sampling. Additionally, the paper broadly targets

various language tasks, whereas our work specifically focuses on caching LLM requests.

IL research typically focuses on class, task, or domain incremental learning (Delange

et al., 2021). Since our study aimed to explore the impact of IL methods on static data
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streams as well, many existing approaches were not suitable for our setup. We chose

EWC as a representative of regularization-based IL methods since EWC is widely used

in continual learning literature and has shown effectiveness in preserving knowledge

across tasks. From the rehearsal-based IL methods, we chose to study Replay. We did

not choose any architectural methods for IL since they are more suited for task-specific

IL and the associated complexity in implementation and comparison with other methods.

We leave the investigation of state-of-the-art IL methods in the context of neural caching

for future research.

A visual illustration of the difference between this work and previous work by

Ramı́rez et al. (2023) can be seen in Figure 3.1.

3.3 Datasets

We use the following datasets: ISEAR (Shao, Doucet, and Caruso, 2015), RT-Polarity

(Pang and Lee, 2005), FEVER (Thorne et al., 2018), and Openbook (Mihaylov et

al., 2018). These datasets are chosen since the LLM consistently achieved higher

accuracy than the smaller model trained on 5000 gold labels, indicating that knowledge

distillation (KD) would be useful as per Ramı́rez et al. (2023). Each dataset is split into

training and test sets with an 80%-20% division, except for Openbook due to its smaller

size. The class distribution is uniform across all datasets.

ISEAR (Shao, Doucet, and Caruso, 2015) comprises data collected over several

years in the 1990s by a large group of psychologists from around the world. The

dataset features reports on seven major emotions from nearly 3000 respondents across

37 countries on all 5 continents (classes: joy, fear, shame, sadness, guilt, disgust, anger;

7666 examples).

RT-Polarity (Pang and Lee, 2005) is a collection of movie review documents anno-

tated for their overall sentiment polarity (classes: positive, negative; 10662 examples).

FEVER (Thorne et al., 2018) is a fact-checking dataset containing claims that can

be verified using Wikipedia (classes: true, false; 6612 examples).

Openbook (Mihaylov et al., 2018) is a challenging question-answering dataset

intended to evaluate the human understanding of a topic, similar to open-book exams.

Each entry includes a multiple-choice question (classes: A, B, C, D) along with a fact

that can aid in answering the question. The dataset consists of 5957 data points, with

5457 used for training and 500 reserved for testing.
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3.4 Experiment Details

We conduct all our experiments using three random seeds, determining the order of

examples and we report the average scores. For consistency, the frequency of updating

the student model, designated by f , is set to 1000, and each query incurs a uniform cost,

denoted by c(xi) = 1. To mitigate the cold start problem, the initial model, S0, is pre-

trained using data points derived from the Large Language Model (LLM) with N = 100

for the ISEAR and RT-Polarity datasets, and N = 1000 for FEVER and Openbook,

ensuring that S0 performs above the baseline of random selection as per Ramı́rez et al.

(2023).

T 5base (Raffel et al., 2019) is used as the backbone for the student model. We freeze

the model weights and add LoRA adapter layers for parameter-efficient fine-tuning

without altering the underlying model weights (Hu et al., 2022). We fine-tune the

student model by minimizing the cross-entropy loss between its predictions and the

soft labels (log probabilities) provided by the teacher model (LLM) for each class. The

budget range for a task (btask) is be varied from 1000 to 3500 in increments of 500. The

LLM annotated data accumulated in the cache is split into training and validation sets

with a 90%-10% division before every training iteration. We use the LLM annotated

dataset1 released by Ramı́rez et al. (2023) as a starting point for the experiments. Refer

to Appendix A for details regarding the experiment environment and hyperparameters.

3.4.1 Optimizer and learning rate scheduler

An optimizer is an algorithm that adjusts the parameters of a model to minimize the loss

function and improve the model’s accuracy during training. For all our experiments,

we utilize the AdamW optimizer (Loshchilov and Hutter, 2019), which combines the

benefits of Adam’s (Kingma and Ba, 2017) adaptive learning rates with weight decay

regularization. AdamW uses parameter-specific learning rate adaptation. AdamW’s

adaptive learning rates result in smaller updates for parameters that have consistently

large gradients and larger updates for parameters with smaller or infrequent gradients.

This behaviour is particularly beneficial for incremental learning scenarios. Parameters

that are crucial for maintaining performance on previously seen data are likely to have

had larger gradients in earlier training phases. As a result, these parameters will tend to

have smaller learning rates in subsequent training phases, which helps to preserve their

values and mitigate catastrophic forgetting to an extent.

1https://huggingface.co/datasets/guillemram97/cache_llm

https://huggingface.co/datasets/guillemram97/cache_llm
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The consistency in optimal hyperparameters across different learning setups (in-

cremental, replay, and complete retraining) based on hyperparameter experiments in

Appendix A suggests that AdamW’s adaptive nature contributes to a more robust learn-

ing process. This stability is crucial for incremental learning, as it allows for consistent

performance across different stages of the learning process without the need for frequent

hyperparameter adjustments.

We use a learning rate scheduler along with the optimizer in our experiments. A

learning rate scheduler adjusts the learning rate during training according to a predefined

schedule to improve model convergence. The interaction between AdamW and a

learning rate scheduler involves a layered adaptation process where AdamW adjusts

parameter-specific learning rates based on gradient moments (Kingma and Ba, 2017),

while the scheduler modifies the overall base learning rate. This creates a complementary

dynamic where the scheduler manages global learning rate adjustments, and AdamW

fine-tunes learning for individual parameters. In incremental learning, this combination

can help balance retaining old knowledge with acquiring new information.

We compared a linear scheduler with a linear scheduler with hard resets. The linear

scheduler gradually decreases the learning rate across iterations, while the hard reset

variant resets the learning rate at each iteration. In our experiments, we found that

both schedulers show similar final accuracy, with the linear scheduler having only a

minor decrease in online accuracy. The absence of resets in the linear scheduler may

contribute to a more stable learning process, leading us to choose the linear scheduler

for all our experiments. Refer to Section A in the Appendix for the experiment results.

3.5 Evaluation

3.5.1 Performance

To report the performance of our model, we use average accuracy. We obtain average

accuracy by dividing the corresponding Area Under the Curve (AUC) by the budget

range. This gives a normalized view of the model’s performance across varying budget

constraints. We consider online accuracy in addition to final accuracy because online

accuracy represents the average service quality provided to the user.
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3.5.2 Efficiency

Efficiency metrics are crucial for evaluating the feasibility and scalability of the model,

especially in resource-constrained environments. Similar to the performance metric, we

obtain the average value of the efficiency metrics by dividing the Area Under the Curve

(AUC) by the budget range. We use the following metrics to evaluate the efficiency of

our models.

Training time:.Training time is the total duration required to train a model from

start to finish, reflecting the computational cost and speed of the training process. In

our neural caching setup, training time is the total amount of time spent for all the

training iterations. It is intuitive and directly related to practical usability. Making

fair comparisons between models using training time could be challenging in certain

scenarios since the metric is sensitive to external factors such as hardware specifications,

concurrent processes, and core utilization. However, these limitations have a limited

effect on our setup since we use the same model and hardware for all the experiments.

Floating point operations (FLOPs): The FLOPs (Floating Point Operations)

quantifies the total number of floating-point operations required to train or infer with a

model, serving as an indicator of the computational workload and resource demands

of the model. FLOPs offer a more standardized and hardware-agnostic estimate of

computational work, correlating strongly with energy consumption and runtime while

allowing for equitable comparisons across different research environments. This metric

considers the granular work done at each time step, surpassing the limitations of

asymptotic runtime analysis. However, it is important to note that FLOPs primarily

focus on computational intensity, potentially overlooking other crucial factors such as

memory usage. Schwartz et al. (2020) argue that by emphasizing FLOPs alongside

accuracy in model evaluation, the field can foster the development of ”Green AI” -

models that achieve high performance while minimizing computational resources and

environmental impact.

We did not choose other efficiency metrics for our comparison due to the following

reasons as per Schwartz et al. (2020). Carbon emissions are difficult to measure

accurately and vary based on local electricity infrastructure, making them unreliable for

comparing models. Electricity usage is correlated with emissions and can be estimated

using GPU data, but it is hardware-dependent and not fully comparable across models.

The number of parameters is hardware-independent and correlates with memory usage,

but models with similar parameter counts can perform different amounts of work. Also,



Chapter 3. Description of the work undertaken 18

the model used in our study has the same number of parameters across all experiments.

In our experiments, we found that the training time results closely resemble the

FLOPs results, a pattern observed consistently across all our experiments. Therefore,

we may use these metrics interchangeably to quantify efficiency for our experiments.
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Algorithm 1: Pseudo-code for the neural caching algorithm with datasets

(tasks) Tasks, the budget for the current task btask, model update frequency f ,

cost per query c, and an initial student S0. Call LLM function calls the policy

algorithm to decide if the LLM has to be invoked for the input query. The

Trim function trims the cache (or replay buffer) if the buffer percent is less

than 100% based on the buffer eviction policy.

Donline← /0

for task in Tasks do
for xi in Xonline do

if i mod f == 0 then
if Incremental then

Si/ f ← Update(cache)

cache← /0

end
if Replay then

Si/ f ← Update(cache)

Trim(cache)

end
if Retrain then

Si/ f ← Retrain(cache)

end

end
ŷi← Si/ f (xi)

if Call LLM(b,xi, ŷi) and btask ≥ c(xi) then
ŷi← LLM(xi)

b← b− c(xi)

cache← cache∪{⟨xi, ŷi⟩}
end
Donline← Donline∪{⟨xi, ŷi⟩}

end

end
Dtest ←{⟨x j,Si/ f (x j)⟩|x j ∈ Xtest}
Acconline← Evaluate(Donline)

Acc f inal ← Evaluate(Dtest)



Chapter 4

Experiments

Based on the experiment design outlined in the previous chapter, this chapter presents

the experiments and results. Section 4.1 covers experiments with static data streams,

including a preliminary study on buffer eviction policy for the replay buffer, followed

by an examination of the FR policy in Subsection 4.1.2 and AL-based policies in

Subsection 4.1.3. Subsection 4.1.4 explores the impact of higher retraining frequency

in static data streams. Finally, Section 4.2 discusses experiments with dynamic data

streams.

4.1 Incremental neural caching with static data streams

4.1.1 Preliminary experiment: Buffer eviction policy study

Since the size of the replay buffer can be controlled, we performed experiments to study

common eviction policies. We chose to compare the policies outlined below:

• First-In-First-Out (FIFO): Remove the oldest examples.

• Random: Remove examples from the buffer randomly.

• Margin Sampling (MS): Remove examples deemed less important based on the

margin for maintaining performance.

The size of the replay buffer is set to be 25%, 50% and 75% of the budget. The

experiments are conducted in the ISEAR dataset with retraining frequency f = 1000,

FR as instance selection criteria and Replay as the incremental learning method. The

results can be seen in Table 4.1 and Table 4.2.

20
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Buffer percent FIFO policy MS policy Random policy

25% 0.631 ± 0.003 0.628 ± 0.005 0.637 ± 0.001

50% 0.634 ± 0.005 0.634 ± 0.004 0.641 ± 0.002

75% 0.641 ± 0.002 0.641 ± 0.002 0.642 ± 0.003

Table 4.1: Online Accuracy (AUC) for eviction policy study (ISEAR dataset)

Buffer percent FIFO policy MS policy Random policy

25% 0.588 ± 0.003 0.583 ± 0.006 0.603 ± 0.003

50% 0.593 ± 0.008 0.593 ± 0.006 0.607 ± 0.004

75% 0.606 ± 0.005 0.603 ± 0.006 0.608 ± 0.001

Table 4.2: Final Accuracy (AUC) for eviction policy study (ISEAR dataset)

Figure 4.1: Training Time (s) for random eviction policy across budgets for various buffer

percents

We can observe that for both online and final accuracy, the Random policy outper-

forms FIFO and MS policies. This validates the efficacy of the random eviction policy,

which worked well in previous research (Chaudhry et al., 2018; Hayes et al., 2020;
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Wu et al., 2019) as described in the background chapter. The choice of eviction policy

appears to have a more significant impact on performance at smaller buffer sizes, with

differences becoming less pronounced at larger sizes. The improvement in accuracy

from 50% to 75% is smaller than from 25% to 50%, suggesting diminishing returns as

buffer size increases. From the above discussion and the training time plot from Figure

4.1, we can confirm that the buffer percent of 50% provides a good trade-off between

performance and efficiency. Also, we can notice that the deviation of the accuracy

values for the random policy is smaller confirming its robustness. Hence, we use a

buffer percent of 50% with a random buffer eviction policy in addition to a full (100%)

buffer for replay experiments.

4.1.2 Incremental neural caching with Front-loading (FR) policy

We first study the performance and efficiency of IL methods using a simple Front-loading

(FR) policy, since the training pattern of the FR is straightforward. The experiments are

conducted in all datasets introduced in Section 3.3 with retraining frequency f = 1000.

The training methods of the experiments include all the IL methods introduced in Section

3.2 along with Replay (50%) introduced in Section 4.1.1 and complete retraining. The

performance and efficiency metrics outlined in Section 3.5 are calculated for these

experiments. The online accuracy, final accuracy, FLOPs and training time are shown

in Table 4.3, Table 4.4, Table 4.5 and Table 4.6. Figure 4.2 represents the performance

and efficiency curves with respect to budgets averaged across four datasets for the

front-loading strategy. Figure 4.3, and Figure 4.4 represent the online accuracy and

total training time respectively across four datasets.

Training method ISEAR Openbook RT-Polarity FEVER Average

Complete retraining 0.646 ± 0.004 0.725 ± 0.004 0.880 ± 0.001 0.736 ± 0.002 0.747 ± 0.003

Incremental 0.632 ± 0.003 0.718 ± 0.003 0.879 ± 0.001 0.731 ± 0.001 0.740 ± 0.002

EWC 0.632 ± 0.001 0.718 ± 0.004 0.880 ± 0.001 0.733 ± 0.001 0.741 ± 0.002

Replay (100%) 0.644 ± 0.004 0.717 ± 0.005 0.879 ± 0.002 0.732 ± 0.004 0.743 ± 0.004

Replay (50%) 0.641 ± 0.002 0.729 ± 0.002 0.879 ± 0.001 0.733 ± 0.002 0.745 ± 0.002

Table 4.3: Online Accuracy (AUC) for FR Strategy

From the results, we can observe that plain incremental learning has the lowest

performance confirming that neural caching with incremental learning suffers from
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Training method ISEAR Openbook RT-Polarity FEVER Average

Complete retraining 0.612 ± 0.003 0.640 ± 0.004 0.884 ± 0.002 0.683 ± 0.006 0.705 ± 0.004

Incremental 0.593 ± 0.006 0.630 ± 0.002 0.879 ± 0.002 0.679 ± 0.005 0.695 ± 0.004

EWC 0.594 ± 0.006 0.634 ± 0.003 0.882 ± 0.002 0.680 ± 0.005 0.698 ± 0.004

Replay (100%) 0.609 ± 0.002 0.624 ± 0.006 0.882 ± 0.003 0.684 ± 0.011 0.700 ± 0.005

Replay (50%) 0.607 ± 0.004 0.646 ± 0.005 0.881 ± 0.001 0.683 ± 0.002 0.704 ± 0.003

Table 4.4: Final Accuracy (AUC) for FR Strategy

Training method ISEAR Openbook RT-Polarity FEVER Average

Complete retraining 6.69 ± 0.87 5.95 ± 0.67 4.29 ± 0.61 4.90 ± 0.38 5.46 ± 0.63

Incremental 1.99 ± 0.18 3.32 ± 0.17 1.86 ± 0.15 1.72 ± 0.16 2.22 ± 0.17

EWC 2.07 ± 0.26 3.82 ± 0.36 1.89 ± 0.14 1.72 ± 0.12 2.38 ± 0.22

Replay (100%) 4.91 ± 0.41 4.88 ± 0.34 4.07 ± 0.28 3.15 ± 0.18 4.25 ± 0.30

Replay (50%) 4.29 ± 0.50 5.54 ± 0.70 3.43 ± 0.07 2.71 ± 0.21 4.00 ± 0.37

Table 4.5: FLOPS (E+15) (AUC) for FR Strategy

catastrophic forgetting confirming the previous literature discussed in the background

chapter. EWC performs better compared to plain incremental learning. However, this

comes at the cost of tuning the extra hyperparameter λ and additional computation

involved for calculating the new loss term. Also, this method still has low performance

compared to complete retraining. Complete retraining generally achieves the highest

online and final accuracy across datasets. Replay methods, especially Replay (50%),

often perform nearly as well, occasionally surpassing complete retraining at certain

budget points, based on Figure 4.2. Replay (50%) has marginally better online and final

accuracy compared to Replay (100%) across datasets.

From Figure 4.2, we can see that the training time results mirror the FLOPs results.

We find this trend in all our experiments. Figure 4.4 illustrates that complete retraining

generally demands the most training time across different datasets and budgets, although

Replay exceeds complete retraining for lower budgets in the Openbook and RT-Polarity

datasets. Incremental and EWC methods are significantly more efficient, using fewer

FLOPs and less training time compared to other methods. They are also memory

efficient compared to other methods since they discard old examples after training.

Despite significant efficiency gains, incremental methods maintain performance close
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Training method ISEAR Openbook RT-Polarity FEVER Average

Complete retraining 2427 ± 245 1808 ± 201 1702 ± 229 2509 ± 168 2112 ± 211

Incremental 745 ± 69 1012 ± 53 777 ± 53 936 ± 91 868 ± 66

EWC 789 ± 88 1168 ± 104 786 ± 62 979 ± 72 931 ± 82

Replay (100%) 1743 ± 134 1469 ± 68 1657 ± 146 1646 ± 109 1629 ± 114

Replay (50%) 1593 ± 163 1687 ± 215 1310 ± 23 1440 ± 145 1508 ± 137

Table 4.6: Training Time (s) (AUC) for FR Strategy

Figure 4.2: Performance and efficiency curves with respect to budgets for front-loading

(FR) strategy. Error bars represent variance. The results have been averaged across

the four datasets.
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Figure 4.3: Online Accuracy curve with respect to budgets for Front-loading (FR) strategy

across four datasets. Error bars represent variance.

to the best-performing approach (within 1-2% in most cases). Therefore, they are

well-suited for stationary data streams where computational and memory efficiency are

essential. The computational efficiency of Replay methods, both 100% and 50%, falls

between complete retraining and incremental methods.

Across all methods, accuracy tends to increase with higher budgets, although the

gains diminish over time, whereas efficiency tends to scale more linearly with budget,

especially for complete retraining. This suggests that with larger budgets or datasets,

the efficiency of complete retraining would decrease.

We can infer that there is a clear trade-off between performance and efficiency,

with Incremental methods offering significant efficiency gains at the cost of some
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Figure 4.4: Training time curve with respect to budgets for Front-loading (FR) strategy

across four datasets. Error bars represent variance.

performance. Figure 4.5 gives a comprehensive view of this trade-off. We can see that

Replay (50%) offers a good balance between performance and computational efficiency.

For scenarios where performance is paramount, complete retraining is a viable option,

while incremental methods and Replay (50%) offer a good balance between efficiency

and performance.

4.1.3 Incremental neural caching with AL policies

We repeat the incremental neural caching experiment explained in the previous section

for all AL policies outlined in Section 2.1.1. In this section, we focus on the results of
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Figure 4.5: Comparison of training methods using min-max normalized performance

and efficiency metrics for FR strategy averaged across four datasets

Training method ISEAR Openbook RT-Polarity FEVER Average

Complete retraining 0.665 ± 0.002 0.727 ± 0.008 0.890 ± 0.001 0.748 ± 0.003 0.758 ± 0.004

Incremental 0.656 ± 0.001 0.734 ± 0.006 0.893 ± 0.001 0.748 ± 0.005 0.758 ± 0.004

EWC 0.656 ± 0.001 0.738 ± 0.006 0.893 ± 0.001 0.748 ± 0.006 0.759 ± 0.004

Replay (100%) 0.663 ± 0.003 0.730 ± 0.007 0.892 ± 0.000 0.746 ± 0.002 0.758 ± 0.004

Replay (50%) 0.662 ± 0.002 0.758 ± 0.006 0.892 ± 0.001 0.748 ± 0.002 0.765 ± 0.003

Table 4.7: Online Accuracy (AUC) for MS Strategy

the Margin Sampling (MS) strategy, as we observed consistent trends across all active

learning (AL) policies. Detailed experimental results for all strategies are provided

in Appendix A. The AUC across budgets of online accuracy, final accuracy, FLOPs

and training time for MS policy are shown in Tables 4.7, 4.8, 4.9 and 4.10 respectively.

Figure 4.6 shows the performance and efficiency curves with respect to budget with

values averaged across the four datasets for MS strategy.

From the results, we observe results very similar to the results for FR strategy.

However, there are a few key differences as discussed below. The online accuracy of

all the training methods improved due to the use of AL-based policies. There is an

increase in the number of training iterations with a lesser number of examples when

AL-based policies are compared to the FR policy. This leads to an increase in FLOPs

(Table 4.9) and training time (Table 4.10. Consequently, EWC does not improve over
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Training method ISEAR Openbook RT-Polarity FEVER Average

Complete retraining 0.619 ± 0.006 0.637 ± 0.003 0.887 ± 0.002 0.683 ± 0.002 0.706 ± 0.004

Incremental 0.600 ± 0.002 0.628 ± 0.007 0.882 ± 0.002 0.682 ± 0.006 0.698 ± 0.005

EWC 0.600 ± 0.001 0.633 ± 0.009 0.882 ± 0.003 0.674 ± 0.007 0.697 ± 0.006

Replay (100%) 0.615 ± 0.002 0.636 ± 0.007 0.884 ± 0.002 0.681 ± 0.005 0.704 ± 0.005

Replay (50%) 0.610 ± 0.003 0.652 ± 0.002 0.887 ± 0.002 0.683 ± 0.007 0.708 ± 0.004

Table 4.8: Final Accuracy (AUC) for MS Strategy

Training method ISEAR Openbook RT-Polarity FEVER Average

Complete retraining 9.14 ± 0.71 8.90 ± 1.00 10.35 ± 1.20 8.75 ± 0.70 9.28 ± 0.93

Incremental 2.09 ± 0.16 3.07 ± 0.13 1.65 ± 0.13 1.88 ± 0.10 2.17 ± 0.13

EWC 2.09 ± 0.21 3.55 ± 0.20 1.65 ± 0.12 1.86 ± 0.10 2.29 ± 0.16

Replay (100%) 6.27 ± 0.17 6.61 ± 0.32 8.48 ± 0.38 5.21 ± 0.06 6.64 ± 0.26

Replay (50%) 5.53 ± 0.58 7.26 ± 0.23 6.87 ± 0.51 3.77 ± 0.23 5.86 ± 0.42

Table 4.9: FLOPS (E+15) (AUC) for MS Strategy

to plain incremental learning. Replay (50%) generally achieves the highest online and

final accuracy across datasets. Replay (50%) has marginally better online and final

accuracy compared to Replay (100%) across datasets.

Figure 4.6 illustrates that complete retraining generally demands the most training

time across different datasets and budgets. Incremental learning methods (with or with-

out EWC) drastically reduce FLOPs and training time compared to complete retraining.

Despite large compute and memory gains, incremental methods maintain performance

relatively close to the best-performing method (within 1-2% in most cases). Hence,

incremental methods are suitable for stationary data streams where computational and

memory efficiency are critical. The tradeoff between model performance and efficiency

is observed in the case of AL policies as well. Consequently, we find that there is an

increase in the computational efficiency improvement provided by Replay methods

over complete retraining when compared with the FR strategy. The performance gap

between incremental methods and complete retraining is smaller than the computational

efficiency gap, indicating diminishing returns for additional computation. Replay meth-

ods, especially Replay (50%) offer better performance and computational efficiency

compared to complete retraining. Our experiments confirm the results of Ramı́rez et al.
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Training method ISEAR Openbook RT-Polarity FEVER Average

Complete retraining 3447 ± 356 2682 ± 282 4096 ± 439 4419 ± 371 3661 ± 366

Incremental 883 ± 139 969 ± 46 718 ± 62 1011 ± 46 895 ± 83

EWC 952 ± 239 1137 ± 79 752 ± 70 1031 ± 49 968 ± 133

Replay (100%) 2337 ± 47 2008 ± 94 3358 ± 167 2704 ± 23 2602 ± 99

Replay (50%) 2054 ± 222 2191 ± 91 2662 ± 201 1979 ± 96 2222 ± 164

Table 4.10: Training Time (s) (AUC) for MS Strategy

Figure 4.6: Performance and efficiency curves with respect to budgets for Margin

Sampling (MS) strategy. Error bars represent variance. The results have been averaged

across the four datasets.
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(2023) that AL-based policies improve the performance over FR strategy. Additionally,

our experiments confirm the efficacy of Active Learning (AL) policies in an incremental

learning setup.

4.1.4 Higher retraining frequency f :

To assess the effect of an increased retraining frequency, we conducted the neural

caching experiments again with a higher frequency of f = 100. The corresponding

results are presented in Table 4.11. The online accuracy for MS remains relatively

unchanged with the increased retraining frequency. However, a decline in online

accuracy is observed for FR in both Incremental and EWC methods. EWC provides

marginal performance improvement over plain incremental learning. The performance

decrease in Incremental and EWC methods is similar to f = 1000 experiments. The

memory and computational efficiency of Incremental and EWC methods increase with

an increase in retraining frequency. The increase in training iterations does not increase

the overall training time when compared to the results for retraining frequency of

f = 1000.

Complete retraining and Replay methods consistently demonstrate the highest online

and final accuracy. It is important to note that the Replay method incurs nearly double

the FLOPs and training time compared to complete re-training across both MS and FR

strategies. Thus, we can see that at higher retraining frequencies, complete retraining

provides a more favourable trade-off between performance and computational efficiency

relative to the incremental learning methods explored in this study. Incremental and

EWC methods are suitable for memory-constrained systems.

When comparing the results with the results for retraining frequency of f = 1000,

we can observe that increasing the frequency in a static data stream does not enhance

performance. Consequently, it disrupts the favourable balance between performance

and computational efficiency for complete retraining and Replay methods. However, it

increases the efficiency of Incremental and EWC methods.

4.2 Incremental neural caching with dynamic data streams

We re-sampled the datasets in a class incremental way with samples from a single

class grouped to simulate a dynamic data stream. We use the LLM annotated label

for the re-sampling based on the order described in Section A. The experimental
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Training method Strategy Online Acc. Final Acc. FLOPs (E+15) Training Time (s)

Complete retraining
MS 0.674 ± 0.001 0.621 ± 0.006 24.08 ± 0.83 9056 ± 226

FR 0.644 ± 0.002 0.600 ± 0.004 17.62 ± 0.67 6624 ± 183

Incremental
MS 0.654 ± 0.005 0.592 ± 0.004 1.55 ± 0.04 854 ± 17

FR 0.617 ± 0.004 0.565 ± 0.002 1.41 ± 0.03 690 ± 15

EWC
MS 0.657 ± 0.002 0.595 ± 0.004 1.55 ± 0.03 906 ± 22

FR 0.617 ± 0.003 0.567 ± 0.002 1.54 ± 0.02 750 ± 25

Replay (100%)
MS 0.670 ± 0.002 0.620 ± 0.004 47.24 ± 1.0 18065 ± 251

FR 0.657 ± 0.003 0.629 ± 0.003 36.99 ± 0.93 13473 ± 197

Table 4.11: Performance and Efficiency metrics for neural caching with retraining fre-

quency f = 100 (ISEAR dataset)

procedure outlined previously is repeated across different training methods and two

strategies: Front-loading and Margin Sampling. The results can be seen in tables

4.12, 4.13, 4.14 and 4.15. From Table 4.12, we can observe that Margin Sampling

consistently outperforms Front-loading across all training types in terms of online

accuracy. Incremental and EWC methods achieve the best online performance across

datasets with MS policy and perform well even with FR strategy.

For final accuracy from Table 4.13, complete retraining and Replay methods con-

tinue to perform well, but Incremental and EWC methods exhibit a significant drop

compared to their online performance. This confirms that Incremental and EWC meth-

ods adapt strongly to recent data and forget the past examples. We can also note that

our simplified version of EWC is unable to help the model retain its past knowledge.

Also, MS strategy generally outperforms FR, except in Incremental and EWC methods

where FR performs better. This shows that the MS policy helps the model adapt to new

data and improves the online accuracy at the cost of final accuracy. Thus, Incremental

and EWC methods would have poor accuracy when the data distribution changes to a

distribution in the past.

The standard use case for EWC is in task-incremental learning, where a model

learns a sequence of distinct tasks and is evaluated on all tasks, including earlier ones.

While our simplified EWC implementation showed limited benefits in the dynamic

stream scenario, it’s important to note that EWC can be particularly effective in certain

types of changing distributions, especially when the system encounters previously seen

or similar distributions. While our simplified EWC was marginally beneficial for the
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static stream scenario, the more challenging nature of class incremental learning may

require a more sophisticated approach. A full implementation of EWC, maintaining

multiple model parameter checkpoints and FIMs for each class and using a loss function

that considers all previously learned classes, may be more effective in this dynamic

scenario.

In terms of computational efficiency, complete retraining remains the most com-

putationally expensive, particularly with MS, while Incremental and EWC methods

are the most efficient, with Replay methods offering a balance between computational

efficiency and performance. Training time trends mirror the FLOPS results. The impact

of MS versus FR strategies is more pronounced in dynamic streams, and the efficiency

trends remain consistent. MS is generally more effective but also more computation-

ally demanding than FR, with strategy choice having a significant impact in dynamic

scenarios. We can see that complete retraining performs well but doesn’t dominate as

much as in static streams, Incremental and EWC methods struggle with final accuracy,

and Replay methods balance accuracy and computational efficiency. The dynamic

stream highlights a stronger trade-off between online and final accuracy, especially

for incremental methods, and the computational efficiency versus accuracy trade-off

persists, with Replay methods offering a solid compromise. We can observe that replay

methods provide better performance and computational efficiency when using dynamic

data streams. This confirms the effectiveness of Replay in both static and dynamic

data streams. We also find the performance gap between AL-based policies like MS

and static policies like FR increases in dynamic data streams compared to static ones,

supporting findings from previous research (Bifet and Gavaldà, 2007) discussed in the

background section.
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Training method Strategy ISEAR Openbook RT-Polarity FEVER Average

Complete retraining
FR 0.462 ± 0.001 0.543 ± 0.007 0.495 ± 0.000 0.642 ± 0.006 0.535 ± 0.003

MS 0.531 ± 0.006 0.526 ± 0.009 0.794 ± 0.005 0.601 ± 0.003 0.613 ± 0.006

Incremental
FR 0.487 ± 0.004 0.534 ± 0.007 0.497 ± 0.000 0.712 ± 0.005 0.558 ± 0.004

MS 0.552 ± 0.004 0.688 ± 0.007 0.844 ± 0.003 0.638 ± 0.005 0.681 ± 0.005

EWC
FR 0.488 ± 0.006 0.533 ± 0.007 0.497 ± 0.000 0.706 ± 0.005 0.556 ± 0.004

MS 0.552 ± 0.005 0.688 ± 0.007 0.844 ± 0.003 0.638 ± 0.005 0.681 ± 0.005

Replay (100%)
FR 0.492 ± 0.008 0.550 ± 0.007 0.496 ± 0.001 0.645 ± 0.005 0.546 ± 0.005

MS 0.544 ± 0.002 0.677 ± 0.016 0.742 ± 0.016 0.613 ± 0.002 0.644 ± 0.009

Replay (50%)
FR 0.499 ± 0.012 0.558 ± 0.011 0.497 ± 0.001 0.663 ± 0.007 0.554 ± 0.008

MS 0.548 ± 0.003 0.684 ± 0.015 0.739 ± 0.013 0.618 ± 0.007 0.647 ± 0.010

Table 4.12: Online Accuracy (AUC)

Training method Strategy ISEAR Openbook RT-Polarity FEVER Average

Complete retraining
FR 0.443 ± 0.005 0.543 ± 0.006 0.502 ± 0.000 0.641 ± 0.002 0.533 ± 0.003

MS 0.564 ± 0.013 0.574 ± 0.021 0.872 ± 0.009 0.682 ± 0.007 0.673 ± 0.014

Incremental
FR 0.414 ± 0.008 0.344 ± 0.008 0.503 ± 0.000 0.562 ± 0.006 0.457 ± 0.005

MS 0.363 ± 0.016 0.240 ± 0.001 0.591 ± 0.017 0.500 ± 0.007 0.424 ± 0.011

EWC
FR 0.415 ± 0.011 0.339 ± 0.007 0.503 ± 0.000 0.564 ± 0.005 0.455 ± 0.006

MS 0.355 ± 0.013 0.245 ± 0.001 0.591 ± 0.017 0.500 ± 0.007 0.423 ± 0.010

Replay (100%)
FR 0.469 ± 0.005 0.558 ± 0.006 0.503 ± 0.001 0.645 ± 0.011 0.544 ± 0.006

MS 0.557 ± 0.007 0.644 ± 0.006 0.862 ± 0.002 0.661 ± 0.011 0.681 ± 0.007

Replay (50%)
FR 0.474 ± 0.011 0.552 ± 0.004 0.504 ± 0.002 0.644 ± 0.002 0.544 ± 0.005

MS 0.556 ± 0.005 0.64 ± 0.011 0.865 ± 0.004 0.669 ± 0.007 0.682 ± 0.007

Table 4.13: Final Accuracy (AUC)
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Training method Strategy ISEAR Openbook RT-Polarity FEVER Average

Complete retraining
FR 6.26 ± 0.36 9.14 ± 1.19 3.03 ± 0.01 4.04 ± 0.7 5.62 ± 0.56

MS 9.40 ± 0.56 12.18 ± 0.45 7.02 ± 0.55 7.21 ± 0.7 8.45 ± 0.57

Incremental
FR 1.9 ± 0.1 3.82 ± 0.38 1.26 ± 0.01 1.50 ± 0.1 2.12 ± 0.15

MS 1.97 ± 0.05 3.22 ± 0.28 1.26 ± 0.04 1.24 ± 0.1 1.93 ± 0.12

EWC
FR 1.9 ± 0.12 3.99 ± 0.35 1.26 ± 0.01 1.51 ± 0.1 2.16 ± 0.15

MS 1.96 ± 0.03 3.20 ± 0.28 1.26 ± 0.04 1.24 ± 0.1 1.92 ± 0.11

Replay (100%)
FR 5.65 ± 0.46 7.58 ± 0.64 3.03 ± 0.01 3.50 ± 0.06 4.44 ± 0.29

MS 7.16 ± 0.25 10.08 ± 1.03 6.61 ± 0.71 5.24 ± 0.23 7.27 ± 0.56

Replay (50%)
FR 4.59 ± 0.52 5.90 ± 0.47 2.49 ± 0.00 2.24 ± 0.23 3.81 ± 0.31

MS 6.11 ± 0.48 7.60 ± 0.6 5.28 ± 0.2 3.74 ± 0.23 5.68 ± 0.38

Table 4.14: FLOPS (E+15) (AUC)

Training method Strategy ISEAR Openbook RT-Polarity FEVER Average

Complete retraining
FR 2210 ± 183 2689 ± 333 1190 ± 7 2131 ± 371 2055 ± 223

MS 3328 ± 176 3817 ± 246 2836 ± 225 3719 ± 371 3425 ± 264

Incremental
FR 691 ± 32 1239 ± 155 519 ± 1 828 ± 46 797 ± 58

MS 747 ± 21 1021 ± 84 525 ± 20 709 ± 96 742 ± 55

EWC
FR 719 ± 39 1296 ± 173 521 ± 9 870 ± 49 852 ± 68

MS 768 ± 33 1032 ± 110 574 ± 13 753 ± 49 782 ± 51

Replay (100%)
FR 1928 ± 137 2250 ± 168 1173 ± 24 1862 ± 23 1803 ± 88

MS 2506 ± 77 3049 ± 305 2629 ± 278 2421 ± 23 2651 ± 171

Replay (50%)
FR 1623 ± 218 1809 ± 139 972 ± 6 1259 ± 96 1416 ± 116

MS 2093 ± 184 2452 ± 219 2087 ± 81 2019 ± 96 2163 ± 145

Table 4.15: Training Time (s) (AUC)
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Conclusions

This research confirms that incremental learning approaches offer promising directions

for efficient caching research by providing substantial efficiency gains with manageable

performance tradeoffs across various budgets and datasets. This is, to our knowledge,

the first work that uses incremental online knowledge distillation for efficient caching

of LLMs and reducing expensive calls to LLMs. Our work builds upon the research

by Ramı́rez et al. (2023) by incorporating Incremental Learning (IL) methods, which

offer greater efficiency compared to the complete retraining approach discussed in

the original paper. Additionally, we extend the scope of the study to include efficient

caching for dynamic data streams.

Incremental and EWC methods provide the most efficiency gains with minimal

performance tradeoffs for static data streams. They are highly suitable for resource-

constrained environments. However, these methods suffer from forgetting in dynamic

data streams. Complete retraining and Replay perform the best across data streams.

However, Replay increases computational efficiency by reducing FLOPs and training

time by about 40% for static data streams and 30% for dynamic data streams compared

to complete retraining.

While we’ve found EWC to be slightly beneficial for static data streams, we did not

find it beneficial for dynamic data streams. Future research could investigate the effect

of the standard EWC approach, which involves storing the entire history of parameters

to preserve knowledge from all training iterations.

We find that AL-based policies enhance the performance and efficiency of incre-

mental training methods compared to the static FR policy in both static and dynamic

data streams. The performance gap between AL-based policies like MS and static

policies like FR widens in dynamic data streams, confirming previous research (Bifet

35
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and Gavaldà, 2007; Ramı́rez et al., 2023).

In conclusion, our research on incremental learning techniques shows a strong

balance between performance and efficiency in neural caching of both static and dy-

namic data streams, aligning with incremental learning literature (Verwimp et al., 2023).

This suggests that incremental learning approaches could enhance efficiency in diverse

scenarios, opening up new avenues for future research.
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Appendix A

Experimental Details and

Hyperparameters

Environment Details

For our research, we utilized GPU nodes equipped with NVIDIA Tesla V100 GPUs,

each providing 16 GB of memory. Each GPU node is paired with dual-socket Intel

Xeon E5-2695 v4 processors, offering a total of 36 cores per node and 256GB of RAM.

Student Model

We follow Ramı́rez et al. (2023) for the implementation of the neural caching process.

We use the T5 implementation from Huggingface’s transformers library, employing

LoRA adapters (Hu et al., 2022), which are recognized for their parameter efficiency in

few-shot settings. As suggested by Ponti et al. (2023), we incorporate a LoRA adapter

into the query, key, value, and output weights in each self-attention layer of T5. The

LoRA rank is set to r = 16 and scaled to α = 0.25. The learning rate is η = 5×10−4,

with a training batch size of m = 16 and weight decay λ = 0.01. These hyperparameters

were validated based on experiments using the soft labels from the teacher by Ramı́rez

et al. (2023). Additionally, the effectiveness of these hyperparameters has been validated

for incremental learning.

Learning rate scheduler experiment

We chose to compare a linear scheduler with a linear scheduler with hard resets. In a

linear scheduler, the learning rate decreases gradually across training iterations. On

43
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the other hand, in a linear scheduler with hard resets, the learning rate is reset to the

original learning rate for every training iteration.

Scheduler type Online Accuracy Final Accuracy

Linear with hard resets 0.629 0.587

Linear 0.625 0.580

Table A.1: Comparison of Online and Final Accuracy (AUC) for different scheduler Types

(ISEAR dataset)

We ran the experiments in the ISEAR dataset with FR as policy, a retraining

frequency of f = 1000 and plain incremental learning as the training method. The

optimizer used in AdamW (Loshchilov and Hutter, 2019). The results can be seen in

Table A.1. In terms of online accuracy, the linear scheduler shows only a minor decrease.

For final accuracy, both schedulers are nearly identical. Since the linear scheduler has

no disruptions from resets, it could lead to a more stable learning process. Hence, we

chose a linear scheduler for all our experiments.

Hyperparameter experiments

An incremental neural caching setup is executed for three budget values 1000, 2000

and 3000. In this setup, a hyperparameter search for learning rate is performed and

the results can be seen in Table A.2. From the results, we can observe that the optimal

learning rate for incremental learning is the same as that of complete retraining.

Table A.2: Learning rate search: Incremental

Learning Rate
Online AUC Final AUC

MS FR MS FR

5e-3 0.626 0.609 0.537 0.552

5e-4 0.640 0.618 0.578 0.578
5e-05 0.626 0.608 0.561 0.563

Additionally, an incremental neural caching setup using replay is executed for three

budget values 1000, 2000 and 3000 and a hyperparameter search for learning rate and

weight decay is performed. From the results in Table A.3 and A.4, we can see that
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Table A.3: Learning rate search: Replay

Learning Rate
Online AUC Final AUC

MS FR MS FR

5e-3 0.625 0.613 0.472 0.554

5e-4 0.654 0.634 0.615 0.600

5e-05 0.634 0.617 0.583 0.576

Table A.4: Weight decay search: Replay

Weight decay
Online AUC Final AUC

MS FR MS FR

0.1 0.651 0.636 0.608 0.601

0.01 0.654 0.634 0.615 0.600

0.001 0.651 0.635 0.605 0.602

the optimal learning rate and weight decay are the same as that of complete retraining.

Based on the above experiments, we can observe that the optimal hyperparameters for

incremental learning are similar to that of complete retraining even though the learning

rate scheduler is reset before every training phase in case of complete retraining setup.

EWC

For EWC, a lambda value of λ = 0.4 is chosen based on a hyperparameter search on λ

values on the ISEAR dataset with front-loading as a strategy. From the results in Table

A.5, we can observe that the performance of FR improves and MS degrades for higher

values of λ, hence we choose λ = 0.4.

AL policies

To apply the above AL metrics, in an online environment as a selection policy, the

following thresholds are established: (PE = 0.5, MS = 5, QBC = 4, CS = 0.9) based

on Ramı́rez et al. (2023). These values were chosen to ensure that the initial student

model selects at least 50% of instances for LLM annotation on the RT-Polarity dataset.

Only examples with a margin exceeding this threshold are selected until the budget is
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Table A.5: EWC Lambda search

Lambda
Online AUC Final AUC

MS FR MS FR

0.2 0.655 0.632 0.595 0.595

0.4 0.656 0.632 0.600 0.594

0.6 0.656 0.633 0.600 0.594

0.8 0.654 0.635 0.592 0.597

depleted. For entropy, we first apply a softmax over the classes to normalize the values

before calculating it.

Labels from the LLM

The labels are obtained by Ramı́rez et al. (2023) during May 2023. Due to the OpenAI

API’s limitation of returning only the top five most likely tokens, a bias of b = 100 was

added to the tokens representing each class.

• ISEAR: ‘joy’, ‘fear’, ‘anger’, ‘sadness’, ‘disgust’, ‘shame’, ‘guilt’

• RT-Polarity: ‘positive’, ‘negative’

• FEVER: ‘true’, ‘false’

• Openbook: ‘A’, ‘B’, ‘C’, ‘D’

If a class did not appear among these five tokens, it was assigned a log probability

of -100 in the dataset.

Prompts Used

The prompts used by Ramı́rez et al. (2023) when querying the LLM are as follows:

ISEAR: This is an emotion classification task. Only answer with one of: ‘joy’,

‘fear’, ‘anger’, ‘sadness’, ‘disgust’, ‘shame’, ‘guilt’.

RT-Polarity: This is a sentiment classification task for movie reviews. Only answer

with either ‘positive’ or ‘negative’.

FEVER: This is a fact-checking task. Only answer with either ‘true’ or ‘false’.
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Openbook: This is a multiple-choice test. You are given a fact and a question. Only

answer with one letter, providing no further output.

Incremental neural caching with AL policies

The experiment results for the incremental neural caching experiments conducted in

Section 4.1.3 for all the AL policies are as follows.

Training method Strategy ISEAR Openbook RT-Polarity FEVER Average

Complete retraining

FR 0.646 0.725 0.880 0.736 0.747

MS 0.665 0.727 0.890 0.747 0.757

PE 0.657 0.718 0.887 0.734 0.749

CS 0.649 0.734 0.888 0.724 0.749

QBC 0.657 0.763 0.879 0.748 0.762

Average 0.655 0.733 0.885 0.738 0.753

Incremental

FR 0.632 0.717 0.878 0.729 0.739

MS 0.656 0.730 0.893 0.749 0.757

PE 0.652 0.711 0.884 0.737 0.746

CS 0.638 0.729 0.887 0.726 0.745

QBC 0.650 0.758 0.879 0.748 0.759

Average 0.646 0.729 0.884 0.738 0.749

EWC

FR 0.632 0.718 0.880 0.734 0.741

MS 0.656 0.739 0.893 0.748 0.759

PE 0.651 0.711 0.884 0.738 0.746

CS 0.640 0.730 0.887 0.726 0.746

QBC 0.650 0.758 0.879 0.747 0.758

Average 0.646 0.731 0.885 0.739 0.749

Replay

FR 0.643 0.717 0.879 0.732 0.743

MS 0.663 0.730 0.892 0.746 0.758

PE 0.655 0.713 0.884 0.741 0.748

CS 0.645 0.731 0.888 0.729 0.748

QBC 0.652 0.758 0.879 0.747 0.759

Average 0.652 0.730 0.884 0.739 0.751

Replay (50%)

FL 0.641 0.729 0.879 0.733 0.746

MS 0.662 0.757 0.892 0.748 0.765

PE 0.654 0.738 0.884 0.741 0.754

CS 0.644 0.732 0.880 0.729 0.746

QBC 0.653 0.758 0.888 0.749 0.762

Average 0.651 0.743 0.885 0.740 0.754†

Table A.6: Online Accuracy (AUC)
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Training method Strategy ISEAR Openbook RT-Polarity FEVER Average

Complete retraining

FR 0.612 0.640 0.884 0.683 0.705

MS 0.619 0.637 0.887 0.683 0.707

PE 0.620 0.656 0.888 0.676 0.710

CS 0.615 0.657 0.886 0.683 0.710

QBC 0.622 0.672 0.882 0.678 0.714

Average 0.618 0.652 0.885 0.681 0.709†

Incremental

FR 0.593 0.624 0.879 0.677 0.693

MS 0.599 0.623 0.882 0.689 0.698

PE 0.598 0.634 0.882 0.682 0.699

CS 0.596 0.641 0.882 0.675 0.699

QBC 0.597 0.642 0.882 0.686 0.702

Average 0.596 0.633 0.881 0.682 0.698

EWC

FR 0.594 0.635 0.882 0.680 0.698

MS 0.600 0.633 0.882 0.674 0.697

PE 0.594 0.636 0.881 0.686 0.699

CS 0.600 0.642 0.880 0.670 0.698

QBC 0.599 0.644 0.881 0.682 0.702

Average 0.597 0.638 0.881 0.678 0.699

Replay

FR 0.609 0.624 0.882 0.684 0.700

MS 0.615 0.636 0.885 0.681 0.704

PE 0.611 0.634 0.885 0.680 0.703

CS 0.607 0.655 0.885 0.681 0.707

QBC 0.615 0.657 0.881 0.678 0.708

Average 0.611 0.641 0.884 0.681 0.704

Replay (50%)

FL 0.607 0.646 0.881 0.683 0.704

MS 0.610 0.653 0.887 0.683 0.708

PE 0.609 0.654 0.886 0.683 0.708

CS 0.605 0.649 0.882 0.678 0.704

QBC 0.613 0.658 0.884 0.685 0.710

Average 0.609 0.652 0.884 0.682 0.707

Table A.7: Final Accuracy (AUC)
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Training method Strategy ISEAR Openbook RT-Polarity FEVER Average

Complete retraining

FR 6.69 5.95 4.29 4.89 5.46

MS 9.14 8.91 10.35 8.75 9.29

PE 11.52 14.63 7.32 8.59 10.52

CS 6.89 11.81 8.64 7.77 8.78

QBC 10.65 15.38 3.63 8.42 9.52

Average 8.98 11.34 6.85 7.68 8.71

Incremental

FR 1.99 3.32 1.86 1.72 2.22

MS 2.09 3.07 1.65 1.89 2.17

PE 1.94 3.85 1.62 1.60 2.25

CS 2.48 3.26 1.60 1.76 2.28

QBC 2.00 3.48 1.75 1.99 2.31

Average 2.08 3.20 1.69 1.79 2.19

EWC

FR 2.07 3.82 1.89 1.72 2.38

MS 2.09 3.55 1.65 1.86 2.29

PE 2.02 3.80 1.62 1.49 2.23

CS 2.52 3.31 1.61 1.69 2.28

QBC 1.99 3.38 1.79 1.95 2.28

Average 2.14 3.57 1.71 1.74 2.29

Replay

FR 4.91 4.89 4.07 3.15 4.26

MS 6.27 6.61 8.48 5.21 6.64

PE 7.24 9.60 5.23 4.43 6.62

CS 4.90 6.80 6.79 4.25 5.69

QBC 7.52 8.70 3.98 5.10 6.32

Average 6.17 7.32 5.31 4.43 5.81

Replay (50%)

FR 4.29 5.54 3.43 2.71 4.00

MS 5.53 7.26 6.87 3.77 5.86

PE 6.23 7.21 4.68 3.53 5.41

CS 4.13 5.66 3.41 3.64 4.21

QBC 5.95 6.78 5.95 3.79 5.62

Average 5.23 6.49 4.87 3.49 5.02

Table A.8: FLOPS (E+15) (AUC)
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Training method Strategy ISEAR Openbook RT-Polarity FEVER Average

Complete retraining

FR 2427 1808 1702 2509 2112

MS 3447 2682 4096 4419 3661

PE 4231 4541 2812 4754 4085

CS 2550 3903 3524 4321 3575

QBC 3841 5080 1579 4725 3806

Average 3299 3603 2743 4146 3448

Incremental

FR 745 1012 777 936 868

MS 883 969 718 1011 895

PE 804 1188 671 874 884

CS 910 1086 703 1003 926

QBC 817 1145 739 1165 967

Average 809 1016 713 985 881

EWC

FR 789 1168 786 979 931

MS 952 1137 752 1031 968

PE 875 1226 723 912 934

CS 1008 1106 783 1078 994

QBC 886 1212 796 1171 1016

Average 902 1169 768 1034 968

Replay

FR 1743 1469 1657 1646 1629

MS 2337 2008 3358 2704 2602

PE 2654 2869 2054 2335 2478

CS 1801 2158 2931 2346 2309

QBC 2870 2749 1693 2845 2539

Average 2281 2247 2339 2375 2311

Replay (50%)

FR 1593 1687 1310 1440 1508

MS 2054 2191 2662 1979 2222

PE 2411 2203 1919 1930 2116

CS 1540 1739 1375 1936 1648

QBC 2329 2261 2536 2193 2330

Average 1985 2016 1960 1896 1964

Table A.9: Training Time (s) (AUC)
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