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Abstract

This dissertation explores the application of NISQ-era quantum algorithms, particularly

the Quantum Approximate Optimization Algorithm (QAOA) and the Variational Quan-

tum Eigensolver (VQE), to the cryptanalysis of lattice-based cryptosystems, focusing

on the Learning With Errors (LWE) problem and Kyber CRYSTALS. The research

addresses the challenge of mapping LWE instances into Hamiltonians suitable for

quantum optimization, proposing novel encodings tailored to the limitations of current

quantum hardware. Extensive simulations using Qiskit evaluate these algorithms under

realistic noise models, analyzing their effectiveness against small-scale LWE instances

with varying error distributions. The findings indicate that QAOA shows potential for

noise-free, small LWE instances but is highly sensitive to noise, leading to potential

performance degradation. Conversely, VQE, enhanced with Conditional Value at Risk

(CVaR) strategies, demonstrates greater robustness and consistency, making it more

suitable for cryptanalysis under noisy conditions, although with a bias towards conser-

vative solutions. The study contributes to understanding the practicality of quantum

cryptanalysis in the NISQ era, highlighting the scalability challenges and the current

limitations of these quantum approaches in breaking high-dimensional cryptosystems.

While large-scale attacks on cryptosystems like Kyber remain infeasible with current

technology, this research lays foundational groundwork for future studies as quantum

hardware advances.
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Chapter 1

Introduction

1.1 Context of the Study

Cryptography, which is fundamentally concerned with the limits of computational

efficiency, saw a significant breakthrough in 1976 when Diffie and Hellman [30] intro-

duced public key cryptography. This advancement established secure communication

protocols based on computational problems like the discrete logarithm and integer

factorization [30]. However, Shor’s algorithm (1994) demonstrated that these problems

could be efficiently solved using quantum computers, threatening traditional crypto-

graphic systems [81]. This has catalyzed the development of post-quantum cryptography

(PQC), which seeks to design cryptographic schemes resilient to quantum attacks while

remaining feasible on classical architectures. The recent National Institute of Standards

and Technology (NIST) PQC standardization process has identified lattice-based cryp-

tography as a leading candidate, notably due to its reliance on hard problems like the

Learning With Errors (LWE) problem, which are believed to be secure against both

classical and quantum adversaries [3].

Central to post-quantum cryptographic research are cryptosystems based on lattice

problems, such as the CRYSTALS-Kyber system, which is built upon variants of the

LWE problem. These cryptosystems have gained attention because their underlying

mathematical structures remain hard to break even with the capabilities of quantum

algorithms [18]. Specifically, module lattice schemes balance computational efficiency

and robust security, which positions them as promising candidates in the quantum-

resilient cryptographic landscape [76, 15].

The advent of Noisy Intermediate-Scale Quantum (NISQ) devices has prompted

interest in hybrid quantum-classical approaches, particularly Variational Quantum Algo-

1



Chapter 1. Introduction 2

rithms (VQAs), such as the Variational Quantum Eigensolver (VQE) and the Quantum

Approximate Optimization Algorithm (QAOA). VQAs are particularly relevant because

they can harness the limited qubit quality and coherence times available in current

NISQ devices while still achieving meaningful results. By leveraging a combination

of quantum and classical resources, VQAs can optimize cryptographic functions by

encoding these functions into problem Hamiltonians that are minimized via quantum

techniques [27]. Given their adaptability and reduced quantum resource requirements,

VQAs offer practical approaches for tackling cryptographic problems, in the NISQ era.

Quantum computing’s ability to leverage principles like superposition, entangle-

ment, and quantum interference has led to exponential speed-ups for certain classes

of problems compared to classical methods [86]. Recent advancements include more

stable qubit designs, error correction techniques, and improved quantum hardware,

such as superconducting qubits and trapped ion systems, all of which contribute to the

growing viability of quantum computing in practical cryptanalysis [6, 87].

This research explores the application of VQE and QAOA to cryptanalysis, focus-

ing on breaking LWE-based cryptosystems like CRYSTALS-Kyber. Specifically, the

study examines how to map the LWE problem into Hamiltonians suitable for quantum

optimization and subsequently derive Quadratic Unconstrained Binary Optimization

(QUBO) formulations for use with QAOA. This involves simulating these mappings

using Qiskit to assess the feasibility and performance of these approaches in crypt-

analysis [72]. By concentrating on the LWE problem and its quantum optimization

strategies, the study aims to provide insights into the effectiveness of near-term quantum

algorithms for cryptanalysis and their implications for post-quantum cryptographic

security. This work not only contributes to validating the robustness of PQC algorithms

but also highlights the potential of hybrid quantum-classical approaches in real-world

cryptanalytic applications [37].

1.2 Motivation

The motivation for this research is rooted in the importance of Hamiltonian ground state

problems in quantum computing. These problems are crucial across multiple scientific

disciplines, including condensed matter physics, materials science, and optimization,

where finding ground states is central to solving complex models and understanding

material properties. These problems are particularly challenging for classical systems,

raising critical questions about the capabilities of quantum algorithms in addressing
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cryptographic challenges. In the context of post-quantum cryptography, lattice-based

cryptographic protocols, such as those relying on the LWE problem, form the foundation

of systems like CRYSTALS-Kyber.

While these systems demonstrate robustness against classical attacks, their resistance

to quantum attacks is less established due to the relatively recent emergence of structured

Hamiltonians in cryptanalysis. Structured Hamiltonians refer to problem instances that

exhibit symmetries or other patterns, which can potentially be exploited by quantum

algorithms. Since lattice-based systems like Kyber have not been exposed to extensive

cryptanalysis over decades like RSA, their conjectured hardness is based on assumptions

rather than long-term empirical evidence. This conjectured difficulty is analogous to

other cryptographic systems, such as the NIST finalist Rainbow, which was believed to

be secure until it was recently broken by a classical approach [5].

The arrival of NISQ devices, characterized by limited qubit numbers (typically

between 50 and 1000 qubits) and non-error-corrected operations with high noise levels,

prompts the urgent question of whether such systems can be leveraged to break LWE-

based cryptosystems. NISQ devices operate within a constrained regime where fully

fault-tolerant quantum computing is not yet achievable. Current estimates suggest

that fault-tolerant quantum computing may be reached within the next 10-20 years,

requiring millions of qubits and robust error correction [70]. This timeline underscores

the importance of assessing the performance of early quantum devices, particularly in

evaluating cryptographic schemes like Kyber.

Currently, numerous governments and individuals are engaged in intercepting and

storing encrypted data, such as passwords and private communications, with the antic-

ipation of decrypting them in the future. This approach, termed Store Now, Decrypt

Later [82, 30, 76], is based on the expectation that quantum computers, which are pre-

dicted to become operational within 10 to 20 years, will be capable of rapidly breaking

widely used cryptosystems [23]. A prominent example is RSA, an asymmetric key cryp-

tosystem whose security relies on the difficulty of factoring large numbers, a problem

classified as NP [60, 74]. Although decoding a message with a key is straightforward,

brute-forcing it remains infeasible with classical methods, such as the General Number

Field Sieve, even on supercomputers [78]. For instance, factoring standardized prime

numbers (approximately 313 digits) would take around 16 million years classically [11].

However, Shor’s algorithm on a quantum computer offers an exponential speed-up [81].

In 2012, it was estimated that breaking RSA encryption required a billion physical

qubits, but this figure was revised to 230 million in 2017 and further to 20 million by
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2019 [36]. Despite the rapid advancements in quantum hardware, current capabilities

remain insufficient, though it is anticipated that this gap will eventually close. In

response to this looming threat, the National NIST initiated a competition in 2016 to

identify encryption algorithms resistant to quantum attacks [76]. By 2022, NIST had

selected four finalists for the PQC standard, highlighting the urgency of evaluating their

resilience against quantum threats in both academic and industrial contexts and only

recently they started the standardization process [71].

1.2.0.0.1 Problem statement The primary research problem addressed in this study

is the development and evaluation of practical quantum algorithms for cryptanalysis,

focusing on NISQ methods for attacking LWE-based cryptosystems like Regev and

CRYSTALS-Kyber. Specifically, this research explores how Hamiltonians representing

LWE instances can be encoded on simulated NISQ devices and investigates the benefits

and drawbacks of this approach. Moreover, the study evaluates how variational methods

like QAOA and VQE differ in their strategies for solving LWE problems compared

to classical algorithms, considering space complexity, runtime, and the potential for

optimization within the constraints of current quantum hardware.

1.2.0.0.2 Research questions This study seeks to answer the following key ques-

tions:

• Can LWE-related problems be directly simulated and encoded using Hamiltonians

on simulated NISQ devices? What are the specific approaches, benefits, and

challenges in doing so?

• How do the complexities and scaling behaviors of quantum algorithms for LWE,

such as QAOA and VQE, compare to classical algorithms in terms of performance

on simulated NISQ devices?

• What are the implications of space complexity and scalability for implementing

LWE-related computations on simulated hardware, particularly in relation to

Kyber?

• How can these quantum algorithms be managed and tested using quantum frame-

works like Qiskit, given the constraints of NISQ-era hardware?

• What distinct advantages or insights can VQE and QAOA provide in relation to

each other, considering the indirect nature of some current quantum cryptanalysis
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attempts?

Addressing these questions will contribute to a more nuanced understanding of

NISQ-era quantum computing’s impact on post-quantum cryptography and could

guide the development of more resilient cryptographic systems as quantum technology

evolves.

1.3 Research objectives

This research investigates the application of the QAOA and VQE algorithms, for

cryptanalysis of LWE-based cryptosystems. The focus is on evaluating how quantum

algorithms challenge LWE’s hardness assumptions, which are foundational to schemes

like CRYSTALS-Kyber [18, 72]. The aim is to assess the practical limits of NISQ

devices in solving LWE and extend these findings to more complex systems like Kyber.

1. Security of LWE in Quantum Settings: This research evaluates LWE vulnera-

bility by focusing on how LWE can be mapped into Hamiltonian optimization

problems. While CRYSTALS-Kyber is not the primary focus, insights gained

from LWE cryptanalysis will be extrapolated to assess Kyber’s resilience, given

its reliance on Module Learning With Errors (MLWE) [18, 72].

2. Optimizing Quantum Algorithm Parameters: The research compares quantum

algorithms across different parameters, including optimizers, mappings, and

implementations. Both hand-coded and Qiskit implementations are tested, with

focus on noise resilience and realistic gate operations. Hyperparameters such as

CVaR (Conditional Value at Risk) optimization are explored [15, 27].

3. Implications for Quantum-Resistant Cryptography: The study explores the

practical limits of quantum attacks. While specific recommendations for Kyber

are beyond scope, verbal conjectures based on LWE cryptanalysis and considera-

tions of Ring and Module LWE are discussed as a stretch goal for guiding future

research [37, 81].

4. Simulation and Benchmarking: Extensive simulation and testing in Qiskit

focus on VQAs for LWE under realistic noise models. The study benchmarks

quantum algorithms against classical methods, including quantum-inspired classi-

cal algorithms, to establish a robust cryptanalysis framework for NISQ devices

[27, 83].
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5. Contributing to Quantum Cryptanalysis Research: This research bridges

theoretical cryptanalysis and practical implementation. By documenting method-

ologies, results, and analyses, it provides a foundation for future work in quantum

cryptanalysis, focusing on current hardware limitations and future advancements

[86, 62].

1.4 Scope and limitations

The use of QAOA, while promising, is hindered by scalability issues. The qubit

complexity grows as O(n logn), where n denotes the problem size. This growth makes

QAOA challenging to apply to larger instances, particularly given that lattice-based

cryptographic constructions require dimensions on the order of O(100). To explore

larger problem sizes, VQE was employed as it allows for the simulation of a generalized

QAOA Hamiltonian without an encoded modulo function. While VQE offers more

flexibility in problem scaling, our experiments revealed that its optimization landscapes

are less tractable than those of QAOA, impacting overall efficiency.

The LWE instances in this study use a modulus q approximating n2, typically set

near the highest power of 2 within n2 −2n2. The error distribution is sometimes simpli-

fied to a ternary set of {−1,0,1} for computational ease. Despite this simplification,

results are compared against distributions like Regev’s χ distribution to assess computa-

tional differences. While the ternary approximation aids analysis, it limits the results’

applicability to real-world LWE distributions.

Computational constraints significantly influenced this research, with most simula-

tions limited to classical devices handling up to 25 qubits. Experiments involving 30

qubits were conducted but required hours, underscoring the challenges of scaling.

The choice of Qiskit as the simulation framework further restricts the study. While

Qiskit offers standardized optimizers and hyperparameters, these predefined options

limit algorithmic exploration. Additionally, the supported noise models and quantum

circuits do not fully represent the behavior of actual quantum devices, thereby affecting

the results’ fidelity.

1.5 Contribution

We recognize the following contributions to the literature:
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• Proposed and developed two novel Hamiltonian encodings for the LWE problem:

one optimized for the VQE and another for the QAOA. These encodings are

designed to efficiently leverage quantum resources while maintaining the hardness

properties crucial for cryptographic analysis.

• Provided rigorous proofs of correctness for both Hamiltonians, demonstrating

their validity in modeling the LWE problem. The VQE encoding incorporates

a generalized cost function and supports diverse error distributions, while the

QAOA encoding introduces a centered modulo operation for enhanced precision

in quantum cryptanalysis.

• Introduced a novel modulo encoding scheme using auxiliary variables and penalty

functions for LWE cryptanalysis in quantum algorithms, addressing issues related

to error propagation and correctness when performing modular arithmetic on

quantum devices. This encoding allows for more accurate representation of the

LWE problem’s structure.

• Conducted extensive experiments involving CVaR optimization strategies, includ-

ing a newly designed ascending CVaR technique. This approach dynamically

refines optimization targets, balancing exploration and exploitation, resulting in

improved convergence and robustness against quantum noise.

• Performed a comparative analysis of three key approaches: VQE, QAOA, and the

ascending CVaR method. This analysis identified strengths and limitations in both

algorithmic performance and scalability for cryptanalysis tasks, providing detailed

insights into the suitability of each method under realistic noise conditions.

• Implemented a modular and extensible LWE class for cryptanalysis research,

enabling flexible exploration of security parameters. The class supports multiple

LWE variants and error distributions, offering a versatile tool for both theoretical

analysis and practical experimentation.

• Demonstrated the feasibility of attacking small-scale LWE instances using quan-

tum algorithms, highlighting the conditions under which these approaches are

most effective. The research findings indicate the potential of NISQ devices in

breaking cryptographic schemes, while also identifying the current hardware

limitations that must be overcome.
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• Provided an in-depth analysis of the space complexity for the proposed quantum

approaches, proving that the encoding schemes require O(n logn) qubits, making

them scalable within the constraints of current and near-term quantum hardware.

This contributions list summarizes the significant and original aspects of this re-

search, emphasizing both theoretical advancements and practical implementations in

the context of quantum cryptanalysis.

1.6 Structure of the dissertation

The structure of this dissertation follows a logical progression, beginning with foun-

dational concepts and culminating in detailed research findings and analysis. The

Introduction establishes the context, motivation, and objectives of the study, framing the

research within the growing need to assess the resilience of LWE-based cryptosystems

like Kyber in the face of quantum computing advancements. Building on this, the Back-

ground explores the theoretical underpinnings, detailing lattice-based cryptography,

the LWE problem, and key quantum algorithms (VQE and QAOA) that are pivotal

to the research. Subsequently, the Research methodology outlines the experimental

design and implementation, including the proposed Hamiltonian encodings and the use

of Qiskit simulations to test the algorithms in a cryptanalytic context. The findings

are then presented in the Results and analysis, where the performance of VQE and

QAOA is compared across different LWE configurations, highlighting critical aspects

such as scalability, noise resilience, and solution accuracy. This is followed by the

Discussion, which interprets the results in relation to the broader field of post-quantum

cryptography, emphasizing theoretical contributions and practical implications. Finally,

the Conclusion summarizes the study’s key insights and offers recommendations for

future research, underscoring the importance of continued exploration as quantum

hardware and cryptanalytic techniques evolve.



Chapter 2

Background

2.1 Preliminaries

This section introduces key mathematical concepts and notations relevant to quan-

tum algorithms in cryptanalysis, focusing on lattice-based schemes such as Kyber

CRYSTALS.

2.1.1 Notation for LWE

The Learning with Errors (LWE) problem is foundational in lattice-based cryptography.

It is defined as follows: Given a modulus q, a secret vector s ∈ Zn
q, and a noise term e

drawn from a discrete Gaussian distribution χ, the LWE problem asks to distinguish

the distribution of the noisy linear combination As+ e (where A ∈ Zm×n
q is a random

matrix) from a uniform distribution over Zm
q [73]. Mathematically, the decisional LWE

problem can be expressed as:

(A,As+ e)≈ Uniform(Zm
q ).

In addition to the decisional problem, the search version of LWE seeks to recover

the secret vector s given the samples (A,As+ e). The error distribution χ, typically a

discrete Gaussian Dσ, is critical in maintaining the problem’s hardness [89, 28]. It is

also important to define the exact meaning of the modulo operation, which we define to

be:

a mod q := a−
⌊

a
q

⌋
q. (2.1)

9
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The LWE assumption underpins the security of various cryptosystems and is be-

lieved to resist quantum attacks due to its connection with lattice problems like the

Shortest Vector Problem (SVP) [59, 67, 54].

2.1.2 Rings and Ring-LWE Notation

Efficient LWE variants, such as Ring-LWE (RLWE), leverage ring structures. In RLWE,

the ring R = Z[x]/( f (x)), with f (x) = xn + 1 where n is a power of two, serves as

the algebraic framework. The problem shifts from vector spaces to ideal lattices,

enabling more efficient operations. For a quotient ring Rq = R/qR, the decisional

RLWE problem involves distinguishing samples (a(x),a(x) · s(x)+ e(x)), where a(x) is

uniformly sampled from Rq and e(x) is small noise drawn from a Gaussian distribution

over the ring, from random samples in Rq [67, 54]. The ring homomorphisms in RLWE

reduce computational complexity from O(n2) to O(n logn), improving efficiency while

maintaining the hardness assumptions.

2.1.3 Modulo-LWE and Quantum Notation

Modulo-LWE (MLWE) extends LWE by incorporating modular arithmetic over struc-

tured rings. It maintains LWE’s hardness assumptions while enabling more efficient

polynomial arithmetic, particularly relevant in cryptosystems like Kyber. The alge-

braic structure of MLWE, defined modulo both an integer q and a polynomial f (x),

allows operations on structured lattices that are not feasible in standard LWE. This

flexibility supports more efficient cryptographic schemes, especially under hybrid

classical-quantum models [67, 54, 70]. The algebraic properties of MLWE facilitate

operations such as key generation and encryption, making it more versatile in practical

cryptosystems while retaining quantum-resistant security.

In quantum cryptanalysis, key notations include the expectation value ⟨ψ|Ô|ψ⟩,
representing the average measurement outcome for a quantum state |ψ⟩ with respect

to an observable Ô, typically a Hermitian operator. This concept is central in VQAs,

where the objective is to optimize the expectation of a Hamiltonian that encodes the

cryptographic problem [22, 81, 44, 56].

This section establishes the core mathematical and quantum mechanical principles

relevant to cryptanalysis in the NISQ era. The discussed concepts set the stage for

applying quantum algorithms like VQE and QAOA to break LWE-based cryptosystems

[72, 54, 59, 14].
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2.2 Cryptography

Cryptography underpins modern information security by ensuring the confidentiality,

integrity, and authenticity of digital communications. At its core, cryptography depends

on problems that are computationally hard to solve, providing the basis for secure data

protection. For example, RSA, introduced in 1978, relies on the difficulty of factoring

large composite integers [74]. However, advancements in quantum computing challenge

this model.

Quantum computing poses a serious threat to existing cryptosystems. Shor’s algo-

rithm, developed in 1994, can efficiently solve the integer factorization and discrete

logarithm problems that RSA and other asymmetric cryptosystems depend on [81].

With sufficiently advanced quantum systems, RSA encryption could be broken, ren-

dering once-secure communications vulnerable [3]. This expected vulnerability has

accelerated the development of quantum-resistant alternatives.

Cryptographic systems are generally divided into symmetric and asymmetric cate-

gories. Symmetric cryptography, like AES, uses a single key for both encryption and

decryption and remains relatively resilient to quantum attacks, as Grover’s algorithm

only offers a quadratic speedup [40, 15]. In contrast, asymmetric systems like RSA

and Diffie-Hellman are significantly threatened by quantum algorithms like Shor’s

[30, 15]. The imminent quantum threat has led to ”store now, decrypt later” strategies,

prompting the development of post-quantum cryptography and initiatives like NIST’s

PQC Standardization project [76].

Among the leading PQC candidates are lattice-based cryptographic systems, includ-

ing CRYSTALS-Kyber and CRYSTALS-Dilithium, which are built on the hardness

of lattice problems, notably LWE [3, 52]. The LWE problem, introduced by Regev in

2005, remains computationally challenging for both classical and quantum systems [72].

The relevance of these problems lies in their connection to the Shortest Vector Problem

(SVP). SVP’s worst-case hardness implies the hardness of average-case LWE instances,

making it a critical link in demonstrating the security of lattice-based cryptography [2].

Lattice-based cryptography’s security derives from problems like SVP and the Clos-

est Vector Problem (CVP), which are computationally intractable in high-dimensional

spaces [67, 26]. These problems exhibit exponential scaling with dimensionality, en-

suring robustness against classical and quantum attacks. Moreover, the worst-case to

average-case reductions in lattice problems strengthen their reliability for cryptographic

applications [59].
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To improve efficiency while preserving security, structured LWE variants like Ring-

LWE and Module-LWE have been developed [54]. These variants are foundational

in practical deployments, as seen in systems like NTRU, which leverages ring-lattice

structures for compact key sizes and fast operations [45].

2.3 LWE

The Learning with Errors problem, introduced by Regev in 2005, is a fundamental con-

cept in lattice-based cryptography, playing a pivotal role in post-quantum cryptographic

schemes [72]. The problem involves recovering a secret vector s ∈ Zn
q from noisy linear

equations ai · s+ ei = bi mod q, where ai is public and ei is a small error sampled

from a discrete Gaussian distribution [59, 72]. The presence of this error term ensures

that even with access to quantum resources, the problem remains computationally

challenging. Regev’s key contribution was demonstrating that LWE is at least as hard

as solving certain worst-case lattice problems, specifically the SVP and CVP, under

specific parameterizations [72]. This reduction was the first of its kind, establishing a

direct connection between worst-case lattice problems and the average-case complexity

of LWE. LWE is believed to be in QMA but not BQP, indicating its resistance even to

quantum algorithms [59].

2.3.1 Regev’s contribution to lattice-based cryptography

By establishing that breaking LWE is at least as difficult as solving these lattice problems,

Regev’s reduction became the cornerstone of post-quantum cryptography. Additionally,

Regev introduced an encryption scheme based on LWE, encoding individual bits as

noisy linear combinations of secret key components. This scheme laid the groundwork

for more advanced constructions, including fully homomorphic encryption and identity-

based encryption [17, 54]. The connection between LWE and lattice problems ensures

that efficient algorithms for solving LWE would imply breakthroughs in solving SVP

and CVP, which remain computationally infeasible even with quantum resources.

2.3.2 Regev’s public encryption scheme

Regev’s LWE-based encryption scheme encodes each bit into a noisy linear equation,

where the noise ensures resistance to decryption attempts [72]. This simple yet powerful
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design can be extended to multi-bit encryption using methods like dual-Regev encryp-

tion [54]. Regev’s system has proven versatile, enabling applications such as fully

homomorphic encryption while maintaining robustness against classical and quantum

adversaries. Further enhancements like Ring-LWE and Module-LWE have improved

efficiency without compromising security [54]. Regev’s recommended parameters

include choosing q as a prime between n2 and 2n2, setting m = 1.1 ·n logq, and defining

the noise rate α = 1√
n log2 n

, balancing security with practical performance [72].

2.3.3 Security parameters and classical approaches

The security of LWE-based systems relies on the careful selection of parameters: the

modulus q, dimension n, noise rate α, and error distribution [59, 67]. The error distribu-

tion, often Gaussian or binary, and the noise rate α determine the problem’s hardness.

Selecting these parameters correctly ensures computational intractability while avoid-

ing inefficiencies. Classical solutions like lattice reduction (BKZ) and combinatorial

approaches (BKW) still require exponential time with appropriately chosen parameters,

reinforcing LWE’s resistance to known attacks [58, 8]. Regev’s recommended param-

eter choices for LWE offer a balance between security and correctness, ensuring that

noise levels are manageable while still thwarting adversarial attacks [72].

Traditional methods such as Gaussian elimination are ineffective due to the noise

amplification that masks the secret vector, making them impractical for LWE decryption

[59, 67]. The reduction of LWE to hard lattice problems combined with the absence of

efficient quantum algorithms for LWE strengthens the case for its post-quantum security

[72, 19]. Despite decades of cryptanalytic efforts, no polynomial-time solutions have

emerged for LWE, underscoring its central role in post-quantum cryptography research.

2.4 VQE

The Variational Quantum Eigensolver is a hybrid quantum-classical algorithm designed

to approximate the ground state energy of a given Hamiltonian Ĥ. Mathematically, the

Hamiltonian is expressed as:

Ĥ = ∑
i

ciPi,

where Pi are tensor products of Pauli operators and ci are real coefficients. VQE

optimizes a quantum circuit parameterized by θ to minimize the expectation value
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⟨ψ(θ)|Ĥ|ψ(θ)⟩. This iterative process is carried out using a classical optimizer that

adjusts θ based on measurement results, allowing current NISQ devices to address

complex cryptographic problems like those found in LWE-based systems [70, 22].

2.4.1 VQE Notation and optimization

In the context of quantum algorithms, the variational principle states that for any

parameterized quantum state |ψ(θ)⟩, the expectation value E(θ) = ⟨ψ(θ)|Ĥ|ψ(θ)⟩ is

an upper bound on the ground state energy E0. The VQE algorithm seeks to iteratively

adjust θ to minimize E(θ), thereby approximating E0 [56]. The flexibility of VQE

makes it suitable for NISQ devices by distributing computational tasks between quantum

circuits and classical optimizers, enabling practical applications even with current noisy

hardware [27].

While originally developed for quantum chemistry, VQE has been extended to

combinatorial optimization, where problem instances are mapped to Hamiltonians. A

notable example is the Max-Cut problem, where the objective is to partition a graph such

that the number of edges between partitions is maximized. This problem is encoded

into an Ising Hamiltonian that VQE can optimize [10]. In this scenario, a parameterized

quantum circuit generates candidate bitstrings representing potential solutions, which

are evaluated by a cost function guiding the classical optimizer in refining θ.

2.4.2 Ansatz selection for cryptographic problems

Ansatz selection is crucial in determining VQE’s performance. In the context of

cryptanalysis and combinatorial optimization, hardware-efficient ansatzes are typi-

cally employed due to their reduced circuit depth, aligning well with the near term

limitations. However, these ansatzes may limit expressibility, impacting the solution

quality for complex problems [49]. For cryptographic tasks like solving LWE instances,

problem-specific ansatzes that incorporate the structural properties of lattice problems

are preferred. These ansatzes balance expressibility and feasibility, leveraging known

symmetries or algebraic properties inherent to LWE. Advanced methods like qubit-

ADAPT-VQE further improve performance by dynamically constructing the ansatz

during the optimization process, tailoring it to the specific requirements of the problem

being solved [46]. In cryptanalysis, such adaptive strategies are particularly useful when

dealing with high-dimensional lattice problems, allowing for more efficient exploration

of solution spaces while managing the computational overhead.
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2.5 QAOA

The Quantum Approximate Optimization Algorithm (QAOA) is a variational quantum

algorithm designed to solve combinatorial optimization problems, particularly those

representable as Quadratic Unconstrained Binary Optimization (QUBO) instances.

QAOA operates by alternating between a problem Hamiltonian ĤP that encodes the

objective function and a mixer Hamiltonian ĤM that facilitates exploration of the

solution space. The QAOA ansatz is constructed as:

|ψ(γ,β)⟩= e−iβĤM e−iγĤP|ψ0⟩,

where γ and β are variational parameters optimized through classical routines to

minimize the expectation value of the problem Hamiltonian. This alternating sequence

can be extended for deeper circuits, commonly denoted by the parameter p, leading to:

|ψ(γ,β)⟩=
p

∏
j=1

e−iβ jĤM e−iγ jĤP|+⟩n.

QAOA’s utility lies in its ability to discretize the evolution of a quantum state towards

a solution, providing flexibility in parameter tuning that is particularly beneficial for

NISQ devices [34, 91].

2.5.1 QUBO representation in cryptanalysis

QUBO problems are essential in QAOA’s application to cryptanalysis, as many combi-

natorial problems, including those underlying cryptographic challenges like LWE, can

be expressed in this format. A general QUBO problem is defined as:

f (x) = ∑
i

aixi +∑
i< j

bi jxix j,

where xi ∈ {0,1} are binary variables. Mapping cryptographic problems to this

form allows for their representation as diagonal Hamiltonians in a quantum framework,

enabling efficient exploration and solution finding on quantum hardware [41].

2.5.2 Comparison to quantum annealing

QAOA’s formulation is closely related to quantum annealing, with both methods aiming

to approximate adiabatic evolution. However, QAOA differs by discretizing the process

into alternating unitary operations parameterized by γ and β. This discretization provides
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greater control over the evolution path, allowing for targeted optimization based on

specific problem instances [85]. While quantum annealing relies on a continuous

interpolation between initial and final Hamiltonians, QAOA’s stepwise approach offers

enhanced tunability, which can be advantageous in exploring rugged optimization

landscapes characteristic of cryptographic problems like those encountered in LWE

[13].

2.5.3 Strengths and weaknesses of QAOA relative to VQE

QAOA and VQE are both variational quantum algorithms, yet they serve distinct pur-

poses. While VQE is primarily used for finding ground states in problems like quantum

chemistry, QAOA is specifically tailored for combinatorial optimization. QAOA’s

structured approach with fewer variational parameters results in simpler optimization

landscapes, making it better suited for problems like Max-Cut or lattice-based crypt-

analysis tasks. However, QAOA’s performance is highly dependent on circuit depth

and parameter optimization, both of which are constrained by noise and decoherence in

current quantum hardware [34, 91]. VQE, although more flexible in handling a broader

range of Hamiltonians, suffers from more complex optimization challenges, making it

less efficient for certain combinatorial tasks compared to QAOA [55].

2.5.4 Challenges and practical considerations in QAOA implemen-

tation

The efficacy of QAOA is contingent on several factors, including the initialization of

parameters, the classical optimization routine employed, and the circuit depth. As the

depth p increases, the quantum state better approximates the solution, but this also

introduces noise-related complications on NISQ devices. Issues like barren plateaus,

where gradients vanish, present significant hurdles to efficient optimization, requiring

advanced strategies like layerwise training or adaptive methods for improved perfor-

mance [55, 91]. Furthermore, practical implementations must account for hardware

constraints, limiting the scalability of QAOA to larger problem instances [21].

2.5.5 Conditional Value at Risk (CVaR)

CVaR is a risk measure used in quantum optimizations to improve robustness, especially

in noisy environments like those found in NISQ devices. In variational quantum
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algorithms such as QAOA and VQE, CVaR targets worst-case scenarios by focusing on

the tail end of the distribution, minimizing expected losses beyond a defined threshold

[56]. This is critical in optimizing problems where conventional methods fail due to the

randomness in quantum measurements, leading to potentially suboptimal results.

CVaR integration in VQAs enhances resilience and consistency. Conventional

quantum optimization strategies often average all outcomes, leading to deviations

caused by noise [27, 69]. By focusing on the most adverse outcomes, CVaR directs

the optimization process toward solutions less sensitive to fluctuations, ensuring better

performance under quantum noise [77]. This focus is particularly relevant for NISQ

devices, where high error rates demand robust optimization strategies.

2.5.6 Ascending CVaR

Ascending CVaR refines optimization by dynamically narrowing the focus from broader

to more precise percentiles of the cost distribution. Early stages consider larger per-

centiles (e.g., top 50%) for broad exploration, which is tightened as optimization pro-

gresses, balancing exploration with exploitation [56, 42]. This approach is effective in

applications requiring precision, where gradual adjustments lead to better convergence

and solution quality [75].

As CVaR percentage changes, global minima remain constant, while local minima

shift, a useful property to avoid entrapment in suboptimal regions. This characteristic

facilitates navigation across jagged landscapes typical of cryptographic problems like

LWE [25], enabling more efficient optimization.

2.5.7 Advantages and limitations of CVaR

CVaR offers notable benefits beyond noise resilience, including mitigating barren

plateaus regions with nearly zero gradients by focusing on the most challenging parts

of the parameter space. This emphasis improves convergence and helps the algorithm

avoid local optima [12, 80]. Empirical evidence shows that CVaR improves consistency

and reliability in non-convex optimization landscapes, which is crucial in cryptographic

scenarios like LWE-based cryptanalysis [39].

However, the approach introduces computational overhead due to the need for ex-

tensive sampling to evaluate tail risks. This burden is especially significant in ascending

CVaR strategies, where each refinement requires multiple evaluations to accurately

assess the risk distribution [51]. Limited coherence times and qubit resources on current
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quantum devices exacerbate this issue, potentially hindering practical implementation.

While CVaR aims to minimize adverse outcomes, this focus can lead to overly

conservative solutions, potentially overlooking regions that could yield better results if

adequately explored. This conservative bias is a significant concern in high-dimensional

problems, where prematurely narrowing the focus might impede the discovery of

optimal solutions [42]. Careful tuning of parameters, particularly the quantile level, is

essential, especially in NISQ environments where balancing computational cost and

reliability is critical [77].

2.5.8 Pros and cons applying ascending CVaR

While ascending CVaR improves robustness by progressively refining the optimization

target, it introduces complexities in algorithm design and practical implementation.

The iterative tightening of the quantile requires precise control mechanisms, adding

complexity in both optimization and hardware management [51]. The additional

iterations necessary to achieve the desired precision extend the runtime, leading to

trade-offs between accuracy and computational efficiency. These trade-offs are critical

in cryptanalysis, where resource constraints are significant [79].

CVaR-based optimizations show promise in cryptanalysis, particularly for solving

the LWE problem. LWE’s high-dimensional structure and complex error distribution

create an intricate landscape that benefits from the precision and robustness CVaR

offers. Incorporating CVaR into QAOA and VQE could enhance exploration, potentially

leading to faster convergence and higher-quality solutions [25].

2.6 Previous work and research gaps

The study by Lv et al. 2022 delves into employing VQAs to address the LWE prob-

lem using NISQ-era quantum devices. Their work introduces two approaches: the

application of QAOA for improving the classical Nearest Plane algorithm and the use

of a VQE to address the unique Shortest Vector Problem (uSVP), which is closely

linked to LWE. Through small-scale experiments, Lv et al. demonstrate that these

hybrid quantum-classical methods enhance the performance of classical cryptanalysis

approaches under constrained quantum resources [53].

While Lv et al.’s contribution is significant in extending VQAs to cryptographic ap-

plications, it is limited in several respects, particularly regarding its underlying approach
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to encoding the LWE problem into Hamiltonians. Their methods primarily focus on op-

timizing classical algorithms by introducing quantum enhancements rather than directly

tackling the core LWE problem through novel quantum formulations. Specifically, the

reduction of LWE to uSVP relies heavily on existing lattice reduction techniques (e.g.,

LLL, BKZ) and fails to explore innovative Hamiltonian encodings that directly reflect

the structure of LWE. Additionally, their reliance on known algebraic reductions such as

Kannan’s embedding method constrains the scope of the quantum advantage achievable,

as these techniques are already deeply studied in classical cryptanalysis [53].

In contrast, our research explicitly addresses these gaps by focusing on directly

encoding LWE-related problems into Hamiltonians tailored for NISQ devices. Rather

than adapting classical reductions, this dissertation proposes novel Hamiltonians de-

rived from the specific algebraic structure of LWE, enabling more efficient mappings to

QUBO formulations used in QAOA and VQE. This approach not only offers a fresh

perspective on the cryptanalysis of lattice-based schemes but also extends the applica-

bility of quantum algorithms beyond mere optimizations of existing techniques. Unlike

Lv et al., our methodology emphasizes exploring deeper structural properties within

LWE, specifically leveraging quantum principles like entanglement and interference,

which are underutilized in classical reductions [53].

The research gap lies primarily in the need for a quantum-centric view of LWE that

leverages Hamiltonian encodings beyond the conventional lattice reduction framework.

Lv et al.’s experiments, while demonstrating incremental improvements, are limited

by classical preprocessing, which diminishes the potential quantum advantage. This

work seeks to fill this gap by integrating quantum-native formulations that bypass

extensive classical preprocessing, focusing instead on quantum representations of the

LWE challenge directly. This leads to a more direct evaluation of LWE’s hardness under

quantum algorithms, with implications for cryptographic security and the practical

applicability of post-quantum cryptosystems like Kyber [53].

In summary, while existing literature, particularly Lv et al.’s work, advances the

use of VQAs for lattice-based cryptanalysis, it remains rooted in classical methodolo-

gies. My research distinguishes itself by pioneering Hamiltonian formulations tailored

specifically for LWE, setting the stage for a more profound exploration of quantum

cryptanalysis, particularly in scenarios constrained by NISQ hardware.
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Research methodology

3.1 Conceptual framework

This research examines the application of NISQ-era quantum computing, for which

purpose we employ Qiskit for our implementation. Central elements include the simula-

tion of noise models via Qiskit Aer, implementation of VQE and QAOA algorithms

using the Qiskit Algorithms module, and leveraging key primitives like Sampler and

Estimator for performance evaluation.

3.1.1 Noise models and simulation with Qiskit Aer

Qiskit Aer is pivotal in this research, providing a high-performance simulation environ-

ment for replicating the noisy conditions typical in real quantum devices. Aer includes

simulators like the qasm simulator, which supports both noiseless and noisy simula-

tions. The ability to introduce customized noise models, such as those for decoherence,

gate errors, and thermal relaxation, allows for accurate modeling of specific quantum

hardware profiles and allows for future extensibility. An important feature used in this

research is NoiseModel.from backend(), which directly imports noise characteristics

from IBMQ devices, enabling realistic assessment of algorithm performance under

physical noise conditions [48, 24, 63].

For tailored simulations, Aer provides multiple methods like StateVector,

DensityMatrix, and Stabilizer approaches, balancing between computational ef-

ficiency and accuracy depending on circuit complexity. Although Aer supports GPU

acceleration for large-scale testing, this research focuses primarily on StateVector

simulations due to their superior performance for the specific algorithms employed.

20
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Importantly, these simulations leverage the backend noise models, without GPU accel-

eration, to closely mimic the environments of current NISQ devices [1].

3.1.2 Qiskit algorithms module

The qiskit algorithms module underpins the implementation of VQE and QAOA.

A key factor in the performance of these algorithms is the choice of ansatz. The

TwoLocal ansatz, employed in both VQE and QAOA, consists of alternating single-

qubit rotations and entangling gates. Its modular design enables the customization of

gate configurations, facilitating exploration of the solution space with computational

efficiency. This research focuses on this ansatz due to its adaptability for lattice-based

cryptographic problems, specifically in the context of LWE. Other ansatz options, like

EfficientSU2, are considered less optimal due to their balance between expressiveness

and resource requirements, making TwoLocal the primary choice for this study [47].

3.1.3 Noise profiles and circuit optimization

In simulating quantum environments, detailed noise models are crucial for evaluating

algorithm robustness. Aer’s noise profiles, such as depolarizing noise for CNOT gates

and readout error models, are integrated into this framework, allowing for comprehen-

sive testing of VQE and QAOA under noisy conditions. While this research mentions

these capabilities, the primary focus remains on utilizing backend-specific noise mod-

els, rather than custom-designed profiles, for more accurate replication of real-device

conditions [24, 63].

3.1.4 Qiskit Primitives: Sampler and Estimator

The Sampler and Estimator primitives are critical for analyzing VQAs. The

Estimator computes expectation values, vital for evaluating the performance of VQE

and QAOA, while the Sampler provides probability distributions from measurement

outcomes, essential for statistical analysis under noise. These primitives support inte-

gration with noise models, ensuring that the simulated conditions align closely with

those expected in actual quantum hardware. By leveraging these tools, this research

offers more realistic insights into algorithm performance [88, 33].
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3.1.5 Algorithm implementations and customizations

This research builds upon Qiskit’s implementation of VQE and QAOA, with specific

adaptations for LWE cryptanalysis. QAOA is implemented using Qiskit’s native frame-

work, while VQE is extended with custom components due to the need for simulating

a general cost function involving bitstring outcomes. This customization requires

gradient descent methods, optimizer classes, and expectation value calculations via

parameter shift rules. The ParamShiftSamplerGradient is employed for derivative

computations, ensuring accuracy in parameter optimization [65].

In terms of optimization, the study experiments with COBYLA and SPSA, ultimately

favoring COBYLA for its robustness and efficiency in handling the noise profiles en-

countered. Additionally, while Qiskit offers various gradient calculation methods, this

research primarily uses default configurations, as these align with the requirements of

the studied algorithms and offer a stable baseline for further exploration [38].

3.1.6 Practices and performance tracking

Ensuring reproducibility and consistent performance measurement are key aspects of

this study. The research incorporates practices like setting a global seed and averaging

results across multiple runs, reporting both mean and standard deviation where applica-

ble. Performance is tracked using profiling tools to identify code segments that could

benefit from optimization. These methodologies are essential for validating the results

and ensuring that conclusions are based on robust, repeatable findings.

3.2 Theoretical approach and mathematical foundations

This section focuses on the mathematical proofs that underpin the cryptanalysis tech-

niques explored in this research. The proofs provide the basis and the intuition for the

implementation of the QAOA and VQE solutions.

3.2.1 Hamiltonian definition

Following the notation outline in Section 2.1, consider the following cost function,

which plays a key role in modeling the problem:

C(⃗x) := ∑
i

[(
∑

j
Ai jx j

)
−bi

]
(3.1)
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where all operations are taken modulo q. It can easily be seen that when one plugs

in the secret vector s, C(⃗x) simplifies to ∑i (ei mod q) (using Definition 2.1 of mod),

now if ei < 0 is a small negative value, then ei mod q = q− ei which is a relatively big

quantity, considering the default security parameters (see Appendix B).

To transform this intuition into the VQE Hamiltonian, one needs to solve this

modulo problem and adequately reward small error terms. This gives rise to the two

following approaches:

3.2.1.0.1 Approach 1:

HVQE := ∑
i

((∑
j

Ai jx j

)
−bi

)2

mod q

 (3.2)

3.2.1.0.2 Approach 2:

Hcmod := ∑
i

((∑
j

Ai jx j

)
−bi cmod q

)2
 (3.3)

where crucially the cmod is the centred mod defined as:

a cmod q =
[(

a+
q
2

)
mod q

]
− q

2
(3.4)

Here we discuss the intuition behind each approach. Approach 1:, solves the issue

directly by using the square to negate any negative error terms, before taking the

modulo operation. Approach 2: tackles the problem with negative error terms simply

by permitting them in a way that preserves their closeness to the factor. Then a square

of that expression is taken, so that this linear term doesn’t negate the cost of any other

terms. The square operation also provides mean to punish deviations polynomially with

respect to their distance. In simpler terms the further you are from a factor of q, you get

proportionately punished.

Moreover, both these Hamiltonians are quadratic in nature since each term in the

summation is a squared difference between a linear combination of the input vector

components x j and the scalars bi. The quadratic nature is crucial because it allows us

to apply techniques such as QAOA to this problem. Quadratic Hamiltonians can be

efficiently mapped to quantum circuits, where the optimization can be performed using

quantum resources.

Nevertheless there is a very subtle problem with Approach 1:. When we take the

square before the modulus we run the risk drastically increasing the magnitude of the
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error terms ei to a point where e << q no longer holds. To demonstrate this point we

examine following Figure 3.1.
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Figure 3.1: Distribution of ei with respect to q ∈ [n2,2n2) for n = 5. Squared vs non-

squared errors on the left vs right, respectively. α = 1/(
√

n log2(n)) and α = 1/n2 up

vs down, respectively.

Figure 3.1 demonstrates several interesting aspects. First we observe (top left) that

following Regev security parameters for α, namely α = 1/(
√

n log2(n)) and going with

Approach 1: for the Hamiltonian is intractable as the plot suggest that squaring the error

(assuming we want to have x = s) is going over the range of the modulus, essentially

contributing near uniform spread, where we couldn’t hope to identify the solution.

This is exemplified by the theoretical percentiles wrapping around as a result of the

application of the modulus. Secondly, we observe that Approach 1: is only viable when

the standard deviation is reduced with α (bottom left). It is important to state that this is

a reasonable suggestion and follows the security recommendations as we us α = 1
Poly(n) .

And it works well as the 99th percentile mass of the distribution is in the first q
2 range

of the modulus, which is a promising sign for the ability of VQA to find this as an

optimal solution. Finally, we note that approach 2 where we take the centre mod before

the square has potential to work well with both definitions of α as again there is a big

separation and the probability mass is lumped near small values.

Looking at figure 3.2 one might observe similar tendencies. We once again can

conclude that using Regev’s definition of α and squaring the magnitude of the error

before applying the modulus operations ends up covering the modulus range, which
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Figure 3.2: Distribution of ei with respect to n ∈ [3,30] in increments of 3. Squared vs

non-squared errors on the left vs right, respectively. α = 1/(
√

n log2(n)) and α = 1/n2

up vs down, respectively.

ends up masking the solution. Apart from that we can also observe something that

we will see in the results and that is that increasing n tends to improve the correctness

properties of Regev’s encryption and it also drastically improves the chances of finding

the solution with VQAs. It can be seen that as n increases, the distribution of ei stays

near constant, continually expanding the gap between the error terms and the modulus,

perpetually bettering the correctness properties of Regev’s 1 bit encryption and success

rate of our VQA solutions.

The formulations above effectively encodes the goal of finding a vector x⃗ such that

the distance (or norm) between the computed vector and the target is minimized. The

cost function C(⃗x) captures this distance as the sum of squared errors. Minimizing this

function helps identify a vector that is close to the secret vector s⃗, particularly in cases

where the errors (represented by deviations from bi) are small. We explore Approach 1:

further in our VQE testing, where it is more viable as we mainly tackle ternary error

distributions −1,0,1 for scalability reasons. There the squaring of the magnitude is of

no consequence as the errors remain the same. We explore Approach 2: in our QAOA

testing.
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3.3 QAOA Hamiltonian and Modulo Encoding

To apply QAOA we extend approach 2 by translating the problem into a QUBO

formulation that can be executed on a quantum devices. The QAOA Hamiltonian

is structured as:

HQAOA := ∑
i

r2
i +P f (⃗x), (3.5)

where f (⃗x) := ∑
i

((∑
j

Ai jx j

)
−bi − kiq− ri

)2
 (3.6)

This Hamiltonian introduces auxiliary variables and a penalty function in order to

encapsulate the behaviour of the modulus operation. This is achieved by noticing that

∑ j Ai, jx j − bi can be expressed as kiq+ ri. Where the quotient ki and the remainder

ri ∈ [0,q) are auxiliary integers when dividing by q and P is a large penalty constant

for the penalty function f (⃗x). This formulation ensures that the modulus operation is

respected during the optimization.

Now, we claim that this Hamiltonian encodes the modulus operation correctly and

further it requires an asymptotic O(n logn) number of qubits to encode an LWE instance

of n dimensions.

3.3.0.0.1 Proof of encoding correctness The encoding is proven to be correct by

showing that the optimal solution satisfies the modulus constraint and further that any

other x⃗ is being penalized. Start by considering:

∑
j

Ai jx j −bi = kiq+ri (3.7)

⇒ ∑
j

Ai jx j −bi mod q = kiq+ri mod q (3.8)

⇒ ∑
j

Ai jx j −bi mod q = ri (3.9)

⇒ (∑
j

Ai jx j −bi mod q)2 = r2
i (3.10)

Again here assuming Regev’s Definition 2.1 of modulo. The penalty function f (⃗x)

(3.6) enforces the relationship by penalizing any deviation from the exact modulus

result. If (3.7) holds for some ki and ri, then f (⃗x) = 0, resulting in no additional penalty
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resulting in HQAOA = ∑i r2
i , which is equal to the original Hamiltonian from Approach

2: (3.3) as demonstrated by Equation (3.10). On the other hand, if x⃗ is not the solution it

either has a higher probability of contributing with a bigger remainder or it is punished

by the penalty function f (⃗x) and a large positive constant P is applied. P is subject to

heuristics as a sufficiently large constant ensures that the penalty term has a significant

impact on the Hamiltonian dynamics, however, not too big as to obstruct the smooth

learning of the objective function.

3.3.0.0.2 Proof of qubit complexity The complexity analysis chosen in this re-

search is a straightforward asymptotic qubit count. Both the QAOA (3.5) and VQE (3.2)

Hamiltonians share the initial vector encoding, which cannot be significantly reduced.

To encode the vector x⃗ one needs n logq bits for the dimensions of the LWE instance

times the bits required to express an integer mod q. It is worth mentioning that setting

q to be the largest prime just before a power of 2 in the range [n2,2n2) aims to optimize

the number of bits required to express each integer, while providing the largest possible

modulus, which we later show that improves correctness and probability of finding the

solution. Worst case scenario this turns out to be n log2(2n2−1)≈ 2n(log2(n)+1) and

2n log2(n) in the best case, which turns out to be O(n logn). However, cryptography is

concerned with constants and for the sake of demonstrating improvements the complex-

ities are represented with their coefficients together with their asymptotic complexities.

Therefore, O(n logn) and more precisely 2n(log2(n)+1) is sufficient for VQE.

In addition to encoding the potential solution, QAOA needs to encode the auxiliary

variables. More specifically, ri can be represented with log2(2n2 −1)≈ 2(log2(n)+1)

and 2log2(n) bits in the worst and best scenarios, respectively, which is O(logn).

Alternatively, ki must be big enough to cover the possible range of ∑ j Ai jx j−bi
q . It turns out

that one requires log2(2n3−3n+2)≈ 3(log2(n)+1) and log2(n
3−2n+2)≈ 3log2(n)

in the worst and best cases, respectively. Asymptotically this is again O(logn). It should

also be noted that both ki and ri are dependent on i and are independent of each other,

hence the number of additional qubits is O(n logn) and more precisely n(2log2(n)+

2+3log2(n)+3) = 5n(log2(n)+1). To arrive at the total count needed to run QAOA,

the qubits encoding the potential solution are added to amount to 7n(log2(n)+1) in

the worst case or O(n logn) asymptotically. Finally, remark that many cryptographic

systems target a security of 128 bits (including CRYSTALS-Kyber although using

Module-LWE), meaning that an instance of that magnitude could be attempted with

7168 perfect logical qubits.
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3.4 Research design

3.4.1 Implementation contribution

In this thesis, I developed a comprehensive approach leveraging NISQ algorithms for

cryptanalysis, specifically targeting Kyber CRYSTALS and LWE. My implementation

of classical methods, including a brute-force eigensolver and exhaustive search (Appen-

dices C.1.1 and C.1.2), established reliable baselines to validate quantum approaches. I

constructed a modular QUBO Hamiltonian (Appendix C.1.3) for adaptable problem

encoding, ensuring accurate modeling. Finally, by applying QAOA to solve the QUBO

(Appendix C.1.4), I demonstrated the feasibility of breaking cryptographic schemes

with current quantum devices, bridging classical and quantum cryptanalysis.

This thesis introduces a robust approach to optimizing quantum circuits for crypt-

analysis using gradient-based methods. The gradient descent optimization (Appendix

C.2.1) was implemented from scratch, allowing precise control over the parameter

updates. Additionally, I developed a parameter shift rule to manually calculate gradients

(Appendix C.2.2), enhancing flexibility in adjusting which derivatives to compute. The

expectation value computation (Appendix C.2.3) was carefully designed, incorporating

noise considerations and penalization strategies for invalid solutions, ensuring accurate

and reliable results when applied to the LWE problem.

3.4.2 LWE

The LWE problem is a foundation for post-quantum cryptography, and understanding

its instance generation process is essential for developing cryptanalytic attacks. This

section explains LWE instance generation with a focus on parameter selection, error

distributions, and their impact on decryption correctness and attack success rates. We

detail how security parameters influence decryption errors, using plots to visualize the

link between errors and our cryptanalytic methods.

3.4.3 Generating LWE instances

Building on top of Section 2.1 we are generating LWE instances using a systematic

process, namely the coefficient matrix A ∈ Zm×n
q is populated with uniformly random

integers modulo q and the secret vector s ∈ Zn
q is also sampled u.a.r., though it has been

demonstrated as not strictly necessary for hardness guarantees. Despite this, uniform
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sampling remains widely used due to its simplicity and well-understood behavior [73].

The error vector e ∈ Zm
q is generated using a discrete Gaussian distribution centered

at 0 with a standard deviation of αq, where α ∼ O
(

1
Poly(n)

)
(defaults to 1√

n log2(n)

as per Regev [73]). Additionally, we run tests where the errors are sampled from

a ternary distribution {−1,0,1}, which, while offering reduced security, allows for

specific analysis relevant to VQAs (see Approach 1:). Furthermore, we reiterate the

core parameters, the most important of which is the problem dimension n. It affects the

scalability and security of the lattice and dictates the modulus q ∼ O(Poly(n)) (prime

number ∈ [n2,2n2) Regev), and the number of linear equations m ∼ O(Poly(n)) (with

default value 1.1 · n logq). Each of these parameters plays a key role in defining the

hardness of the LWE problem, which in turn affects the correctness properties of both

encryption/decryption and VQA-based cryptanalysis.

3.4.4 Understanding correctness and decryption error

The correctness of decryption depends on ensuring that the sum of errors does not exceed

q/4. Without errors, the value b−⟨a,s⟩ would be exactly 0 or ⌊q/2⌋, corresponding to

an encrypted bit of 0 or 1. However, errors introduce deviations that can cause incorrect

decryption if they push b−⟨a,s⟩ beyond the threshold q/4. The sum of m error terms,

each sampled from a Gaussian distribution with standard deviation αq, results in a total

standard deviation of
√

mαq. Correctness is maintained as long as this value remains

below q/4, leading to the requirement:

√
mαq <

q
4

=⇒
√

mα <
1
4
.

This expression guides the parameter selection, especially for small n where q ≈ n2.

For example, if n = 4, q is the smallest prime greater than 16 (which is 17), and α is

approximately 1√
4log2(4)

, the standard deviation becomes
√

4×α×17. This remains

below q/4 = 4.25, ensuring a low probability of decryption error.

3.4.5 Plotting and visual analysis

To analyze correctness conditions, we plot the expectation function and its conservative

bound, Figure 3.3. The function
√

mαq represents the total error contribution across

all samples, while q/ log(n) provides a conservative bound on acceptable error levels

for successful decryption [73]. As expected, with small LWE instances decryption

errors are significant and the intersection of these functions with q/4 indicates the
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Figure 3.3: LWE correctness and decryption error probability with different α-s. The

left y-axis (log scale) shows
√

mαq, q/ log(n), and q/4. The right y-axis shows the

decryption error probability, using the CDF at 3 thresholds.

parameter cutoff points, where decryption error probability becomes acceptable. In

the case of α = 1√
n log2(n)

this happens at 26.5 and for α = 1
n2 it is 3.5, which indicates

that correctness is easily achieved with α = 1
n2 for a negligible penalty in security. This

is further demonstrated by the CDF percentile points, which are at 169,473,999 for

the Regev definition of α and 6,8,10 for the latter definition. Comparing the two plots

essentially evaluates different choices for α, highlighting how it influences correctness.

For small n, a smaller α results in smaller error rates, but as n increases, optimizing α

becomes critical for maintaining correctness while balancing computational efficiency.

Crucially, we observe that this decryption correctness is tightly related to the success

rate of our VQE and QAOA approaches as seen in Chapter 4.

3.4.6 LWE implementation

The Python LWE class used in this study is scalable, modular, and type-safe, designed to

accommodate different parameter settings. The class follows Regev’s recommendations

as default but allows for manual overrides of all key parameters, including n, q, α, m,

and the error distribution.

Key features include: Customizable n, q, and α values; Support for different

error distributions: Gaussian, ternary, uniform; Flexible encryption and decryption

methods that can adjust the subset size of equations; Built-in functions for analyzing

the Hamiltonian value, crucial for VQAs.

This modular design facilitates systematic experimentation with LWE parameters,

making it well-suited for testing various cryptanalytic approaches.
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Results and analysis

This section provides an overview of the results, describing how the results are organized

and presented.

4.0.1 QAOA results and analysis

The LWE instances explored in this study (A to F) were carefully selected for their

experimental feasibility and qubit requirements, all under the 31-qubit limit supported

by the Aer simulator. Each instance represents specific configurations of the LWE

problem, varying in dimension, modulus q, and error distribution. A, B, C and D are 2D

lattices with a modulus q close to 2k, while E and F are 3D lattices with q = 7, which

is not in the security bounds. A and B use m = n, while C and D use m = 1.1 ·n logq.

And finally A, C and E follow a ternary distribution for their errors and B, D and F use

α = 1
Poly(n) with a discrete Gaussian for the errors.

Figure 4.1 (Left) presents the results of QAOA’s solution correctness, highlighting

the impact of noise across different LWE instances. The performance of QAOA is

notably inconsistent, especially for small instances such as A and B. In these cases,

where m = n, overfitting occurs, leading to solutions that, although minimize the

Hamiltonian, fail to correspond to the correct secret vector s. This is primarily due

to the limited linear equations in such configurations, allowing multiple solutions that

erroneously achieve minimal eigenvalues by canceling out the Hamiltonian without

addressing the error in the system. Consequently, the probability of finding the correct

solution remains low, with higher variance, particularly under noisy conditions.

The noise significantly exacerbates this issue, reducing the solution accuracy across

all instances. This trend is consistent with the limitations of NISQ devices, where

31
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Figure 4.1: Left: Comparison of QAOA. Right: Comparison of VQE solution correctness

(with and without noise). The red bars represent noisy conditions, while the blue bars

correspond to the noise-free scenario. Results are presented with their mean and

standard deviation across different sample sizes: 20 samples for instances A and B, 4

for C and D, and 10 for E and F.

noise disrupts the optimization process, hindering convergence to the correct solution.

Specifically, instances C and D, which follow Regev’s recommendations, demonstrate a

higher likelihood of identifying the correct solution in the absence of noise. Instance C,

using a ternary error distribution, performs well by reliably finding the global minimum,

underscoring the role of error distribution in solution accuracy.

A clear distinction is observed between instances utilizing a ternary error distribu-

tion (A, C, E) and those with a discrete Gaussian distribution (B, D, F). The ternary

error distribution, with its limited range, contributes to a more consistent performance

in QAOA, as it reduces variance and allows for better optimization. In contrast, the com-

plexity introduced by discrete Gaussian errors introduces more variability, complicating

convergence and solution identification.

Interestingly, Instance E, with n = 3, exhibits the best performance, aligning with

prior finding from our Section 3.2.1 and Section 3.4.2 that smaller LWE instances

tend to have decryption errors, irrespective χ. These results indicate that while QAOA

can effectively solve small LWE instances under various conditions, its scalability and

robustness are limited by noise and problem complexity. Nonetheless, QAOA show

great potential in that it manages to find the correct solution s with high probability.

4.0.2 VQE results and analysis

Figure 4.2 demonstrates VQE’s performance under two different CVaR strategies. The

left plot shows results using a constant 0.5% CVaR, characterized by an initial period of
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Figure 4.2: Left: Static CVaR on VQE Performance with a constant CVaR percentage of

0.5%. Right: Ascending CVaR strategy, starting from 90% and incrementally narrowing

down to 99% by 1% every 10 iterations. For n = 6

instability due to sparse sampling, followed by rapid convergence once the algorithm

reaches a critical threshold. The right plot illustrates the ascending CVaR strategy,

which incrementally narrows the search space from a broad percentile to a more focused

region. This method is particularly effective in balancing exploration and exploitation,

allowing for robust performance even in the presence of quantum noise.

The conservative nature of CVaR is apparent in the results. While VQE does not

always converge to the exact solution with complete certainty, it consistently achieves

better-than-random outcomes, especially under noisy conditions. Instances C and D

show around a 20% improvement in solution probability over baseline, demonstrating

CVaR’s effectiveness in cryptographic problem settings.

Figure 4.1 (Right) provides a comparison of VQE correctness across the same

LWE instances tested with QAOA. The experimental setup involved multiple runs for

each instance: 20 for A and B, 4 for C and D, and 10 for E and F. VQE’s solution

probabilities were measured by sampling the circuit 10,000 times per run, offering

a more conservative yet stable performance profile compared to QAOA. Although

VQE’s absolute correctness is lower than QAOA’s, it proves more resilient under noise,

maintaining consistent, albeit cautious, solution quality.

4.0.3 Comparative analysis: QAOA vs. VQE

Comparing QAOA and VQE reveals distinct trade-offs in accuracy, scalability, and

resilience to noise. QAOA tends to be more accurate for small instances but suffers

under noisy conditions and larger problem sizes due to its combinatorial complexity.
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In contrast, VQE, particularly when using CVaR strategies, offers a more scalable

solution, with a conservative bias that prioritizes robustness over absolute correctness.

The ascending CVaR method, starting at 90% and incrementally narrowing to 99%,

likely explains the smooth convergence observed, allowing broader initial exploration

before focusing on high-quality solutions.

From a resource efficiency perspective, VQE’s qubit requirements scale more

favorably as demonstrated by the 4.2 with n = 6. With a space complexity of O(n logn),

VQE requires fewer qubits than QAOA, which demands up to 7n(log2(n)+1) qubits

in the worst case. This efficiency makes VQE more suitable for larger cryptographic

instances, where scalability is a critical concern.

Overall, while QAOA shows promise for small to medium LWE instances, VQE,

with its noise resilience and adaptive optimization strategies, presents a more reliable

option for tackling larger and more complex cryptographic challenges in post-quantum

scenarios.
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Discussion

The discussion consolidates the research findings, situating them within the context of

post-quantum cryptographic research. This study explored the application of QAOA and

VQE to cryptanalysis of Learning With Errors based cryptosystems like CRYSTALS-

Kyber. The focus was on evaluating the practicality of using NISQ devices for crypt-

analytic tasks, analyzing the impacts of algorithmic approaches and noise models on

solution accuracy, scalability, and hardware feasibility.

5.1 Interpretation of results

The experimental results show that both QAOA and VQE can address small LWE in-

stances effectively, but scaling these algorithms to cryptographically relevant dimensions

remains challenging. QAOA showed promising performance for small LWE problems,

particularly in noise-free conditions, but it is notably sensitive to noise, leading to high

variance and reduced reliability. On the other hand, VQE, particularly when enhanced

with CVaR optimization, demonstrated greater resilience to noise, maintaining more

consistent performance across different LWE configurations.

One key insight is the role of error distribution in determining algorithm robust-

ness. LWE instances with ternary error distributions exhibit more stable performance

compared to Gaussian errors due to the reduced variability, allowing for more effective

convergence in quantum optimization processes. Additionally, VQE’s more efficient

qubit usage and scalability make it better suited for larger cryptographic instances, even

though it tends toward conservative solutions due to CVaR’s cautious optimization

focus.

35
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5.2 Comparison with existing literature

This research builds upon and extends previous studies exploring the application of

VQAs to cryptanalysis, particularly in LWE-based cryptosystems. Studies like Lv

et al. have emphasized hybrid quantum-classical approaches that enhance classical

cryptanalysis methods, primarily relying on lattice reduction techniques. In contrast,

this study directly encodes LWE instances into Hamiltonians specifically tailored for

quantum optimization, allowing for a more direct assessment of the cryptosystem’s

resilience. The findings reinforce that while quantum advantages are evident under

specific conditions, fully exploiting quantum-native methods is crucial for broader

cryptanalytic applications.

The comparison of QAOA and VQE reveals distinct differences in handling problem

structure and noise. QAOA, with its discrete optimization approach, is more effective

for combinatorial tasks but suffers under current NISQ hardware constraints, whereas

VQE, leveraging continuous parameter spaces, provides a more adaptable framework

for complex cryptographic problems. These results contribute to the growing body of

research suggesting that hybrid quantum-classical algorithms, when properly optimized,

hold significant promise for future cryptanalysis.

5.3 Theoretical implications

The encoding strategies developed introduce novel Hamiltonian formulations, advanc-

ing beyond classical reductions by leveraging quantum principles such as superposition

and entanglement. Specifically, incorporating centered modulo operations and aux-

iliary variables in the QAOA Hamiltonian enhanced the accuracy in modulus-based

cryptographic tasks, a crucial element for lattice-based cryptosystems.

Moreover, the scalability analysis shows that while current hardware limitations

impose constraints, the O(n logn) qubit complexity provides a feasible pathway for

addressing small to medium-sized cryptographic instances. This study highlights the

need to refine error distributions and noise models in cryptanalysis, offering theoretical

insights into optimizing quantum algorithms for structured cryptographic problems.

However, fully breaking cryptosystems like CRYSTALS-Kyber remains beyond the

capabilities of current NISQ devices, emphasizing that this research primarily provides

groundwork rather than definitive cryptanalytic breakthroughs.
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5.4 Practical implications

While breaking LWE-based cryptosystems like CRYSTALS-Kyber with current quan-

tum technology remains infeasible, this research shows significant progress in evaluating

cryptographic resilience. The application of CVaR strategies in VQE offers improved

robustness against noise, a critical factor in practical cryptanalysis given the inherent

limitations of NISQ devices. VQE’s qubit-efficient design presents a scalable frame-

work for larger cryptanalytic attacks as quantum hardware matures, particularly when

combined with advanced noise-aware optimization strategies.

Additionally, the study shows that future cryptanalytic work should prioritize opti-

mizing parameter settings and exploring hybrid methods that combine quantum subrou-

tines with classical algorithms. The research reinforces the necessity of continuously

assessing the security of proposed standards like CRYSTALS-Kyber as quantum algo-

rithms and hardware evolve.

5.5 Limitations

This study is constrained by several factors, notably the use of Qiskit and classical

simulations, which limit the scope of results as they do not fully replicate real quan-

tum hardware behavior. The noise models employed, while detailed, cannot perfectly

simulate decoherence and gate errors in actual devices. Additionally, the small-scale

LWE instances considered are far from the dimensions required for real-world cryp-

tographic applications like CRYSTALS-Kyber, which generally necessitate hundreds

of dimensions. The simplified ternary error distribution used in some experiments,

although analytically convenient, diverges from the Gaussian profiles typical of LWE

cryptosystems.

Further, the research’s reliance on specific algorithmic configurations—such as the

choice of ansatz, optimizers, and noise models—means results could vary with different

setups. VQE and QAOA performance is particularly sensitive to hyperparameter

settings. While this study provides robust benchmarks, further exploration of alternative

configurations is necessary for a comprehensive understanding of these algorithms’

potential.
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5.6 Future research

Future work should focus on scaling quantum cryptanalysis of LWE and Module-LWE

to realistic cryptographic dimensions, exploring advanced noise mitigation techniques

and error correction strategies. Investigating alternative ansatz designs and hybrid

quantum-classical algorithms could enhance the feasibility of breaking cryptographic

systems. Expanding the study to include fully fault-tolerant quantum devices, once

available, will be essential in determining the full potential of quantum cryptanalysis

against post-quantum cryptosystems.

Given the positive results from CVaR-based optimizations, future research could

explore more sophisticated CVaR strategies (like Best-CVaR) or adaptive techniques

that dynamically adjust optimization parameters. Additionally, analyzing the resilience

of other PQC finalists, such as those built on structured lattices, will be critical for

understanding the broader implications of quantum cryptanalysis as technology pro-

gresses.

In conclusion, while this study did not fully achieve the goal of weakening Kyber

CRYSTALS nor Regev’s primitive or fully analyzing the security of Module-LWE,

it establishes a strong foundation for future research in quantum cryptanalysis. The

findings emphasize the importance of continuous evaluation of post-quantum crypto-

graphic systems as quantum hardware and algorithms mature, setting the stage for more

comprehensive cryptanalytic approaches in the future.
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Conclusion

The conclusion of this dissertation synthesizes the findings from the research on practical

quantum algorithms for cryptanalysis, focusing specifically on the application of NISQ

methods to attack LWE-based cryptosystems like CRYSTALS-Kyber.

6.1 Summary of the study

This research investigated the use of Variational Quantum Algorithms (VQAs), particu-

larly the Quantum Approximate Optimization Algorithm (QAOA) and the Variational

Quantum Eigensolver (VQE), to break lattice-based cryptographic systems. The core

of the analysis centered on encoding the LWE problem into Hamiltonians suitable for

quantum optimization, evaluating how well these algorithms perform on NISQ-era

quantum devices. The study also explored the implications of using different error distri-

butions, such as ternary and Gaussian distributions, within the cryptanalysis framework,

analyzing the scalability and resilience of these quantum algorithms under realistic

noise conditions.

The work introduced two novel Hamiltonian encodings tailored for LWE-based

cryptosystems, enabling the problem to be expressed in a form compatible with both

QAOA and VQE. Extensive experiments were conducted using Qiskit to simulate

these quantum approaches under varying configurations, focusing on small-scale LWE

instances. The results were benchmarked against classical algorithms and noise models

to assess their practicality in a cryptographic context.

The primary findings revealed that while both QAOA and VQE show promise

in cryptanalytic applications, they face significant challenges when scaled to crypto-

graphically relevant dimensions. QAOA exhibited better accuracy in small, noise-free
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environments but struggled under noisy conditions. On the other hand, VQE, enhanced

with Conditional Value at Risk (CVaR) optimization, demonstrated more consistent

performance across noise models, albeit with a conservative bias that prioritized ro-

bustness over solution accuracy. These results suggest that while quantum algorithms

hold potential for cryptanalysis, substantial advancements in quantum hardware and

algorithmic design are needed to fully realize this potential.

6.2 Final remarks

The study makes important contributions to the field of quantum cryptanalysis, par-

ticularly by providing a detailed examination of how quantum optimization methods

can be applied to LWE problems, which form the backbone of many post-quantum

cryptographic systems. The research underscores the challenges posed by NISQ hard-

ware, particularly in managing noise and maintaining solution correctness as problem

dimensions scale. The novel Hamiltonian encodings introduced in this dissertation offer

new directions for encoding cryptographic problems into quantum frameworks, paving

the way for further explorations in quantum cryptanalysis.

While this work did not achieve the goal of breaking high-dimensional cryptosys-

tems like CRYSTALS-Kyber, it sets a critical foundation for future research in the do-

main. The findings highlight the importance of continuous evaluation of post-quantum

cryptographic candidates as quantum technology progresses. In particular, the results

suggest that hybrid quantum-classical approaches, when combined with advanced

noise-aware optimization techniques, can serve as effective strategies for tackling

cryptographic challenges in the near term.

Looking ahead, the next steps involve scaling these algorithms to larger instances,

refining noise mitigation techniques, and exploring alternative hybrid approaches that

combine classical pre-processing with quantum optimization. As quantum hardware

improves, the methodologies and insights developed in this research will be instrumental

in shaping the future landscape of cryptographic security in a post-quantum world.

In summary, this dissertation contributes to the growing body of research at the

intersection of quantum computing and cryptanalysis, offering practical insights and

novel approaches that advance our understanding of how quantum algorithms can be

applied to cryptographic systems. It emphasizes the need for ongoing research as we

approach an era where quantum computers may pose a genuine threat to currently

deployed cryptographic standards.



Bibliography

[1] AerSimulator - Qiskit Aer 0.15.0. URL: https://qiskit.github.io/qiskit-

aer/stubs/qiskit_aer.AerSimulator.html#aersimulator.

[2] M. Ajtai. “Generating hard instances of lattice problems”. In: Proceedings of

the Annual ACM Symposium on Theory of Computing Part F129452 (July 1996),

pp. 99–108. ISSN: 07378017. DOI: 10.1145/237814.237838.

[3] Gorjan Alagic et al. “Status Report on the Third Round of the NIST Post-

Quantum Cryptography Standardization Process”. In: (). DOI: 10.6028/NIST.

IR.8413. URL: https://doi.org/10.6028/NIST.IR.8413.

[4] Martin R. Albrecht, Amit Deo, and Kenneth G. Paterson. “Cold Boot Attacks

on Ring and Module LWE Keys Under the NTT”. In: Cryptology ePrint Archive

(2018). URL: https://eprint.iacr.org/2018/672.

[5] Martin R. Albrecht et al. “Variational quantum solutions to the Shortest Vector

Problem”. In: Quantum 7 (Mar. 2023), p. 933. ISSN: 2521327X. DOI: 10.22331/

q-2023-03-02-933. URL: https://quantum-journal.org/papers/q-

2023-03-02-933/.

[6] Yuri Alexeev et al. “Quantum Computer Systems for Scientific Discovery”. In:

PRX Quantum 2.1 (Jan. 2021), p. 017001. ISSN: 26913399. DOI: 10.1103/

PRXQUANTUM.2.017001/FIGURES/5/MEDIUM. URL: https://journals.aps.

org/prxquantum/abstract/10.1103/PRXQuantum.2.017001.

[7] Alsop. Quantum technology market revenue worldwide 2040, by segment. en.

https://www.statista.com/statistics/1317754/global-quantum-technology-market-

revenue-forecast/. 2023.

[8] Sanjeev Arora and Rong Ge. “New Algorithms for Learning in Presence of Er-

rors”. In: Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics) 6755 LNCS.PART

1 (2011), pp. 403–415. ISSN: 1611-3349. DOI: 10.1007/978-3-642-22006-

41

https://qiskit.github.io/qiskit-aer/stubs/qiskit_aer.AerSimulator.html#aersimulator
https://qiskit.github.io/qiskit-aer/stubs/qiskit_aer.AerSimulator.html#aersimulator
https://doi.org/10.1145/237814.237838
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413
https://eprint.iacr.org/2018/672
https://doi.org/10.22331/q-2023-03-02-933
https://doi.org/10.22331/q-2023-03-02-933
https://quantum-journal.org/papers/q-2023-03-02-933/
https://quantum-journal.org/papers/q-2023-03-02-933/
https://doi.org/10.1103/PRXQUANTUM.2.017001/FIGURES/5/MEDIUM
https://doi.org/10.1103/PRXQUANTUM.2.017001/FIGURES/5/MEDIUM
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.017001
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.017001
https://doi.org/10.1007/978-3-642-22006-7{\_}34
https://doi.org/10.1007/978-3-642-22006-7{\_}34


BIBLIOGRAPHY 42

7{\_}34. URL: https://link.springer.com/chapter/10.1007/978-3-

642-22006-7_34.

[9] Roberto Avanzi et al. “CRYSTALS-Kyber Algorithm Specifications And Sup-

porting Documentation (version 3.02)”. In: (2021).

[10] R. Barends et al. “Superconducting quantum circuits at the surface code threshold

for fault tolerance”. In: Nature 2014 508:7497 508.7497 (Apr. 2014), pp. 500–

503. ISSN: 1476-4687. DOI: 10.1038/nature13171. URL: https://www.

nature.com/articles/nature13171.

[11] Elaine Barker. “NIST Special Publication 800-57 Part 1 Revision 5 Recom-

mendation for Key Management: Part 1-General”. In: nist.gov (2020). DOI:

10.6028/NIST.SP.800-57pt1r5. URL: https://doi.org/10.6028/NIST.

SP.800-57pt1r5.

[12] Panagiotis Kl Barkoutsos et al. “Improving Variational Quantum Optimization

using CVaR”. In: Quantum 4 (Apr. 2020), p. 256. ISSN: 2521327X. DOI: 10.

22331 / q - 2020 - 04 - 20 - 256. URL: https : / / quantum - journal . org /

papers/q-2020-04-20-256/.

[13] Joao Basso et al. “The Quantum Approximate Optimization Algorithm at High

Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick

Model”. In: Leibniz International Proceedings in Informatics, LIPIcs 232 (Oct.

2021). DOI: 10.4230/LIPIcs.TQC.2022.7. URL: http://arxiv.org/abs/

2110.14206%20http://dx.doi.org/10.4230/LIPIcs.TQC.2022.7.

[14] Charles H. Bennett and David P. Divincenzo. “Quantum information and com-

putation”. In: Nature 2000 404:6775 404.6775 (Mar. 2000), pp. 247–255. ISSN:

1476-4687. DOI: 10.1038/35005001. URL: https://www.nature.com/

articles/35005001.

[15] Daniel J. Bernstein and Tanja Lange. “Post-quantum cryptography”. In: Na-

ture 2017 549:7671 549.7671 (Sept. 2017), pp. 188–194. ISSN: 1476-4687.

DOI: 10.1038/nature23461. URL: https://www.nature.com/articles/

nature23461.

[16] Kishor Bharti et al. “Noisy intermediate-scale quantum algorithms”. In: Reviews

of Modern Physics 94.1 (Feb. 2022), p. 015004. ISSN: 15390756. DOI: 10.

1103/RevModPhys.94.015004. URL: https://journals.aps.org/rmp/

abstract/10.1103/RevModPhys.94.015004.

https://doi.org/10.1007/978-3-642-22006-7{\_}34
https://doi.org/10.1007/978-3-642-22006-7{\_}34
https://doi.org/10.1007/978-3-642-22006-7{\_}34
https://link.springer.com/chapter/10.1007/978-3-642-22006-7_34
https://link.springer.com/chapter/10.1007/978-3-642-22006-7_34
https://doi.org/10.1038/nature13171
https://www.nature.com/articles/nature13171
https://www.nature.com/articles/nature13171
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.22331/q-2020-04-20-256
https://doi.org/10.22331/q-2020-04-20-256
https://quantum-journal.org/papers/q-2020-04-20-256/
https://quantum-journal.org/papers/q-2020-04-20-256/
https://doi.org/10.4230/LIPIcs.TQC.2022.7
http://arxiv.org/abs/2110.14206%20http://dx.doi.org/10.4230/LIPIcs.TQC.2022.7
http://arxiv.org/abs/2110.14206%20http://dx.doi.org/10.4230/LIPIcs.TQC.2022.7
https://doi.org/10.1038/35005001
https://www.nature.com/articles/35005001
https://www.nature.com/articles/35005001
https://doi.org/10.1038/nature23461
https://www.nature.com/articles/nature23461
https://www.nature.com/articles/nature23461
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.015004
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.94.015004


BIBLIOGRAPHY 43

[17] D Boneh, V Shoup - Draft 0.5, and undefined 2020. “A graduate course in applied

cryptography”. In: dlib.hust.edu.vnD Boneh, V ShoupDraft 0.5, 2020•dlib.hust.edu.vn

(). URL: https : / / dlib . hust . edu . vn / bitstream / HUST / 18098 / 3 /

OER000000253.pdf.

[18] Joppe Bos et al. “CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based

KEM”. In: Proceedings - 3rd IEEE European Symposium on Security and Privacy,

EURO S and P 2018 (July 2018), pp. 353–367. DOI: 10.1109/EUROSP.2018.

00032.

[19] Zvika Brakerski et al. “Classical hardness of learning with errors”. In: Proceed-

ings of the Annual ACM Symposium on Theory of Computing (2013), pp. 575–

584. ISSN: 07378017. DOI: 10.1145/2488608.2488680. URL: https://dl.

acm.org/doi/10.1145/2488608.2488680.

[20] Zvika Brakerski et al. “Learning with Errors and Extrapolated Dihedral Cosets”.

In: Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) 10770 10769 LNCS

(2018), pp. 702–727. ISSN: 16113349. DOI: 10.1007/978-3-319-76581-

5{\_}24/FIGURES/6. URL: https://link.springer.com/chapter/10.

1007/978-3-319-76581-5_24.

[21] Fernando G. S. L. Brandao et al. “For Fixed Control Parameters the Quantum

Approximate Optimization Algorithm’s Objective Function Value Concentrates

for Typical Instances”. In: (Dec. 2018). URL: https://arxiv.org/abs/1812.

04170v1.

[22] Sergey Bravyi et al. “The future of quantum computing with superconducting

qubits”. In: Journal of Applied Physics 132.16 (Oct. 2022), p. 160902. ISSN:

10897550. DOI: 10.1063/5.0082975/2837574. URL: /aip/jap/article/

132/16/160902/2837574/The-future-of-quantum-computing-with.

[23] Breaking RSA Encryption - an Update on the State-of-the-Art - Quintessence-

Labs. URL: https://www.quintessencelabs.com/blog/breaking-rsa-

encryption-update-state-art#.

[24] Building noise models — IBM Quantum Documentation. URL: https://docs.

quantum.ibm.com/guides/build-noise-models.

https://dlib.hust.edu.vn/bitstream/HUST/18098/3/OER000000253.pdf
https://dlib.hust.edu.vn/bitstream/HUST/18098/3/OER000000253.pdf
https://doi.org/10.1109/EUROSP.2018.00032
https://doi.org/10.1109/EUROSP.2018.00032
https://doi.org/10.1145/2488608.2488680
https://dl.acm.org/doi/10.1145/2488608.2488680
https://dl.acm.org/doi/10.1145/2488608.2488680
https://doi.org/10.1007/978-3-319-76581-5{\_}24/FIGURES/6
https://doi.org/10.1007/978-3-319-76581-5{\_}24/FIGURES/6
https://link.springer.com/chapter/10.1007/978-3-319-76581-5_24
https://link.springer.com/chapter/10.1007/978-3-319-76581-5_24
https://arxiv.org/abs/1812.04170v1
https://arxiv.org/abs/1812.04170v1
https://doi.org/10.1063/5.0082975/2837574
/aip/jap/article/132/16/160902/2837574/The-future-of-quantum-computing-with
/aip/jap/article/132/16/160902/2837574/The-future-of-quantum-computing-with
https://www.quintessencelabs.com/blog/breaking-rsa-encryption-update-state-art#
https://www.quintessencelabs.com/blog/breaking-rsa-encryption-update-state-art#
https://docs.quantum.ibm.com/guides/build-noise-models
https://docs.quantum.ibm.com/guides/build-noise-models


BIBLIOGRAPHY 44

[25] Pengnian Cai et al. “Enhancing Quantum Approximate Optimization with CNN-

CVaR Integration”. In: (June 2024). DOI: 10.21203/RS.3.RS-4460928/V1.

URL: https://www.researchsquare.com%20https://www.researchsquare.

com/article/rs-4460928/v1.

[26] Davide Castelvecchi. “Quantum hacking looms — but ultra-secure encryption

is ready to deploy”. In: Nature (Aug. 2024). ISSN: 0028-0836. DOI: 10.1038/

D41586-024-02623-Y. URL: https://www.nature.com/articles/d41586-

024-02623-y.

[27] M. Cerezo et al. “Variational quantum algorithms”. In: Nature Reviews Physics

2021 3:9 3.9 (Aug. 2021), pp. 625–644. ISSN: 2522-5820. DOI: 10.1038/

s42254-021-00348-9. URL: https://www.nature.com/articles/s42254-

021-00348-9.

[28] Henry Corrigan-Gibbs and Yael Kalai. “Public-key encryption from LWE &

Implementing lattice-based cryptosystems”. In: MIT (2024).

[29] Giacomo De Palma et al. “Limitations of Variational Quantum Algorithms: A

Quantum Optimal Transport Approach”. In: PRX Quantum 4.1 (Jan. 2023),

p. 010309. ISSN: 26913399. DOI: 10.1103/PRXQUANTUM.4.010309/FIGURES/

2/MEDIUM. URL: https://journals.aps.org/prxquantum/abstract/10.

1103/PRXQuantum.4.010309.

[30] Whitfield Diffie and Martin E. Hellman. “New directions in cryptography”. In:

Secure Communications and Asymmetric Cryptosystems (Jan. 2019), pp. 143–

180. DOI: 10 . 1145 / 3549993 . 3550007 / ASSET / CDA5146A - FEAB - 46CB -

9392- 8CD9912315FC/ASSETS/3549993.3550007.FP.PNG. URL: https:

//dl.acm.org/doi/10.1145/3549993.3550007.

[31] Jintai Ding, Xiang Xie, and Xiaodong Lin. “A Simple Provably Secure Key

Exchange Scheme Based on the Learning with Errors Problem”. In: Cryptology

ePrint Archive (2012). URL: https://eprint.iacr.org/2012/688.

[32] Suguru Endo et al. “Hybrid quantum-classical algorithms and quantum error

mitigation”. In: Journal of the Physical Society of Japan 90.3 (Mar. 2021). ISSN:

13474073. DOI: 10.7566/JPSJ.90.032001.

[33] Estimator — IBM Quantum Documentation. URL: https://docs.quantum.

ibm.com/api/qiskit/qiskit.primitives.Estimator.

https://doi.org/10.21203/RS.3.RS-4460928/V1
https://www.researchsquare.com%20https://www.researchsquare.com/article/rs-4460928/v1
https://www.researchsquare.com%20https://www.researchsquare.com/article/rs-4460928/v1
https://doi.org/10.1038/D41586-024-02623-Y
https://doi.org/10.1038/D41586-024-02623-Y
https://www.nature.com/articles/d41586-024-02623-y
https://www.nature.com/articles/d41586-024-02623-y
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://www.nature.com/articles/s42254-021-00348-9
https://www.nature.com/articles/s42254-021-00348-9
https://doi.org/10.1103/PRXQUANTUM.4.010309/FIGURES/2/MEDIUM
https://doi.org/10.1103/PRXQUANTUM.4.010309/FIGURES/2/MEDIUM
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010309
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010309
https://doi.org/10.1145/3549993.3550007/ASSET/CDA5146A-FEAB-46CB-9392-8CD9912315FC/ASSETS/3549993.3550007.FP.PNG
https://doi.org/10.1145/3549993.3550007/ASSET/CDA5146A-FEAB-46CB-9392-8CD9912315FC/ASSETS/3549993.3550007.FP.PNG
https://dl.acm.org/doi/10.1145/3549993.3550007
https://dl.acm.org/doi/10.1145/3549993.3550007
https://eprint.iacr.org/2012/688
https://doi.org/10.7566/JPSJ.90.032001
https://docs.quantum.ibm.com/api/qiskit/qiskit.primitives.Estimator
https://docs.quantum.ibm.com/api/qiskit/qiskit.primitives.Estimator


BIBLIOGRAPHY 45

[34] Edward Farhi et al. “Quantum Algorithms for Fixed Qubit Architectures”. In:

(Mar. 2017). URL: https://arxiv.org/abs/1703.06199v1.

[35] Jay M. Gambetta, Jerry M. Chow, and Matthias Steffen. “Building logical qubits

in a superconducting quantum computing system”. In: npj Quantum Information

2017 3:1 3.1 (Jan. 2017), pp. 1–7. ISSN: 2056-6387. DOI: 10.1038/s41534-016-

0004-0. URL: https://www.nature.com/articles/s41534-016-0004-0.
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Appendix A

Additional background

A.1 Economic significance

The economic implications of quantum computing are profound, as demonstrated by

recent projections. According to [57], the quantum technology market could generate

$93 billion in revenue by 2040, with quantum computing being the primary driver

[7]. This forecast underscores the technology’s significance and its potential economic

impact. Additionally, the quantum security market is projected to grow from $500

million in 2022 to $9.8 billion by 2030, driven largely by post-quantum cryptography [7].

This growth trajectory indicates a rapidly expanding industry that is becoming crucial

in the global economic framework. The commercial potential of quantum computing

is further evidenced by the $5.4 billion raised by startups in this sector as of 2022,

surpassing other areas like quantum sensing and communications [7]. This substantial

investment reflects the sector’s viability and anticipated transformative impact. The

presence of 223 quantum computing startups as of 2022 [7] further attests to the field’s

dynamism and the increasing recognition of its potential to address complex problems

beyond the capabilities of classical computing.

The 2023 Quantum Technology Monitor report further illustrates the global impact

of quantum computing, highlighting significant investments and advancements [57]. In

2022, quantum technology startups attracted $2.35 billion, demonstrating robust growth

and investor confidence. This capital influx is driving technological breakthroughs, such

as IBM’s development of a 1121-qubit processor and plans for a 4,000-qubit processor

by 2025 [57]. These achievements mark significant milestones in quantum computing

and reflect the field’s rapid evolution.

Near-term quantum processing units (QPUs) hold the potential to tackle problems

52
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currently unsolvable by classical computers. Quantum computing promises exponential

advancements in areas like cryptography, optimization, and complex simulations [35],

paving the way for new research and development opportunities. However, the technol-

ogy is still in its early stages, within the NISQ era, presenting distinct challenges and

limitations.

A.2 VQA

Variational Quantum Algorithms are designed for the NISQ era, combining quantum

circuits with classical optimization to work within hardware limits like noise, deco-

herence, and shallow circuit depths. These algorithms adjust parameterized quantum

circuits to minimize problem-specific cost functions, enabling effective exploration of

solution spaces despite current hardware constraints [27, 69, 56]. VQAs remain relevant

even as quantum hardware evolves, retaining their utility in a variety of computational

tasks [16].

VQAs have been successfully applied to domains like quantum chemistry and op-

timization. For instance, VQE approximates molecular ground states, while QAOA

tackles combinatorial problems like Max-Cut, sometimes outperforming classical meth-

ods [85, 68]. This adaptability underscores their importance in both current and future

quantum computing contexts [70].

A.2.1 Current quantum hardware and its limitations

VQAs are limited by NISQ hardware, which typically features 50-100 qubits, short

coherence times, and high error rates. These constraints restrict circuit depth, necessitat-

ing algorithms that can produce meaningful results within these limits [16, 70]. VQAs’

shallow circuits make them suitable for these conditions, and their utility will persist

even with the advent of fault-tolerant quantum computing.

Noise, including gate errors and decoherence, is a significant challenge in NISQ

devices, with error rates between 10−3 and 10−2 per gate [32, 29]. VQAs mitigate

these issues through shallow circuits and error correction techniques like zero-noise

extrapolation, enhancing computation reliability on current hardware [61, 29].
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A.2.2 VQAs as a solution to NISQ-Era challenges

VQAs’ hybrid design leverages classical optimization to adjust quantum circuit parame-

ters, allowing them to find approximate solutions despite hardware noise and constraints

[56, 16]. Shallow circuits and noise-aware techniques like pulse-level control make

VQAs particularly effective for current quantum devices [84, 43].

A.3 CRYSTALS-Kyber

Kyber CRYSTALS, a lattice-based key encapsulation mechanism (KEM), has been

standardized under the NIST Post-Quantum Cryptography initiative due to its resilience

against both classical and quantum adversaries. The cryptographic foundation of Kyber

is based on the hardness of the LWE problem and its extensions, particularly Ring-LWE

and Module-LWE. Among these, Module-LWE was selected for Kyber because it

offers a balance between security and efficiency by mitigating certain algebraic weak-

nesses inherent in Ring-LWE. Specifically, the ring structure in Ring-LWE introduces

exploitable algebraic properties, such as the ideal lattice structure and symmetries in

cyclotomic fields, which specialized attacks can target. These properties simplify the

problem under certain parameterizations, leading to reduced security margins compared

to Module-LWE [18, 9].

In contrast to Ring-LWE, Module-LWE generalizes the problem to modules over

polynomial rings, reducing the exploitable structure while preserving efficiency. The

module structure reduces the inherent symmetry that makes Ring-LWE more susceptible

to attacks. Additionally, Module-LWE allows for more granular parameterization,

providing better control over security and performance trade-offs by adjusting the

underlying ring dimensions and error distribution [66, 31, 4].

Kyber’s modular design supports versatile deployment, from resource-constrained

IoT devices to high-performance systems. However, the use of Module-LWE introduces

complexities in parameter tuning, particularly in balancing error distribution, modulus

size, and computational efficiency. For instance, the standard Kyber parameters (e.g.,

modulus q = 3329 and polynomial degree n = 256) are selected to achieve a security

level equivalent to 128 bits, balancing security and performance across varied appli-

cations [90, 18]. Despite these complexities, the flexibility of Module-LWE makes it

adaptable for different security levels and performance requirements [64].

The choice to adopt Module-LWE in Kyber is partly driven by its resilience against
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known attacks on LWE and Ring-LWE. Advanced lattice reduction techniques like the

Blockwise Korkine-Zolotarev (BKZ) algorithm, along with algebraic attacks that exploit

the ring structure in Ring-LWE, present significant risks for cryptosystems relying on

these variants. For instance, attacks utilizing BKZ with block sizes optimized for q can

drastically reduce security margins. The structured algebra of Ring-LWE introduces

vulnerabilities not present in the less-structured Module-LWE setting, reinforcing the

decision to prefer Module-LWE for Kyber [50, 20].

Kyber employs a hybrid encryption scheme combining a KEM with symmetric

encryption. In Kyber, key generation involves producing a random matrix A, along with

small secret vectors s and e. The public key is (A,A · s+ e), while the secret key is s.

Encryption relies on generating a random vector r and error vectors, with the ciphertext

encoding the message through Module-LWE’s hardness properties. Decryption recovers

the original message using the secret key s while maintaining low error margins,

ensuring reliable recovery without information leakage [18, 9].

To achieve IND-CCA2 security, a requirement for real-world cryptosystems, Kyber

incorporates the Fujisaki-Okamoto transformation. This transformation, crucial for

converting an IND-CPA scheme into a CCA2-secure KEM, involves a combination of

random oracles and hashing mechanisms to reinforce security against adaptive chosen-

ciphertext attacks [9]. This structure, alongside the optimized modular arithmetic and

polynomial operations, ensures Kyber’s suitability for a wide range of platforms [18].
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Derivation of the simplified C(⃗x)

We aim to derive the simplified expression for C(⃗x) when x⃗ = s⃗ (where s⃗ is the secret

vector). Recall that C(⃗x) is defined as:

C(⃗x) := ∑
i

[(
∑

j
Ai jx j

)
−bi

]
(B.1)

where all operations are taken modulo q.

Recall that bi is defined as:

bi :=

(
∑

j
Ai js j + ei

)
mod q

Substituting this into the expression for C(⃗s), we have:

C(⃗s) = ∑
i

([(
∑

j
Ai js j

)
mod q−

(
∑

j
Ai js j − ei

)
mod q

)
mod q

]

where the outer most modulo is due to the subtraction. Using the modular arithmetic

distribution law:

(a−b) mod q = (a mod q−b mod q) mod q,

we can simplify the expression to:

C(⃗s) = ∑
i

[(
∑

j
Ai js j

)
−

(
∑

j
Ai js j

)
+ ei mod q

]
Notice that the terms ∑ j Ai js j mod q cancel out, leaving:

56
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C(⃗s) = ∑
i

ei mod q

By our definition of modulo (see Definition 2.1):

a mod q := a−
⌊

a
q

⌋
q,

if ei is a small negative value, then ei mod q simplifies to q− ei. Therefore, for

those indices i where ei < 0, the term ei mod q becomes q−ei, which is large compared

to q
4 .

This is problematic because for those indices where ei is negative, the resulting value

q− ei significantly increases the contribution of that term to C(⃗s). Consequently, the

overall sum can become large, potentially causing issues in the security of the scheme.

Thus, while C(⃗s) generally simplifies to a sum of ei terms modulo q, for certain

indices where ei < 0, those contributions become large, leading to a significant deviation

from the expected behavior.
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Code snippets

C.1 QAOA

C.1.1 Classical Comparison using Brute Force

1 # Brute force solution using NumPy eigensolver.

2 def brute_force_solution(hamiltonian):

3 numpy_eigensolver = NumPyMinimumEigensolver()

4 result = numpy_eigensolver.compute_minimum_eigenvalue(hamiltonian)

5 return result

C.1.2 Classical Exhaustive Search for LWE Problem

1 # Iterating over all possible values of x where each element of x

is in the range [0, q-1].↪→

2 for i in range(q**n):

3 # Generate the current vector x in base q.

4 x = np.array([(i // q**j) % q for j in range(n)])

5

6 # Compute the Hamiltonian value for the current vector x.

7 value = lwe.hamiltonian_value(x)

8

9 # Reset best solutions if a new minimal value is found.

10 if value < minimal_value:

11 minimal_value = value

12 best_solutions = [x]

13 # Add to best solutions if the same minimal value is found.

14 elif value == minimal_value:

15 best_solutions.append(x)

58
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16

17 return minimal_value, best_solutions

C.1.3 QUBO Hamiltonian Construction

1 # Define the quadratic program.

2 qubo = QuadraticProgram()

3

4 # Add binary variables to represent each integer variable.

5 for i in range(n):

6 for j in range(num_bits):

7 qubo.binary_var(name=f"x{i}_{j}")

8

9 # Add auxiliary variables k_i and r_i.

10 for i in range(m):

11 for j in range(num_bits):

12 qubo.binary_var(name=f"k{i}_{j}")

13

14 for i in range(m):

15 for j in range(num_bits):

16 qubo.binary_var(name=f"r{i}_{j}")

17

18 # Define the coefficients for the quadratic and linear terms.

19 Q = A.T @ A

20 c = -2 * b.T @ A

21 const = (b.T @ b).item()

22

23 # Convert Q and c to dictionaries to match the new binary

variables.↪→

24 quadratic_dict = {}

25 linear_dict = {}

26

27 # 1. r_iˆ2 term.

28 for i in range(m):

29 for k in range(num_bits):

30 for l in range(num_bits):

31 coeff = (2**k) * (2**l)

32 if coeff != 0:

33 quadratic_dict[(f"r{i}_{k}", f"r{i}_{l}")] = (

34 quadratic_dict.get((f"r{i}_{k}", f"r{i}_{l}"), 0) +

coeff↪→
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35 )

36

37 # 2. P (sum_j A_ij x_j)ˆ2 term.

38 for i in range(m):

39 for j in range(n):

40 for j_prime in range(n):

41 for k in range(num_bits):

42 for l in range(num_bits):

43 coeff = P * A[i, j] * A[i, j_prime] * (2**k) * (2**l)

44 if coeff != 0:

45 quadratic_dict[(f"x{j}_{k}", f"x{j_prime}_{l}")] = (

46 quadratic_dict.get((f"x{j}_{k}",

f"x{j_prime}_{l}"), 0)↪→

47 + coeff

48 )

49

50 # 3. P b_iˆ2 term.

51 const += P * np.sum(b**2)

52

53 # 4. P (q k_i)ˆ2 term.

54 for i in range(m):

55 for k in range(num_bits):

56 for l in range(num_bits):

57 coeff = P * (q**2) * (2**k) * (2**l)

58 if coeff != 0:

59 quadratic_dict[(f"k{i}_{k}", f"k{i}_{l}")] = (

60 quadratic_dict.get((f"k{i}_{k}", f"k{i}_{l}"), 0) +

coeff↪→

61 )

62

63 # 5. P r_iˆ2 term.

64 for i in range(m):

65 for k in range(num_bits):

66 for l in range(num_bits):

67 coeff = P * (2**k) * (2**l)

68 if coeff != 0:

69 quadratic_dict[(f"r{i}_{k}", f"r{i}_{l}")] = (

70 quadratic_dict.get((f"r{i}_{k}", f"r{i}_{l}"), 0) +

coeff↪→

71 )

72

73 # 6. -2 P sum_j A_ij x_j b_i term.
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74 for i in range(m):

75 for j in range(n):

76 for k in range(num_bits):

77 coeff = -2 * P * A[i, j] * b[i] * (2**k)

78 if coeff != 0:

79 linear_dict[f"x{j}_{k}"] = linear_dict.get(f"x{j}_{k}", 0) +

coeff↪→

80

81 # 7. -2 P sum_j A_ij x_j q k_i term.

82 for i in range(m):

83 for j in range(n):

84 for k in range(num_bits):

85 for l in range(num_bits):

86 coeff = -2 * P * A[i, j] * q * (2**k) * (2**l)

87 if coeff != 0:

88 quadratic_dict[(f"x{j}_{k}", f"k{i}_{l}")] = (

89 quadratic_dict.get((f"x{j}_{k}", f"k{i}_{l}"), 0) +

coeff↪→

90 )

91

92 # 8. -2 P sum_j A_ij x_j r_i term.

93 for i in range(m):

94 for j in range(n):

95 for k in range(num_bits):

96 for l in range(num_bits):

97 coeff = -2 * P * A[i, j] * (2**k) * (2**l)

98 if coeff != 0:

99 quadratic_dict[(f"x{j}_{k}", f"r{i}_{l}")] = (

100 quadratic_dict.get((f"x{j}_{k}", f"r{i}_{l}"), 0) +

coeff↪→

101 )

102

103 # 9. 2 P b_i q k_i term.

104 for i in range(m):

105 for k in range(num_bits):

106 coeff = 2 * P * b[i] * q * (2**k)

107 if coeff != 0:

108 linear_dict[f"k{i}_{k}"] = linear_dict.get(f"k{i}_{k}", 0) +

coeff↪→

109

110 # 10. 2 P b_i r_i term.

111 for i in range(m):
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112 for k in range(num_bits):

113 coeff = 2 * P * b[i] * (2**k)

114 if coeff != 0:

115 linear_dict[f"r{i}_{k}"] = linear_dict.get(f"r{i}_{k}", 0) +

coeff↪→

116

117 # 11. 2 P q k_i r_i term.

118 for i in range(m):

119 for k in range(num_bits):

120 for l in range(num_bits):

121 coeff = 2 * P * q * (2**k) * (2**l)

122 if coeff != 0:

123 quadratic_dict[(f"k{i}_{k}", f"r{i}_{l}")] = (

124 quadratic_dict.get((f"k{i}_{k}", f"r{i}_{l}"), 0) +

coeff↪→

125 )

126

127 # Set the objective function.

128 qubo.minimize(constant=const, linear=linear_dict, quadratic=quadratic_dict)

C.1.4 Solving the QUBO with QAOA

1 # Convert the LWE instance to an Ising Hamiltonian.

2 qubo = qubo_hamiltonian(lwe, P=P)

3 op, offset = qubo.to_ising()

4 sampler = AerSampler(backend_options={"method": "statevector"})

5 qaoa = QAOA(sampler=sampler, optimizer=COBYLA())

6 result = qaoa.compute_minimum_eigenvalue(op)

C.2 VQE

C.2.1 Gradient Descent Optimization

1 def gradient_descent(self, alpha=None, which_parameters="all", shots=None):

2

3 if which_parameters == "all":

4 which_parameters = range(self.num_of_params)

5

6 thetas = self.angles.copy()

7
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8 print("Gradient descent optimization.")

9

10 initial_expectations = self.expectation(thetas, shots)[0]

11 print(f"Initial expectation value: {initial_expectations}.")

12

13 expectation_vals = [initial_expectations]

14

15 for _ in range(self.maxiter):

16 gradient = self.gradient(thetas, which_parameters, shots=shots)

17 thetas = [

18 thetas[i] - alpha * gradient[i] for i in range(len(self.angles))

19 ]

20 expectation, solution_probs = self.expectation(thetas, shots)

21 expectation_vals.append(expectation)

22

23 print(f"Gradient descent step - {_}: Expectation: {expectation}",

"Most probable solutions:", solution_probs)↪→

24

25 return expectation_vals, self.expectation(thetas, shots)[1]

C.2.2 Parameter Shift Rule Gradient Calculation

1 def gradient(self, angles, which_derivatives, shots=None):

2 grads = []

3

4 # for i in range(len(angles)):

5 for i in which_derivatives:

6 shift_params_plus = angles.copy()

7 shift_params_minus = angles.copy()

8 shift_params_plus[i] += self.eta

9 shift_params_minus[i] -= self.eta

10 grad = (

11 self.expectation(shift_params_plus, shots)[0]

12 - self.expectation(shift_params_minus, shots)[0]

13 ) / (2 * self.eta)

14 grads.append(grad)

15

16 return np.array(grads)
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C.2.3 Expectation Value Calculation using AerSampler

1 def expectation(self, angles, shots=None):

2 qc = self.ansatz_circuit.assign_parameters(angles)

3 result = sampler.run([qc]).result()

4 counts = result.quasi_dists[0].binary_probabilities()

5 expectation = 0

6 solution_probs = []

7

8 cvar_percent = 1

9 # Sort counts by probability in descending order.

10 sorted_counts = sorted(counts.items(), key=lambda item: item[1],

reverse=True)↪→

11

12 # Calculate the cumulative probability and keep the top x\%

13 cumulative_prob = 0

14 selected_counts = []

15 for bitstring, prob in sorted_counts:

16 cumulative_prob += prob

17 selected_counts.append((bitstring, prob))

18 if cumulative_prob >= cvar_percent:

19 break

20

21 # Calculate the expectation value based on the selected top

x\% outcomes↪→

22 expectation = 0

23 solution_probs = []

24

25 # This is the theoretical maximum cost for the problem.

26 for bitstring, prob in selected_counts:

27 x, valid = self.lwe.interpret_bitstring(bitstring)

28 solution_probs.append((x, prob, valid))

29 cost = self.lwe.hamiltonian_value(x)

30

31 if not valid:

32 # Calculate the penalty factor based on how much x

exceeds q-1↪→

33 penalty_factor = sum(max(0, xi - (self.lwe.q - 1)) for xi in x) *

10 + 10↪→

34 expectation += cost * prob / cumulative_prob + penalty_factor

35 else:

36 expectation += cost * prob / cumulative_prob
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