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Abstract

Multimorbidity, the presence of multiple long term health conditions in one individ-

ual, is a growing public health concern that reduces quality of life and strains healthcare

systems. When using Bayesian network theory to learn the structure of multimorbidity

networks, there are many methodological decisions that impact the network’s structure,

which in turn impacts the insights drawn from the network.

This dissertation utilises a dataset of 1.75 million Scottish General Practise patients,

and their recorded long-term health conditions. It verifies that the chosen structure

learning algorithm; choice to study an entire population or only those with multimor-

bidity; and the applied technique for discretising continuous variables in the data all

meaningfully impact the properties of Bayesian multimorbidity networks. Thus, the

risk of inferring knowledge from networks for clinical multimorbidity research is high-

lighted, especially when methodological decisions are not justified nor their impacts

interrogated, as commonly seen in the literature.

It is also shown that the properties of networks produced by stratifying a population

by social demographic factors (namely age, sex, urbanity and social deprivation) are

heavily biased by the size of the stratified sub-populations. This limits their usefulness

for comparing the impacts of these factors on disease-disease interactions. Instead,

including social demographic factors as network nodes allows for a more straightforward

assessment of their impacts, and clearly demonstrates that these factors mediate apparent

connections between many of these diseases.
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Chapter 1

Introduction

Multimorbidity is the presence of more than one long term health condition in an

individual. The presence and degree of multimorbidity is increasing globally, not simply

due to aging populations, but also lifestyle changes and increased urbanisation [1]. As

health conditions have historically been studied and treated in isolation, multimorbidity

is not well understood and is currently a topic of extensive research [2]. It presents

multiple negative impacts, not only to individuals (such as increased healthcare costs,

increased medication use, and reduced quality of life) but also to healthcare systems,

including increased hospitalisation and medical appointments, increased medication use

and increased costs [1]. Essentially, in both cases, multimorbidity causes great strain,

and understanding it better is essential to facilitating better treatment and to successfully

implementing policies for disease prevention and personalised medical care [3].

A common approach to the study of multimorbidity is to use large datasets of Elec-

tronic Healthcare Records (EHR) to build graphical networks, with nodes representing

conditions and edges representing some relationship between them. Many studies have

used pairwise correlations between diseases to build edges [4], [5]. An important draw-

back of such methods is that they do not account for confounding factors – that is, those

whose presence may cause pairwise associations between others. Foundational work

comparing pairwise and Bayesian networks revealed that direct connections between

diseases are much rarer than previous works with pairwise connection suggested, and

thus highlighted the importance of a Bayesian approach to the study of multimorbidity

[6].

Bayesian networks are defined as Directed Acyclical Graphs (DAGs) made up of

nodes that represent random variables, and edges that represent conditional relationships

between them. Each node has an associated conditional probability table that defines

1



Chapter 1. Introduction 2

the probability distribution of the node, given the values of its parent nodes. To build

Bayesian networks to study multimorbidity using only EHR datasets, an algorithm is

required to learn the network structure from the dataset. Parameters can then be learned

from the network and dataset via several methods [7]. Where Social Demographic

Factors (SDFs) such as age, sex, race and others are known, two approaches for

analysing their impacts can be explored. Stratification of the data by these factors to

generate and compare sub-networks, which is a common approach for non-Bayesian

networks [3], [8], [9] is has also been used for Bayesian ones [10], [11]. Incorporating

these factors as nodes in the networks instead better aligns to Bayesian network theory,

but the impacts of doing so are not always discussed [6] [10]. The impacts of discretising

continuous variables into categorical ones have also been highlighted as important and

understudied [12]. Several other decisions, such as how diseases are defined and what

population datasets are used, must also be made or will be a constraint of a preexisting

dataset.

The choices made across all of these steps can result in vastly different multimorbid-

ity networks and associated interpretations, even if based on the same underlying data.

This variability poses a significant risk where these models are used by clinicians aiming

to draw conclusions regarding connections between diseases and SDFs. Therefore, it is

crucial to thoroughly understand the impacts of different methodological decisions on

the structure and validity of Bayesian multimorbidity networks.

The first aim of this dissertation is to interrogate the process of developing Bayesian

networks, in the context of muiltmorbidity, in order to provide a clearer overview of

the impacts of decisions made in this process than the literature on multimorbidity

networks has provided to date. This is achieved by studying the impacts on network

structure of four structure learning algorithms; utilising data from a general versus

multimorbid patient population; and various approaches for variable discretisation. The

second aim is to investigate two methods of representing the impacts of factors that

may confound disease-disease relationships, namely four SDFs: age, sex, urbanity and

social deprivation. Stratification and node-addition approaches are investigated in order

to determine their effects on network structure and the implications of drawing clinical

insight from them.

These aims have been achieved by use of the data initially collated by the University

of Aberdeen’s Primary Care Clinical Informatics Unit and enhanced by Barnet et al.

in their 2012 study [2]. It is hereafter referred to as the ‘PCCIU dataset’, and consists

of 1.75M EHRs from Scottish GP practices, and has been used in this work to build
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multiple Bayesian networks using a variety of methodological decisions. For clarity,

interpreting any clinically relevant findings for multimorbidity research is not an aim

for this work, as doing so would require input from clinical experts. However, this work

intends to from a contribution to clinical multimorbidity research by outlining the most

appropriate methods for assessing the impacts of SDFs on multimorbidity.

Following this introduction, the necessary background information to support un-

derstanding of the subsequent work is provided in Chapter 2. Chapter 3 then outlines

the methodology followed through the course of the dissertation period, specifically

how the networks were generated and analysed. In Chapter 4, the generated networks

generated are presented, along with analysis and comparison of their attributes. Finally,

in Section 5, conclusions are drawn and suggestions for future work are made.



Chapter 2

Background

2.1 Bayesian Networks

2.1.1 Overview

Bayesian networks fall within the broader category of graphical networks, which are

used to represent and infer insights from complex systems. Unlike other networks,

Bayesian network edges convey conditional dependence relationships between variables,

and the absence of an edge also implies conditional independence. To utilise Bayesian

networks correctly for causal inference, the following assumptions must hold [13]:

• Stable Unit Treatment Value Assumption (SUTVA): Each variable (node) does

not causally interact with others outside its defined relationships.

• Causal Markov Assumption: Given its parents (its direct causes), each variable

is conditionally independent of all other variables.

• Causal Faithfulness Assumption: The model includes all relevant variables.

Of these assumptions, Causal Faithfulness can be particularly challenging to achieve,

especially in multimorbidity analysis. For instance, factors which may not be measured,

such as a patient’s diet or smoking status, may influence outcomes.

2.1.2 Markov Equivalence Classes

Graphs which have the same set of edges but without or with differing directions encode

the same conditional independence relationships between nodes and are said to belong

to the same Markov Equivalence Class (MEC) [14]. Often, it can be sufficient to

4



Chapter 2. Background 5

evaluate the properties of a DAG’s MEC, rather than the DAG itself. This is true for

multimorbidity networks, for which the research aim is to study the present edges, rather

than their directions (as clinical insight is usually much better placed to define these).

2.1.3 Learning Networks from Data

2.1.3.1 Structure Learning

The placement of edges within a network is known as its structure. There are several

classes of structural learning algorithms through which Bayesian networks can be

learned from a dataset. These are necessary because as the number of nodes (vari-

ables) increases, the number of potential structures explodes, rendering exhaustive

search infeasible. Structure learning algorithms can use constraint-based, score-based

or hybrid search methods. Given a dataset, constraint-based algorithms determine the

conditional independence relationships between the variables using statistical tests,

whilst score-based algorithms will use a goodness-of-fit score (such as Bayesian In-

formation Criterion) to rank potential DAGs [15]. Hybrid models combine score- and

constraint-based methods but have been noted to be no better performing in terms of

speed or accuracy and so are not explored further herein [16]. The same work also notes

that there is no algorithm that is consistently best performing for structure learning. The

two models used in this work are described as follows:

Constraint-based: The PC-stable algorithm is a variant of the foundational PC

algorithm that is stable against column order permutations of the input dataset. It starts

with a fully connected, undirected network and performs conditional independence tests

to determine which can be removed, before determining edge directions [17].

Score based: The Hill-Climbing search with Tabu list (hereafter referred to as

the Tabu algorithm) is a common score based algorithm. It begins with unconnected

nodes and adds edges one by one. In each iteration, the algorithm generates a subset

of possible structures with only one change and selects the one with the best score. A

‘tabu’ list is updated at each iteration to record recently visited structures to prevent

cycling back to them. The algorithm will end either when the change in score is below

a given threshold, or if the maximum number of iterations has been reached [18].

The two conditional independence tests (the Chi-squared (χ2 ) test and G test) used

by the PC-stable algorithm and the two scores scores used by the Tabu algorithm (the

Bayesian Information Criterion (BIC) and the K2 score) are defined in Appendix A.
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2.1.3.2 Variable Discretisation

Whilst disease presence tends to be recorded as binary variables, continuous variables

may be present depending on the underlying data and how it is processed. However,

many algorithms and associated scores and tests can only be applied to fully discrete or

fully continuous datasets. Discretisation is also necessary when stratifying a dataset by

a continuous variable in order to compare the resulting sub-networks.

There are several methods of discretising continuous variables into discrete ones.

These include manual discretisation using expert knowledge; and creating categories

either of equal width or of equal instance count [19]. A new method is proposed in

this work, based on maximising the combined structural differences between stratified

sub-networks.

2.1.3.3 Parameter Learning

The parameters of a Bayesian network are the set of probability functions for each node,

conditioned on its parents. As with structure, parameters can be learned from a dataset.

The most common method when working with complete data is Maximum Likelihood

Estimate (MLE) [7]. These probabilities can be very useful in that they quantify the

strength of relationships between nodes. However, they are not considered further in

the scope of this work.

2.2 Evaluating and Comparing Networks

2.2.1 Evaluation

The larger a network is, in terms of both nodes and edges, the more difficult it is to

draw insights from studying graph visualisations alone. Node-node adjacency matrices

with cell values that represent edges are commonly used to show graph structures more

systematically [11]. A non-zero value in cell [i, j] of the matrix indicates the presence

an edge from the node in row i to the node in column j. Additionally, the following are

standard metrics for evaluating networks [20]. Variations of the below and other such

metrics are available, but have not been required to fulfil the aims of this work.

• Edge count: The number of edges within a network – a basic measurement of its

complexity.
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• Connectivity: A network is said to be ‘fully connected’ if all nodes are connected

to each other node. A network is ‘connected’ if there is a path of edges from each

node to every other.

• Degree: The degree of an edge is the count of its neighbours – that is, the nodes

it is connected to. In- and out-degrees respectively measure the number of edges

leading to and from a node in a DAG.

• Clustering Coefficient: For each node, this is the observed number of edges

that interconnect its neighbours, as a portion of the possible total. In aggregate, it

indicates how tightly-knit a network’s nodes are.

• Assortativity: This measures the tendency for nodes of similar degree to connect.

It is calculated as the Pearson correlation coefficient between the degrees of each

node pair in the network. Positive assortativity therefore indicates that nodes

with high degrees (hubs) tend to connect to other hubs. Conversely, negative

assortativity indicates that hubs are more likely to be connected to low-degree

nodes.

2.2.2 Network Comparison

The Structural Hamming Distance (SHD) is a useful score for comparing the structure

of two graphs – especially when ‘ground truth’ networks, against which other such

scores like precision and recall can be measured, are not known. SHD was initially

defined as the number of operations required to make the input graph equal to another

‘target’ graph, with possible operations being addition, removal or redirection of an edge

[21]. Other approaches have since assigned lower importance to or omitted differences

in edge directions in SHD scores [22]. This latter approach acknowledges that missing

and extra edges are more serious errors which can have knock-on effects, and essentially

measures the difference between one MEC and another.

2.3 Related Work

There is only one prior work which applies network science to the PCCIU dataset [23].

In this work, a Bayesian inference framework is used to examine associations between

diseases and focus on the population aged 90 upwards. The framework incorporates
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uncertainty and provides a more cautious and reliable estimation of associations com-

pared to traditional pairwise measures, which is of particular benefit to the study of

multimorbidity in small sub-populations.

Within the limited literature regarding Bayesian multimorbidity networks, a variety

of structure learning algorithms are applied. These include the Tabu algorithm [11], a

Markov Chain Monte Carlo algorithm [6], [12] and Maximum Weight Spanning Tree

search [24]. The majority of these do not discuss the implications of the chosen method.

Studies have also been noted to combine the results of multiple algorithms into a single

network, which risks compounding the biases inherent in different structure learning

approaches [25], [15]. All of the mentioned algorithms require that any continuous

variables, such as age and blood pressure, are discretised into categories. Only one

work was noted to have discussed that this too can impact network structures [12].

Lastly, studies which stratify Bayesian networks by multiple SDFs do so in contra-

diction of the Causal Faithfulness Assumption [11], [10], as it implies that all known

variables must be included in order to avoid misleading network structures. The Causal

Markov Assumption also requires that SDFs should be represented as single nodes and

not multiple binary nodes. This latter practice has not been observed in the literature,

but the Assumption is noted here as a constraint on the methodology in Chapter 4.7.

Given these gaps and inconsistencies in the existing research, an assessment of

the impact of methodological decisions is a necessary contribution to the field of

multimorbidity in Bayesian networks.



Chapter 3

Methodology

3.1 Exploring the PCCIU Dataset

All networks and associated analysis relating to this work have been generated from

an augmented version of the PCCIU dataset, which consists of 1.75 million rows,

each representing a patient of a Scottish GP Practice and their medical information, as

recorded in 2007. It is considered to be representative of the Scottish population. The

columns used herein are 40 binary indicators for long term health conditions (diseases),

which were generated based on the data in preexisting columns by the clinicians among

the authors of Barnett et al.’s 2012 PCCIU dataset analysis [2]. These 40 diseases are

deemed to be the most important ones to consider in the multimoribity context, and are

listed in Tables B.2 and B.3 in Appendix B. Their ‘short names’ used for figures, and

their prevalence amongst all and multimorbid patients are also listed.

The dataset also includes each patient’s age and biological sex, as well as their

Carstairs Score (and associated variants) and their urbanity (how rural or urban their

postcode is deemed) as measured by the Scottish Government’s Urban Rural Clas-

sification [26]. The six-fold classification categories are presented in Table B.1 in

Appendix B, with 1 being the most urban and 6 being most remote areas. The Carstairs

Score is a measure of social deprivation, based on four factors (lack of car ownership,

low occupational social class, overcrowded households and male unemployment) and

assessed at postcode area level via Census data. The higher the Carstairs Score, the

more deprivation is associated with the postcode area. Per recommendations from

Public Health Scotland, the Carstairs Decile variant (numbers from one to five, with

five being most deprived) was chosen to discretise deprivation [27]. Similary, Barnett

et al. discretised the population into five age categories which have been adopted as

9



Chapter 3. Methodology 10

default herein. These categories are: 0-24, 25-44 , 45-64, 65-84 and 85-100 [2].

Further variables in the PCCIU dataset include patient registration details, and

records of vaccinations and prescriptions, which were noted to be either irrelevant

or unusable without input from clinicians. Measurements including weight, height,

smoking status and alcohol intake, were also present. These were noted to be potentially

useful factors for the multimorbidity networks, but were not included as all had at least

25% missing data.

Following variable selection, a minimal exploratory analysis of the dataset was

required due to the prior work of Barnett et al, who noted that only 23% of the patients

exhibited multimorbidity [2]. Accordingly, a basic set of bar charts and histograms to

characterise the dataset’s population in terms of morbidities and the four SDFs were

produced, using the pandas and matplotlib Python packages.

3.2 Network Methods

3.2.1 Network Generation

Initially, the causallearn Python package was selected for structure learning, due to its

minimal requirement for disk space relative to other options. It’s PC-stable algorithm

took approximately 8 hours to run on 30,000 rows of PCCIU data, which meant that

bash scripts were required to prepare multiple samples and learn their structures in

parallel, with the intention of bootstrapping these into a single network. To cover the

whole dataset, 59 samples were required. Scripts were generated for this and the 18

network permutations required for this work. However, it was found that the outputs

were not actually stable (as they were dependent on the order of columns in the input

data) and so this package and all associated results were abandoned.

Ultimately, networks were generated from the PCCIU dataset using the PC-stable

and Tabu algorithm functions from from the pgmpy Python package (both of which

were confirmed to be stable, as advertised). For the PC-stable algorithm with both the

χ2 and G tests, the default significance threshold of 0.05 was used. For the two versions

of the Tabu algorithm (with BIC score and K2 score), a tabu list length of 100 was used,

along with a stopping criteria of either 1 million iterations or a change of score less than

0.0001. These four algorithms are hereafter referred to as PC-χ2 , PC-G, Tabu-BIC and

Tabu-K2. The outputs of these algorithms were a Bayesain model object that could be

used as in input to build a directed graph in the networkx Python package, and a binary
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adjacency matrix encoding directed edges between nodes.

3.2.2 Network Analysis

The networkx graph objects generated by the structure learning algorithms were used

to calculate the network metrics outlined in Section 2.2.1 and to create visualisations

of the networks. In the visualisations, the sizes of disease nodes were configured to

represent their prevalence within the full population. The ‘spring’ layout was also used

(whereby nodes ‘repel’ each other and edges ‘pull’ connected nodes closer), which

tends to gives hubs a more central position.

To compare networks by their MEC, adjacency matrices were adapted by mirroring

any values within the bottom diagonal onto to the top diagonal instead (effectively

yielding a matrix of undirected edges). These matrices were used to calculate the SHD

between two networks, by adding up the number of non-matched cell values between

the two matrices.

3.2.3 Continuous Variable Discretisation

Four methods were adopted to discretise the age variable into five alternative categories

(bins) to those defined by the Barnett et al. clinicians. The first two are equal width

(20 years) and equally sized splits of the population (subsequently referred to as ‘equal

count’). The third and fourth are an exhaustive and a greedy search algorithm, provided

in Appendix C. Both aim to find the set of bin boundaries that maximise the combined

SHD between all pairings in the set of five age-group sub-networks associated with

each bin (using Algorithm 1). The exhaustive search is outlined in Algorithm 2 and

calculates the combined SHD for all bin boundary sets that obey the minimum bin

width and bin width increment constraints. The greedy search (outlined in 3) obeys the

same constraints, but adds the bin boundaries one at a time, by adding the boundary that

maximises the combined SHD of the set of bins created from the already established

boundaries and each new candidate. Naturally, the intention of the greedy algorithm is

to reduce the time required to find the optimum set of bin boundaries.



Chapter 4

Analysis

4.1 Overview

The first of the subsequent sections in this chapter stands apart from those that follow it

as it is intended to provide a basic analysis of the PCCIU dataset in order to support the

later sections. Four structure learning algorithms are then compared. One of these is

used to generate the ‘Full’ network from the whole dataset, which forms the baseline

against which all other networks are compared. It is first compared to a network

drawn from the multimorbid sub-population, then to 18 sub-networks stratified by each

category of the four SDFs. Finally, networks incorporating these SDFs as nodes are

analysed, along with methods for discretising the sole continuous variable (age) that

they incorporate.

4.2 Insights from the PCCIU Dataset

The plots in Figure 4.1 show how the dataset’s population and associated multimorbidity

rates are distributed across each SDF. There is an almost equal split between male

and female patients, with multimorbidity being 30.5% more prevalent in females.

Social deprivation is normally distributed, although with more patients in the two

lowest (least deprived) quintiles than the two highest, and a clear relationship between

social deprivation and multimorbidity (Pearson R value: 0.937, p-value: 0.019). The

vast majority of patients live in urban areas (Urbanity categories 1 and 2), where the

prevalence of multimorbidity is slightly lower than in most rural areas.

In the lower half of Figure4.1, a very strong relationship between age and multimor-

bidity is also demonstrated (Pearson R value: 0.940, p-value: 0). Less than 0.1% of

12
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Figure 4.1: Breakdown of whole and multimorbid populations by Sex, Social Deprivation,

Urbanity Age Category and Age.

those below age 25 exhibit multimorbidity, but this increases with age up to 80% for

those over 84. Additionally, the distribution in age is neither flat or normal, with the

population shrinking as age and multimorbidity increase, and with the top 15% of ages

being represented by only 2% of the population. Of course, the histogram reveals more

information than the bar chart, demonstrating the loss of information that occurs when

continuous variables are discretised into categories.

Figure 4.2 shows how disease prevalence for each sub-population relating to one

SDF category differs from the full population. Here, and in subsequent figures, age

categories are coloured blue, start with ‘a’ and are numbered youngest to oldest; Sex

(‘s’) is orange with 1 for males and 2 for females; Urbanity (‘u’) is green; and Social

Deprivation (‘c’ for ‘Carstairs Quintile’) is red. All have at least a 95% Pearson R

correlation with the prevalence of diseases in the full population, except for the age

categories (other than a3). Similarly, all but these have a maximum disease prevalence

that is close to the full population’s (of 13.4% for Hypertension), with the youngest and

oldest patients exhibiting lower and (markedly) higher disease prevalence.

Whilst these insights can be anticipated even without clinical knowledge, they help

to characterise the population represented by the dataset to support subsequent analysis.

They also suggest that age is likely to be the most important SDF to consider in terms of

multimorbidity research and, given that it is the sole continuous variable, methodology.
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Figure 4.2: Bar chart with each sub-population’s Pearson R correlation for prevalence of

each disease with full population’s. Scatter points are the maximum prevalence of any

disease in the sub-populations.

4.3 Comparing Structure Learning Algorithms

In order compare their differences and select one to use for subsequent analysis, the

two versions of the PC-stable and and the Tabu algorithms (PC- χ2 , PC-G, Tabu-BIC

and Tabu-K2) were tested. For each algorithm, and for five sample sizes up to 10,000

patients, the same five random samples were used as the input dataset. Results are

given in Figure4.3, and plot (a) shows that the two PC-stable algorithms have runtimes

that are significantly greater than the Tabu algorithms, taking an average of 83 minutes

(PC-χ2 ) and 41 minutes (PC-G) to run on the 10,000 row samples. Conversely, the

Tabu algorithms take an average of 8 seconds (Tabu-BIC) and 18 seconds (Tabu-K2) on

the same samples. Whilst these runtime are of course related to the processing power of

the machine used, the pattern would hold for another more or less powerful machine.

The trends in runtimes for the PC-stable algorithms suggest that these would not resolve

within a reasonable time frame for the full 1.75M row dataset. Indeed, PC-χ2 was tested

on a 1% sample and took 3.95 hours to resolve.

The algorithms were also compared on the basis of the network structures they

produced. Figure 4.3 (b) illustrates that the two Tabu algorithms consistently generate

more than double the edges that the PC-stable algorithms do, and that all algorithms

except Tabu-K2 exhibit an increase in the number of edges generated with sample

size (although this increase is less pronounced for the two PC-stable algorithms). The

similarity between graphs (ignoring edge directions, so in fact the similarity between

MECs) is represented in Figure 4.3 (c) by the combined SHD between each network

and those generated from other algorithms from the same sample, averaged over the
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Figure 4.3: Comparison of (a) Algorithm Runtime, (b) Number of Edges Generated, and

(c) Average Structural Hamming Distance between networks produced by other methods

for four structure learning algorithms. Average values across 5 random samples of each

size are plotted, with error bars for standard deviation.

sampling iterations. Tabu-K2 score exhibits a consistently higher combined SHD than

the other three, with Tabu-BIC being slightly lower than the PC-stable algorithms.

Figure 4.4 provides comparative adjacency matrices to visualise the different edges

generated by the algorithms. Although it is only for one 10,000 row sample, it is

consistent with the SHD distribution in Figure 4.3. It shows that Tabu-K2 captures all

the edges that both PC-stable algorithms do (no blue cells), and Tabu-BIC captures

almost all of them (1-3 blue cells). However, the two PC-stable algorithms differ from

each other considerably, whilst Tabu-K2 captures all but one of the edges that Tabu-BIC

does. These findings suggest that the choice of independence test greatly impacts the

structure defined by a PC-stable algorithm, whereas the choice of scoring metric for the

Tabu algorithm impacts the threshold above which edges will stop being generated. Of

course, further scores and independence tests would need to be assessed to confirm if

these findings generalise.

It is important to note that without input from clinicians, it is not possible to deter-

mine which algorithm generates the multimorbidity network structure ‘best’. However,

it was decided to use Tabu-BIC for generating subsequent networks in this work, due

to its comparatively fast runtime and as it provides a middle ground between the edge

generation tendencies of the other algorithms.

To further explore the characteristics for the Tabu-BIC, five rounds of sampling were

run at five scales between 10% and 100% of the dataset. The runtimes and resulting

edge counts are shown in Figure 4.5, which illustrates that both of these increase with

sample size. This trend occurs despite the fact that the smaller samples accurately
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Figure 4.4: Edge presence comparison between all paired combinations of the two

PC-stable and two Tabu algorithms, for a random 10,000 row sample of the PCCIU

dataset.

reflect the proportions of healthy and multimorbid patients in the full dataset. However,

larger samples most likely better detect the true disease dependencies, as noise and

variability are reduced, allowing the algorithm to identify the less common relationships.

Therefore, as sample size grows, the network becomes more connected.

From Figure 4.5 (c), it is also observed that the average SHD increases with network

size initially, because the networks themselves have a limited number of connected

nodes. The average SHD then peaks for the 70% sample (although far below the

maximum possible SHD of 780), before reaching zero for the full network. This

indicates that the structures of the larger samples are similar, but do not contain enough

data to represent all of the relationships within the full network.

4.4 Characterisation of ‘Full’ Network

A graph of the network produced from Tabu-BIC for all 1.75M patients in the dataset

is shown in Figure 4.6, and its degree distributions are shown in Figure 4.7. It is a

connected network with 214 edges, giving it a density of 0.137. The minimum and the

most common node degree is 4, and the degree distribution has an average of 10.7 with

a standard deviation of 7.0.
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Figure 4.5: Averaged results with error bars for standard deviation for 5 sets of Tabu-BIC

algorithm results against fraction of dataset sampled, for (a) runtime, (b) number of

edges generated and (c) for the Structural Hamming Distance between networks from

one run and another.

The graph indicates that the more prevalent diseases (i.e. the larger nodes) generally

appear to have higher degree. This is confirmed from the degree distribution in Figure

4.7, where a positive correlation is shown between degree and prevalence (Pearson R

value: 0.830, p-value: 0). A weaker negative correlation also exists between node in-

and out-degrees (Pearson R value: -0.414, p-value: 0.008). As such, it appears that

the prevalence differential between connected nodes influences the direction of the

connection, and that direction should not be taken as an indication of causality. Hence,

edge directions are not discussed further in this work.

4.5 Impact of Patient Subset

When studying multimorbidity networks, the choice of data to work with can be limited

in terms of both availability and accessibility [28]. Whilst the PCCIU dataset contains a

majority of patients with no recorded conditions, studies often use datasets from ‘sick’

populations such as those making health insurance claims [29], [5]. To examine the

impact of this, a network of only multimorbid patients was generated, representing

23% of the patients in the full dataset. The Table 4.1 compares descriptive metrics

between the full network and the network generated from only multimorbid patients

(MM). The total number of edges in the MM network is slightly lower by 11 edges, but

this reduction is very small compared to the trend in plot (b) of Figure 4.5. This, along

with the fact that for both networks around 40% of edges are unique (i.e., not found in

the other), emphasises that filtering out non-multimorbid patients yields a network that
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Figure 4.6: Graph for full network where node size indicates prevalence, and colour

indicates physical (red) or mental (blue) disease classification.

captures different, rather than just less information. The SHD in the table is simply the

sum of the sum of the two sets of unique edges.

In line with the reduction in edges, the average degree is slightly lower in the

MM network. However, the degree standard deviation is slightly higher, indicating

more variability in how nodes are connected. This is also shown in Figure 4.8, which

maintains a very strong relationship between prevalence and degree (Pearson R value:

0.857, p-value: 0). The change in average clustering coefficient is proportional to the

reduction in edges in the MM network, but MM does exhibit marginally higher variance

in clustering. Interestingly, assortativity is higher in the MM network, indicating a more

pronounced tendency for nodes with similar degree to connect in MM. However, in

both networks, the strength of assortativity (which has a maximum of 1) is very small.

The adjacency matrix for edges that occur in the two networks is shown in Figure

4.9, alongside the nodes with changes in degree. There is no linear correlation between

changes in node prevalence and degree (Pearson R value: 0.007, p-value: 0.967).

Clearly filtering out the patients with less than two conditions changes the disease
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Figure 4.7: Full network degree distribution (left) and node degree versus node preva-

lence (right).

Network Full MM Difference

Total Edges 214 203 -11

Unique Edges 93 82 -11

(43.46%) (40.39%)

Average Degree 10.7 10.15 -0.55

Degree Standard Deviation 6.962 7.234 +0.272

Average Clustering 0.315 0.302 -0.013

Clustering Standard Deviation 0.098 0.108 +0.010

Assortativity 0.005 0.061 +0.056

Common Edges 121 -

Structural Hamming Distance 175 -

Table 4.1: Comparison of Full and Multimorbid (MM) Network Edges

interactions significantly. Of the 40 disease nodes, 20 decrease in degree (Dyspepsia

most so by 10, followed by Pain by 7) and 11 increase in degree (most so Asthma by

14 and then Depression by 11). These nodes have in common that they all increase in

prevalence relative to their neighbours (per Figure 4.10, where the nodes are ordered

by most to least prevalent in the Full network), and are the only nodes to do so other

than Hypertension (which is the most prevalent condition in both networks and doesn’t

change in degree) and Coronary Heart Disease (which decreases by 2).

These findings suggest that disease prevalence influences edge creation, but it does

not solely explain the structural differences between the two networks, which has not

been fully discerned. A better understanding of the differences may be achieved from a

combination of input from clinicians and further feature engineering to identify other
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Figure 4.8: Full network (a) degree distribution and (b) degree against node prevalence.

Figure 4.9: Comparison of Full and Multimorbid (MM) Networks via (a) Edge Adjacency

Matrix and (b) Nodes with Changes in Degree between Networks

patterns among the affected nodes.

4.6 Impacts of Stratification

The dataset was stratified into 18 patient subsets, with one per category for each of

the four SDFs. From each of these, a new ‘sub-network’ was generated. Figure 4.11

examines the relationship between both average degree and SHD from the Full network

against the portion of the Full network that each subset represents. The SHDs indicate

that the sub-networks exhibit various differences from the Full network, particularly

the age networks – which (apart from a3) are the only sub-networks to have at least

one unconnected node. Indeed, without the age networks, a strong linear relationship

is observed between SHD from and proportion of the Full dataset (Peason-R value:
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Figure 4.10: Node Prevalence Change from Full to Multimorbid Network, minus Average

of Neighbours’ Prevalence Changes, ordered by prevalence in the full dataset.

-0.809, p-value: 0). With the age sub-networks, the relationship is much more muted

(Peason-R value: -0.414, p-value: 0.088).

Figure 4.11: Edge Counts (left) and SHD from Full network (right) for the sub-networks

representing each category of Age (blue points), Sex (orange), Urbanity (green) and

Social Deprivation (red). For Sex, ‘s1’ represents males and ‘s2’ females.

A similar pattern is observed between average degree and portion of the Full network.

Across all stratified networks, a moderate positive correlation is observed (Pearson-R

value: 0.5821, p-value: 0.0113) . However, this relationship also becomes considerably

stronger when the age networks are excluded (Pearson-R value: 0.9230, p-value: 0).

This nearly perfect positive correlation underscores the consistent relationship between

degree and network proportion in the non-age sub-networks, and suggests that the

size of the network is impacting node degrees more so than the characteristics of its

sub-population. This agrees with the pattern in Figure 4.5 (b), where number of edges

(which is directly proportional to average degree) is almost linear with sample size.
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These observations clearly reflect that the age subsets contain very different informa-

tion from each other, and from the full population. The youngest and oldest populations

(a1,a2 and a5) are the most and least multimorbid respectively, and and are the greatest

outliers in Figure 4.11. Although this underscores the importance of studying the impact

of age in multimorbidity networks, it appears that variability in subset size would bias

such analysis. This is exemplified by the Urbanity sub-networks, which, despite all

correlating almost exactly with the disease prevalence patterns of the Full network (as

shown in Figure 4.2), are grouped in Figure 4.11 based on their size. To check that this

was not unique to Tabu-BIC, the urbanity sub-networks were created using Tabu-K2

and the same linear trend was shown again between size and edge count (Pearson R

value: 0.986, p-value: 0).

Exploring how the size of the sub-networks biases their structures is not a straight-

forward task, as there is no obvious benchmark for comparison. In an attempt to devise

one, each stratification dataset was sampled 100 times with samples equal to the size of

the smallest dataset, a5 (with 36,569 rows). For each stratification, the sample networks

were then bootstrapped to create network containing all edges that appeared across the

sample networks. Edges were given weights between 0 and 100, depending on their

appearance frequency.

Figure 4.12: Averaged impact of edge weight thresholds for differences between original

and bootstrapped sub-networks. Faint lines indicate standard deviation across the sub-

networks.

The differences in edge generation between the bootstrapped and original sub-

networks were explored across all edge-weight thresholds. These is shown in Figure

4.12 for averaged values with standard deviation across all sub-networks. When all
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edges in the bootstrapped networks are included (i.e., a threshold of 1), the SHD is

predominantly influenced by edges absent in the full network. At this low threshold,

the networks are more susceptible to noise, leading to potentially spurious edges.

As the threshold increases, the number of unique edges in the bootstrapped network

decreases, approaching zero, while the number of unique edges in the original sub-

network increases. This causes a reduction in the overall edge count until the average

across bootstrapped sub-networks drops to 48. At this point, the majority of information

within the stratified populations is lost.

Although selecting a threshold that minimises SHD between the bootstrapped and

original sub-networks might seem a promising trade-off, this approach was ultimately

rejected. All threshold options appeared to be somewhat arbitrary and risked losing

valuable information about the variability of the networks generated from the samples.

Figure 4.13: Comparison of sub-network characteristics and sub-network rank for Edge

Count, Number of Connected Edges and Average Degree. For the rank plots, the

‘difference’ is the sum of all absolute changes in rank.

Instead, the averaged characteristic metrics of the sample networks were compared

to the full sized ones, as shown in Figures 4.13 and 4.14. From the scatter plots
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comparing the ranks between the sub-network sets for each metric, it is immediately

clear that sample size as well as the sub-population sampled impacts the characteristics

of the sub-networks. Generally, the small error bars for the a5-sized sub-network metrics

(in the middle column) indicate that variance is consistently low and suggest that the

rankings of these sub-networks are sufficiently stable to be used for comparison in this

context.

Figure 4.14: Comparison of sub-network characteristics and sub-network rank for Aver-

age Clustering Coefficient, Assortativity, Structural Hamming Distance to Full network,

and Sum of Structural Hamming Distances to all other sub-networks. For the rank plots,

the ‘difference’ is the sum of all absolute changes in rank.

As expected, the edge counts (and therefore there average degrees) for the a5-

sized networks are significantly lower than the original sub-networks, except a5 which



Chapter 4. Analysis 25

is of course consistent between the two sets. The age sub-networks (other than a3)

consistently have more lone nodes, which is due to low comorbidities of certain age-

related diseases. For example, Parkinson’s consistently has no edges in a1 because

it appears 4 times in this subset, but not with comorbidities. However, the averaged

number of connected nodes falls below 40 for 9 of the a5-sized sub-networks, as

numerous samples do not contain sufficient evidence of the relationships found in the

original sub-networks.

Across the two sub-network sets, clustering coefficients are naturally lowest for

those with fewer edges. Similarly, the a5-sized networks (all with fewer edges) have

lower clustering coefficients versus their original counterparts. All sub-networks are

positively assortative, and significantly more so than the Full network. Unlike clustering

coefficients, assortativity has a significant and negative correlation with sub-population

size (Pearson R value: -0.587, p-value: 0.011). Whilst assortativity ranks are the most

different of all metrics between the two sets, a1 is consistently most assortative, likely

due to the fact that is has the lowest range in edge degrees in both sets.

As previously noted, the SHDs between the original sub-networks and the Full

network are heavily influenced by sub-population size. When this size bias is mitigated

in the a5-sized sub-networks, the structural differences related to the age-based networks

(particularly a1,a2 and a5) are further emphasised. the This is also the case for the

SHD sums (the combined distance of each sub-network from all others), where the

two sex sub-networks are also consistently more different from the others. However,

the inclusion of multiple age groups within the other sub-networks may blur out more

subtle patterns within them. Further stratification (say into 30 sub-networks for each age

and urbanity category) may appear to offer a more granular analysis, but the imbalances

in the subset sizes would persist, meaning that the same bias would be encountered in

analysis.

4.7 Adding Social Demographic Factors as Nodes

To examine how adding SDFs as single nodes impacted the full population multimor-

bidity network structure, four networks with one additional node representing an SDF

were generated. These are referred to collectively as the SDF networks and as Age-1,

Sex-1 etc. independently. A network with all of the SDF nodes (referred to as All-4 and

shown in Figure 4.15) was also generated.

Clinical insights should be drawn from All-4 rather any of the SDF networks because
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Figure 4.15: Visualisation of the All-4 network. Disease nodes are numbered per the

prevalence ranks in Table B.2, and edges from SDF nodes are shown in the SDF’s

associated colour.

unlike these, it obeys the Causal Faithfulness Assumption for Bayesian networks by

including all known variables. This means that the additional mediating impacts of any

SDFs absent in the SDF networks are present in All-4. However, before focusing solely

on All-4, it is useful to compare it to the SDF networks and the Full network, to better

understand the influence of each of the SDFs.

Network Age-1 Sex-1 Urb-1 Car-1

Age-1 - 7 8 7

Sex-1 88 - 12 10

Urb-1 91 14 - 0

Car-1 92 14 2 -

Table 4.2: Edge differences between SDF networks (considering disease edges only).

Value [i, j] is the number of edges in row i’s network that are not in column j’s network.

Values [i, j] and [ j, i] sum to give the SHD between networks i and j.

Table 4.2 is a matrix of the edge differences between the common (i.e. disease)
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nodes of the SDF networks. It clearly shows Age-1 to be the outlier amongst these. It is

the smallest network (as it all others contain many more edges than it), but all except

7-8 of the edges in Age-1 are present in the other SDF networks. The Car-1 and Urb-1

networks are remarkably similar, with their SHD comprising just two additional edges

in Car-1. Sex-1 is shown to differ from Urb-1and Car-1 to very similar extents, and is

slightly more similar to Age-1 than the other two. These inter-SDF patterns agree with

the SHD sums between the different stratified sub-networks in Figure 4.14, which is to

be expected.

Measure Full Age-1 Sex-1 Urb-1 Car-1 All-4

Total Edges 214 186 224 216 218 192

Disease-Disease edges 214 128 209 211 213 121

Disease-Disease edges not in full - 7 10 2 2 6

Full edges present - 57% 93% 98% 99% 53%

SDF-SDF edges 0 0 0 0 0 4

SDF-Disease edges - 40 15 5 5 -

SDF-Disease edges in All-4 - 40 20 1 6 67

Shared SDF-Disease edges - 40 13 1 4 -

Shared portion - 100% 59% 20% 57% -

SHD from All-4 105 13 102 104 104 -

SHD from Full - 105 25 7 5 105

Table 4.3: Summary of SDF network characteristics. SHDs are calculated based on

disease-disease edges only. ‘Shared SDF-Disease edges’ are those which appear in

both the given SDF and All-4 networks.

Table 4.3 compares the SDF networks to the Full and All-4 networks. It is clear that

the presence of SDF variables reduces the number of disease-disease edges compared to

the Full network. This is a clear sign that, as anticipated, the disease-disease connections

observed in the full network are being mediated by the SDFs. These effects are most

notable in Age-1, which differs most significantly in structure from the Full network,

mediating away the majority of its edges. Conversely, low counts of SDF-Disease edges

and low SHDs demonstrate that Urb-1 and Car-1 barely differ from the Full network,

indicating that their impact on disease-disease connections is minimal. Sex-1 has a

higher number of SDF-disease edges than these two, but does not mediate away many

of the disease-disease edges that are present in the Full network when compared to
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Age-1.

The extent to which the SDF networks’ node relationships are preserved in All-4

varies across the different SDFs. Age retains all of its 40 disease neighbours, suggesting

these relationships are stable and relevant even when other factors are accounted for.

In contrast, for the other SDFs, particularly urbanity, there is more difference between

their sets of SDF-disease nodes and those in All-4. This indicates that their influences

on diseases are largely mediated by the other factors (and namely Age).

In Figure 4.16, the range in each node’s degree across the SDF networks is compared

to those in All-4 and Full. It is clear that Urbanity, Carstairs Quintile and (slightly less

so) Sex follow the degree distribution of Full closely. This is in alignment with their

similarity to (i.e., low SHDs from) Full. Conversely, the close correlation between

the degree distributions of All-4 and Age-1 again demonstrate how Age dominates

the network structure. The disease nodes are ordered from left to right by decreasing

prevalence. From this, it is evident that the decrease in degree caused by Age is higher

for more prevalent nodes (Pearson R value: 0.596, p-value: 0). The edge adjacency

Figure 4.16: Comparison of node Degrees in SDF-1, All-4 and Full networks.

matrix in Figure 4.17 illustrates the cause for the drop in degree of the disease nodes

clearly. In linking to all diseases (as shown by the brown cells in the Age row) the Age

node mediates away many disease-disease connections found in the Full network (blue

cells).

In terms All-4’s other characteristics, it is connected and has an Average Clustering

Coefficient of 0.331 (with standard deviation of 0.11) and assortativity of -0.447. Given

its reduction of edges versus the Full network of 40%, this lower Average Clustering

Coefficient is expected. The negatively assortativity is also unsurprising, given that the

Age node has a degree of 43 and the next highest is 21. It is more interesting to note
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Figure 4.17: Adjacency matrix for comparing edges in Age-1, All-4 and Full Networks

that it is the only negatively assortative network generated in this work.

4.8 Impacts of Variable Discretisation

4.8.1 Discretisation Methods

All prior analysis of stratified networks and those with SDF nodes has been conducted

using the manual discretisation of age. The impact of other discretisation methods is

now explored.

Figure 4.18 shows the range in combined SHD sums across the age sub-networks

resulting from the age bins considered by the exhaustive search algorithm. The results



Chapter 4. Analysis 30

for the other methods are also plotted, and show the success of the greedy search

algorithm (it finds the best set of age bins). The results from the other methods are all

shown to fall in the lower half of the ranking.

Figure 4.18: Enter Caption

The top and bottom Age bin sets are shown in Figure 4.19. The top 10 bins are

consistent in that they all have a bin for Ages 0-9 and 90-100. The variability in the

middle three bins further emphasises the importance of the outer two. Naturally, the

bottom 10 bins make the same case, as their low combined SHDs appear to be caused

by large outer bins. These findings emphasise the differences between the oldest and

youngest patients relative to the rest of the population.

One benefit of the greedy search algorithm is that it finds the optimum bins in order

of importance. It first finds a boundary at age 10, then at 60, 90 and 30. This confirms

that multimorbidity patterns in the youngest 10% of patients differ more from the rest

of the population than the top 10%. The second benefit of the greedy approach is that

it is, of course, much faster than the exhaustive search. For the case explored with 5

bins and with bin boundaries being multiples of 10, the exhaustive search requires 630

structure-learning algorithm runs, whereas the greedy search requires 100 (only 16%

of the exhaustive runs). However, the exhaustive search would require 19,380 runs if

boundaries in multiples of 5 were considered instead, whilst the greedy search would

only require 1.2% of this at 240 runs.

4.8.2 Network Structure Impacts

The impact of using the SHD-maximising age bins (i.e., the top bin set from Figure

4.19) to form stratified networks is essentially discernible from the objective function of
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Figure 4.19: Top and Bottom 10 SHD-maximising Age bins found from exhaustive search

(with boundaries constrained to multiplies of 10).

the two algorithms. That is, the differences between the stratified age sub-network are

maximised. Their impact on the All-4 network is explored in Table 4.4 and in Figure

4.20. To demonstrate the impact of more granular discretisation, an All-4 network was

also created using 10 equal width bins with 10-year age ranges. This is compared to the

manually-defined bins in Figure 4.21.

Clearly, discretisation of age is important and impacts the network structure, includ-

ing the other SDFs’ interactions with diseases. The impact of the ‘optimal’ bins is not

overtly positive, in that it does not reduce the total number of edges. Clinicians would

be better placed to comment on which of the 5-bin methods yields a structure that is

more reflective of real world interactions, but clearly, the chosen bin boundaries for

discretised nodes such as age are influential on network structures.

The effect of using 10 bins, which provides a more granular discretisation, is a

significant reduction in both disease-disease and other SDF-disease edges. This is

expected given the reduced information loss from the underlying data associated with

having more bins. As such, more granular information with respect to age allows for

more would-be edges to be mediated by age. Of course, the more granular an SDF

category is made, the more complex the network’s conditional probability distributions,

which convey the strength of inter-node relationships, become to analyse. Therefore,
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Measure Manual bins ‘Optimal’ bins 10 bins

Total Edges 192 194 160

Disease-Disease edges 121 127 98

Disease-Disease edges not in full 6 1 2

Full edges present 53% 59% 44%

SDF-SDF edges 4 4 4

Age-Disease edges 40 40 40

Other SDF-Disease edges 27 23 18

Edges not in Manual-bin All-4 - 16 3

Edges not in Optimal-bin All-4 14 - 7

Edges not in 10-bin All-4 35 41 -

SHD from Full 105 89 120

Table 4.4: Summary of All-4 network characteristics with three discretisation variants for

age bins. SHDs from Full are calculated based on disease-disease edges only.

it is important to consider how many bins are appropriate depending on the intended

interpretation of the associated networks.
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Figure 4.20: Comparison of the edges in variants of the All-4 network with age discre-

tised manually (original network) and discretised ‘optimally’ using the SHD-maximising

algorithms (adapted network).
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Figure 4.21: Comparison of the edges in variants of the All-4 network with age discretised

manually (original network) and discretised into 10 equal-width categories (adapted

network).



Chapter 5

Conclusions

5.1 Key Findings

Bayesian networks are a valuable tool to support clinical understanding of multimor-

bidity, which is a crucially important topic in medical and public health research. This

work is motivated by the many methodological decisions that are required to produce

Bayesian networks, and the various approaches to these in the existing academic liter-

ature. By examining the impact of methodology on the resulting network structures,

several important insights have been provided, which highlight that caution should be

applied when generating and drawing clinical insights from Bayesian multimorbidity

networks.

As this study uses data from over a third of the Scottish population, and uses 40

diseases deemed by clinicians to most most suitable for multimorbidity studies, the

findings herein can be expected to generalise beyond the dataset itself. An initial analysis

of the dataset revealed that the sub-populations across five age categories exhibited

significant deviations in the multimorbidity and disease prevalence trends across the

whole population and in sex, deprivation and urbanity sub-populations. Although not

surprising, this insight explains many of the patterns found in the sub-networks drawn

from these sub-populations.

One of the most important methodological decisions for Bayesian networks is the

algorithm used to learn their structure from the given data. A study of two variants of

score-based (Tabu) and constraint-based algorithms (PC-stable) revealed that different

algorithms can produce vastly different counts of edges, with the Tabu algorithms

favouring more edges. Indeed even using different conditional independence tests for

the PC-stable algorithm led to meaningful variations in edge generation. Whilst the

35
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Tabu algorithm with BIC score was deemed to be the most suitable of the four variants

for further use, it should be noted that all conclusions drawn from networks generated

by it are influenced by this algorithm’s tendencies.

When examining the Full network, drawn from the whole population, it was deter-

mined that the direction of edges is predictable in that the more prevalent disease will

be the parent node. This justifies a limited analysis of edge directions in multimorbidity

networks and that they should not be used to infer causality between diseases. Com-

paring the Full network to one drawn from only multimorbid patients revealed major

differences in characteristics between the two, and highlighted that caution should be

applied when comparing studies based on different patient datasets.

A key finding of this work is the strength of which sub-population size biases

comparisons between associated stratified sub-networks. Only the characteristics of the

age sub-networks, and in some cases sex sub-networks, were found to deviate from the

trend associated with population size. Several approaches were considered in an attempt

to explore the stratified networks without the influence of sub-population size, which

raised drawbacks associated with averaging, sampling and bootstrapping. Although it is

a popular technique, this is a major drawback of stratification as a method of analysing

the influence of social demographics in multimorbidity networks.

Adding these social demographic factors as network nodes instead aligns better

with Bayesian network theory, and is able to directly demonstrate that these factors,

but mostly age, do influence disease manifestation and mediate many apparent disease-

disease connections. Another advantage of incorporating SDFs as nodes is that only

one network is required to consider their impacts. If stratification was used to study say,

sex and age, then 10 networks (or generally twice the number of age categories applied)

would need to be compared. However, as with stratification, the chosen number of

and boundaries of categories that continuous variables are discretised into will impact

network structures too. A method for discretising variables based on maximising the

difference between resulting sub-networks was presented and applied to age. However

clinical input is required to determine if there are cases where this method may be more

valuable versus manual categorisation.

Based on all of these findings, it is recommended to use nodes instead of stratification

when considering SDFs and other influential variables, and to acknowledge and justify

all decisions made when generating Bayesian multimorbidity networks. If a particular

method (such as discretisation of a variable like age) not somehow justified, then

multiple approaches should be contrasted in order to draw robust rather than incidental
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insights.

5.2 Limitations and Future Work

There are a number of limitations to this work that should be mentioned. Firstly, there

is no treatment of Bayesian network parameters (conditional probability tables for

connected nodes) in the analysis, other than to acknowledge that these become larger

when more granular discretisation of continuous variables is applied. Demonstrating

these impacts, and using the tables to answer questions such as ‘What is the strength of

influence of sex on diseases X and Y?’ would further clarify the value of assessing SDF

as nodes instead of via stratification.

Similarly, whilst Bayesian networks do not naturally have edge weights, it is possible

to include these to represent additional information. A comparison of edge weighting

approaches could help clarify the risks in utilising the network parameters for this

purpose, as has been done in at least one case [11].

Although four structure learning approaches are applied in this work, the conclusions

made on this topic are specific to those four and even more so to the parameters of

these networks. Similarly, no hybrid algorithms were applied, nor were algorithms

that can be applied to mixtures of continuous and discrete variables. Although no such

algorithms were found to have implementations in Python, analysis could be conducted

using R or proprietary software such as Tetrad [30] to examine how retaining naturally

continuous variables impacts network structures. In this case, raw Carstairs scores could

also be used (instead of Quintiles), allowing for a more thorough investigation of social

deprivation impacts.

The SHD-maximising discretisation methods presented in this work are understood

to be novel, but a more thorough investigation of their potential value would be useful.

Given that they define bin boundaries based on maximising differences between sub-

networks, they may be more applicable to stratification (in network science generally,

rather than Bayesian networks) rather than for discretising networks’ continuous nodes.

The impact of sub-population size on the found bins should be studied, and it is possible

that the algorithms could be adapted to balance the differences in structures and sub-

population sizes.

Lastly, many networks have been generated in this work, but with analysis focusing

primarily on their high-level structures and differences. Extending this analysis with

input from clinicians could clarify which methodological decisions are the most and
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least important, and to better assess the overall value of the findings herein to networks-

based multimorbidity research.
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Appendix A

Definitions for Structure Learning

Algorithms

A.1 Scoring Functions

A.1.1 BIC Score

The Bayesian Information Criterion (BIC) Score is a common function in data science

that uses a complexity term to penalise the log likelihood of a model (a measure how

well the model describes the underlying data). For Bayesian networks, it therefore aims

to represent the relationships in the dataset with a penalty on the number of edges. In

A.1 below, the first term is the log likelihood, and the second term is the penalty factor

[31]. It is calculated as follows:

BIC(G ,D) =
n

∑
i=1

(
∑
pai

∑
xi

n(xi,pai) log
n(xi,pai)

n(pai)

)

−
n

∑
i=1

(
1
2

log(N)×|Pa(Xi)|× (|States(Xi)|−1)
) (A.1)

Where:

• G is the graph structure of the Bayesian network.

• D is the dataset.

• Xi is the i-th variable in the dataset.

• Pa(Xi) is the set of parents of Xi in the network G .
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• n(xi,pai) is the count of data points where Xi = xi and its parents take the values

pai.

• n(pai) is the count of data points where the parents of Xi take the values pai.

• N is the total number of observations in the dataset.

• |Pa(Xi)| is the number of possible parent state combinations.

• |States(Xi)| is the number of possible states of the variable Xi.

A.1.2 K2 Score

The K2 Score is similar to BIC in that it uses the log-likelihood, but with a different

penalty factor. [31]. It is calculated as follows:

K2(G,D) = log(P(G))+
n

∑
i=1

qi

∑
j=1

(
log
(

(ri−1)!
(Ni j + ri−1)!

)

+
ri

∑
k=1

log(Ni jk!)

) (A.2)

where:

• G is the graph structure of the network.

• D is the dataset.

• logP(G) is the log-likelihood of the structure G.

• n is the number of variables in the Bayesian network.

• qi is the number of possible parent configurations for variable Xi.

• ri is the number of possible states of variable Xi.

• Ni j is the sum of counts Ni jk for all states k of Xi given the parent configuration j.

• Ni jk is the count of instances where variable Xi is in state k and its parents are in

configuration j.
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A.2 Conditional Independence Tests

A.2.1 χ2 Test

The χ2 test, shown in Equation A.3, determines if there is a significant association

between two variables. For Bayesian networks, it evaluates whether the observed

frequencies of a variable’s states are independent of the states of its conditioning set,

based on the expected frequencies calculated when independence is assumed . It

requires a ‘contingency table’ in which rows represent the different possible states

of one variable and columns represent the states of the other [32]. It is calculated as

follows:

χ
2 =

r

∑
i=1

c

∑
j=1

(Oi j−Ei j)
2

Ei j
(A.3)

where:

• Oi j is the observed frequency for the cell in the i-th row and j-th column.

• Ei j is the expected frequency for the cell in the i-th row and j-th column under

the null hypothesis of independence.

• r is the number of rows in the table.

• c is the number of columns in the table.

A.2.2 G Test

The G test, shown in Equation A.4 is another statistical test for conditional independence

between variables. Like the χ2 test, it uses a contingency table, and compares the

observed frequencies to the expected frequencies under the assumption of independence.

However, it is based on likelihood ratio, and is calculated as follows:

G = 2
r

∑
i=1

c

∑
j=1

Oi j log
(

Oi j

Ei j

)
(A.4)

where variables are the same as above for the χ2 test.
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Tables for PCCIU Dataset

Table B.1 provides the verbatim descriptions of the urbanity categories in the 6-fold

Rural Urban Classification, as defined by the Scottish Government [26].

Category Classification

1 Large urban areas: Settlements of over 125,000 people

2 Other urban areas: Settlements of 10,000 to 125,000 people

3 Accessible small towns: Settlements of between 3,000 and 10,000

people and within 30 minutes drive of a settlement of 10,000 or more

4 Remote small towns: Settlements of between 3,000 and 10,000 people

and with a drive time of over 30 minutes to a settlement of 10,000 or

more

5 Accessible rural: Settlements of less than 3,000 people within 30

minutes drive to a settlement of 10,000 or more

6 Remote rural: Settlements of less than 3,000 people and with a drive

time of over 30 minutes to a settlement of 10,000 or more

Table B.1: The Six-fold Urban Rural classification categories

In Tables B.2 and B.3, the percentage prevalence and associated rank of each disease

node in the dataset are given for the Full and Multimorbid populations. The ‘short

names’ used for plotting are also provided.
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Rank
(Full)

Name Short name % in
Full

% in
MM

Rank
(MM)

1 Hypertension Hypertension 0.134 0.4517 1

2 Depression Depression 0.082 0.2728 2

3 Painful Condition Pain 0.072 0.2722 3

4 Active Asthma Asthma 0.06 0.1361 8

5 CHD CHD 0.047 0.1833 4

6 Treated Dyspepsia Dyspepsia 0.045 0.1593 6

7 Diabetes Diabetes 0.043 0.1608 5

8 Thyroid Disorders Thyroid 0.041 0.1365 7

9 Rheumatoid

Arthritis Etc

Arthritis 0.034 0.1217 10

10 Hearing Loss Hearing Loss 0.034 0.1004 12

11 COPD COPD 0.032 0.1133 11

12 Anxiety Etc Anxiety 0.032 0.1289 9

13 Irritable Bowel

Syndrome

IBS 0.03 0.0903 13

14 Any Cancer (Last 5

Yrs)

Cancer 0.025 0.0842 16

15 Alcohol Problems Alcohol Problems 0.024 0.0789 19

16 Other Psychoactive

Misuse

Psychoactive Misuse 0.024 0.0835 17

17 Treated Constipation Constipation 0.022 0.0872 14

18 Stroke TIA Stroke 0.021 0.085 15

19 CKD CKD 0.019 0.0812 18

20 Diverticular Diverticular 0.019 0.076 20

Table B.2: Name, prevalence and rank of the first 20 of 40 disease nodes in the Full

dataset and the Multimorbid (MM) subset.
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Rank
(Full)

Name Short name % in
Full

% in
MM

Rank
(MM)

20 Diverticular Diverticular 0.019 0.076 20

21 Atrial Fib Atrial Fibrillation 0.014 0.0553 21

22 Peripheral Vascular

Disease

PVD 0.013 0.0505 22

23 Heart Failure HeartFailure 0.011 0.0454 23

24 Prostate Prostate 0.009 0.0315 25

25 Glaucoma Glaucoma 0.009 0.0336 24

26 Epilepsy Epilepsy 0.008 0.0223 28

27 Dementia Dementia 0.007 0.0273 26

28 Schizophrenia

Bipolar

Schizophrenia/

Bipolar

0.007 0.0252 27

29 Psoriasis Eczema Psoriasis/ Eczema 0.007 0.0199 29

30 Inflammatory Bowel

Disease

IBD 0.006 0.0167 32

31 Migraine Migraine 0.006 0.0177 31

32 Blindness Blindness 0.005 0.0184 30

33 Chronic Sinusitis Chronic Sinusitis 0.005 0.0156 33

34 Learning Disability Learning Disability 0.003 0.0091 34

35 Anorexia Bulimia Anorexia/ Bulimia 0.003 0.0087 35

36 Bronchiectasis Bronchiectasis 0.002 0.0061 38

37 Parkinsons Parkinsons 0.002 0.0062 37

38 Multiple Sclerosis Multiple Sclerosis 0.002 0.0069 36

39 Viral Hepatitis Viral Hepatitis 0.001 0.0026 40

40 Chronic Liver

Disease

Liver Disease 0.001 0.0059 39

Table B.3: Name, prevalence and rank of the second 20 of 40 disease nodes in the Full

dataset and the Multimorbid (MM) subset.
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Algorithm Pseudocode

Algorithm 1 below is the ‘get SHD sum’ function used by Algorithms 2 and 3. It takes

a dataset and a set of age category boundaries as inputs, and first creates a new column

for age category. It then runs the structure learning algorithm separately for the disease

columns corresponding to the rows in each age category. It returns the cumulative sum

of the structural hamming distances between each pair of age-category networks.

Algorithm 1 get SHD sum
Inputs: (data, bin set)

append age category column to data using bin set

networks← empty list

for category in age category do
strat data← disease columns of data for all ages within age category

network← call learnstructure(strat data) appendnetworktonetworks

total shd← 0

for each pair (net1,net2) in networks do
total shd← total shd + shd(net1,net2)

end for

return total shd
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Algorithm 2 finds the SHD-Maximising age bin boundaries using an exhaustive

search. For the given age range and required number of bins, it finds all possible bin

boundary sets that obey the minimum bin width and bin width increment constraints.

It then uses Algorithm 1 to find the SHD sums for all valid sets, and returns all sets,

ranked by their associated SHD sums.

Algorithm 2 SHD-Maximising age bins: exhaustive search
Inputs: (data, age min, age max, min width, bin inc, num bins)

Boundaries← list from range(age min,age max,bin inc)

All combos← list of all combinations of num bins−1 items from Boundaries

Valid combos← empty list

for combo in All combos do
bin set← list from age min, combos, age max

bin widths← list of bins[i+1]−bins[i] for i in range(len(bins)−1)]

if a thenll widths in bin widths > min width:

append bin set to valid combos

end if
end for
Bins SHDs← empty list

for bin set in valid combos do
shd score← call get SHD sum(data, candidate bins)

append (total shd, candidate bins) to Bins SHDs

end for
return Bins SHDs sorted by total shd
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Algorithm 3 finds the SHD-Maximising age bin boundaries using a greedy search.

It starts with the maximum and minimum ages as the boundary set, and considers each

possible new boundaries (that obeys the minimum bin width and bin width increment

constraints). It then uses Algorithm 1 to find the SHD sums for the potential new

boundary set containing each valid boundary, and adds that which maximises the SHD

sum. This is repeated til the required number of boundaries is found.

Algorithm 3 SHD-Maximising age bins: greedy search
Inputs: (data, age min, age max, min width, bin inc, num bins)

current bounds← [age min, age max]

while len(current bounds)−1 < num bins do
best score←−∞

best bound← None

for new bound in range(age min+bin inc,age max,bin inc) do
if new bound in current bounds then

continue ▷ go to next bound in range

end if
candidate bins← sorted list of current bounds and new bound

bin widths← list of (b1−b2) for consecutive (b1,b2) in candidate bins

if all widths in bin widths≥ min width then
shd score← call get shd score(data, candidate bins)

if shd score > best score then
best score← shd score

best bound← new bound

end if
end if

end for
append best bound to current bounds

current bins← sorted current bins

end while
return current bins, best score


