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Abstract

This study employs a pre-trained Masked Language Model (MLM) to explore Implicit

Discourse Relation Recognition (IDRR), enhancing the automated identification of

discourse relations without explicit connectives. Our approach adapts and fine-tunes

the Amazon-EMAT model to predict multi-token discourse connectives, integrating

them with a three-tier discourse relationship hierarchy, capturing the sense of discourse

relations through mapping. By training the model on datasets containing explicit multi-

token discourse connectives, we have generalized our findings to implicit discourse

relations, significantly improving accuracy compared to traditional classification models.

The results validate the effectiveness of using the MLM task for discourse analysis.
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Chapter 1

Introduction

Discourse typically refers to a series of clauses, sentences, or paragraphs within an

article that convey its content. Discourse analysis involves examining and specifying

the structure of these components. A subtask of discourse analysis, Discourse Relation

Recognition (DRR), seeks to determine the discourse relations between two segments

of text or arguments.

Predictable patterns of discourse relations are an important element of discourse

coherence, so research on discourse relations is a crucial aspect of studying discourse

coherence. Automatically identifying the meanings conveyed between sentences or

clauses is highly valuable for downstream NLP tasks, such as machine reading compre-

hension [1], machine translation [2], sentiment analysis [3], text summarization [4], and

event relation extraction [5]. The meanings of discourse relations are further categorized

into predefined types which researchers have organized into a three-level hierarchy,

ranging from broad top-level categories like Temporal, Contingency, Comparison, and

Expansion to more specific meanings beneath them [6, 7]. Often, the relationship

between two discourse segments is explicitly indicated by connectives. However, it

is quite common for two text segments to indicate a discourse relationship without

using an explicit connective. The process of identifying and categorizing these hidden

relationships between segments that lack explicit connectives is referred to as Implicit

Discourse Relation Recognition (IDRR). Although it is a particularly challenging task,

substantial advancements have been achieved in IDRR research in recent years.

Since the advent of large-scale pre-trained language models, many researchers have

attempted to apply these models to the IDRR task. The work described in this paper

is inspired by recent research from Amazon [8], which proposed a method Extended-

Matrix (EMAT) based on a BERT variant designed to overcome the limitation of

1



Chapter 1. Introduction 2

traditional BERT models, which can only predict a single token. Our approach adapts

this model as part of our methodology, focusing on multi-token connectives, which are

less ambiguous than single-token connectives, and eliminating the need for training

from scratch.

By adding a limited number of multi-token connectives to the decoder’s vocabulary

and corresponding entries to the output prediction matrix, our method first predicts inter-

sentential multi-token discourse connectives. Then, by mapping these connectives to

the three-tiered discourse relation hierarchy, we achieve the goal of predicting discourse

relations for the IDRR task. The results demonstrate that this MLM-based approach

significantly improves the accuracy of predicting implicit discourse relations. Future

research may focus on refining these techniques and exploring their applicability across

more diverse datasets and languages, potentially broadening the scope and impact of

this research in the field of discourse analysis.



Chapter 2

Background

2.1 Discourse Relation Recognition

As research at the levels of words, phrases, and sentences becomes increasingly deep

and mature, more scholars are shifting their focus to discourse-level studies. Discourse

generally refers to a cohesive and meaningful linguistic unit composed of a series

of components that convey a complete and coherent message. Within a discourse,

clauses are not haphazardly arranged but possess a definite structure and semantic

relationships. Only by analyzing these structures and relationships can one achieve a

thorough understanding and analysis of the discourse. Discourse structure analysis,

also known as discourse parsing, is a core task in natural language processing [9, 10].

Since the framework represented by the Penn Discourse Treebank (PDTB) [6, 7] was

released, providing a shallow representation of discourse structures that allows for the

independent annotation of each discourse relation apart from others, it has attracted

significant research attention [9, 10]. Discourse Relation Recognition (DRR), a subtask

of discourse parsing, aims to understand the semantic connections between discourse

units (also known as ‘arguments’, including phrases, sentences, and text segments)

within a discourse. In addition to relational words and arguments, the sense of relations

is typically classified into types. For example, in the PDTB-3, senses are artificially

divided into three levels: class, type, and subtype. The top-level (class) is predefined as

a comparison, contingency, expansion, and temporal as shown in Appendix A.

3



Chapter 2. Background 4

2.2 Implicit Discourse Relation Recognition

DRR can typically be divided into Explicit Discourse Relation Recognition (EDRR)

and IDRR, depending on whether there are explicit connectives between the arguments.

In the PDTB, the presence and interpretation of relationships between two arguments

have been assessed and annotated by multiple experts.

For the EDRR task, explicit connectives can be directly extracted and classified into

a certain relational meaning. For the IDRR task, since there are no explicit connectives,

it is necessary to first detect the implicit relations which annotators can do by first

manually inserting a connective and then labeling the sense they take it to convey. This

implies that identifying implicit meanings often presents a challenge.

2.2.1 IDRR based on Machine Learning

Commonly, IDRR relies on classification methods to categorize relations. Initially,

conventional machine learning techniques were used, treating adjacent spans of text,

called ‘arguments’ (Arg1 and Arg2) as pairs of parameters. These pairs are input to

predict the type of relational meaning existing between them. The basic process is

illustrated in Fig 2.1.

Feature Design

lexical

syntactic

contextual

Feature Representation

one–hot vector

one–hot vector

one–hot vector

Features Combination

combined
vector

classifier
Training

(parameter1, parameter2) sense label

Figure 2.1: IDRR based on Machine Learning

Early machine learning approaches primarily focused on feature engineering, which

involves the construction and selection of representative features for text classification.

These features are typically categorized into several types: lexical features [11] and

syntactic features [12], which primarily analyze the word, phrase, and structure within

sentences; and contextual features [13], which pertain to the broader textual context

beyond words or sentences. The integrated application of these features is crucial for a

deep understanding and effective classification of textual content.
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2.2.2 IDRR based on Pre-trained Learning

In recent years, deep learning technologies based on neural networks, exemplified

by pre-trained models (PLM) such as BERT [14], RoBERTa [15], GPT [16], and T5

[17], have revolutionized feature engineering. After being trained on extensive corpora,

these models are capable of capturing rich linguistic features, significantly enhancing

adaptability and generalization to new tasks. Unlike the past practice of designing neural

architectures from scratch for each specific task, it is now possible to quickly adapt

these pre-trained models to a variety of downstream tasks through transfer learning.

This is done by fine-tuning the models and adding output layers tailored for specific

tasks. This approach reduces the need for manual feature design, thereby increasing

processing efficiency and improving model performance.

For instance, in 2019, Shi and Demberg[18] leveraged a general Pre-trained Lan-

guage Model (PLM) and conducted additional pre-training specifically tailored to

domain-specific texts. They demonstrated that Next Sentence Prediction (NSP) aids in

IDRR classification both within and across domains. Building on this, in 2020, Kishi-

moto et al. [19] extensively explored the performance of PLMs on IDRR downstream

tasks, further affirming their effectiveness.

In the same year, Jiang and He [20] innovatively combined PLMs with recurrent

neural networks (RNNs) to develop a new model architecture. This hybrid approach

aimed to capitalize on the strengths of both PLMs and RNNs, particularly in handling

sequences and contextual information more dynamically.

Additionally, some researchers have focused on refining the attention mechanisms

within PLMs without altering their core architecture. One approach involved implement-

ing penalty-based loss recalibration methods in the classifier component to enhance the

learning process of attention mechanisms [21]. Concurrently, Jiang et al. [22] proposed

a loss function inspired by contrastive learning, designed to deeply explore and com-

prehensively model the multilevel discourse relationships within texts. This method

aims to improve the granularity and accuracy of relationship modeling by exploiting the

comparative discrepancies between different discourse levels, thereby enhancing the

overall interpretative power of the model. However, these methods still directly explore

IDRR through classification results.
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2.3 Masked language models1

The BERT model [14] has substantially improved the performance of numerous natural

language processing tasks by pre-training on two fundamental tasks: Masked Language

Modeling (MLM) and NSP. The NSP task helps the model implicitly learn discourse

connectivity by predicting the logical relationships between sentences. Subsequent

research [18] has validated this improvement in inter-sentence IDRR attributed to the

NSP task.

However, additional research, including investigations into RoBERTa [15] and Span-

BERT [23], suggests that excluding the NSP loss during training could lead to improved

outcomes. This indicates that comprehending discourse relations might depend more

heavily on the semantic insights obtained directly from the MLM task, rather than on

a simple multi-classification task. In natural language text, it is common for multiple

discourse relations to coexist within a single context. Moreover, in the PDTB, certain

instances are annotated with dual discourse relations for a single connective. However,

research on IDRR that employs this multi-classification approach typically predicts only

one category at a time. Consequently, researchers are now exploring the transformation

of the IDRR task into a generative one. A study [24] demonstrates that generating

target sentences describing discourse relations allows for a deeper comprehension and

articulation of the implicit connections between sentences. However, this T5-based

approach requires significant training resources.

Further research [25] has introduced a technique for directly predicting discourse

connectives. Through the generation and prediction of discourse connectives, this

method is capable of more accurately capturing and expressing the subtle nuances

in discourse relations. However, this approach continues to depend on classification

outputs, as it is limited to predicting single-token connectives, which frequently possess

multiple senses, complicating the accurate determination of a specific sense. Despite

the possibility of ambiguity, their preliminary findings indicate that pseudo-connectives

generated by MLMs may indeed aid in IDRR tasks. However, we know that multi-token

connectives are generally less ambiguous than single-token connectives. For example,

‘as’ on its own can convey any of 15 senses, while multi-token connectives like ‘as soon

as’ can convey 2 senses and ‘as a result’ can only convey 1 sense[7].

Building on these findings, it is a logical progression to utilize MLMs to directly

predict connective phrases for identifying implicit discourse relations. Recent research

1The content of this section is largely derived from the author’s IPP with some modifications.



Chapter 2. Background 7

conducted by Amazon [8] introduced an approach employing MLMs to predict multi-

token connectives, which would then allow more flexibility in text-based question-

answering. This approach does not necessitate training from scratch but instead involves

the addition of a limited number of multi-token entries to the decoder’s vocabulary,

along with corresponding entries in the output prediction matrix. This significantly

reduces the number of parameters while outperforming current state-of-the-art models

for multi-token completion.

2.4 Data Expansion

Regardless of the method used, implicit discourse relation recognition requires a signifi-

cant amount of labeled data for training models. However, the availability of annotated

corpora is restricted. Manually annotating data is a time-intensive process and, in most

cases, requires both domain expertise and specialized knowledge. Therefore, consid-

ering the costs, we decided to automatically generate extra training data by removing

discourse connectives from examples of explicit discourse relations.

Marcu and Echihabi [26] adopted this approach. However, indiscriminate use of

these artificially generated data could extra training data by removing discourse con-

nectives from examples of explicit discourse relations. Consequently, some researchers

are endeavoring to identify the connections between explicit and implicit discourse

relations. One approach is to employ various techniques to filter out samples and

features that are truly valuable for implicit discourse recognition from existing corpora.

For sample filtering, researchers use statistical analysis methods to assess the contextual

differences in discourse relations. By calculating the omission rate of connectives and

the contextual differences, datasets containing explicit relations are selected, providing

valuable corpora for model training [27].

Additionally, clustering methods such as Single Centroid Clustering (SCC) can

optimize the efficiency and effectiveness of model training by identifying the most

representative samples from large datasets [28]. In terms of feature handling, the

Teacher-Student Model uses a blend of explicit and implicit data to train a general

teacher model. Through knowledge distillation techniques, features are transferred

from the teacher model to a student model specifically for implicit discourse relation

recognition [29]. Furthermore, Ji et al. [30] employed domain adaptation techniques

by sharing features between the source and target domains (explicit and implicit) and

adjusting the feature representation and distribution of explicit and implicit samples to
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achieve feature alignment and distribution alignment, thereby reducing inter-domain dif-

ferences. The comprehensive application of these methods helps enhance the accuracy

and generalizability of implicit discourse relation recognition models.

Another approach leverages the inherent commonalities and differences between

languages to generate implicit discourse relation datasets cross-linguistically. This

method is based on the differences in expression forms when conveying the same

meaning across different languages, where content expressed implicitly in one language

might find its explicit counterpart in another [31]. For instance, researchers utilize

the significantly higher frequency of connective omission in Chinese compared to

English [32], and English compared to French [33], to generate suitable datasets.

These inter-lingual differences enable the expression forms of the same information

to be comparable across languages, providing a basis for constructing and expanding

multilingual implicit discourse relation datasets.



Chapter 3

Methodology

3.1 Data Preprocessing

To predict implicit discourse relations within texts, scholars face a significant challenge

due to the lack of explicit connectives linking sentences, which complicates the direct

usage of such sentences in training neural networks. This limitation leads to a scarcity

of annotated data, which becomes a major bottleneck for most neural network-based

methods in this domain.

One commonly used method to address this challenge, discussed in previous Section

2.4, is known as dataset expansion. However, this technique demands substantial

preparatory efforts and considerable computational resources, which can be impractical

for many research settings.

An alternative strategy is to use data augmentation techniques. This method has

been notably applied in the study of the Penn Discourse Treebank (PDTB-2), where

traditional machine learning models were trained on sections 2-21 and tested on section

23. This latter section contains 761 implicit discourse relations, which, although

useful, represents a small sample size [13, 34, 35]. The limited size of the test set can

obscure whether observed improvements in model performance are due to genuine

methodological enhancements or merely coincidental fits to specific attributes of the

test data.

To address this, researchers used cross-validation techniques within this constrained

dataset to better generalize findings without the need to significantly expand the dataset.

This method allows for more efficient utilization of available data and helps in assessing

the robustness and general applicability of new features or models, providing a more

reliable basis for evaluating improvements in the field of discourse analysis.

9
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Nevertheless, we aim not to restrict ourselves solely to PDTB data nor to complicate

data acquisition excessively. Research by Kishimoto et al. [19] demonstrates that

tailored text for discourse classification, supplemented with additional pre-training

and using samples with explicit connectives for training, significantly benefits the

recognition of implicit discourse relations. Inspired by this, for our experimental design,

we chose a dataset constructed from Wikipedia dumps by HuggingFace, extracting

687,469 entries with explicit connectives, to fine-tune the model.

BERT’s training process consists of two stages: pre-training and fine-tuning. In

the pre-training stage, BERT acquires contextual information and understands the

relationships between two adjacent sentences using a large unlabelled corpus. In the

fine-tuning stage, BERT is trained on a task-specific dataset and modifies the pre-

trained representations for downstream tasks. Although additional pre-training steps

may be beneficial for identifying implicit discourse relations if a substantial corpus

is available, given BERT was specifically trained on Wikipedia (2̃.5B words) and

Google’s BooksCorpus (8̃00M words), and considering computational costs, we focus

on fine-tuning to adapt to the downstream task of implicit discourse relation recognition.

To determine a suitable training set for our study, we initially compiled a list of

multi-token connectives. This list was sourced from the Appendix A of PDTB-3

(shown in Appendix A) and from the Connective-Lex [36]. Our focus was specifically

on predicting multi-token discourse connectives that occur between sentences (inter-

sentential). We manually removed any connectives that functioned as within sentences.

The final list comprised 47 such connectives, and we have included this specific list in

the Appendix B of the current paper.

Our goal is to learn about discourse relations from explicit connectives, which mark

conceptual relations between two sentences.

Fig 3.1 showcases sentences that illustrate both explicit and implicit discourse

relations. In the raw text, explicit connectives are clearly marked, while implicit

connectives are inferred and inserted by annotators.

For instance, in the first example, The relation is marked with a complex sense

including ‘Temporal.Asynchronous.Succession’ and ‘Contingency.Cause.Reason’. This

indicates a time-based sequence that also provides a causal explanation. This demon-

strates that explicit connectives can sometimes have multiple senses.

For model training, we need to process the sentences into the format of Example

3.1:

[CLS] [Arg1] [SEP] [MASK] [Arg2] (3.1)
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TW's stockholder meeting was postponed from tomorrow to Nov. 21

by then

DLJ hopes to be able to sell less-junky junk bonds.

Argument-1

Argument-2

Sense:
Temporal.Asynchronous.Succession

Contingency.Cause.Reason

Explicit Multi-token Connective

We were looking at a repetition of 1929. , that we were looking at a recession.

Argument-1 Argument-2

Implicit Multi-token Connective

Sense: Expansion.Equivalence

[In other words]

[ VVVVVVVVVV]

Figure 3.1: Examples of discourse relation annotation with explicit and implicit multi-

token connectives in the PDTB corpus

Here, we employ a specific format to process sentences so that the model can learn

logical connections within the text. This format includes special markers: [CLS] at the

beginning of each sentence, representing the context of the entire sentence; [Arg1] and

[Arg2] representing the first and second arguments in a discourse relation, respectively;

[SEP] used to separate these arguments; [MASK] serving as a placeholder for the

connective that the model needs to predict. Through this structured input, the model

can more effectively learn and predict the explicit or implicit connections between the

arguments in the text.

As previously discussed, we hypothesize that training with explicit argument pairs

will effectively generalize the identification of implicit argument pairs. Therefore,

for the test set, we utilize sentences annotated with implicit discourse relations from

the most recent Penn Discourse Treebank (PDTB-3) to evaluate the accuracy of our

predictions, using the same preprocessing method.

3.2 Mask-Filling Task

Our research methodology is based on the decoder matrix of an extended BERT model’s

Masked Language Model (MLM) to handle multi-token explicit discourse relation

connectives shown in Fig 3.2.

Based on the architectural diagram, we can describe the process as the following



Chapter 3. Methodology 12

[CLS] [Arg1] [SEP] [MASK] [Arg2]

Output

tokenizer

[CLS] [ tokens ] [SEP] [MASK - tokens]
[tokens]

ID : Multi-token Connectives

Output Token-prediction Matrix

Mapping New ID

Update

Decoder

Multi-token Connectives

Contextual Embedding

Multi-token Connectives

Input

Figure 3.2: Structure of Our Model

steps, with the parameter settings explained at the end.

Loading Datasets and Model: Initially, the dataset described in Section 3.1 is

loaded alongside a pre-trained BERT model. This stage is crucial to ensure that our

model is primed to process new inputs and adapt effectively during the retraining phase.

Reading Vocabulary Files: Subsequently, we engage in processing a vocabulary

file specifically curated to include multi-token discourse connectives, which are not

typically present in the model’s original lexicon. These discourse connectives are

essential for recognizing discourse relation

Mapping and Extending the Lexicon: For each new vocabulary item in the

file, if it is not already in the model’s lexicon, we assign it a new embedding vector.

These vectors are generated using a dimensionality aligned with the pre-existing model

architecture to ensure compatibility and optimal integration. The new embeddings are

then added to the model’s output prediction matrix, thus enabling the prediction of these

multi-token connectives.

Integration of New Embedding Vectors: The newly created embedding vectors

are integrated directly into the model’s output token prediction matrix. This direct

insertion bypasses traditional tokenization and vocabulary-matching processes typically

used in NLP, allowing for a more nuanced understanding and generation of text.
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Optimization and Performance Tuning: With a configuration of 4 GPUs and 16

parallel processes. Fine-tuning is conducted with a batch size of 128 and a learning rate

of 0.0001, employing the Adam optimizer to ensure efficient convergence. This phase

spans 2 epochs and focuses on achieving an optimal balance between training speed

and model accuracy, ensuring robust performance.

3.3 Mapping Task

The ultimate goal of predicting multi-token connectives is to identify the corresponding

senses of discourse relations. Thus, our task extends beyond merely forecasting the

connectives themselves; we also aim to map the relevant senses associated with these

connectives from Appendix A of PDTB-3 as shown in Appendix C.

Utilizing 5103 manually annotated instances of multi-token connectives and their

corresponding senses from PDTB-3, we establish these as our gold standard for calcu-

lating accuracy metrics.

We acquire the top-k (where k = 1, 3, 5, and 10) connectives. However, for the

senses, we only consider the top-1 and top-2 corresponding senses. Ultimately, this

method yields results formatted similarly to Table 3.1, encompassing about 5,000

entries, which facilitates the final evaluation (listing only top-1 as an example, the

format for top-k connectives and their corresponding senses remains consistent).

3.4 Evaluation Metric

To comprehensively evaluate the predictive efficacy of our model, we employ accuracy

as the primary metric of assessment.

Initially, we evaluate the accuracy of multi-token discourse connectives predicted

by the model. The accuracy is defined as follows: for each data point i in the dataset,

if any of the top k predictions pred1
i to predk

i (where k = 1 or 5) matches the manually

annotated gold-standard connective goldi, the accuracy for that item is scored as 1;

otherwise, it is 0. The index j traverses these top k predictions for each sample.

Let n be the total number of data points in the dataset. For each data point i, where

i = 1,2, . . . ,n, let goldi denote the gold-standard connective, and pred j
i represent the

j-th prediction out of the top k predictions for that data point, where j = 1,2, . . . ,k.

Define the accuracy for each data point i as:
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Attribute Details

Sentence Businesses were borrowing at interest rates higher than

their own earnings. [CONNECTIVE] What we’re

seeing now is the wrenching readjustment of asset

values to a future when speculative-grade debt will be

hard to obtain rather than easy.

Top-1 Connective After all

Golden Connective As a result

Top-1 Sense Level 3 Contingency.Cause+Belief.Reason+Belief,

Expansion.Conjunction,

Expansion.Level-of-detail.Arg2-as-detail

Golden Sense Level 3 Contingency.Cause.Result

Top-1 Sense Level 2 Expansion.Level-of-detail,

Contingency.Cause+Belief,

Expansion.Conjunction

Golden Sense Level 2 Contingency.Cause

Top-1 Sense Level 1 Expansion,

Contingency

Golden Sense Level 1 Contingency

Table 3.1: Analysis of Connective and Sense Usage in Context
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acci =

1 if ∃ j ∈ {1, . . . ,k} : pred j
i = goldi

0 otherwise
(3.1)

Subsequently, we map the first prediction of our model to the corresponding sense.

If the gold-standard senses are a subset of the predicted senses, then the method of

measuring accuracy is similar to that used for calculating the accuracy of connectives.

Given the three-tiered semantic hierarchy in PDTB-3, this method of calculation is

uniformly applied to all three levels. Based on the table you provided, here’s a more

precise way to phrase your statement:

Subsequently, we map the first prediction of our model to the corresponding sense.

If the gold-standard senses are a subset of the predicted senses, then the method of

measuring accuracy is similar to that used for calculating the accuracy of connectives.

Given the three-tiered semantic hierarchy in PDTB-3, this method of calculation is

uniformly applied to all three levels. However, level 3 accuracy is defined as the highest

possible precision achievable for each sense, which may include some senses classified

at Level 2. This definition applies because certain discourse connectives do not have a

corresponding level 3 subtype, and only senses that are not symmetric possess a level 3.

For example, in the ‘Temporal’ class, the ‘Synchronous’ type does not have a level 3

subtype. The formula for the accuracy at each level is defined as:

acc(l)i =

1 if ∃ j ∈ {1, . . . ,k} : pred j
i,l = goldi,l

0 otherwise
(3.2)

The accuracy measure acc(l)i represents the accuracy of the i-th instance at level l.

It equals 1 if any prediction in the set {pred1
i,l, . . . ,predk

i,l} matches the gold standard

goldi,l; otherwise, it equals 0.

At last, we then compute the average accuracy across all data points in the dataset,

as shown in Formula 3.3 :

accuracy =
1
n

n

∑
i=1

acc(l)i (3.3)
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Results and Analysis

4.1 Connectives

Amazon-EMAT [8] utilizes data from two sources: Wikipedia and the BookCorpus

[37] for its Multi Token Completion prediction of top-k accuracies (k = 1,3,5,10) as

demonstrated in Table 4.1. Additionally, this table also presents the model’s accuracy

on the PDTB-3 IDRR corpus.

The Amazon-EMAT objective is for a general MTC, which views phrases as NP

chunks or entities, retaining phrases that appear 500 times or more in the corpus, leaving

us with approximately 93K phrases, which is significantly larger than our vocabulary

and is not limited to any specific domain. Our results can attest to the model’s enhanced

performance in recognizing discourse relations.

Top-k Top-1 Accuracy (%) Top-3 Accuracy (%) Top-5 Accuracy (%) Top-10 Accuracy (%)

Amazon–EMAT 12.64% 20.48% 24.63% 30.65%

Our 24.50% 38.60% 48.16% 61.38%

Table 4.1: Performance by Top-k Accuracy Levels

4.2 Senses

4.2.1 Overall Multi-Level Sense Analysis

Table 4.2 displays the model’s accuracies at Level-1, Level-2, and Level-3 on the PDTB-

3 corpus. Previous studies have either focused on the older PDTB (PDTB-2) version

or only recorded Level-1 and Level-2 of sensed types, whereas we have meticulously

16
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documented the accuracy corresponding to each level. As shown in Table 4.2, when we

utilize only the top-1 predicted multi-token connective for mapping, our performance in

the four-way classification at the first level surpasses previous studies.

However, the performance at the second level falls short compared to the approach

proposed by Long and Webber, which employs a semantic hierarchy to select contrastive

learning samples for the task of recognizing implicit discourse relations. Considering

that during the expert annotation phase of PDTB-3, 1-2 connectives are also labeled, we

additionally recorded the discourse relation senses represented by the top-2 most likely

predicted multi-token connectives. When mapping with the predicted top-2 multi-token

connectives, the results demonstrate better performance than earlier systems.

Model Top-level Accuracy (%) Second-level Accuracy (%) Third-level Accuracy (%)

Liu and Li [38] 57.67 N/A N/A

Chen et al. [39] 57.33 N/A N/A

Lan et al. [40] 57.06 N/A N/A

Ruan et al. [41] 58.01 N/A N/A

BiLSTM [42] 60.45 N/A N/A

BERT [42] 64.04 N/A N/A

Long and Webber [43] 75.31 64.68 N/A

Our (Top-1) 79.23 56.09 51.96

Our (Top-2) 91.75 76.84 73.80
Note: N/A indicates that data for the respective accuracy level is not available.

Table 4.2: Model Accuracy Comparison Across Different Levels of Complexity

We observe that when obtaining the senses corresponding to the top-2 connectives,

the accuracies at the top level of discourse relations approach those of expert annotations.

One possible reason, as mentioned in Section 2.1, is that whether based on PDTB-2

or PDTB-3, most previous research utilized implicit discourse relation cases as the

data source, only varying in how the training, validation, and test sets were divided. In

contrast, we utilized all cases of implicit discourse relations from PDTB-3 exclusively

for our test set. Our training and development data comprised additional explicit

discourse relation instances, which greatly exceeded the volume of data available for

other studies on implicit discourse relations. For brevity, the training and development

dataset will be referred to as the Train-Dev dataset hereafter.
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4.2.2 Specific Multi-Level Sense Analysis

We also investigated the accuracy corresponding to each sense type at different levels.

Table 4.3 displays the accuracy of the four general sense types (Level 1) on the PDTB-3

corpus.

Sense Type Top-1 Accuracy(%) Top-2 Accuracy(%)

Expansion 87.55 97.13

Contingency 69.59 86.24

Comparison 32.23 60.90

Temporal 39.58 62.50

Table 4.3: Accuracy for Level 1: Top-1 and Top-2 Analysis

It has been observed that the highest prediction accuracy is achieved when the

discourse meaning is categorized as ‘Expansion’, while the lowest accuracy occurs when

categorized as ‘Temporal’. Subsequently, we examined the distribution of discourse

meanings within both the Train-Dev dataset and the test dataset. The apparent cause of

this discrepancy in accuracy seems to be the uneven distribution of data.

Thus, we attempted to explore the distribution of discourse senses, considering that

we extracted contexts from the Wikipedia corpus using multi-token connectives. In

order to classify each context according to its corresponding sense, when the connective

might be mapped to multiple senses, we employed the following method: initially

calculating the distribution of annotated proportions of explicit discourse connectives

in PDTB-3. We presume that both the Wall Street Journal corpus (the data source of

PDTB) and the Wikipedia corpus represent real-world text distributions, and we assume

these distributions are similar.

Let C be the multi-token connective, and let D1 and D2 represent two different

corpora, which are PDTB-3 and our explicit discourse connectives Train-Dev dataset

(source from Wikipedia).

For each sense S of the connective C in D1, calculate the proportion p(S|C,D1) as

follows:

p(S|C,D1) =
Number of instances of S with C in D1

Total instances of C in D1
(4.1)

Assume the distribution of senses in D2 mirrors D1. For the total instances of C

in D2 denoted as n(C,D2), the expected number of instances for each sense S in D2,
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denoted n(S,C,D2), is calculated as:

n(S,C,D2) = p(S|C,D1)×n(C,D2) (4.2)

The specific distribution results are shown in Table 4.4:

Table 4.4: Sense Distribution of Multi-token Connectives in Train-Dev Dataset

Multi-token

Connectives
Exp. (%) Cont. (%) Temp. (%) Comp. (%)

after all 50.0 50.0

after that 100.0

along with 100.0

and then 100.0

as a result 100.0

as an alternative 100.0

as well 64.71 35.29

at that point 100.0

at that time 100.0

at the same time 100.0

at the time 100.0

but then 100.0

but then again 100.0

by comparison 100.0

by contrast 100.0

by the way 50.0 50.0

by then 12.5 87.5

even before 50.0 50.0

even before then 50.0 50.0

even then 50.0 50.0

for example 100.0

for instance 100.0

for one 100.0

for one thing 50.0 50.0

Continued on next page
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Table 4.4 continued from previous page

Multi-token

Connectives
Exp. (%) Cont. (%) Temp. (%) Comp. (%)

in addition 100.0

in any case 100.0

in any event 100.0

in contrast 100.0

in essence 100.0

in fact 87.06 12.94

in other words 100.0

in particular 100.0

in short 100.0

in sum 100.0

in the end 36.36 18.18 27.27 18.18

in the meantime 93.33 6.67

in the meanwhile 100.0

in this way 100.0

in turn 33.33 33.33 33.33

just in case 100.0

later on 100.0

more accurately 100.0

no matter 100.0

on the contrary 100.0

on the other hand 100.0

on the other 100.0

quite the contrary 100.0

that is 100.0

For instance, in the dataset of PDTB-3 explicit discourse connectives with the con-

nective ‘as well,’ let C = ’as well’, and senses S1 = ’Expansion’ and S2 = ’Comparison’

in D1 (PDTB-3) with proportions for ‘Expansion’ at 35% and ‘Comparison’ at 65%,

the formula would be applied to the Wikipedia corpus as follows:

For n(‘as well’,Wikipedia) = 3428:

n(‘Expansion’, ‘as well’,Wikipedia) = 0.35×3428 ≈ 1200
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n(‘Comparison’, ‘as well’,Wikipedia) = 0.65×3428 ≈ 2228

Finally, we obtained the results depicted in Figure 4.1 .

74.4%

15.2%

8.4%
1.9%

Sense Frequency Distribution in PDTB-3
Senses
Expansion
Contingency
Comparison
Temporal

58.4%

14.2%

19.7%

7.6%

Sense Frequency Distribution in Train-Dev Data
Senses
Expansion
Contingency
Temporal
Comparison

Figure 4.1: Sense Frequency Distribution in Train-Dev and PDTB-3 Dataset

Finally, Table 4.4 and Table 4.5 respectively illustrate the accuracy rates correspond-

ing to levels 2 and 3 on the PDTB-3.

From this data, it is evident that there are significant differences in accuracy rates

among different levels of discourse meaning classification. For instance, despite an

overall improvement in accuracy at levels 2 and 3, certain specific types such as

‘Comparison.Contrast’ and ‘Temporal.Asynchronous’ exhibit lower accuracy rates.

This may reflect their lower distribution in real-world data and the complexity involved

in data annotation or interpretation.

We believe that enhancing the diversity and balance of Train-Dev samples, along

with improvements to the structure of the classification model, could lead to higher

predictive accuracy in future research.
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Sense Type Top-1 Accuracy(%) Top-2 Accuracy(%)

Comparison.Contrast 30.33 57.35

Contingency.Cause 68.41 85.85

Expansion.Conjunction 52.43 84.98

Expansion.Equivalence 42.24 60.87

Expansion.Instantiation 56.78 72.70

Expansion.Level-of-detail 79.05 93.63

Temporal.Asynchronous 27.03 48.65

Temporal.Synchronous 32.20 54.24

Table 4.5: Accuracy for Level 2: Top-1 and Top-2 Analysis

Sense Type Top-1 Accuracy(%) Top-2 Accuracy(%)

Contingency.Cause.Result 56.75 76.67

Expansion.Instantiation.Arg2-as-instance 56.78 72.70

Expansion.Level-of-detail.Arg1-as-detail 37.09 63.64

Expansion.Level-of-detail.Arg2-as-detail 76.47 94.12

Temporal.Asynchronous.Precedence 27.03 48.65

Table 4.6: Accuracy for Level 3: Top-1 and Top-2 Analysis
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5.1 Conclusions

In this paper, we explore the main components of the DRR task, particularly empha-

sizing the significance of IDRR, which presents greater challenges. Enhancing the

accuracy of IDRR is crucial not only for its own sake but also holds significant prac-

tical application in machine reading comprehension, text summarization, and other

downstream tasks.

We have selected a robust dataset from Wikipedia, utilizing explicit discourse

relation datasets to train our model. This strategic choice is aimed at overcoming the

common challenge of insufficient annotated data available for training neural networks.

Our research demonstrates the transferability from explicit to implicit relations by

training on explicit data for implicit task recognition. This approach not only simplifies

the training process but also reduces reliance on extensive manual annotations, which

are typically expensive and time-consuming. In this process, the dataset containing

explicit discourse relations serves as a raw data source for subsequent research.

Our principal contribution involves adapting and enhancing Amazon’s EMAT model,

evaluated using the latest PDTB-3 dataset provided for implicit discourse relation

recognition. The results show a significant improvement in the accuracy of recognizing

implicit discourse relations. Considering the limited number of multi-word discourse

connectives, thus our expanded vocabulary is quite limited, having a negligible impact

on the model’s parameter count while maintaining efficiency in enhancing performance.

As a result, This unique method of first predicting multi-word connectives and then

mapping them to a three-tier discourse relation hierarchy has proven more effective

than previous direct classification approaches, validating the efficacy of leveraging the

Masked Language Model (MLM) task of pre-trained models for discourse relation

recognition.

23
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5.2 Limitations and Future Work

While the current study successfully addresses several aspects as section 5 of implicit

discourse relation recognition, it also highlights its limitations. Future research can

build upon these insights to further refine and advance the field.

Data Expansion: In the selection of the training set for this paper, sentences contain-

ing explicit discourse connectives were directly retrieved, utilizing the ‘Explicit Relation

Senses and Explicit Connectives’ in Appendix A of PDTB-3 as the gold annotations

for Train-Dev dataset. For testing, ‘Implicit Relation Senses and Implicit Connectives’

from Appendix C of PDTB-3 were used as the gold annotations. Previous studies and

our own research have confirmed that training tasks using explicit connectives indeed

facilitate the recognition of implicit discourse relations. However, as mentioned in

Section 2.4, indiscriminate use of these artificial data can degrade the performance of

implicit discourse relation identification, preventing optimal results. Our approach to

obtaining the Train-Dev dataset in the most accessible manner was to reduce training

costs and indeed resulted in performance improvements. However, future studies could

explore using data augmentation techniques mentioned in Section 2.4 to further enhance

the accuracy of implicit discourse relation identification.

Evaluation Metrics and Model Comparison: Since our approach involves directly

predicting the connectives themselves and mapping connectives to relation senses

based on Appendices A and C of PDTB-3, the mapped senses often extend beyond a

single category, thereby rendering the task as non-binary and unsuitable for F1-score

calculation. This introduces limitations in comparison with previous studies, which

typically use both accuracy and F1-score as evaluation metrics. Consequently, our study

can only compare improvements in predictive accuracy with previous research.

Linking Explicit and Implicit Discourse Relations: One limitation of our current

approach lies in its handling of cases where explicit and implicit discourse relations

coexist within the same sentence or passage.

For instance, in the example from the PDTB-3 annotation manual—We’ve got to get

out of the Detroit mentality and be part of the world mentality—the explicit discourse

relation is expressed through the connective and (Expansion.Conjunction), while an im-

plicit discourse relation is conveyed through the word instead (Expansion.Substitution),

which suggests a substitutional relationship not directly linked to the explicit conjunc-

tion. In this scenario, the explicit and implicit relations are independent but co-occur,

creating a complex interplay that is challenging to capture accurately with traditional
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methods.

Our current model does not fully address such intricate cases where multiple,

potentially independent discourse relations are at play. This limitation suggests that

future research should focus on refining our approach to better identify and label these

layered discourse relations. Specifically, developing techniques to simultaneously

recognize explicit connectives and derive implicit meanings from the broader context

could enhance the model’s capability in such scenarios.

Handling Multi-Sense Annotations: Another limitation is the model’s ability to

handle cases where implicit discourse relations are annotated with multiple senses.

Annotators may perceive more than one valid sense within a single relation, especially

in complex sentences. This multiplicity poses a challenge for models trained to identify

a single, dominant sense. Future work could explore methods to incorporate multi-

sense annotations into the training process, allowing the model to better capture the

full spectrum of possible interpretations. This could involve augmenting the training

data with examples specifically annotated for multiple senses or expanding our model

into a multi-sense prediction framework that can predict multiple discourse relations

simultaneously.

Data Volume and Pre-training: Despite opting for a sufficiently fine-tuned dataset

considering cost issues, the volume of data used is still significantly less than that

employed by the pre-trained models themselves. Adding additional pre-training steps

could potentially enhance model performance. This approach would not only leverage

more extensive data handling but also incorporate a broader context of training, which

might improve the model’s ability to generalize across different discourse relations and

contexts.

Dataset Balance: The use of unbalanced Train-Dev dataset and test datasets im-

pacts the accuracy of identifying different levels of discourse relation meanings. This

imbalance can lead to models performing well on some discourse relation types while

underperforming on others, especially those less represented in the Train-Dev dataset.

Strategies such as stratified sampling and synthetic data generation might be employed in

future research to address these disparities, thereby providing a more robust framework

for discourse analysis across varied and complex datasets.

In summary, although this study makes significant strides in the field of implicit

discourse relation recognition, it also identifies several areas for improvement that

warrant further exploration in future research. The discussed limitations—spanning

data expansion, evaluation metrics, the handling of complex discourse relations, multi-
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sense annotations, and data balance—highlight the complexities inherent in this field

and underscore the need for continued innovation. By addressing these challenges,

future research can refine current models, improve the accuracy of discourse relation

identification, and contribute to a more nuanced understanding of implicit discourse.

Ultimately, these advancements will not only boost model performance but also deepen

our comprehension of the intricate ways in which discourse relations are conveyed in

natural language.
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Level-1 (class) Level-2 (type) Level-3 (subtype)

TEMPORAL SYNCHRONOUS -

ASYNCHRONOUS PRECEDENCE,

SUCCESSION

CONTINGENCY CAUSE REASON,

RESULT,

NEGResult

CAUSE+Belief REASON+Belief,

RESULT+Belief

CAUSE+SpeechAct REASON+SpeechAct,

RESULT+SpeechAct

CONDITION ARG1-AS-COND,

ARG2-AS-COND

NEGATIVE-CONDITION ARG1-AS-NEGCOND,

ARG2-AS-NEGCOND

PURPOSE ARG1-AS-GOAL,

ARG2-AS-GOAL

COMPARISON CONCESSION ARG1-AS-DENIER,

ARG2-AS-DENIER

CONTRAST -

SIMILARITY -

EXPANSION CONJUNCTION -

DISJUNCTION -

EQUIVALENCE -

EXCEPTION ARG1-AS-EXCEPT,

ARG2-AS-EXCEPT

INSTANTIATION ARG1-AS-INSTANCE,

ARG2-AS-INSTANCE

LEVEL-OF-DETAIL ARG1-AS-DETAIL,

ARG2-AS-DETAIL

MANNER ARG1-AS-MANNER,

ARG2-AS-MANNER

SUBSTITUTION ARG1-AS-SUBST,

ARG2-AS-SUBST

Table A.1: PDTB-3 Sense Hierarchy
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A B-F G-I J-Z

after all but then in addition later on

along with but then again in any case more accurately

and then by comparison in any event no matter

as a result by contrast in contrast, on the contrary

as an alternative by the way in essence on the other hand

as well by then in fact on the other

at that point even before in other words quite the contrary

at that time even before then in particular that is

at the same time even then in short

at the time for example in sum

for instance in the end

for one in the meantime

for one thing in the meanwhile

in this way

in turn

Table B.1: Multi-token connectives organized by starting letters
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Table C.1: Explicit Connectives and their Senses

Explicit Connectives Senses

after all Contingency.Cause+Belief.Reason+Belief,

Expansion.Conjunction,

Expansion.Level-of-detail.Arg2-as-detail

after that Temporal.Asynchronous.Succession

along with Expansion.Conjunction

and then Expansion.Disjunction

as a result Contingency.Cause.Result,

Contingency.Cause+Belief.Result+Belief,

Expansion.Level-of-detail.Arg2-as-detail

as an alternative Expansion.Disjunction

as well Comparison.Similarity,

Expansion.Conjunction

at that point Temporal.Synchronous

at that time Temporal.Synchronous

at the same time Temporal.Synchronous,

Expansion.Conjunction

at the time Temporal.Synchronous

but then again Comparison.Concession.Arg2-as-denier

but then Comparison.Concession.Arg2-as-denier

37
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Table C.1 – continued from previous page

Explicit Connectives Senses

by comparison Comparison.Contrast,

Comparison.Concession.Arg2-as-denier,

Expansion.Conjunction

by contrast Comparison.Contrast,

Comparison.Concession.Arg2-as-denier

by the way Comparison.Contrast,

Expansion.Conjunction

by then Temporal.Asynchronous.Succession|Contingency.

Cause.Reason,

Temporal.Asynchronous.Succession

even before then Temporal.Asynchronous.Succession|Comparison.

Concession.Arg2-as-denier

even before Temporal.Asynchronous.Precedence|Comparison.

Concession.Arg1-as-denier

even then Temporal.Asynchronous.Precedence|Comparison.

Concession.Arg2-as-denier

for example Expansion.Instantiation.Arg2-as-instance,

Contingency.Cause.Reason,

Expansion.Level-of-detail.Arg2-as-detail

for instance Expansion.Instantiation.Arg2-as-instance,

Expansion.Conjunction,

Expansion.Level-of-detail.Arg2-as-detail

for one thing Expansion.Instantiation,

Contingency.Cause.Reason,

Expansion.Conjunction,

Expansion.Instantiation.Arg2-as-instance,

Expansion.Level-of-detail.Arg2-as-detail

for one Expansion.Instantiation,

Expansion.Instantiation.Arg2-as-instance

in addition Expansion.Conjunction,

Expansion.Level-of-detail.Arg2-as-detail

in any case Comparison.Concession.Arg2-as-denier
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Table C.1 – continued from previous page

Explicit Connectives Senses

in any event Expansion.Conjunction,

Expansion.Level-of-detail.Arg1-as-detail

in contrast Comparison.Contrast

in essence Expansion.Conjunction

in fact Comparison.Concession.Arg2-as-denier,

Comparison.Contrast,

Expansion.Conjunction,

Expansion.Instantiation.Arg2-as-instance,

Expansion.Level-of-detail.Arg1-as-detail,

Expansion.Level-of-detail.Arg2-as-detail,

Contingency.Cause+Belief.Reason+Belief,

Contingency.Cause+Belief.Result+Belief,

Contingency.Cause.Reason,

Contingency.Cause.Result,

Expansion.Equivalence

in other words Expansion.Equivalence,

Comparison.Similarity,

Contingency.Cause.Reason,

Contingency.Cause.Result,

Expansion.Conjunction,

Expansion.Level-of-detail.Arg1-as-detail,

Expansion.Level-of-detail.Arg2-as-detail

in particular Expansion.Instantiation.Arg2-as-instance,

Expansion.Level-of-detail.Arg2-as-detail,

Expansion.Conjunction

in short Expansion.Level-of-detail.Arg1-as-detail,

Contingency.Cause+SpeechAct.Result+SpeechAct,

Contingency.Cause.Reason,

Contingency.Cause.Result,

Expansion.Conjunction,

Expansion.Equivalence,

Expansion.Level-of-detail.Arg2-as-detail
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Table C.1 – continued from previous page

Explicit Connectives Senses

in sum Expansion.Level-of-detail.Arg1-as-detail,

Expansion.Conjunction,

Expansion.Equivalence,

Expansion.Level-of-detail.Arg2-as-detail

in the end Comparison.Concession.Arg2-as-denier,

Comparison.Contrast, Contingency.Cause.Result,

Expansion.Conjunction,

Expansion.Level-of-detail.Arg1-as-detail,

Expansion.Level-of-detail.Arg2-as-detail,

Temporal.Asynchronous.Precedence,

Expansion.Equivalence

in the meantime Temporal.Asynchronous.Succession,

Temporal.Synchronous—Comparison.Contrast,

Temporal.Synchronous,

Temporal.Synchronous

in the meanwhile Temporal.Synchronous

in this way Contingency.Cause.Result

in turn Temporal.Asynchronous.Precedence,

Contingency.Cause.Result,

Expansion.Conjunction,

Expansion.Level-of-detail,

Temporal.Asynchronous

later on Temporal.Asynchronous.Precedence

more accurately Expansion.Substitution.Arg2-as-subst

no matter Comparison.Concession.Arg1-as-denier

on the contrary Comparison.Contrast,

Expansion.Level-of-detail.Arg2-as-detail

on the other hand Comparison.Concession.Arg2-as-denier,

Comparison.Contrast

on the other Comparison.Concession.Arg2-as-denier,

Comparison.Contrast

quite the contrary Expansion.Substitution
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Table C.1 – continued from previous page

Explicit Connectives Senses

that is Expansion.Equivalence,

Expansion.Level-of-detail.Arg2-as-detail,

Contingency.Cause.Reason,

Contingency.Cause.Result, Expansion.Conjunction,

Expansion.Level-of-detail.Arg1-as-detail


