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Abstract

As large language models (LLM) achieve groundbreaking performance in increasingly

diverse tasks in natural language processing (NLP), many applications invoke them

through expensive API calls. To minimise these costs, as well as the data exposure to,

and reliance on the LLM providers, multiple methods to effectively invoke them have

been recently proposed. These methods have demonstrated performance comparable

to LLMs while significantly reducing the frequency of LLM calls. However, since

most of these methods have been developed, fine-tuned, and evaluated with stationary

data-streams, their effectiveness on dynamic streams, common in real-world applica-

tions, remains unclear. To address this, we conduct experiments on Neural Caching,

an efficient LLM invocation method, where a smaller locally run model -the ‘student’-

is continuously trained on the responses of the LLM, gradually gaining proficiency in

independently handling user requests. A critical component of Neural Caching is the

policy that determines when the student should independently handle the request or

when it should redirect it to the LLM. The goal of this project is to evaluate the perfor-

mance of Neural Caching using the proposed selection policies, identify key factors

impacting performance, and explore potential optimisations for improved outcomes, all

under dynamic request streams.

i



Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Filippos Vlahos)

ii



Acknowledgements

I would like to sincerely express my strongest gratitude to my supervisor, Prof Ivan

Titov, as well as to Guillem Ramı́rez Santos for their continuous guidance, advice, and

support, for the constructive meetings, and for taking time to review my drafts and

provide insightful feedback. I would also like to thank Shriram, with whom I underwent

this journey, for the collaboration and discussions revolving our projects. Finally, I

would like to thank my family, friends, and girlfriend for always supporting me, and

motivating me throughout this thesis, and MSc degree.

iii



Table of Contents

1 Introduction 1

2 Background 4
2.1 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Dynamic Data-Streams . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Knowledge Distillation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Neural Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.1 Instance Selection Criteria . . . . . . . . . . . . . . . . . . . 8

2.6 Other Effective LLM-Invocation Methods . . . . . . . . . . . . . . . 10

3 Methodology 12
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 ISEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 OpenBook . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 RT-Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.4 FEVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Annotation by LLM . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Experiments and Results 16
4.1 Label Shift Experiments . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Label Shift Across Datasets . . . . . . . . . . . . . . . . . . 16

4.1.2 Adapting Neural Caching for Streams with Label Shifts . . . 19

4.1.3 Optimal Configuration . . . . . . . . . . . . . . . . . . . . . 24

4.1.4 Impactful Features in Label Shifts . . . . . . . . . . . . . . . 25

4.2 Covariate Shift Experiments . . . . . . . . . . . . . . . . . . . . . . 29

iv



4.2.1 Sentence Length . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Typos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Discussion 32
5.1 Selection Policies under Dynamic Streams . . . . . . . . . . . . . . . 32

5.1.1 General Observations . . . . . . . . . . . . . . . . . . . . . . 32

5.1.2 Baseline VS. AL-based Selection Policies . . . . . . . . . . . 33

5.1.3 In-Depth Analysis of AL-based Selection Policies . . . . . . 34

5.2 Calibration Required upon Data-Stream Distribution Changes . . . . 36

5.3 Prioritising Hard Examples may be Beneficial . . . . . . . . . . . . . 37

5.4 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 38

6 Conclusions 39

Bibliography 41

A Fine-Tuning Dynamic Thresholds 48

B LLM-Prompt to Insert Typos 50

C Raw Selection Policy Values 51

v



Chapter 1

Introduction

The usage of Large Language Models (LLMs) has surged in recent years due to their

impressive performance across a multitude of natural language tasks in zero- and

few-shot settings, where they excel in understanding and generating human-like text.

Given the high costs and significant computational resources required to train and host

LLMs, many users are instead turning to readily available LLM services offered through

application programming interfaces (APIs) [49, 54]. In addition, many state-of-the-art

models such as GPT-4 [2] and Claude are exclusively available as payed API services.

Using those services can incur users a significant financial overhead, especially when

processing large continual data-streams. Furthermore, as the latest LLMs contain

billions of parameters, training them, and invoking them frequently translates into

substantial energy consumption and carbon emissions [40, 53]

To minimise these costs, as well as reduce data exposure, and decrease reliance on

LLM service providers, while still benefiting from LLMs’ capabilities, multiple methods

for effective invocation have been proposed. These methods focus on settings in which

there is an incoming data stream as the input, and have been found to substantially

reduce costs without a significant loss in performance [54]. However, they have been

designed and evaluated, almost exclusively, on scenarios where the incoming data

stream is stationary. That is, they rely on the assumption that the statistical properties of

the incoming data distribution remains constant over time.

This is a significant omission as the assumption that incoming streams are stationary

does not hold in many real-world applications. On the contrary, data-streams often are

dynamic or drifting, which means that they exhibit changing statistical properties of

their data distributions. Real world scenarios exhibiting drifting streams include search

engine and social media monitoring, where specific topics become trending and are

1



Chapter 1. Introduction 2

highly searched/discussed, and the stock market, where a company’s shortcomings or

successes lead to higher trading volumes of its shares.

This distinction between stationary and drifting data-streams is of particular im-

portance, as it is known that it can affect performance of online active learning (AL)

methods. Strategies designed for stationary data-streams often result in sub-optimal

performance when applied to drifting data-streams [12], which raises the question, how

do the effective LLM invocation methods proposed perform under dynamic streams?

In this report, we study the effect of drifting data-streams on an effective invocation

setup called Neural Caching, which has been recently introduced by Ramirez et al.

[39]. The setup involves a smaller language model, referred to as the student, being

continuously trained on the LLM’s predictions and, as the student’s accuracy increases,

it increasingly handles more requests independently as seen in Figure 1.1. The student

therefore, can be thought of as a smart cache, entailing the LLM’s past predictions.

A key element in Neural Caching is the policy determining which requests the

student should process independently and which should be delegated to the teacher

(LLM), the response of which is subsequently used to train the student.

Figure 1.1: One iteration of Neural Caching (Figure from [39]): A student generates a

response to a user request. The policy algorithm determines whether to rely on the

student’s response or to call an LLM. LLM responses are stored and used to re-train the

student as more data becomes available.

In this thesis we do not focus on the performance gains of the setup, which have been

demonstrated by [39, 49], but rather on the effect of various dynamic data-streams on its

performance. This work aims at exploring how the different selection policies and the
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Neural Caching setup itself as a whole react to different types of drifting data-streams,

find key factors that impact performance in the drifting stream scenario, and identify

performance improvement adjustments.



Chapter 2

Background

2.1 Active Learning

As state-of-the-art natural language processing (NLP) models are based on deep learning

architectures which are data-hungry and usually require extensive labeled data to deliver

good performance [57], Active Learning (AL) reduces costs by selecting a small

proportion of samples from unlabeled data for labeling and training. To accomplish this,

AL selects the most informative examples from the unlabelled data. These data-points

are then presented to an annotator, a system responsible for labeling data-points, and

these labels are subsequently used to train a model. In the current study, similarly

to AL, we want to select the most informative, but also the hardest examples, for

LLM-annotation which are then used to train a smaller model that handles requests

independently to reduce costs.

There are three main scenarios in AL: (i) membership query synthesis, (ii) pool-

based sampling, and (iii) stream-based selective sampling [27, 45]. In membership

query synthesis, the learning algorithm can either select examples for labeling from the

input space or generate new examples autonomously. In the pool-based scenario, the

learner has access to a fixed set of previously encountered examples and can request

labels for any of these instances. This study, however, focuses on the third framework,

stream-based AL. Specifically, we investigate AL in the context of streaming data for

classification tasks. In this framework, examples continuously emerge from a data

stream, and the learning algorithm makes real-time decisions about whether to query

the teacher model.

In online AL, there is no large unlabelled dataset available, but instead, we are given

one unlabelled instance at a time in a continuous stream and need to decide at that time

4



Chapter 2. Background 5

whether to request annotation [12]. In general, online AL is crucial for various real-

world applications where real-time decision making is required. A well-known example

is the secretary problem [12, 16], where a hiring manager makes hiring decisions for

each applicant as they are interviewed, without the benefit of seeing all the applicants.

An example in NLP is a spam filter that has to decide whether to flag an email as spam

in real-time.

2.2 Dynamic Data-Streams

In AL, often the incoming time-varying data-streams are affected by shifts which can

occur at different speeds, severity, and distributions. These distribution shifts are often

classified into three main categories [12] depending on whether they concern the feature

space x or the output dimension y as seen in Figure 2.1.

A shift that only affects the input distribution p(x), and not the conditional distribu-

tion p(y|x), is referred to as a covariate shift. Under a covariate shift for two time steps

ti and ti+∆, we have that pti(x) ̸= pti+∆
(x) and pti(y|x) = pti+∆

(y|x). An example of such

shift would be a stream of handwritten digits first appearing on white paper followed by

digits written on colored paper, altering the feature distribution with the underlying task

remaining the same.

Conversely, a concept shift is when the conditional distribution changes, and can

be seen as changes in the data distribution and evolution of relationships between

attributes and the target feature over time [12, 50]. In this case we have that pti(y|x) ̸=
pti+∆

(y|x). When a concept drift occurs, the model’s predictive power significantly

declines, necessitating a re-fit or replacement [12].

Lastly, a common type of distribution shift is a label shift, where the conditional

distribution p(x|y) is fixed but the label distribution p(y) changes over time [55] leading

to pti(y) ̸= pti+∆
(y). This type of shift is encountered in multiple real-world scenarios

such as prediction of diseases like influenza [12], whose distribution can dramatically

change depending on the season.

It is worth mentioning that it is possible for a label shift to indirectly cause a covariate

shift. This is because when p(y) changes, p(x) may also be affected considering it is

derived from p(x|y) and p(y). However, it is important to note that covariate and label

shifts usually refer to different phenomena as the former refers specifically to changes

in p(x), while the later to changes in p(y).

Data drifts are also classified based on the speed of change in sudden drifts which
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occur in short periods, gradual drifts which occur with a moderate speed, and incre-

mental drifts which are characterised by slow speed of change, and differences between

data instances in the transition period may not even be statistically significant [50].

In this work, we focus on investigating sudden label and covariate shifts, while

excluding concept drifts, as we found them to occur less naturally in the selected NLP

tasks, making them less relevant. Another reason for this omission is that when a

concept drift occurs, the model needs to be replaced [12], a scenario we do not consider

within this work1. We also leave incremental and gradual speeds of change in the Neural

Caching setup for future research.

Figure 2.1: The three main categories of distribution shifts on a dataset. Illustration by

[6]. The dotted line is the decision boundary between the two classes; i.e., the blue and

yellow data points.

2.3 Domain Adaptation

Domain adaptation is a special case of transfer learning which refers to a class of

machine learning problems where either the tasks or domains may change between

training and testing [15]. In domain adaptation, only domains differ while tasks remain

unchanged, and the goal generally is to train a model from a source labeled data that

can be generalized to a target domain by minimizing the difference between domain

distributions.

The most relevant type of domain adaptation to this work is the so called closed set

domain adaptation. In this type of domain adaptation the feature (x) and label (y) spaces

are identical between domains, while their probability distributions may differ [15, 26].

The possible types of domain shifts in this scenario are covariate, concept, and label

shifts. A difference between our work and typical domain adaptation settings is that we
1In the context of Neural Caching, pottentially, both the teacher and student models would need to be

replaced upon a concept drift.
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do not have any source labeled data nor a target domain to generalise to, but rather a

continuous unlabelled stream that exhibits domain shifts throughout time to which we

seek to adapt to.

2.4 Knowledge Distillation

Knowledge Distillation (KD) [21] is a technique where knowledge is transferred from

a large, complex, parameter-heavy model (teacher) to a smaller, more lightweight,

and efficient one (student), with the intention to retain performance while reducing

computational costs. The category of methods most closely related to ours is active KD

which applies AL to KD in scenarios where a stream of unlabeled data is provided [18].

In our case, we want to distill the knowledge of the LLM into the smaller student model

by retraining it on the LLMs outputs.

Notable advancements in active KD include the efficient distillation of LLMs

achieving comparable performance with reduced model sizes [19, 28] and improving

question answering performance by distilling the capabilities of BERT [13] into smaller

models [10, 41].

2.5 Neural Caching

The Neural Caching problem was introduced in 2023 by Ramirez et al. [39] and is

formalised as a problem of optimising the usage of an LLM when predictions are

required for an input stream. As more predictions are obtained from the LLM, they are

used to train a student model with the end goal to achieve the highest level of service

possible within a set budget of LLM calls. Hence, calling the LLM serves both to attain

high accuracy for as well as to train the student model.

Formally, the goal is to establish a mapping between elements in the input space X

and the corresponding labels in the output space Y . Initially, we have a student model S

in a state S0 and we have access to a teacher model T (i.e. the LLM). The task therefore,

is to predict labels for a sequence of n example (x1, ...,xn). Every f processed requests

the student model is retrained on the labels obtained from T . When the student model is

retrained, we reset it to its original pretrained state S0 and then use parameter-efficient

fine-tuning.

For every input xi, the student model Si/ f predicts the label ŷS
i and, given that the

budget constraint is satisfied, we have the option to request the label ŷT
i from the teacher
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model which incurs a cost of c(xi). The budget constraint is simply that the total cost

must be less than a fixed budget b. Finally, the label ŷi for input xi is returned which is

equivalent to either the teacher’s or the student’s label.

The level of service, that is, the effectiveness of the querying strategy, is assessed

by the accuracy of the predicted label ŷi compared to the actual label yi on the online

examples.

2.5.1 Instance Selection Criteria

The instance selection criteria or selection policy, is the strategy that determines which

examples will be annotated by the LLM. Similarly to [39], policies inspired from AL

are used in addition to two baseline methods. Methods from two commonly used broad

families, as identified by [14, 31], are examined in this work, namely two uncertainty or

confidence-based methods and one diversity-based method.

Uncertainty methods measure the uncertainty of a trained model on how to label a

new example [45]. Uncertainty can reflect either aleatoric uncertainty, due to ambiguity

inherent in the example, or epistemic uncertainty, due to limitations of the model

[24, 31]. In our setup, we assume epistemic uncertainty to be prevalent, as the student

model should not be proficient enough to handle all data-points, especially in the

beginning of the stream. Uncertainty methods are some of the most commonly used

query frameworks, straight-forward to implement, and computationally efficient [44].

In this work, the methods of this family examined are Margin Sampling and Prediction

Entropy.

Methods belonging to the diversity-based family attempt to select diverse data-points

that can cover the entire feature space by considering the distance between samples

[25]. This family of methods attempts to address a weakness of the uncertainty-based

family, that is, the selection of duplicate or very similar samples. In this study, Coreset

[44] is the method of this family we examine.

2.5.1.1 Baseline Selection Policies

The two baseline selection policies used are front-loading (FL) and Random (Rand).

In FL, all incoming requests are selected for LLM annotation until the entire budget is

used. Once the budget is used and the student is retrained, all subsequent requests are

handled by the student model alone.
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In Rand, we select requests for LLM annotation randomly, with a uniform sampling

rate across the entire incoming stream.

2.5.1.2 Margin Sampling (MS)

Margin sampling [42] takes into account the difference between the posterior probabili-

ties of the two most probable labels, referred hereafter as margin. Intuitively, instances

with large margins are easy, since the classifier has little doubt in differentiating between

the two most likely class labels. Instances with small margins are more ambiguous, thus

knowing the true label would help the model discriminate more effectively between

them [45].

Margin(xi) = logP(yi = c∗1|xi)− logP(yi = c∗2|xi) (2.1)

In Equation 2.1, c∗1 and c∗2 are the first and second most likely classes respectively,

based on the posterior probability distribution P(yi|xi) computed by the student model.

MS is a popular selection policy in AL [7, 43]. In the original Neural Caching paper

[39], it was found to be the most effective method for stationary streams while it has

also been successfully used in other effective invocation methods [38].

2.5.1.3 Prediction Entropy (EN)

The entropy [46] of a probability distribution measures the amount of disorder or ran-

domness in the distribution. In AL, the entropy of a model’s predicted class probabilities

for a data-point can be used as an indicator of the model’s uncertainty about the correct

class label for that data point [12]. Thus, we select data points for annotation that

produce an entropy value above a certain threshold, with the entropy being calculated

as follows:

Entropy(xi) =−∑
j

P(yi = c∗j |xi)logP(yi = c∗j |xi) (2.2)

where c∗ is the most likely class based on the posterior probability distribution

P(yi|xi) computed by the student model. Entropy is a commonly used uncertainty-based

selection policy in AL [31, 39, 49].
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2.5.1.4 Coreset (CS)

On every new instance, Coreset [44], uses an encoder to generate its embedding repre-

sentation. It then computes the cosine similarity between this new embedding and the

embeddings of previous examples. If the similarity with the most similar past instance

xi annotated by the teacher (LLM) is below a threshold s, then the instance is selected

for annotation by the teacher model. Similarly to [39], the embeddings are obtained by

averaging the encoder’s representation across tokens, a technique proven effective in

sentence embedding benchmarks [33]. GPTCache [8], a widely used effective invoca-

tion method also uses embeddings to create a ”semantic cache” to decide whether an

input request should be labelled by an LLM.

2.6 Other Effective LLM-Invocation Methods

Stogiannidis et al. [49] also explore the Neural Caching problem with a similar setup,

where an LLM (GPT-3 or GPT-4) is used as a teacher model, and a simpler cost-effective

model (K-NN or Multi-Layer Perceptron) as the student. In their experiments they

used Neural Caching to tackle an intent recognition and a sentiment analysis dataset.

The selection policy they employ is a combination of the entropy of the probability

distribution produced by the student model for the incoming instance, and the distance

of the vector representation of the incoming instance from the centroid of the vector

representations of the k most similar cached instances. Their results showed promise

for Neural Caching as calls to the teacher could be significantly reduced (by ≈ 33%

with only a slight performance drop (0.37 %).

A different setup introduced by Nie et al. [34] involves a series of different student

models of increasing complexity where smaller models progressively learn from the

ongoing outputs of an LLM. In this work the objective is to learn a “cascade” of models

(instead of just a single one as in Neural Caching) starting with lower-capacity models

such as logistic regression, and ending with a powerful and expensive LLM. Which

model is used for which input is determined by a deferral policy which initially allows

most examples to reach the LLM and as the setup becomes more stable, and the smaller

models can successfully handle most examples, only harder examples reach the LLM.

Their experiments showed that this setup can achieve performance comparable to LLMs

while significantly reducing inference costs. Additionally, they tested the robustness of

their setup by introducing a covariate shift and finding minimal performance decline.
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This is the only effective LLM invocation method we are aware of in which the impact

of drifting data-streams is analysed.

More recently, Ramirez et al. [38] introduced a setup where instead of retraining a

small auxiliary model, they use two LLMs, a smaller and a larger one. Their approach

removes the additional complexity of re-training a student model and relies on the

information within the LLMs. They use MS, which we also employ, as their selection

policy and show that it performs consistently well on a range of short-generation tasks.

Similarly to Neural Caching, they use cascading, i.e. all queries are passed through the

small model, and depending on its output, the (large) LLM is invoked.



Chapter 3

Methodology

In this chapter we present the utilised datasets, how we simulate online LLM annotation,

details of our experimental setup, and our method of evaluation.

3.1 Datasets

In this work, as in [39], we focus on classification tasks using four datasets. We use all

four in the first experiment to derive some general, initial results, while one is used in

all further experiments allowing to go into more depth and analyse multiple aspects of

the effect of dynamic request streams in the Neural Caching problem.

3.1.1 ISEAR

The International Survey on Emotion Antecedents and Reactions (ISEAR) [47] is a

psychological dataset that contains responses from individuals across various countries,

detailing their emotional experiences. Participants were asked to recall instances where

they felt one of seven emotions: joy, fear, anger, sadness, disgust, shame, or guilt.

They described the situation, their emotional reactions, and the consequences of those

emotions. The dataset contains 6068 data-points with seven possible classes.

ISEAR has been widely used in NLP [39], with recent research continuing to use it

extensively in areas such as emotion detection [1, 3], but also in other ML tasks such as

in effective LLM innovation research [34, 38, 39]

12
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3.1.2 OpenBook

OpenBook [32] is a dataset modelled after open book exams for assessing human

understanding of a subject. The dataset consists of 5957 multiple-choice elementary-

level science questions derived from science textbooks, with the 4 possible classes

being ‘A’, ‘B’, ‘C’, and ‘D’. Each instance consists of a question, along with a common

knowledge fact that can be used to answer it. This dataset is particularly challenging as it

requires multi-step reasoning, use of additional common and commonsense knowledge,

and rich text comprehension to choose the correct answer. OpenBook is commonly used

to benchmark state of the art models such as Llama-2 [52] on commonsense reasoning.

3.1.3 RT-Polarity

Polarity [36] is a binary sentiment classification dataset consisting of 10662 movie

reviews labeled as either ‘positive’ or ‘negative’ with an equal number of examples

belonging to each class. Due to its simplicity and effectiveness, Polarity has been

extensively used in NLP research in developing and benchmarking models for sentiment

analysis tasks [58].

3.1.4 FEVER

The Fact Extraction and VERification (FEVER) dataset [51] is a fact checking dataset

that contains claims derived from Wikipedia developed to evaluate the ability of models

to verify claims against a corpus of evidence. We use 6610 fact data-points followed

by the question “Was this claim true or false?”. This is another binary classification

task with the two classes being “true” and “false”. FEVER tests our setup’s ability to

perform reasoning and information verification, and has been used to benchmark recent

KD setups [34, 39].

3.2 Annotation by LLM

In this study, the online setup is simulated by using the datasets1 created by [39] which

contain LLM predictions for all data-points of each of the four tasks. The soft labels in

the dataset have been generated by OpenAI’s text-davinci-003 an InstructGPT-based

model [57].
1https://huggingface.co/datasets/guillemram97/cache llm
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InstructGPT models are based on GPT-3 [11], which is fine-tuned using supervised

learning on a set of prompts along with demonstrations of desired model behaviour.

Then, a dataset of rankings of model outputs is collected, which is used to further

fine-tune this supervised model using reinforcement learning from human feedback

[35].

As observed by [39], the LLM achieves considerably better accuracy than the

student model, and slightly better accuracy than when compared to the student trained

on 5000 gold labels. This confirms the usefulness of applying the Neural Caching setup

on the selected tasks as it is possible to achieve similar accuracy to the LLM while

reducing the number of LLM invocations and therefore reducing costs.

3.3 Experiment Details

The experiment setup is similar to [39] as their publicly available repository2 was

our starting point, and we extended it to experiment on drifting data-streams. Upon

completion, our code was also made publicly available on GitHub3 for reproducibility

and future use.

All experiments have been run with three random seeds, which also determine the

ordering of examples where applicable, with the average scores being presented for

robustness. For simplicity, a constant cost per query c(xi) = 1 is used.

In our experiments, the student model is a pre-trained T 5base transformer, a text-to-

text model [37]. For retraining, we freeze the model’s original weights and incorporate

Low-Rank Adaptation (LoRA) layers for parameter-efficient fine-tuning (PEFT) [22].

PEFT is a practical approach that enables efficient adaptation of a pre-trained model

to a specific task with minimal additional parameters. This method selectively adjusts

a small subset of the model’s parameters while keeping the majority unchanged [20].

Employing PEFT is particularly beneficial in zero- and few-shot settings like ours,

where it facilitates faster and more accurate predictions [29]. In this scenario, although

the student model is lightweight enough to not require expensive hardware, it is still

able to adapt and learn a task using PEFT for efficiency.

Similarly to [39], a LoRA adapter is added to the query, key, value, and output

weights in each self-attention layer of T5, the LoRA rank is set to r = 16, the scaling to

2Neural Caching Repository: https://github.com/guillemram97/neural-caching
3Neural Caching Drifting Data-Streams Repository: https://github.com/FilipposVlahos/

neural-caching-temporal

https://github.com/guillemram97/neural-caching
https://github.com/FilipposVlahos/neural-caching-temporal
https://github.com/FilipposVlahos/neural-caching-temporal
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α = 0.25, the learning rate to η = 5 ·10−4, and training batch size m = 16.

The student model is fine-tuned using the cross-entropy loss on the log probabilities

assigned by the teacher in each class, as [39] found this to be slightly beneficial over

using only the most likely class. The accumulated data from the LLM is split into

training and validation sets, and each student is trained from scratch for 30 epochs with

early stopping with patience of five epochs.

3.4 Evaluation

To report accuracy across budgets, the corresponding Area Under the Curve (AUC)

divided by the budget range is used to obtain an average accuracy. The budget range

explored is from 1000 to 3500 with a step of 500.

We only consider online accuracy, which is the accuracy of the setup on the incoming

stream, in this study, rather than final accuracy, which is the accuracy of the retrained

student model on a test dataset upon completing a simulation. We justify this as we are

mainly interested in how Neural Caching performs while the data drifts occur, rather

than how the student model performs on stationary data at the end of the simulation.



Chapter 4

Experiments and Results

In this chapter, we present the experiments conducted along with their respective results.

We show our experiments on label shifts in Section 4.1, and on covariate shifts in

Section 4.2. The results presented here are further discussed in Chapter 5.

4.1 Label Shift Experiments

In this section, we first present our results from simulating label shifts in the input data-

stream across all four datasets. Next, we focus on the ISEAR dataset aiming to enhance

performance under label shifts and, more broadly, any non-stationary input stream.

Upon modifying the setup we analyse the behaviour of the AL strategies pre- and post-

adaptation, and using the adapted setup, we rerun the label shift experiment across all

datasets. Finally, to understand aspects of labels shifts that impact performance, we run

two more experiments on ISEAR.

We only use one dataset for the more in-depth experiments due to constraints in

time and to make the analysis of the results easier. The ISEAR dataset was chosen for

two reasons, (i) it consists of multiple classes which makes it more suitable to study

label shifts, and (ii) its classes (emotions) are semantically related to the examples, as

opposed to OpenBook which contains multiple choice questions with classes A, B, C,

and D.

4.1.1 Label Shift Across Datasets

In this first experiment we simulate sudden label shifts on each dataset. To do so,

we arrange the data-points of each dataset based on their label. This results in all

16
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examples belonging to the same label to appear sequentially, followed by examples

belonging to the next label and so on. We arrange the labels in random order, and as each

experiment is run thrice, with a different seed each time, different sorting combinations

are performed in each simulation and an average accuracy is calculated.

Label shifts are expected to deteriorate performance, especially for the baseline

selection policies [39], as when a label shift occurs, the student model will have been

last retrained on data-points belonging to previously encountered classes. As examples

belonging to the previously ”unseen” class appear, the model will be strongly biased to

predict previous classes resulting in the accuracy dropping significantly until the student

is retrained again.

For this first experiment we use the same hyperparameters used by [39] for stationary

request streams. These hyperparameters consist of a retraining frequency f = 1000,

and of the following thresholds for the AL selection policies: MS=5, CS=0.9, EN=0.5.

These hyperparameters have been optimised for stationary streams and are used here to

examine the impact on performance upon introducing dynamic streams to a setup tuned

for stationary streams.

The results are reported in Table 4.1 and the respective accuracy curves in Figure

4.1. As expected, we observe that consistently, across datasets, applying a label shift

reduces performance. Looking closer at each task, starting from ISEAR, surprisingly

the Rand selection policy is the one least affected by the shift (7% drop) while all the

remaining ones suffer a more significant drop (≈ 10%).

OpenBook is the task with the highest drop in performance, with the only policy

without a significant drop being CS, which was already performing poorly with no drift

present. FL slightly outperforms CS in this task making it the most successful policy.

This is the hardest task, but also the only one in which the labels have no semantic

relation with the corresponding example, which could explain the severity of the drop.

A multiple choice question being annotated by the LLM with the answer being ‘A’

does not provide information to the model about the answer of subsequent questions.

Therefore, annotating an example here serves mostly to attain higher accuracy rather

than to train the student which is less beneficial as it results in the student being biased

towards the label most present in the training data. This difference could explain why

the baseline methods perform the best in this task regardless of the shift.

Similarly to OpenBook, CS also performs comparably well in FEVER as it surpasses

its accuracy with stationary streams where again, it was already performing poorly.

Finally, in Polarity we observe the least performance decay overall which can be



Chapter 4. Experiments and Results 18

attributed to it being the easiest task based on accuracy, as well as on it being a binary

classification task, which means that there is only single label shift transition.

Overall, we observe an interesting switch in the performance of the baseline policies.

While in stationary streams FL was the better method reaching a performance close

to the AL-policies, when introducing a label shift FL becomes the worst performing

policy, and Rand performs closer, if not better, to the AL-inspired strategies. From the

AL-based policies EN seems to have the most consistent performance across tasks when

label shifts are introduced.

(a) ISEAR

Shift Label None

Margin Sampling 0.564 0.656
Coreset 0.516 0.639

Entropy 0.566 0.650

Front Loading 0.512 0.637

Random 0.529 0.598

(b) OPENBOOK

Shift Label None

Margin Sampling 0.392 0.680

Coreset 0.444 0.490

Entropy 0.394 0.633

Front Loading 0.444 0.688
Random 0.471 0.598

(c) FEVER

Shift Label None

Margin Sampling 0.597 0.716
Coreset 0.681 0.635

Entropy 0.657 0.714

Front Loading 0.505 0.703

Random 0.645 0.678

(d) POLARITY

Shift Label None

Margin Sampling 0.870 0.888
Coreset 0.828 0.877

Entropy 0.873 0.882

Front Loading 0.824 0.880

Random 0.864 0.866

Table 4.1: Online Accuracy (AUC) for Neural Caching when faced with a Label Shift and

with no shift (i.i.d.) in the incoming stream. The same hyperparameters used by Ramirez

et al. [39] for a stationary request stream were used for this experiment. Highlighted are

the best accuracies achieved for each shift. A significant performance drop is observed

across the datasets when a label shift is applied.
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Figure 4.1: Accuracy curves with respect to budgets in the Neural Caching problem with

an incoming stream exhibiting a label shift. Error lines indicate variance. The simulations

have been run using the hyperparametes used by Ramirez et al. [39].

4.1.2 Adapting Neural Caching for Streams with Label Shifts

In the experiments in the previous section we saw how significantly dynamic label drifts

reduce performance. This drop is not surprising as discussed in Section 4.1.1, but it is

likely to have been intensified by the experimental set-up being originally developed

for, and assessed on, stationary rather than dynamic data-streams. It is known that a

setup designed for stationary streams, when applied to dynamic ones, often performs

sub-optimally [12]. This naturally raises the question whether adapting parts of the

setup and/or the AL-based strategies could contain this performance decline or perhaps

even revert it.

4.1.2.1 Increasing Retraining Frequency

The first adaptation that we hypothesise will improve performance for streams with

dynamic label shifts is to increase the retraining frequency from f = 1000 to f =

500. A higher retraining frequency is possible to improve performance regardless of

the incoming data distribution, but we hypothesise that when drifts are present, the
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improvement will be greater. The reason behind this is that increasing f means that

retraining is more likely to occur closer to when label drifts occur, thus enabling the

student model to detect the drift faster by being trained on the new data quicker. This

change should result into a quicker reaction by the Neural Caching setup to drifts

without allowing the performance to drop as much.

Our experiment results are presented in Table 4.2 where we notice that indeed,

increasing the retraining frequency is beneficial. We observe a stronger performance

increase on dynamic rather than stationary streams. Specifically, the performance of

MS increases only with a label shift present, while EN and Rand have a much stronger

performance improvement under label shifts than they do with no shifts. As expected, a

higher f seems to enable Neural Caching to respond more swiftly to shifts. In contrast,

when no shifts are present, this advantage diminishes, leading to only marginal gains or

no improvement at all, a result that agrees with previous studies [39].

It is worth noting that increasing the retraining frequency comes with the increased

computational costs of retraining the student model more frequently, and in cases where

the retraining does not take place asynchronously, with some downtime necessary each

time the student model is retrained. Consequently, and based on our results, we would

mostly recommend reducing the retraining frequency in cases where data drifts are

expected to be present in the incoming stream.

Subsequent label shift experiments in this section are run with a retraining frequency

of 500.

Shift Label None

Retraining Frequency 500 1000 500 1000

Margin Sampling 0.572 0.564 0.656 0.656

Coreset 0.516 0.516 0.639 0.639

Entropy 0.586 0.566 0.657 0.650

Front Loading 0.512 0.512 0.637 0.637

Random 0.575 0.529 0.613 0.598

Table 4.2: Online Accuracy (AUC) for Neural Caching comparing a higher retrain fre-

quency (500) to the one previously used (1000) on ISEAR exhibiting a label shift and no

shift in the incoming stream. We notice that the benefit of the higher frequency is more

significant on the dynamic stream.
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4.1.2.2 Window-Based Online Active Learning

Often in AL scenarios with drifting streams, as new examples are introduced, older ones

become increasingly irrelevant and eventually, when used for retraining, can lead to a

drop in performance [17]. For instance, in a spam detection system that continuously

learns from new emails, using old examples from years ago, when spam patterns were

different, can cause the model to mistakenly flag current emails as spam, thereby

reducing its accuracy.

Motivated by this, we hypothesised that as label shifts occur, older data-points

biasing the student model to predict classes encountered in the beginning of the stream

will not be useful for retraining once examples from that class stop occurring in the

stream. To address this, we implement a simple window based online AL approach as

seen in Figure 4.2 from [12], where instead of storing all examples previously selected

for LLM annotation and using them to retrain the student, we introduce a buffer that

only stores the most recent k examples and deletes older ones. This implementation

acts as a simple forget mechanism. In our experiment, k equals the retraining frequency

f , so at most, the student will be retrained on the last 500 data-points selected for LLM

annotation.

The results are presented in Table 4.3 and by comparing them to those in Table 4.2,

we observe that the forget mechanism does not benefit all selection policies, but EN

which benefits from a small performance gain, and particularly Rand which becomes

the most successful policy. On the other hand, MS exhibits a minor accuracy drop,

while CS exhibits a more significant decay in performance (≈ 4%).

This poor performance may be attributed to the fixed threshold of the AL-policies

being sub-optimal with this configuration due to the changes in the AL-policy values

caused by training on much fewer examples which would explain why only Rand’s

performance significantly increases.

4.1.2.3 Fine-tuning Thresholds

Besides the retraining frequency and forgetting old examples, the AL selection policies

themselves could be improved as they were also fine-tuned, and evaluated on stationary

streams.

First, we attempted to fine-tune the thresholds for each AL strategy to see if the

values optimised for stationary streams translate well when faced with dynamic streams.

The results are presented in Table 4.7 where we first observe that fine-tuning the
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Figure 4.2: Window-based online Active Learning. Figure from Cacciarelli et al. [12].

Strategy Online Accuracy (AUC)

Margin Sampling 0.568

Coreset 0.473

Entropy 0.588

Front Loading 0.504

Random 0.591

Table 4.3: Online Accuracy (AUC) for Neural Caching on ISEAR with window-based

online AL under label shifts, using only the previous k = f = 500 LLM annotated

examples are used to retrain the model.

threshold results in some performance gains for all policies under both stationary and

dynamic label shifts. More interestingly, we notice that the optimal thresholds differ

between stationary and dynamic streams demonstrating the importance of adapting the

setup upon changes in the distribution of the incoming data-stream.

Furthermore, we notice that a smaller threshold performs better for label shifts in

all three strategies, contrary to the stationary stream where larger ones perform better.

This could be because under label shifts, AL-based selection policies (EN/CS/MS) may

display increased confidence after retraining on examples belonging to the same class,

until the shift occurs, resulting in fewer examples being delegated to the more accurate

LLM.

4.1.2.4 Dynamic Threshold

In the previous experiment we saw that different threshold values work better depending

on the incoming stream distribution, but what if instead of having a fixed threshold, we
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Shift

Thr. Label None

4.0 0.576 0.660

4.5 0.565 0.656

5.0* 0.565 0.656

5.5 0.570 0.660

6.0 0.557 0.665

Table 4.4: MS

Shift

Thr. Label None

0.8 0.536 0.622

0.85 0.513 0.637

0.9* 0.514 0.639

0.95 0.515 0.639

1.0 0.514 0.641

Table 4.5: Coreset

Shift

Thr. Label None

0.4 0.585 0.658

0.45 0.594 0.644

0.5* 0.584 0.657

0.55 0.590 0.665
0.6 0.589 0.643

Table 4.6: Entropy

Table 4.7: Online Accuracy (AUC) for Neural Caching on ISEAR under label shifts

when fine-tuning the threshold of the AL policies. The policies we fine-tune are Margin

Sampling, Coreset, and Entropy. We notice that the optimal hyperparameters differ

consistently between the two input distributions.

had a mechanism that dynamically adapts the threshold value? We introduce such a

mechanism by setting the threshold T of the t-th example as follows:

Tt = µt ±σt ∗ z (4.1)

where µ is the mean and σ is the standard deviation of the strategy-value (MS/CS/EN)

of the past x examples up to time t. The scaling factor z determines how many standard

deviations away from the mean the threshold should be set and is fine-tuned separately

for each AL-policy. In our experiment we’ve set x = 50, and have fine-tuned z finding

that the optimal value for MS and EN is z= 0.8 and for CS z= 0.9. We report the results

of our fine-tuning experiments of z in Appendix A. The ± in Equation 4.1 corresponds

to the fact that for MS we select examples for annotation where the strategy value (i.e.

the margin) is less than T as we want to select examples with low margin, in which case

we use −, while for CS and EN we select those that are greater than T and we use +.

We use dynamic thresholds as we believe that they are promising for dynamic drifts

as, when the drift occurs, we expect the strategy value to diverge from the previous

ones, and we would like to select those new data-points for annotation to quickly adapt

to the shift, which would not always be the case with a fixed threshold. In addition,

this method would be practical in scenarios where the incoming data-stream alternates

between different types of distribution shifts as we saw in Section 4.1.2.3 that different

threshold values perform best depending on the shift.
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For each AL-policy, we run experiments using the dynamic threshold on it’s own

and then combined with window-based AL with the results being reported in Table

4.8. We observe that by adding the dynamic threshold the performance of CS and

EN increases, while that of MS decreases comparing to Table 4.7. When we combine

the dynamic threshold with window-based AL though, the performance of all three

AL-strategies further increases with EN performing the best. This improvement in

performance when using the dynamic threshold with window-based AL is inline with

our speculation in Section 4.1.2.2 that using a forget mechanism results in sub-optimal

performance with fixed threshold values.

Dynamic Dynamic + Window-Based

Margin Sampling 0.548 0.564

Coreset 0.545 0.554

Entropy 0.597 0.603

Table 4.8: Online Accuracy (AUC) for Neural Caching using a dynamic threshold stan-

dalone and in conjunction with window-based online AL. We observe that by combining

the two methods we achieve the highest accuracy.

4.1.3 Optimal Configuration

Having adapted the set-up for dynamic request streams and evaluated this new configu-

ration on ISEAR, we rerun the experiments across the four datasets to see if the new

setup generalises well to different tasks. To recap, this optimised configuration consists

of a higher retraining frequency of f = 500, a window-based AL forget mechanism,

and a dynamic threshold for the AL policies.

On Table 4.9 we compare the previous results of applying a label shift on the initial

setup with applying the shift on the optimised setup for each of the four datasets. On

Table 4.10 the average accuracy (AUC) across the datasets are reported. We observe

that although MS’s performance had not improved on ISEAR upon modifying the

setup, in the other tasks it shows a strong improvement exhibiting an overall average

improvement of ≈ 7%. EN’s performance which had significantly improved on ISEAR

also improves on the rest of the datasets showing that for the uncertainty-based selection

policies our modifications are highly beneficial and generalise well on different tasks.

While CS on the other hand had also showed improvement on ISEAR, it exhibited a
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performance decline on the remaining tasks suggesting that either the hyperparameters

(e.g. z) need to be fine-tuned separately on each policy for CS to perform well, or that

the new setup does not benefit this policy.

Looking at the baseline methods, Rand exhibits a strong improvement in perfor-

mance with the optimised setup, outperforming the other selection policies in three out

of the four tasks.

(a) ISEAR

Parameters Initial Optimised

Margin Sampling 0.564 0.564

Coreset 0.516 0.554
Entropy 0.566 0.603
Front Loading 0.512 0.504

Random 0.529 0.591

(b) OPENBOOK

Shift Initial Optimised

Margin Sampling 0.392 0.502
Coreset 0.444 0.432

Entropy 0.394 0.522
Front Loading 0.444 0.418

Random 0.471 0.552

(c) FEVER

Shift Initial Optimised

Margin Sampling 0.597 0.748
Coreset 0.681 0.568

Entropy 0.657 0.747
Front Loading 0.505 0.520
Random 0.645 0.764

(d) POLARITY

Shift Initial Optimised

Margin Sampling 0.870 0.897
Coreset 0.828 0.791

Entropy 0.873 0.893
Front Loading 0.824 0.805

Random 0.864 0.901

Table 4.9: Online Accuracy (AUC) for Neural Caching under label shifts across datasets,

comparing performance using the initial parameters with that produced using the opti-

mised ones.

4.1.4 Impactful Features in Label Shifts

To gain a better understanding of the behaviour of Neural Caching under label shifts, as

well as to identify key aspects of label shifts that impact performance, we conduct two

more experiments using the initial parameters, as in Section 4.1.1, on ISEAR.
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Hyperparameters Initial Optimised

Margin Sampling 0.605 0.678
Coreset 0.617 0.586

Entropy 0.622 0.692
Front Loading 0.572 0.562

Random 0.628 0.702

Table 4.10: Average Online Accuracy (AUC) across datasets for Neural Caching under

label shifts, comparing the optimized setup’s performance with the initial one. We

observe that the uncertainty-based policies as well as Rand, significantly benefit from

the optimisation.

Figure 4.3: Accuracy curves with respect to budgets in the Neural Caching problem with

an incoming stream exhibiting label shifts using the optimised setup.

4.1.4.1 Strength of Shift

This next experiment has been designed to analyse how the “strength” of the shift

affects performance. By strength here we mean the percentage of examples belonging

to the label that is subject to the shift. In real-world scenarios, not all data-points will
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necessarily fall under the label shift, but only some proportion of them. For example, a

model that predicts diseases like influenza, whose distribution changes dramatically over

the winter months, although the proportion of positive examples will change sharply

each month, there will not be a full shift where each disease appears exclusively on

certain months of the year. Thus understanding how well each strategy performs under

different strengths of label shifts can help determine which approach is most robust. If

a strategy shows a smaller rate of decline in accuracy as the shift strength changes, it

might be more suitable for environments where the data distribution behaviour is more

unpredictable.

To simulate different strengths of label shifts, we apply label shifts as in the ex-

periments in Section 4.1.1 and then shuffle randomly a percentage of examples before

initiating the experiment. By incrementally increasing the percentage of shuffled exam-

ples, we make the shift weaker allowing us to observe how the accuracy changes for

each policy.

We report the experiment results in Table 4.11, in Figure 4.4a we graphically present

the same results, while in Figure 4.4b we illustrate the corresponding rate of change

in accuracy as the intensity of the label shift varies. We notice that MS and then EN

achieve the highest accuracy across the different shift strengths while also maintaining

a relatively low rate of change making them very consistent. We also observe that the

accuracy decreases as the shift becomes stronger, with the biggest drop being observed

between having the 25% mark and the full label shift.

Rows Shuffled 0% (Full Label Shift) 25% 50% 75% 100% (No Shift)

MS 0.564 0.622 0.645 0.652 0.656

CS 0.516 0.594 0.617 0.626 0.639

EN 0.566 0.618 0.638 0.648 0.650

FL 0.512 0.598 0.629 0.634 0.637

RND 0.529 0.570 0.590 0.597 0.598

Table 4.11: Online Accuracy (AUC) of Neural Caching on ISEAR for increasingly weaker

label shifts. The percentages indicate the proportion of rows that have been reshuffled,

with 0% representing a full label shift and 100% representing no shift i.e. stationary input

stream.
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(a) (b)

Figure 4.4: Online Accuracy (AUC) for Neural Caching under different label shift strengths.

Strengths are simulated by arranging the dataset so that full label shifts are present and

then shuffling a proportion of rows. The proportions we simulate are: 0%, 25%, 50%,

75%, 100% where 0% is equivalent to a full label shift and 100% to no shift. On the left

(a) we plot the accuracy (AUC) and on the right (b) the rate of change of the accuracy

(AUC) with respect to the different label shift strengths.

4.1.4.2 Teacher’s Accuracy

This final label shift experiment aims to investigate how the sequence in which labels

are presented affects the performance of the Neural Caching setup within the context

of a full label shift where the LLM exhibits varying levels of accuracy across different

labels.

We observed that the LLM is considerably more accurate in classifying certain

emotions than others on ISEAR as seen in Table 4.12. Thus, instead of sorting examples

randomly based on their labels, we sort them from the ’easiest’ to the ’hardest’ label

and vice versa, where the easiest class is the one the teacher predicts with the highest

accuracy.

This experiment is relevant for real-world scenarios where there is an option to

initiate the setup on easier or harder tasks. For example, let’s assume that Neural

Caching is used to assist students in answering school questions. There are two classes

of students; a beginners class and an advanced class. Will performance be impacted if

the model is first provided to the advanced class, where the teacher model will be less

accurate but the budget will be used on answering more difficult questions, or vice versa,

where the LLM will have greater performance, but easier questions will be mostly used

for training? To answer this we devised the following experiment.

The results are reported in Table 4.13 where we observe that all selection policies
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Class LLM Accuracy (%)

Joy 98.29

Fear 85.97

Sadness 81.09

Shame 73.58

Anger 58.29

Guilt 55.71

Disgust 42.10

Table 4.12: Accuracy of the LLM -teacher model- for each class (emotion) of ISEAR.

Labels sorted from ”easiest” to ”hardest”.

perform significantly better when the harder examples appear first. Impressively, MS,

EN, and FL outperform their accuracy even in the absence of any shift (see Table 4.1),

highlighting the significant impact that label order has on label shifts in Neural Caching.

The shift simulated in this experiment entails a mixture of a label and a covariate

shift as we arrange the examples based on both their label, and their ’difficulty’, a

property of the input distribution p(x).

Labels Sorted by LLM Accuracy Ascending Descending

Margin Sampling 0.657 0.561

Coreset 0.628 0.573

Entropy 0.651 0.558

Front Loading 0.641 0.522

Ramdom 0.597 0.552

Table 4.13: Online Accuracy (AUC) for Neural Caching on ISEAR under label shifts

were labels are sorted based on the predictive accuracy of the LLM as seen in Figure

4.12. We notice that when trained on the toughest class first, where there are many

miss-classifications, Neural Caching performs significantly better.

4.2 Covariate Shift Experiments

In this section we examine two different cases of covariate shifts, i.e. shifts that only

affect the input distribution p(x), on the ISEAR dataset.
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4.2.1 Sentence Length

Longer inputs generally entail more complex semantics. For example, the accuracy of

GPT-3.5 is significantly lower on longer movie reviews [34]. Therefore, a covariate

shift in the data would be exhibited by arranging the data-points based on sentence

length. This way we can assess Neural Caching on a covariate shift over the input’s

semantic complexity.

The results are reported in Table 4.14 where we see that all the AL-based strategies

perform better when the longer sentences are presented first, thus demonstrating that in

covariate shifts, it is beneficial for Neural Caching when more complicated examples

are present in the beginning of the stream. We also see that MS is the best performing

selection policy in this scenario in both types of covariate shift.

Sentence Length Ascending Descending

Margin Sampling 0.646 0.657
Coreset 0.619 0.628
Entropy 0.639 0.651
Front Loading 0.634 0.641
Random 0.600 0.597

Table 4.14: Online Accuracy (AUC) for Neural caching under a covariate shift simulated

by sorting the incoming examples by sentence length. We notice that starting with longer

sentences in the beginning of the stream consistently results in better performance.

4.2.2 Typos

In this experiment we simulate a different type of covariate shift where we randomly

introduce spelling mistakes and typos to half of the instances of the dataset, and test

how the ordering of these examples affect performance in Neural Caching. To do so,

we first present all the original instances followed by those containing typos and vice

versa. We also run simulations and for a version of the dataset where all data-points

contain typos to ensure that introducing typos has an effect in accuracy, and where the

instances with typos appear randomly in the stream as a baseline that ensures that a

covariate shift is meaningful in this scenario.

With this experiment we attempt to understand scenarios in which there is sudden

change in the language used in the incoming stream. Such a case, where the input



Chapter 4. Experiments and Results 31

suddenly contains typos, could be if Neural Caching was first exposed to a data-stream

produced by users with learning difficulties that affect spelling, followed by users

without. More generally though, with this experiment we attempt to examine the

model’s behaviour when presented with any kind of sudden variation in the language

that does not affect the posterior p(y|x) and p(y). Examples of such variations are any

change in the dialect, regional accent, or level of formality used in the input stream.

We introduced typos to ISEAR by iterating through its data-points and prompting

an LLM (Llama-3-8B [4]). We designed a prompt that describes the task without

containing any in-context examples i.e. zero-shot, but we used a small part of the

dataset (up to 10 examples) for prompt engineering.

Looking at Table 4.15, where we report the results, first we confirm that the experi-

ment is valid, as introducing typos indeed reduces performance (we compare the ’All

Typos’ to the ’No Typos’ column). We can also confirm that arranging examples based

on whether they contain typos and exhibit a covariate shift is also impactful as there

is change in accuracy between mixing randomly the examples and sorting them. We

observe that for all strategies but CS, presenting typos first results in Neural Caching

performing better.

CS is the policy that is overall worse affected by typos which intuitively makes

sense as it selects examples for annotation based on their semantic similarity, which

will be harder to compute when words are misspelled. This could explain why it reacts

differently to the other selection policies when the covariate shifts are present.

As the remaining policies perform better when typos appear first, we see again that

harder examples in the beginning of the stream result in a better performance. We also

see that MS is the best performing policy in all the different simulations.

Shift Typos First Typos Last Mixed All Typos No Typos

Margin Sampling 0.638 0.617 0.632 0.614 0.656

Coreset 0.568 0.577 0.573 0.547 0.639

Entropy 0.631 0.615 0.630 0.608 0.650

Front Loading 0.626 0.593 0.613 0.594 0.637

Random 0.578 0.574 0.574 0.552 0.598

Table 4.15: Online Accuracy (AUC) for Neural Caching uncer a covariate shift simulated

by introducing typos to (part of) the incoming examples.



Chapter 5

Discussion

5.1 Selection Policies under Dynamic Streams

5.1.1 General Observations

Evaluating how the selection policies react to dynamic streams, we start by observing

that across experiments, the performance of the original Neural Caching setup exhibits

a drop when a dynamic (with label or covariate shifts) data-stream is present regardless

of the selection policy used. Such performance fluctuations based on the incoming shift

underscore the need to carefully consider which selection policy to employ.

We observe, that across our experiments, in both label and covariate shifts, the

uncertainty-based methods seem to consistently perform relatively well. In the covariate

shifts, in both experiments MS performs the best, closely followed by EN. In the label

shift experiments, although not always the best performing methods, they retain a

comparatively high performance across experiments, regardless of the shifts or the

methods used. Furthermore, they were also the methods consistently performing the

best as the strength of the shift changed (see Figure 4.4).

On the other hand, we have found CS to be the most unreliable AL-based method,

performing poorly in most of our experiments. This poor performance of CS is in

agreement with previous results on Neural Caching [39]. However, we have seen a

couple of instances where CS performs better than its competition, namely, in the label

shift experiments with use of the initial setup on OpenBook and FEVER.

Furthermore, looking at Figure 4.3 we observe that consistently across the datasets

CS performs very poorly for lower budgets, but for budgets greater than 2500, its

performance is similar to that of other policies. This might suggest that in scenarios

32
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where the budget constraint is generous, using CS might not be an unreasonable choice.

Besides, a similar diversity-based strategy is the main LLM caching technique used by

practitioners (GPTCache), but is used mostly for cases in which multiple near-identical

calls are present in the incoming stream [8, 39], a scenario we do not examine in this

study.

5.1.2 Baseline VS. AL-based Selection Policies

A key factor in the decision of which selection policy to employ is the difference

in performance between the baseline policies and the AL-inspired ones. We saw in

Table 4.1 that when no shifts are present, FL has a performance comparable, if not

better, to the AL-policies, while Rand performs significantly worse. It was believed

that if the incoming data exhibited dynamic shifts, this difference in performance

would automatically increase [39], but in this work we have seen this not to be the

case necessarily. Upon applying label shifts, all policies suffered a significant drop

in performance with Rand emerging as one of the most accurate policies as it its

performance suffered the least, performing comparably to the AL-based ones. When

adapting the setup to improve performance under dynamic streams in Section 4.1.2,

the accuracy of FL further decreased, but Rand was still performing comparably to the

uncertainty policies whose performance improved.

This unexpected performance gain from Rand under label shifts may make a case

for using simpler selection policies, but much caution is suggested. We noticed that the

baseline methods are significantly less consistent across the different experiments. FL

performs well when there is no drift, but performs poorly for label shifts and is average

under covariate shifts. Conversely, Rand performs impressively well under label shifts,

but not so much under no shift and covariate shifts. This means that if an incoming

stream exhibits shift changes, then using baseline methods makes for a risky choice and

is likely to lead to sub-optimal performance.

In addition, we believe that uncertainty-based policies have significant room for

improvement in their performance, while the baseline methods are less flexible. As

mentioned, although the uncertainty-based strategies saw an impressive improvement

in performance after optimising, they do not consistently outperform Rand in the label

shift scenario. A potential reason behind this is that with the dynamic threshold we

use, they under-utilise their budget leading to them mostly spending it at the end of the

stream, as opposed to Rand which evenly distributes the budget across the stream. This
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is evident in Figure 5.1 where we see that EN, and especially MS, suffer from not using

their budget enough early on the stream. This would be less of a concern in streams

with more examples, in which case, the budget would be spread more evenly, and would

possibly outperform Rand.

Figure 5.1: Heatmap of selected data-points across strategies on the ISEAR Dataset.

The y-axis represents the different selection strategies (EN, MS, CS, RND), while the

x-axis corresponds to the value indices in the data stream. The color intensity reflects

the frequency of selection, where a value of 1 indicates that the point was consistently

selected across runs. This heatmap was generated by recording the data points chosen

by each strategy for annotation by the LLM in a binary array, with 1 indicating selection

and 0 indicating exclusion. The arrays were averaged across multiple runs with different

seeds to produce the final visualization.

To address this problem in scenarios where the number of data-points in the stream

is known in advance, we suggest adding pressure to the selection policy to use the

budget more evenly across the incoming data-stream. One way of achieving this would

be dynamically reducing the threshold when the budget is under-used. In case the

stream length is unknown, a scaling threshold could be used that selects all data-points

above one standard deviation σ from the mean value, 90% of data-points above 0.9 σ,

and so on.

5.1.3 In-Depth Analysis of AL-based Selection Policies

To closer observe the behaviour of the AL-based metrics, in Figure 5.2 we plot how

the semantic difference value of CS, the margin of MS, and the prediction entropy of
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Figure 5.2: Values of each metric (y-axis) for each time step (x-axis) as the experiment

on ISEAR with label shifts progresses. The red vertical lines show where a label shift

takes place, the blue vertical lines where retraining occurs ( f = 500), and the green

dots signify the examples selected for LLM-annotation. The values have been smoothed

using exponential smoothing with α = 0.3 to reduce noise while the original values are

displayed in Figure C.1.
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EN change over time, as well as the data-points selected under a dynamic stream of

ISEAR data-points exhibiting label shifts. We observe quite consistently that when a

label shift occurs, there is a fluctuation of the value (increase for EN and CS, decrease

for MS) while conversely, when the model is retrained we see the opposite effect. This

reconfirms the impact of these shifts as well as the potential of detecting these shifts

using the selected metrics.

We notice that CS is the metric with the least amount of fluctuations in its value,

making this method potentially less suitable for detecting shifts and selecting the most

useful examples, potentially further explaining its poor performance. On the other hand,

both MS and EN exhibit stronger variation and both seem to progressively improve with

increasingly higher margin, and smaller entropy values being observed as the simulation

progresses.

As discussed earlier, in MS and EN most of the budget is used towards the end

of the stream, but in Figure 5.2 we also see that contrary to our expectations, it is

not consistently clear that more data-points are selected for annotation after a shift

takes place. We attribute this to the large fluctuation and noise in the policy-values as

observed in Figure C.1, resulting in data-points being selected for annotation regardless

of whether a shift has occurred as they will often diverge from the standard deviation.

When smoothing the data we see that there is an overall trend, so it is more likely that a

data-point will be selected after a shift, but this effect is not strong enough. We believe

that smoothing the selection-policy values as the new data-points appear would result

in more points closer to the shift being selected. This also reconfirms that with more

fine-tuning, these selection policies could be further improved.

5.2 Calibration Required upon Data-Stream Distribution

Changes

Throughout our experiments we have seen differences in the performance of Neural

Caching depending on the characteristics of the incoming data-stream. First, we observe

a strong performance decline upon introducing rapid label shifts, then, when increasing

the retraining frequency, we notice that Neural Caching reacts differently based on the

incoming data-stream distribution. In addition, when fine-tuning the thresholds for the

AL-based selection policies, the optimal values differ between no shifts and label shifts

consistently.
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These differences lead us to the conclusion that to reach an optimal performance in

Neural Caching, and more generally in KD-based effective LLM invocation methods,

it is important to adapt the hyperparameters and the selection policy to changes in the

distribution of the incoming data-stream. Failing to do so, a significant performance

decline is likely to occur. If the incoming data-stream distribution is expected not to be

constant exhibiting different types of drifts over time, then techniques that automatically

adapt to change like the dynamic threshold we implemented could be beneficial.

5.3 Prioritising Hard Examples may be Beneficial

Consistently across our experiments we saw that when harder examples were present in

the beginning of the stream, the accuracy of Neural Caching increased. We observed

this phenomenon with both label and covariate shifts. In the former, when data-points

belonging to labels harder for the LLM to classify appear early in the stream, the

resulting accuracy increases (Table 4.13), and in the latter, both when longer, more

complicated sentences (Table 4.14), or when examples with typos (Table 4.15) appeared

early in the stream, the performance of Neural Caching improved.

As seen in the experiments mentioned, accuracy is significantly affected by the order

in which data-points are presented in Neural Caching with better performance when

‘difficult’ examples appear first. This is contradictory to commonly used methods based

on Curriculum Learning, where gradually increasing the complexity of the data-points

during training is used as a technique to improve performance [48].

Additionally, this reverse type of curriculum learning benefiting performance is

observed despite the fact that harder examples appearing first means that more ‘mislead-

ing’ annotations by the LLM will be used to retrain the student. The phenomenon of

training the student model on misclassified labels by the teacher is called ‘confirmation

bias’ in KD [5], and is usually harmful in these settings. However, in Neural Caching

we consistently observe clear gains in accuracy when these ’hard’, noisy examples are

used for training. This conclusion has been found to be true in Neural Caching for

stationary streams before [39], and in this work we show that the same effect is strong

in dynamic request streams too.
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5.4 Limitations and Future Work

One of the main limitations of our study is that we only consider sudden data shifts, and

did not examine gradual or incremental drifts. Sudden shifts, as well as no shifts in the

data-stream, are the two extreme ends of the spectrum and thus we see Rand and FL

performing the best in each case respectively. In the real-world, it is likely that drifts

will not be sudden, which could result in different behaviour of Neural Caching, and

possibly an increased benefit in using the AL-based policies. We leave for future work

to explore such cases.

Another limitation is that we conduct experiments on datasets that do not naturally

exhibit shifts, but rather we synthetically simulate them. In addition, we only consider

classification datasets, which are a subset of NLP tasks that may exhibit drifts. We can

only hypothesise that our findings generalise in more realistic settings, but we have not

conducted any such experiments to demonstrate this. For future work, datasets that

naturally entail data drifts like StockNet [56], a stock movement prediction dataset from

tweets and historical stock prices, could be analysed to evaluate how the results derived

from synthetically produced drifts generalise on real tasks that exhibit data drifts.

A third limitation is that the selection policies we deploy come from only two

families. Exploring a wider range of selection policies could potentially result in greater

performance and deeper insight into the effect of dynamic shifts on Neural Caching.

The uncertainty selection policies we use benefit from computational efficiency due

to their simplicity and are relatively straightforward to analyse as they contain few

hyperparameters and can be concisely described mathematically. However, more

advanced methods both in the uncertainty family and beyond have been proposed. In

the former, a lot of work is been made on improving uncertainty estimation with LLMs

[23, 30].

Beyond the uncertainty family, a method that has been found to outperform simple

uncertainty-based methods in detecting shifts in multi-domain question answering and

sentiment analysis [31] is H-divergence [9, 31]. This method is based on the idea of

quantifying the difficulty for a discriminator to differentiate between two domains. We

believe that such methods or more recent uncertainty methods could further increase

accuracy in effective LLM-invocation techniques under dynamic streams. We leave this

investigation for future work.
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Conclusions

In this thesis we explored the effect of dynamic request streams on Neural Caching,

an effective LLM invocation method. We conducted experiments under two types of

distribution shifts in the incoming data-stream. Under label shifts, we demonstrated

the severe impact in performance that distribution shifts can have when not optimising

the setup accordingly. We then identified adjustments to the setup and showed that a

combination of increased retraining frequency, a mechanism for forgetting old examples

and a dynamic threshold for the AL-based policy values can significantly improve

performance under these shifts.

Throughout our experiments, we evaluated the performance of three AL-based

policies, and compared them with two baseline methods showing that the uncertainty-

based policies, MS and EN, were the most consistent across experiments. They exhibited

strong performance under both regular label and covariate shifts, as well as under

different strengths of label shifts. CS, the diversity-based policy we examined, was

found to not be as suitable in most cases, with a few exceptions, as, for example, when

the budget is on the higher end.

The experimental results demonstrated the importance of adjusting elements of Neu-

ral Caching upon drift changes to maintain an optimal performance. In addition, through

experiments under both label and covariate shifts we have shown that prioritising hard

examples may result in significantly improved performance in Neural Caching.

Some limitations of our work include that the optimal performance of MS and

EN has probably not been achieved as too many examples were found to have been

selected for LLM annotation at the end of the stream. Also, we did not notice a

significant increase in examples selected after a shift as we had expected. Therefore,

there are further improvements to be made in order to optimally configure the setup’s
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hyperparameters, which suggests that the potential of the proposed methods is even

better than the results in this thesis indicate. We leave for future work the further

optimization of the setup, as well as the exploration of more complicated selection

policies, of gradual data drifts, and datasets that naturally exhibit these drifts we

synthetically produce.

Finally, we believe that the cost reduction associated with Neural Caching while

maintaining a strong performance, as shown by previous studies, is already a compelling

reason to utilise the proposed effective LLM-invocation methods. With this thesis we

hope to have further strengthened the case for these methods by demonstrating their

behaviour under various dynamic data drifts and by showing the potential of using

uncertainty-based selection policies with the proposed setup optimisations.
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Appendix A

Fine-Tuning Dynamic Thresholds

In Tables A.1, A.2, A.3, and A.4 we present the results form fine-tuning the z value

from Equation 4.1 for each selection policy. We experimented with four values (0.7,

0.8, 0.9, 1).

Dynamic Dynamic + Window-Based

Margin Sampling 0.551 0.553

Coreset 0.535 0.541

Entropy 0.578 0.580

Table A.1: z = 1

Dynamic Dynamic + Window-Based

Margin Sampling 0.547 0.548

Coreset 0.545 0.554

Entropy 0.593 0.601

Table A.2: z = 0.9
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Dynamic Dynamic + Window-Based

Margin Sampling 0.548 0.564
Coreset 0.546 0.522

Entropy 0.597 0.603

Table A.3: z = 0.8

Dynamic Dynamic + Window-Based

Margin Sampling 0.538 0.539

Coreset 0.525 0.495

Entropy 0.599 0.603

Table A.4: z = 0.7



Appendix B

LLM-Prompt to Insert Typos

The prompt we used to insert typos for our experiment presented in Section 4.2.2:

”You are an automatic typo generator. Given an input phrase, you generate the exact

same phrase, but insert typos that appear natural. It is very important that you only

provide the final output without any additional comments or remarks. Input Prompt:

{sentence”}.
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Appendix C

Raw Selection Policy Values

In Figrue C.1 we present the un-smoothed raw selection policy values. We observe that

they are noisy, making it hard to observe an overall trend.
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Appendix C. Raw Selection Policy Values 52

Figure C.1: Raw values of each metric (y-axis) for each time step (x-axis) as the

experiment on ISEAR with label shifts progresses. The red vertical lines show where a

label shift takes place, while the blue vertical lines where retraining occurs ( f = 500).
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