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Abstract

Predicting binding affinity of a ligand and target protein is essential in applications like

modelling biological systems and drug discovery. Due to the cost and difficulty of wet-

lab experiments to determine strong target binding there is demand for computational

methods that can cheaply, quickly and accurately predict binding affinity. Recently,

protein and ligand large language models (LLMs) that provide information-rich embed-

dings of amino acid sequences and ligand SMILES strings have been used to achieve

state-of-the-art performance in a variety of protein and ligand property prediction tasks.

However, use of molecular LLMs in prediction of interaction properties is harder due

to increased complexity and computational burden of having to model two molecules.

This paper is the first to investigate how to best use molecular LLM models for the task

of predicting binding affinity, and uses the PDBbind dataset of protein-ligand pairs. A

variety of parameter-efficient fine-tuning (PEFT) methods common in NLP are assessed

to overcome computational issues, with adding a joint multi-layer perceptron (MLP)

to the final LLM layers having the best performance. Combining this with another

effective fine-tuning method BitFit produces the state-of-art model for protein-ligand

binding affinity prediction that only considers sequence level information, achieving an

RMSE of 1.215 on the PDBbind 2016 core set and outperforming other methods by

at least 7%. This is despite using smaller LMs and only having 3.5% of parameters

as trainable. Results evidence the potential of using molecular LLMs and pre-training

on unlabelled data to improve binding affinity prediction performance, overcoming a

lack of high quality labelled data that limits current ML approaches. Additional results

suggest performance could be improved even more given bigger molecular LMs and

more pre-training on downstream tasks.
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Chapter 1

Introduction

Predicting protein-ligand binding affinity is very important task due to its use in real

world applications like drug discovery. ML methods have the potential to replace costly

wet-lab experiments to determine binding strength but current methods are limited

by lack of high quality data. This research project aims to improve performance of

protein-ligand binding affinity prediction by taking advantage of protein and ligand

LLMs pre-trained on un-labelled data. To overcome computation power and modelling

issues associated with predicting an interaction property like binding affinity, various

parameter-efficient fine-tuning (PEFT) methods and architectures are tested for protein-

ligand binding affinity performance. These experiments result in a state-of-the-art

protein-ligand binding affinity model from sequence level data, achieving an RMSE of

1.215 on the PDBbind 2016 core set, outperforming comparable methods by at least 7%.

Therefore evidencing the efficacy of LM pre-training and PEFT in predicting interactive

molecular properties and overcoming lack of high quality labelled data.

1.1 Motivation

1.1.1 Importance of Predicting Binding Affinity

Predicting the binding affinity of candidate proteins to a given target is a vital task in

biological applications like the modelling of biological systems and drug discovery [1].

AI-assisted drug discovery in particular is an area that has achieved a lot of attention

recently, as key goals within the drug discovery sector include providing vast speed-up

and increased efficacy at every stage of the drug development pipeline [2]. One stage set

to be revolutionised by AI is the identification of lead compounds that have the potential

1
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to be new drugs [2], and predicting protein-ligand binidng binding affinity is vital in

the identification of lead proteins [2]. Many drugs work by binding to and therefore

inhibiting the action of target compounds known to be important in perpetuating disease

states [3]. As such, predicting binding affinity to these targets can therefore identify

drugs that are currently in use and may have potential for re-purposing, as well as

validating the efficacy and potential of de novo designed drugs [1]. Computationally

finding drugs to re-purpose is especially significant in the field of drug discovery, as

re-purposed drugs have a minimised risk of failure, are cheaper, and their development

is less time-consuming [4].

1.1.2 Benefit of Computational and ML Approaches

In previous research, binding affinity has been determined by wet-lab experiments that

are often accurate yet slow and expensive, making them unsuitable to screen large

amounts of proteins to find strong binders [5]. In recent years computational methods

have been proposed to address some of these limitations, with the benefit of being

able to screen large amounts of proteins much faster and cheaper than laboratory-

based experiments [1]. These computational methods have the potential to improve the

very high 90% failure rate of clinical drug development [6] by improving drug lead

identification and target validation. Improvements in this area would also reduce the

vast time burden and cost of drug development, estimated at around 1-2 billion dollars

over 10-15 years [6], and therefore make the development of drugs more financially

feasible.

Machine learning specifically is a key field of study where applications could

rapidly increase efficiency and efficacy within pharmaceutical and biological settings

including drug development. In particular, deep learning methods have shown promise

in reducing the burden of drug development in a variety of contexts, including their

deployment in the prediction of many protein and ligand properties including stability

prediction, toxicity prediction and binding affinity [1]. Their ability to digest large

amounts of unstructured data and identify complex patterns makes them a natural choice

for predicting molecular properties like binding affinity [1]. How machine learning and

deep learning can be used to accelerate drug development is shown in Fig. 1.1.
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Figure 1.1: Summary of how Machine Learning methods can be used to

reduce the cost and increase the efficacy of drug discovery. Image from

https://zitniklab.hms.harvard.edu/drugl

1.1.3 Deep Learning Methods to Model Binding Affinity

Due to the importance of predicting protein-ligand binding affinity, many machine

learning and non-machine learning approaches have been applied to the problem in

the past. These have included physics based methods that simulate protein-ligand

interactions to find the lowest entropy conformation [7], traditional machine learning

(ML) methods that automatically learn from labelled data in a structured manner [8]

and deep learning methods that capture patterns from labelled data in a more flexible

way [9]. Deep learning methods have typically used convolutional neural network

and graph neural network models for the task which can be effective but are limited

by a lack of high-quality labelled data and are often reliant on higher order structural

or interaction features that are not always available to researchers and expensive to

obtain experimentally [1]. Therefore, this paper is the first to rigorously test the use

of molecular language models (LMs) which take advantage of abundant unlabelled

data for the binding affinity prediction task. Furthermore, models only use the primary

structure of proteins and atomic structure of ligands to make predictions without the

need for expensive structural or interaction features.

As protein molecules can be represented as a sequence of amino acids, and ligands

as a sequence of atoms and bonds, with each variation of a sequence resulting in a

different molecule, parallels between this and language formation can be drawn. Recent

advancements in Natural Language Processing have led to the advent of protein LLMs

that treat the primary structure of proteins - the amino acid sequence - as a sequence

of words [10], along with ligand LLMs that treat the ligand SMILES (linearized

atomic structure) as a sequence of words [11]. These models can be used to generate
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embeddings of protein and ligand sequences which can be used in downstream tasks

like property prediction. Deep learning models that utilise these embeddings are the

new state-of-the-art for many property prediction tasks [10], [11].

1.1.4 Challenges and Aims of Paper

As molecular LLMs are a very recent development in the field, at present there has not

been much experimentation on how to best use these models to maximize performance

in downstream prediction tasks, especially interactive properties that require modelling

two molecules [1]. The size of molecular LLMs means that training from scratch is

not a feasible option for most groups due to limitations in computational power [12],

and this issue is especially prevalent in binding affinity prediction where we have a

protein and ligand sequence. As a result, the use of inexpensive fine-tuning techniques

is essential in order to improve the feasibility of carrying out interactive regression

tasks like binding affinity prediction using protein LLMs [13], and address the issue of

current models being limited by a lack of high-quality data. This is a key gap within

the existing field of research, as the versatility of utilising LMs in this context means

that work focused on binding affinity prediction also has the potential to improve the

prediction of many other interactive protein and ligand properties. These methods are

also able to be adapted to the prediction of other non-interactive properties of molecules

such as solubility and toxicity.

In order to address this current gap in research, this project will use computationally

inexpensive PEFT methods, experimentally determining which methods and archi-

tectures work best on prediction of binding affinity using protein and ligand LLMs.

Experiments are carried on the PDBbind dataset of protein kinases [14], with our meth-

ods compared to others in the literature to assess the efficacy of approaches used in this

paper. This will allow us to determine whether pre-training on unlabelled data can learn

useful features that allow improved binding affinity prediction when fine-tuned on lim-

ited labelled data, and whether PEFT methods can be used to achieve high performance

with reasonable computation times. Further experiments are also carried out to look

into some important design choices when building binding affinity prediction models

using molecular LMs, like protein model size and type of LM pre-training. This helps

practitioners focus time and computation power on approaches that will most improve

performance.
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1.2 Contribution

Improving cheap and time-efficient ML methods for binding-affinity prediction is

important in applications like drug discovery, but current ML methods performance is

limited by a lack of quality labelled data. This problem has been addressed in other

molecular property prediction tasks by leveraging LMs pre-trained on large amounts

of unlabelled data to learn important features and then fine-tuned for the downstream

prediction tasks. These methods are challenging to apply for the task of binding affinity

prediction however as it requires modelling two sequences, the protein and ligand,

making fine-tuning very computationally intensive and making it hard to find the right

architectural setup. To address this we test the ability of multiple model architectures

and computationally inexpensive PEFT methods to improve the performance of binding

affinity prediction. This way we can leverage feature extraction from molecular LMs

whilst not creating models unfeasible for most practitioners to train. Overall, the main

contributions of this paper are:

• First paper to thoroughly test the use of protein and ligand LLMs for prediction

of protein-ligand binding affinity to overcome limitations imposed on current

methods by lack of quality labelled data. PEFT is used to deal with increased

computational burden of modelling two molecules

• Exploration of the best methods and architecture resulting in a state-of-the-art

model for predicting binding affinity from sequence level information. This

model uses BitFit to tune protein and ligand LMs, as well a joint non-linear MLP

regression head for prediction. Achieves an RMSE of 1.215 on PDBbind core set

2016, a 7% improvement on the next best sequence based method

• Results evidence that pre-training on unlabelled data enables molecular LMs to

learn features relevant for property prediction, enabling higher performance when

fine-tuned with limited labelled data.

• PEFT is shown as a very effective and inexpensive way to tune molecular LMs,

our state-of-the-art model has 3.5% of parameters as trainable

• Increased protein LM size improves performance but is far less efficient and

effective than PEFT of a smaller LM like carried out in our method

• Embeddings from molecular LMs with additional property prediction pre-training

are more informative and give better performance without fine-tuning. Fine-
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tuning of LMs not already pre-trained on downstream tasks is more important for

performance



Chapter 2

Background

2.1 Biological Background

The main basis of this research is built upon basic biological concepts. The following

section aims to define key concepts such as protein structure, ligand structure, Kd , Ki,

and IC50.

2.1.1 Proteins and Ligands

The structure of a protein is determined by the sequence and number of amino acids

which it is built from, with variations in sequences resulting in a chemically distinct

protein with a unique three-dimensional structure, which may have a different function

or specificity [15]. This base sequence of amino acids is known as the primary
structure of a protein and is held together by peptide bonds that form between amino

acids. Hydrogen bonds can then form between weak negatively charged nitrogen and

oxygen atoms and weak positively charged hydrogen atoms, resulting in folded and

helical protein structures known as the secondary structure. Further conformational

change then results in additional bonds (hydrogen, disulphide, and ionic) forming

between the side chains of a protein, causing the protein to change shape further and

conform into the protein’s tertiary structure which determines function and properties

[15].

Ligands are small molecules that bind to another molecule resulting in the formation

of a complex. The protein-ligand complex forms when a ligand binds to a specific site

on the protein’s tertiary structure, potentially causing conformational changes within

the protein [16]. The atoms in a ligand and how they are connected are referred to as its

7
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atomic structure which determines ligand properties. The atomic structure of a ligand

can be represented in a string form by ligand SMILES (Simplified Molecular Input Line

Entry System). The ligand atomic structure or SMILES and the tertiary structure of

the protein (that forms as a result of its primary structure) determines protein-ligand

binding affinity [16].

2.1.2 Kd, Ki and IC50

Binding affinity is the strength of the interaction between binding molecules. There

are several ways in which the binding affinity of a ligand (A) can be defined - directly

and indirectly. It can be translated into physicochemical terms directly as a dissociation

constant (Kd), which is a measurement of how tightly a ligand binds to a receptor [17].

The equation representing Kd when a system is in equilibrium is as follows:

Kd =
[A][B]

AB
(2.1)

Where [A] and [B] represent concentrations of the ligands and receptors respectively

(the reactants), and AB represents the concentration of the bound complex (the product).

Indirectly, ligand binding affinity can be determined as an IC50 value, using a

competition binding experiment which determines the concentration of a ligand required

to displace 50% of a fixed concentration of reference ligand [17].

The affinity of the receptor (A) to bind with a ligand (B) is represented by Ki,

an inhibition constant that denotes the concentration required to occupy 50% of the

receptor [17].

The relationship between all three binding affinity constants is summarised in the

below equation:

Ki =
IC50

1+[Lt ]/Kd
(2.2)

Where [Lt] represents the concentration of a labelled ligand, and Kd and IC50 are as

defined above.
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2.2 Literature Review

2.2.1 Interaction-based and Non-interaction-based Methods

In the past, a variety of methods have been used to carry out the prediction of protein-

ligand binding affinity, and these methods can be broadly categorised into two groups -

interaction-based and non-interaction-based [18]. Interaction-based methods include

data pertaining to how the target protein and ligand interact, whereas non-interaction-

based methods exclusively have features from the individual proteins and ligands [18].

Within these broad themes, methods can be further categorised based on whether

experimental 3D structural features are used as input to models or not [1]. This project

focuses on non-interaction-based methods that only use the primary structure (the amino

acid sequence) of the protein and the ligand SMILES as an input to the model. We have

chosen to do this as these models are more widely applicable since both interactions

and structural features are not always available in a real-world setting and are expensive

to find experimentally [1].

2.2.2 Previous Approaches

The earliest computational methods to predict protein-ligand binding affinity were

physics-based methods, using statistical mechanics and molecular dynamics simulations

to estimate the conformation dynamics of the ligand and receptor [19]. Open-source

programs such as Autodock Vina predict the non-covalent binding of receptors and

ligands using a gradient optimisation method to predict molecular docking and virtual

screening, these physics based methods find the lowest entropy conformation of protein

and ligand binding [7]. After these physics-based methods, many traditional machine

learning(ML) methods were used to improve upon the binding affinity prediction

of protein and ligand pairs, for example multiple regression [20] and support vector

regression [21]. One notable example is Fandom Forest (RF)-Score, that uses interaction

features (based on proximity) and the random forest ML algorithm to implicitly capture

binding effects that are harder to model explicitly, allowing problematic modelling

assumptions used in physics-based methods to be circumvented [8]. RF-Score v3 is an

updated model that uses an enhanced set of features and more diverse training data [22].

In recent research, deep learning methods have far outnumbered traditional ML and

physics-based approaches to the binding affinity prediction problem and have since

achieved much better performance [18]. Notable examples are InteractionGraphNet
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(IGN) that uses a graph neural network [9], DeepDTA that uses a convolutional neural

network [23], and CAPLA that uses an attention based approach [24]; all three methods

use deep learning to sequentially learn the intramolecular and intermolecular interactions

between proteins and ligands. The main ways these models differ pertain to both the

types of architecture and each study’s respective considerations of mutual interaction

features. IGN uses a molecular graph representation of the 3D structures of protein

complexes to predict binding affinity, using two stacked independent graph convolution

modules [9]. This differs from the DeepDTA approach, which exclusively uses 1D

representations of proteins and ligands (protein sequences and SMILES strings) within

their convolution blocks, combining representations and feeding them into a three

layer MLP regression head [23]. Alternatively, CAPLA uses a binding pocket input

representation and cross-attention mechanism to explicitly model the interaction features

between proteins and ligands. Within this method, dilated convolutions learn long-range

features, and the model uses a feed forward network for prediction. There are two

versions of CAPLA, the default model takes advantage of structural features, whilst

CAPLA-Pred only uses sequence level information [24].

2.2.3 Limitations of Previous Methods and Molecular LLMs

Until recently, deep learning models for protein and ligand property prediction, including

protein-ligand binding affinity prediction were typically trained end-to-end or using

hand-crafted feature extraction methods, and used convolutional or graph neural network

architectures [18], [25], [26]. These methods achieved some promising results, however,

they were hindered by a lack of high-quality data, often struggling to generalise to

molecules that were dissimilar to those in the training set [27]. Since then, the state-

of-the-art in many molecular property prediction tasks has been improved by taking

advantage of the recent development of protein and ligand LLMs [12]. These are

transformer-based models inspired by advances in natural language processing, and

trained using a masked prediction objective on large volumes of unlabelled amino acid

sequences or ligand SMILES instead of text, with notable examples including ESM-2

[10], ChemBERTa-2 [11] and ProteinBERT [28]. These models can be used to obtain

information-rich embeddings of both ligands and proteins to help predict a variety of

molecular properties including protein-ligand binding affinity. An example of a model

built on top of these embeddings can be seen in Fig 2.1.
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Figure 2.1: Example of how embeddings from protein LLMs can be used to carry out

binding affinity prediction on the protein amino acid sequence and ligand SMILES string

2.2.4 Parameter-Efficient Fine-Tuning

Due to the recent adoption of protein and ligand LLMs for use in predicting molecular

properties, and the lack of research into using molecular LLMs to predict binding

affinity, it is not yet clear how to best utilise protein and ligand LLMs to carry out this

task. Most bodies of research into molecular property prediction with LLMs so far have

focused on building network architectures on top of embeddings from protein and/or

ligand LLMs, using pre-trained, frozen LLMs to encode sequences [11]. This is mainly

due to the large size of modern LMs, meaning full fine-tuning is often not possible [29].

However, in the field of NLP there are a variety of parameter efficient methods used

to very effectively and cheaply adapt LLMs to downstream classification or regression

tasks that could apply to binding affinity prediction [29]. Common approaches include:

1) adding trainable functions to frozen LMs, such as regression heads or adapters at the

end of each block (function composition) [30], [31]; 2) updating only specific parameter

groups, like bias weights or low-rank weights (parameter composition) [32], [33]; and

3) inserting trainable tokens into sequences, for example, by pre-pending trainable

embeddings (input composition) [34].
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2.2.5 Dataset and Our Models

This paper tests the ability of PEFT methods and molecular LLMs to improve the

prediction of protein-ligand binding affinity by leveraging pre-training on unlabelled

data and inexpensive fine-tuning methods. This addresses limitations of current methods

created by lack of high-quality labelled data [1], and the computational burden of fully

fine-tuning multple LLMs for interactive property prediction. Models were trained

and tested on the widely used [1] PDBbind dataset of experimentally validated protein-

ligand binding affinities from the Protein Data Bank (PDB) [14]. The PDBbind 2016

core set is used for testing as its wide use in literature makes comparison with other

methods more reliable [1]. Protein amino acid sequences and ligand SMILES strings

extracted from the PDBbind dataset are the only input to models we create in this paper.



Chapter 3

Methodology

Experiments within this paper are carried out on the PDBbind dataset [14], testing a

variety of approaches to parameter-efficient fine-tuning protein LLMs for use in binding

affinity prediction.

3.1 Dataset

3.1.1 The PDBbind Database

The PDBbind (Protein Data Bank bind) dataset [14] is a set of experimentally validated

binding affinities for protein-ligand complexes taken from the Protein Data Bank. The

dataset consists of 23,496 total entries, including 19,443 protein-ligand entries [14].

PDBbind has been chosen for use in this paper due to the relatively large amount

of protein-ligand entries it contains with experimentally validated binding affinity

compared to other binding-affinity datasets, which has the dual effect of making training

a high-performing model easier and making validation more reliable [35]. Furthermore,

PDBbind is the most commonly used dataset for predicting binding affinity [36], so

using PDBbind ensures that the efficacy of models built in this paper can be compared

fairly with a variety of other methods in the existing literature. There are multiple

versions of the PDBbind database as it is consistently updated. This paper uses the

2020 version of the database for training, as this is the most recent version that can

be obtained without a subscription [14], [37]. We use a subset of the 2016 version for

testing as this is the most commonly used benchmark in the literature, and so is the best

for comparison to other methods [36].

Protein-ligand binding data points in the PDBbind dataset contain information on

13
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Figure 3.1: Summary of the hierarchy of sets in the PDBbind dataset [14]. This paper

uses the general set (excluding the core set) for training and the core set for testing

the protein and ligand individually, as well as information on the interactions between

the protein and ligand. This includes information such as the primary, secondary, and

tertiary structure of proteins; amino acid spatial position; atom and bond information

of ligands; and structural information on the protein-ligand pocket, all of which can

be potentially used to predict binding affinity [14]. This paper only uses two features

to predict binding affinity - the protein’s primary structure (or amino acid sequence)

and the chemical structure of the ligand. This is because both higher-order information

about the 3-dimensional structure of proteins and information about protein-ligand

interaction may not be readily available, for example in the case of protein discovery

via genomics [38]. Additionally, this data is time-consuming and expensive to obtain

experimentally [5]. A model built to predict binding affinity based purely on the amino

acid sequence of proteins and chemical structure of ligands is therefore applicable to

more real-world scenarios [21].

Binding affinity data is in the form of either kd , ki, or IC50 values as explained in

the Biological Background section. The dataset is split into a hierarchy based on the

quality of the protein-ligand complexes, summarised in Fig. 3.1:

• General set: contains all protein-ligand complexes

• Refined set: a higher quality subset of the general set filtered using binding data,

crystal structures, and the nature of complexes

• Core set: a subset of the refined set with even higher quality, therefore this set is

used to validate AI models in this paper and many others in the literature [14],

[36]
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3.1.2 Pre-processing

Protein data is in the form of .pbd files, from which the amino acid sequence of the

protein is extracted using Biopython [39]. Ligand data is contained within .sdf files,

with the atomic structure extracted using rdkit [40]. The graph form atomic structure

is then converted to a linearised representation so that it can be input into a language

model (LM). Binding affinity values are downloaded and matched with corresponding

protein-ligand complexes using their IDs. A small number of invalid .pdb or .sdf files

that could not be parsed were removed from the dataset, and proteins longer than 1024

amino acids were discarded to speed up the runtime of protein LMs. After the core set

complexes were removed from the general set to avoid train-test overlap, this finally left

19,134 protein-ligand complexes in the general set for training, with 290 protein-ligand

complexes present in the core set for testing. Tokenizers downloaded with the ESM-2

protein LM [10] and ChemBERTa-2 ligand LM [11] were used to tokenize protein and

ligand sequences respectively before being input to the LMs. The resulting tokens are

referred to as the vocabulary of the LMs, and going forward we denote the length of

these vocabularies as V .

3.2 Baselines

3.2.1 Summary

Various baselines were used to ensure the efficacy of methods, including simple em-

bedding models and regression models using LMs as encoders. All models take in a

sequence of tokens derived from protein amino acids and ligand SMILES, and output a

prediction for the binding affinity between that protein and ligand. A summary of the

baselines is below:

1. Simple Embedding + Linear Regression: Protein and ligand are embedded and

these embeddings are concatenated before being fed to a linear regression layer.

The model is trained end-to-end.

2. Simple Embedding + MLP: Protein and ligand are embedded and these embed-

dings are concatenated before being fed to a 2-layer non-linear MLP. The model

is trained end-to-end. Baselines 1 and 2 provide a comparison of language model

embeddings to those trained from scratch.
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3. LM Embedding + Linear Regression: Protein and ligand are embedded using

separate LMs before being passed to a linear regression layer. Only the linear

regression layer is trained. This baseline provides a comparison to test whether

parameter-efficient fine-tuning (PEFT) methods from section 3.3 improve how

informative LM embeddings are for binding affinity prediction.

More details on the workings of these baselines are given below.

3.2.2 Embedding Layers

To convert categorical tokens to vectors that can be processed by networks, each model

starts with a separate embedding layer for the protein and ligand. The embedding layer

takes in a token ID in the form of a one-hot encoded vector length V . This vector indexes

a row in a large embedding matrix E ∈ RV x d corresponding to a vector representation

of that token, which has length d - the embedding size of the model. The embedding

process is summarised in equation 3.1.

y = ET · x (3.1)

Where x is the one-hot encoded ID vector and y is the output embedding. In the

simple baselines 1 and 2, these embedding layers are trained from random initialisation,

whereas in baseline 3 the embedding layers as part of protein and ligand LMs have

already been trained and so are frozen at train time. Values of the embedding size d

are kept similar between models for comparison, with these values being set to 350

for proteins and ligands in baselines 1 and 2, and 320 for proteins, 384 for ligands in

baseline 3.

3.2.3 Baselines 1 and 2

After this, in baselines 1 and 2, the embedding layer vectors for tokens are aggregated

by averaging. In baseline 1 these average representations are then processed by a linear

regression model to produce a binding affinity value, whereas in baseline 2 they are

processed by a 2-layer MLP. The MLP uses a 512 hidden dimension, picked based on a

commonly used rule from [41], ReLU activation for non-linearity, and dropout with a

probability of 0.2 to prevent over-fitting [42].
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3.2.4 Language Modelling

In baseline 3, protein and ligand embeddings are processed further by two transformer

LMs: protein LM ESM-2 [10] and ligand LM ChemBERTa-2 [11]. ChemBERTa-2 is

a variant of the RoBERTa language model [43] that uses the BERT architecture [44]

trained on chemical SMILES strings. ESM-2 has a similar architecture to BERT and

is trained on protein sequences. Both models are pre-trained using masked language

modelling, where a percentage of tokens are replaced with a mask token that the model is

required to predict [44]. By learning to predict masked tokens, models are forced to learn

complex embeddings of tokens and molecules that contain information on structure,

properties, and sites of importance [10], [11]. These information-rich embeddings can

then be used for downstream tasks. ChemBERTa-2 carries out additional pre-training

by adding a regression head on top of embeddings for multiple downstream regression

tasks, whereas ESM-2 is only trained using masked language modelling [10], [11]. Note

that there are multiple pre-trained ESM-2 models of different sizes, we choose to use the

smallest model with 8 million parameters in our experiments to reduce computational

burden [10].

3.2.5 Transformer Architecture

The transformer architecture is composed of multiple stacked transformer blocks [45],

of which there are three in ChemBERTa-2 and six in the small version of ESM-2 used

in this paper. Transformer blocks in both ChemBERTa-2 and ESM-2 are made up of a

self-attention layer, layer normalisation, projection to embedding dimension, and then a

final layer normalisation [10], [11]. In ChemBERTa-2, skip connections are between

the input and first layer normalisation, and between the first layer normalisation and

second layer normalisation, whereas in ESM-2 skip connections are from the projection

layer in the previous block to after the attention layer, and from after the attention

layer to after the projection layer. ESM-2 uses a two-layer non-linear MLP as the

projection layer whereas ChemBERTa-2 exclusively uses a linear layer. The most

important part of the transformer block is the self-attention mechanism, originally

inspired by alignment for translation [45]. The attention mechanism computes a dot

product between every token embedding (key) and every other token embedding (query)

to find a set of importance values between all tokens. Importance values are then

converted to probabilities by softmax and used to compute a weighted sum of tokens

which becomes the new embedding for that token. In practice, each token embedding is



Chapter 3. Methodology 18

converted to a query, key, and value via a linear projection to increase the expressiveness

of the attention mechanism [45] as shown in equation 3.2.

Q = XWq, K = XWk, V = XWv (3.2)

Where X is the input matrix with each row representing the embedding for each token

in the sequence and Wq,Wk and Wv are trainable weight matrices. Each row of Q,K and

V represents the query, key, and value for that token. The attention mechanism is then

carried out using equation 3.3.

Y = so f tmax(
QKT
√

d
)V (3.3)

Where QKT is calculating the dot product between every query and key and
√

d is the

root of the embedding dimension used as scaling to maintain stable values and gradients

[45]. Probabilities are multiplied by value vectors to get a matrix of new embeddings Y .

Both ChemBERTa-2 and ESM-2 use narrow multi-head self-attention, in which token

embeddings are split into parts based on the number of heads. Self-attention is then

computed with separate weight matrices Wq,Wk,Wv on each part of the token, and then

the final output embedding of dimension d for each token is formed by the concatenation

of the output of each head [45]. Note that the dot product and the attention mechanism

are permutation equivariant - the output embedding of a token would be the same

regardless of its position in the input sequence [45]. However, this is not reflective of

biology, where the exact position of an amino acid or atom is important in determining

the properties of a molecule [15]. To rectify this, positional embeddings calculated from

functions that map positions to real-valued vectors are added to tokens before they are

input into the first transformer block. This way models are given positional information

about each element in the sequence [45].

3.2.6 Baseline 3

As ChemBERTa-2 and ESM-2 are encoder models, the output of the last transformer

block for both is a set of embeddings corresponding to tokens in the input sequence.

However, how these embeddings are used to make binding affinity predictions is

different between models. ChemBERTa-2 uses the embedding from a special [CLS]

token concatenated to the start of the input sequence. This token is specifically added to

capture sequence-level information that can be used for downstream property prediction

[43]. ESM-2 doesn’t use a [CLS] token and instead averages the embeddings from all
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Figure 3.2: a) An example of how an input sequence is converted to embeddings that

can be passed into transformer blocks in ChemBERTa-2. The process is the same for

ESM-2 but without the [CLS] token. Note that the segment embeddings are identical for

all tokens in our experiments, as only one segment is used for each LM. Image from [44].

b) Structure of a transformer block in ChemBERTa-2. The transformer block in ESM-2 is

identical other than the positions of skip connections as described in 3.2.5. Image from

[45].

tokens in the input sequence, and this average embedding is used for binding affinity

prediction [10]. A summary of the input representation for ChemBERTa-2 and the

transformer block can be seen in fig. 3.2.

3.3 Parameter-Efficient Fine-Tuning

3.3.1 Summary

We tested various commonly used and effective parameter-efficient fine-tuning (PEFT)

methods for protein and ligand LLMs, intending to improve performance in the binding

affinity prediction task. These included function composition, parameter composition,

and input composition approaches. A summary of tested methods is below:

1. Joint MLP Adapter: Protein and ligand embeddings are concatenated and fed into

a trainable two-layer non-linear MLP.
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2. All Layer Adapter Tuning: Trainable two-layer non-linear MLP and layer normali-

sation are added to each transformer block in LMs, with embeddings concatenated

and the trainable linear regression layer used for binding affinity prediction.

3. BiasFit: All bias weights in LMs are left as trainable, with concatenation and a

linear regression layer used for prediction.

4. Low-Rank Adaptation: Trainable low-rank matrices are added to the self-attention

layer in transformer blocks. Concatenation and a linear regression layer are used

for prediction.

5. Prefix Tuning: Trainable prefix embeddings are concatenated to key and value

matrices in every layer of LMs. Concatenation and a linear regression layer are

used for prediction.

More detail on methods and implementation is given below.

3.3.2 Types of PEFT

The fine-tuning methods tested for protein-ligand binding affinity can be categorised into

three groups depending on what kind of composition is used between frozen weights

and trainable weights. Function composition involves adding new task-specific weights

to augment a model’s function g(x) = fθ ⊙ fφ(x) where g(x) is the output of a layer

or layers in the network given input x. The function fθ with parameters θ is frozen,

while the function fφ with parameters φ is trainable. ⊙ represents composition of these

functions [30], [46] . Parameter composition only updates weights in a specific group

according to inductive biases about finding high-performing weights. The equation for

parameter composition is g(x) = fθ⊕φ(x) where ⊕ represents an update of a subset φ

of all parameters θ, which could be implemented by updating parameters directly or

adding trainable parameters to selected frozen parameters [32], [33]. Input composition

augments the input of a model or layer with a trainable vector φ, which can be seen in the

equation g(x) = fθ([x,φ]) where φ represents the additional trainable parameters, and

[·, ·] represents concatenation [34]. Note that we leave layer normalisation as trainable

for all methods and all layers, as this stabilises training and increases adaptation capacity

whilst adding very few trainable parameters [47].
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3.3.3 Function Composition Methods

We tested two fine-tuning methods that use function composition. Firstly we tested

adding a two-layer MLP with ReLU activation to the concatenated embeddings from

ESM-2 and ChemBERTa-2. This can be thought of as adding a joint non-linear adapter

to the last transformer block of the protein and ligand LMs where only this adapter is

trainable, a common way of fine-tuning deep learning models [46]. This method tests

the impact of both exclusively fine-tuning an adapter to the last layer of LMs, and also

the effectiveness of jointly modelling protein and ligand embeddings with a non-linear

function. The MLP has a 512 dimension hidden layer picked according to [41], and a

dropout probability of 0.2 to prevent overfitting [42].

Secondly, we tested adapter tuning, which adds trainable modules to each trans-

former block in the protein and ligand LM. Adapter tuning was introduced in [30], but

we used the version from [31] that only adds trainable adapters onto the end of each

transformer block, as it is shown to be more efficient and has similar performance levels

[33]. Adapters include: 1. a non-linear MLP with a hidden layer size smaller than the

LM embedding dimension; 2. a skip connection from before the final layer norm in the

original transformer block to after the adapter MLP; 3. a final layer norm. We used

a hidden layer size of half the LM embedding dimension for the adapter MLP based

on results in [48] and ReLU activation to introduce non-linearity. Embeddings from

the last transformer block in each LM are converted to a binding affinity prediction by

concatenation and a trainable linear regression layer.

3.3.4 Parameter Composition Methods

We also tested two parameter composition methods, BitFit and Low-rank adaptation

(LoRA). Bitfit is a simple method that works by only updating bias weights in the

protein and ligand LMs, and leaving all other weights frozen [32]. The final layer

embeddings of both LMs are then concatenated before a linear regression layer is used

to make the binding affinity prediction.

LoRA works by taking advantage of the inductive bias that an effective model for

a new task can be found by only updating weights in a low-dimensional, randomly

oriented subspace of the original weight space [33]. For each weight matrix W of shape

m x n that is updated, LoRA uses two new trainable matrices A and B, with shape r x n

and m x r respectively. By multiplying trainable matrices A and B together, and then

adding them to the original matrix W , this is the equivalent of only updating a subset
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Figure 3.3: Graphical Illustration of three types of fine-tuning used in this paper: adapter

tuning, prefix tuning and LoRA [30], [34], [33]. The adapter tuning figure shows the setup

for tuning ChemBERTa-2. The setup for ESM-2 is similar but with the skip connections

in different places as described in section 2.2. Note also in our implementation LoRA is

only applied to query, key, and value weights and not to the projection layer.

of the weights of W that lie in a low dimensional subspace [33]. As high performance

can be achieved by using LoRA to adapt weights in the attention layer of LMs [49] we

add separate A and B matrices to the query, key, and value weights in every transformer

block of the protein and ligand LMs as shown in equation 2.4.

Wk =Wk +
α

r
(BkAk), Wq =Wq +

α

r
(BqAq), Wv =Wv +

α

r
(BvAv) (3.4)

Where original attention weights W are frozen and added matrices A and B are trainable.

We chose a rank r of 32 and scaling factor α (which controls the size of the update) of

64 according to results from [33]. Concatenation of protein and ligand embeddings and

a linear regression layer are used to make the final prediction.

3.3.5 Input Composition Methods

Finally, we tested an input composition method, prefix tuning. Prefix tuning works by

directly learning a continuous trainable prompt that is pre-pended to the input of a model

or layer [34]. We used the setting in [34] that implements prefix tuning by concatenating

a set of continuous embeddings, each the size of the embedding dimension d, to the
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key and value matrices in the attention mechanism of every transformer block. By only

adding to the key and value, the trainable prefix embeddings influence the attention

mechanism, but do not increase the number of output token embeddings [34]. We

used 200 trainable prefix embeddings in each block due to this having the highest

performance in results from [34]. Binding affinity is then predicted by concatenation

of protein and ligand embeddings followed by a linear regression layer. A graphical

summary of adapter tuning, LoRA and prefix tuning can be seen in Fig. 3.3.

3.3.6 Combining Methods

Many of the fine-tuning methods we tested can be carried out at the same time to further

increase the number of trainable parameters and potentially also model performance. To

investigate this we also ran tests combining some of the fine-tuning methods described

here. Due to promising results in initial tests, we further analysed the effectiveness of

combining a non-linear MLP regression head (fine-tuning method 1), with updating the

bias weights of LMs in BitFit (fine-tuning method 3).

3.4 Model Implementation Details

All models were implemented in Python using the PyTorch framework [50]. Models

were trained with a batch size of 1024 to balance the speed of training and robustness

of gradient updates [51], and where GPU memory did not allow this gradients were

accumulated till 1024 samples had been processed, keeping comparison between models

fair. Based on commonly used values, a learning rate of 0.001 was used for parameters

trained from scratch like regression heads, and a learning rate of 0.00001 was used

for fine-tuning pre-trained weights within the LMs. To aid convergence, the AdamW

optimiser [52] and plateau learning rate scheduler were used. If models went 10 epochs

without improvement in validation metrics then the learning rate was reduced by a factor

of 10, and if 20 epochs passed without improvement then training was stopped and the

highest performing model of the run was saved. All models were trained using mean

squared error (MSE) loss, with the evaluation metric being root mean squared error

(RMSE). Fine-tuning methods were implemented by adapting code from the github

repository (link) for ESM-2 [10] and from the Hugging Face transformers github (link)

[53] for ChemBERTa-2 [11].

https://github.com/facebookresearch/esm
https://github.com/facebookresearch/esm
https://github.com/huggingface/transformers
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Results

4.1 Summary

This chapter details the results of tests using the algorithms described in the method-

ology. Throughout the results commonly used evaluation metric root mean squared

error (RMSE) on the PDBbind 2016 core set [14] is used to assess and compare the

performance of different models. The main results are:

• Encoding with pre-trained LLMs is shown to be more effective than encoding

with models trained end-to-end.

• Parameter-efficient fine-tuning (PEFT) of molecular LMs produces much better

performance than just using frozen LMs for binding affinity prediction

• Adding a joint MLP regression head is the most effective individual fine-tuning

method with an RMSE of 1.313 and 3.2% trainable parameters.

• Combining BitFit with a joint MLP regression head gives a state-of-the-art

sequence level binding affinity prediction model, achieving an RMSE of 1.215,

0.83 (7%) better than any comparable method and with 3.5% trainable parameters.

• Increasing protein LM size considerably increases performance of models with

linear regression heads and slightly increases performance of models with non-

linear MLP regression heads. Increasing protein LM size is not as effective or

parameter-efficient as PEFT applied to a smaller model.

• Models using just the frozen ChemBERTa-2 ligand LM which has additional prop-

erty pre-training outperform models using just the frozen ESM-2 protein model.

PEFT on ESM-2 results in more performance gains than PEFT on ChemBERTa-2.

24
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4.2 Comparison of Fine-Tuning Methods

This section presents results comparing the performance of baseline methods described

in methodology section 3.2 and fine-tuning methods described in section 3.3.

4.2.1 Research Questions

Firstly, we compare results of baselines and fine-tuning methods to answer three main

questions:

1. Is encoding with pre-trained LLMs more effective than encoding with models

trained from scratch?

2. Is parameter-efficient fine-tuning (PEFT) more effective than just encoding with

pre-trained LLMs and adding a simple regression head?

3. Which PEFT methods are most effective?

4.2.2 Models and Experiments

Baselines include a simple embedding layer trained end-to-end followed by either a

linear regression or non-linear MLP head (denoted Simple Embedding + LinReg/MLP),

as well as a third baseline that uses pre-trained molecular LMs [10], [11] to embed

protein and ligand sequences before concatenation and a linear regression head (denoted

LM Embedding + LinReg).

Fine-tuning methods include function composition algorithms of adding a joint

non-linear MLP adapter regression head (denoted Joint MLP Head), as well as adding a

trainable non-linear adapter to every transformer block before a linear regression head

(denoted All layer Adapter Tuning) [30], [31]. Parameter composition algorithms of

only updating bias weights (denoted BitFit) in molecular LLMs [32] or only updating

weights in a randomly oriented low-dimensional subspace (denoted LoRA) in molecular

LLMs [33] before a linear regression head are included. The input composition method

of pre-pending trainable embeddings to sequences in molecular LLMs before a linear

regression head (denoted Prefix Tuning) is also tested [34].

We also consider a method that combines the Joint MLP Head and BitFit fine-tuning.

This is because these two fine-tuning methods showed the most promising results of all

fine-tuning methods (as can be seen in Table 4.1) whilst not considerably increasing

computation time. This method is denoted ”BitFit & Joint MLP Head”. Key information
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Model Name Performance (RMSE) Parameters (millions) Trainable Parameters (%)

Simple Embedding + LinReg 2.022 0.0529M 100%

Simple Embedding + MLP 2.037 0.412M 100%

LM Embedding + LinReg 1.672 10.9M 0.0064%

Joint MLP Head 1.313 11.3M 3.2%

All Layer Adapter Tuning 1.414 12.0M 9.0%

BitFit 1.432 10.9M 0.37%

LoRA 1.482 11.5M 5.3%

Prefix Tuning 1.464 11.0M 0.83%

BitFit & Joint MLP Head 1.215 11.3M 3.5%

Table 4.1: Table summarising the performance of various baselines and PEFT methods

tested in this paper. Information on the total number of parameters and the number

of trainable parameters is also included to consider the computational burden of each

model. Embeddings with molecular LMs outperforms embeddings trained end-to-end,

and PEFT of LMs improves performance. The Joint MLP Head model is the most

effective individual fine-tuning method, whilst BitFit is the most parameter efficient.

Combining these methods gives the best performing model BitFit & Joint MLP Head.

Note the first three models are baseline approaches.

about the number of trainable parameters and performance of aforementioned models

trained on the PDBbind general set and tested on the PDBbind 2016 core set are

summarised in Table 4.1.

4.2.3 Pre-trained LLMs vs End-to-end Encoding

By looking at the results of the baseline approaches, it is clear that encoding with pre-

trained protein and ligand LMs is far more effective than training a simple embedding

layer to encode protein amino acid sequences and ligand SMILES strings before binding

affinity prediction. Encoding with molecular LMs followed by a simple linear regression

head results in a RMSE of 1.672, compared to 2.022 and 2.037 for both baseline

approaches trained end-to-end with a randomly initiated embedding layer, an increase

of 0.35 and 0.37 respectively. This suggests that masked language model pre-training

on large amounts of unlabelled protein and ligand sequences does capture important
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structural and property information that can aid in the prediction of protein-ligand

binding affinity.

4.2.4 Benefit of PEFT

We can also see from the results that PEFT of molecular LMs is considerably more

effective than just using frozen LMs as encoders. All PEFT methods have an RMSE of

1.482 or less, being at least 0.19 better than the LM Embedding + Linear Regression

baseline model. The best individual PEFT method has an RMSE 0.37 lower than the

baseline, whilst the combined method (BitFit & Joint MLP Head) is 0.46 lower. This

indicates that PEFT of protein and ligand LMs results in more informative protein and

ligand sequence embeddings that can be used to produce higher performance predictions

of protein-ligand binding affinity.

4.2.5 Best Individual PEFT Approach

Comparing within fine-tuning methods, we can see that the choice of algorithm has a

marked impact on the efficacy of deep learning models. Tuning by adding a joint MLP

Head on top of the protein and ligand LMs reaches an RMSE of 1.313, 0.99 higher than

any other individual PEFT method. As the only model with a non-linear regression

head, this shows the importance of jointly learning non-linear relationships between

embedded protein and ligand sequences. Between fine-tuning methods that directly

modify transformer blocks of LMs instead of the regression head, the differences

are a lot smaller but still notable. All layer Adapter tuning is the best method with

an RMSE of 1.414, and the worst method is LoRA with a 0.068 higher RMSE at

1.482. Interestingly, there is no clear relationship between the percentage of trainable

parameters in methods and performance. For example, the joint MLP Head model

and BitFit both outperform LoRA despite having 3.2% and 0.37% of parameters being

trainable compared to 5.3% for LoRA. One impact of this is that in situations where

computational burden is important, picking a fine-tuning method that adds less trainable

parameters may not harm performance.

4.2.6 Performance of Our Combined Model

Overall, the two most promising individual methods are the joint MLP head which has

the markedly best performance of individual PEFT methods, as well as BitFit which is
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the third best-performing method despite only having 0.37% of all model parameters

as trainable. As these two methods are high-performing and work on different parts of

the binding-affinity models, we tested combining these PEFT methods in one model-

the BitFit & Joint MLP Head model. This model is considerably better than all other

methods tested, achieving an RMSE of 1.215, which is 0.98 better than the second

best PEFT method we tested. Furthermore, this model has a very reasonable 3.5% of

parameters as trainable. This is likely because the joint non-linear MLP regression head

can fully take advantage of the more informative protein and ligand embeddings that

are produced by keeping all LM bias vectors as trainable in BitFit. Tuning just the

regression head and LM transformer blocks in isolation is not sufficient to maximise

performance.

4.3 Comparison With Pre-existing Methods

To appreciate how well our models are performing in a wider context, we compare

some of the models tested in section 4.1 to some of the most widely used and highest

performing models in the literature as described in the literature review section 2.2.

4.3.1 Methods from Literature and Our Models

We include results from six methods in the literature: 1) Autodock Vina which is a

physics-based method using interaction features [7]; 2) Random Forest (RF)-score

v3 that uses interaction features and the RF algorithm [22]; 3) DeepDTA that uses

a convolutional neural network based model on sequence level information [23]; 4)

InteractionGraphNet (IGN) that uses a graph neural network approach with higher order

structural and interaction features [9]; 5) CAPLA that uses an attention mechanism

and binding pocket information [24]; 6) CAPLA-Pred, a version of CAPLA that only

uses sequence level information [24]. We chose to compare these methods to the Joint

MLP Head model and the BitFit & Joint MLP Head model as described in section 3.3.3.

This is because the Joint MLP Head model is the best-performing individual fine-tuning

method, and the BitFit & Joint MLP Head model is the best-performing of our tested

methods. We also include the LM Embedding + Linear Regression baseline to allow

comparison to a method that doesn’t fine-tune the pre-trained LMs.

As mentioned in the introduction, some methods use features pertaining to either

higher-order structural information of the protein or information on the interaction of
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Model Name (Year) Performance (RMSE) Higher Order Features (Yes/No)

Autodock Vina (2010) 1.750 Yes

RF-Score v3 (2015) 1.395 Yes

DeepDTA (2018) 1.443 No

IGN (2021) 1.220 Yes

CAPLA (2023) 1.200 Yes

CAPLA-Pred (2023) 1.298 No

LM Embedding + LinReg 1.672 No

Joint MLP Head 1.313 No

BitFit & Joint MLP Head 1.215 No

Table 4.2: Table summarising the performance of a baseline and the best two models

(bottom section of the table) from experiments in section 4.1, as well as notable models

from wider literature. The table also includes whether models used higher order (protein

structural or protein-ligand interaction) features. The BitFit & Joint MLP Head model is

the best peforming model that only considers sequence level information, outperforming

all comparable methods by at least 0.083 (7%).

the protein and ligand. This information can aid binding affinity prediction but may not

be available in a real world setting [1], so data on whether models take advantage of

these features is included in Table 4.2 alongside the RMSE performance of models on

the 2016 PDBbind core set.

4.3.2 Comparison of Our Methods to Those in Literature

It can be seen from Table 4.2 that our methods using protein and ligand LLMs compare

favourably to notable methods from the literature. Our baseline model of using molecu-

lar LMs as encoders followed by a linear regression head outperforms physics-based

method Autodock Vina by an RMSE of 0.073, evidencing the utility of using molecular

LMs in binding affinity prediction even when they are not fine-tuned. Fine-tuning of

molecular LMs however is required to get competitive performance with more recent
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methods. Training a Joint MLP Head on LMs gives an RMSE of 1.313, performing

better than Autodock Vina, RF-Score v3 and IGN despite only tuning regression heads

of LMs and not taking advantage of higher order features. The performance of the

BitFit & Joint MLP model that also trains bias vectors in the protein and ligand LMs

is particularly impressive. The model is considerably better than any other model that

doesn’t take advantage of higher-order features, achieving an RMSE of 1.215, which

is 0.083 lower than the second best purely sequence-based approach CAPLA-Pred.

This makes the BitFit & Joint MLP Head model state-of-the-art for protein-ligand
binding affinity from sequence level information alone. This result emphasises the

potential performance benefits available from taking advantage of pre-training with

large volumes of unlabelled data for binding affinity prediction and other interactive

molecular property prediction tasks. It also shows that tuning both the protein and

ligand LM transformer blocks to create more informative embeddings, and using a joint

non-linear regression head to learn complex relationships between embedded sequences,

is the best way to maximise prediction power.

4.3.3 Comparison of Our Best Model to Interaction-based Methods

As seen in Table 4.1 consideration of higher-order features generally leads to better

performance, with the two best methods from the literature IGN and CAPLA both

considering higher-order protein structural or interaction features. CAPLA is the best

performing method considered with an RMSE of 1.200, 0.02 lower than IGN. However,

CAPLA has an RMSE of only 0.015 lower than the BitFit & Joint MLP Head model

despite considering higher-order features, suggesting that using pre-trained protein

and ligand LLMs can lead to competitive performance even with models that take

advantage of higher-order features. This is potentially because increased knowledge of

higher-order molecular structure and properties of sequences is learned from masked

language model pre-training. Furthermore, when higher-order features are removed

from CAPLA, it’s RMSE drops by 0.98 to 1.298, which is considerably lower than the

BitFit & Joint MLP model, evidencing the effectiveness of the method.

4.4 Effect of Protein Model Size

This section contains results that investigate the effect of protein LLM size on binding

affinity prediction models that use molecular LLM embeddings. We are particularly
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interested in whether using larger protein LMs with more parameters results in more

information-rich embeddings that can improve the performance of protein-ligand bind-

ing affinity prediction.

4.4.1 Different Model Sizes and Experiments

Throughout this paper, the ESM-2 [10] protein LLM is used to embed amino acid

sequences. The ESM-2 model comes in a variety of sizes, ranging from a model with 6

layers and 8 million parameters to a model with 48 layers and 15 billion parameters,

all trained on unlabelled amino acid sequences with a masked language modelling

objective [10]. This paper primarily uses the smallest model with 8 million parameters

due to limitations in computational resources, but it is possible that using larger models

could result in embeddings that capture more complicated and useful protein features,

and therefore enable better protein-ligand binding affinity prediction. To test this we

train a series of simple binding affinity prediction models using different sizes of ESM-

2 models and test how the protein LM size affects performance. We first test LLM

embedding + linear regression baseline models that encode both protein and ligand

sequences with molecular LMs before concatenation and a linear regression layer for

binding affinity prediction. This directly tests how informative embeddings are as only

a linear relationship between features can be used to predict binding affinity. We then

repeat this experiment but with a non-linear MLP regression head as described in section

3.3.3, which tests whether embeddings from larger protein LMs are more informative

when non-linear feature relations are considered. Results of these experiments are shown

in Fig. 4.1. Note that ChemBERTa-2 is used as the ligand LM for all experiments.

Unfortunately, we could not repeat these size experiments on the ChemBERTa-2 model

as it only has one available size [11].

4.4.2 Effect of Model Size on Performance

As seen in Fig. 4.1 there is a positive relationship between increasing the size of

protein LLM and the performance of baseline models with a linear regression head. The

model with the 8M parameter protein LM has a RMSE of 1.655, compared to 1.586

and 1.534 for the 35M and 150M protein LM respectively, with decreases of 0.069

and 0.052 as the number of parameters increases. This shows that larger protein LMs

capture more informative embeddings that give considerably better binding affinity

performance when linear relationships are considered. For models with a non-linear
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Figure 4.1: Comparison of linear regression head and non-linear MLP regression head

applied to embeddings from different sizes of protein LLM. Three sizes of ESM-2 models

were used ranging from 8M to 150M parameters (bigger models than this were too com-

putationally expensive to test). Increasing LM size considerably improves performance

of models with linear regression heads and only slighly improves performance of models

with non-linear MLP heads. Increased LM size gives more informative embeddings, but

is less effective and efficient than using PEFT.

MLP head, increasing protein LM model size only very slightly improves performance,

with an RMSE of 1.347 using the 8M parameter model, 1.341 with the 35M model

and 1.333 with the 150M parameter model. These represent decreases of 0.006 and

0.008 as the number of parameters increases. Increasing protein LM size considerably

increases performance with linear regression heads, but not MLP heads, suggesting a

more complicated regression head that models non-linear relationships between features

can compensate for less linearly informative embeddings. Overall, results show that

increasing protein LM size results in more informative embeddings and better binding

affinity prediction performance. It is possible that further increasing protein and ligand

LM size could lead to even better performance of methods proposed in this paper if

computation power allowed. However, increasing protein model size considerably

increases model parameters for only moderate performance benefits, these results show

PEFT of a smaller protein LM as done in our proposed models is a far more effective
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and computationally efficient way to improve performance.

4.5 Relative Importance of Protein and Ligand LLM

We also carry out experiments that determine the general importance of the protein vs

the ligand LLM in some of the models we tested in section 4.1 and link performance

to LM characteristics. This can help practitioners prioritise where to spend limited

computational resources and time to maximise performance gain from using or fine-

tuning protein and ligand LMs in binding affinity prediction based on the characteristics

of molecular LLMs used.

4.5.1 Using Only One of Protein or Ligand LM

We investigate the relative importance of encoding sequences with protein and ligand

LMs in our models by testing methods where only one of the amino acid sequence or

ligand SMILES string is encoded by an LLM. In each model, the other sequence will

be encoded by a simple embedding layer trained from random initialisation. Binding

affinity prediction will be made by concatenating embeddings and using a non-linear

MLP regression head as in fine-tuning method 1 (section 3.3.3) so non-linear relations

can be learned between embedded features. The model where only the protein sequence

is encoded with an LM achieves an RMSE of 1.404, which is 0.039 higher than the

model only encoding the ligand sequence with the LM, showing that in our baseline

models the ligand LM is more important in improving performance.

4.5.2 Fine-tuning Only One of Protein or Ligand LM

We also test the importance of fine-tuning the protein LLM compared to fine-tuning the

ligand LLM when both are present in the binding affinity prediction model. We test the

effect of only fine-tuning the protein or ligand LLM on LoRA [33] and prefix tuning

[34] PEFT methods as described in section 3.3. In both methods, a linear regression

head is used for prediction. When only the protein model is fine-tuned RMSE values of

1.557 and 1.532 are achieved, compared to 1.602 and 1.641 when only the ligand model

is fine-tuned, which is a 0.077 average increase between only fine-tuning the protein and

ligand LM. So, in our models fine-tuning the protein LM is more important than fine-

tuning the ligand LM. Together these results indicate that before fine-tuning the ligand

LM ChemBERTa-2 provides more informative features for predicting binding affinity,
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likely due to its additional pre-training on ligand property prediction regression tasks

[11]. Therefore, there is more performance gain from fine-tuning the protein LM ESM-2

[10] to the task as it has not had additional pre-training to optimise embeddings for

property prediction. Results suggest that limited compute budget should be prioritised

for fine-tuning LLMs that have not had additional downstream pre-training to optimise

embeddings for property prediction tasks. If fine-tuning is not feasible, researchers

should try to use molecular LLMs already pre-trained with additional property prediction

tasks like in [11] to improve performance.
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Discussion

A consistent theme of the results in this paper is the effectiveness of using protein and

ligand large language models (LLMs) and parameter-efficient fine-tuning (PEFT) to

address some of the limitations of previous methods and improve the performance of

protein-ligand binding affinity prediction.

5.1 Benefits of Using Molecular LLMs and PEFT

Firstly, baselines comparing models with simple embedding layers trained end-to-end

to models using protein and ligand LMs to embed sequences were tested. Using protein

and ligand LMs pre-trained with masked language modelling on large amounts of

unlabelled sequences resulted in far better performance, even with just a simple linear

regression head. This indicates that pre-trained protein and ligand LMs do capture

important structural and property information of molecules that are present in embedded

sequences and this can be leveraged to improve prediction of protein-ligand binding

affinity.

We then compared the performance of various PEFT methods applied to protein and

ligand LMs to try and improve upon the baseline binding affinity prediction model that

used frozen LMs. These included adding a non-linear MLP regression head, adapter

tuning [31], BitFit [32], LoRA [33] and prefix tuning [34]. All fine-tuning methods

considerably outperformed the frozen LM baseline, indicating that fine-tuning protein

and ligand LMs can result in even more informative embeddings with features that are

specifically tailored to the task and therefore improve binding affinity prediction.

35
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5.2 Best Methods and State-of-the-art Combined Model

The markedly most effective individual fine-tuning method was adding a joint non-linear

MLP regression head to concatenated embeddings of protein and ligand LMs, showing

the importance of being able to learn non-linear relations between features present

in protein and ligand embeddings to make effective predictions. BitFit, which trains

all bias vectors in protein and ligand LMs, was the most efficient method, achieving

good performance despite having the lowest percentage of trainable parameters out

of all methods at 0.37%. To further increase performance, we created a model that

used both a non-linear MLP regression head and BitFit on the protein and ligand LMs,

tuning both the transformer blocks in LMs and the regression head. This model was

considerably better than all other fine-tuning methods tested, achieving an RMSE of

1.215 on the PDBbind 2016 core set whilst having a reasonably low 3.5% of trainable

parameters. This model proves that tuning both LMs to create more relevant and

informative embeddings, and non-linear modelling of embedded features is required to

achieve the best performance.

The BitFit & Joint MLP Regression Head model also performs very favourably

when compared to notable protein-ligand binding affinity prediction models in the

literature. Our model outperforms all other methods that don’t take advantage of

higher-order protein structural or protein-ligand interaction features by a considerable

margin, having an RMSE of at least 0.083 (7%) lower than comparable methods. This
makes our model state-of-the-art in predicting protein-ligand binding affinity from
sequence-level information alone. Our model is also competitive with the state-of-the-

art model that uses protein-ligand interaction features [24], having an RMSE of only

0.015 higher. These results prove that taking advantage of abundant unlabelled data by

using molecular LMs, combined with PEFT to adapt models to a task can overcome

limitations created by a lack of high-quality labelled data that limits the performance of

most deep learning methods in the literature.

5.3 Effect of Molecular LLM Characteristics

We also carried out some additional experiments into the properties of some of the

binding affinity models we created. We found that increasing protein LM size can

lead to more informative embeddings which improves the performance of models

with both linear and non-linear regression heads. This result suggests that with more
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computational power and larger protein and ligand LMs, performance of models in

this paper could be improved even further. Performance differences were much more

prevalent in models using a linear regression head, suggesting that jointly learning non-

linear associations between embeddings can compensate for less linearly informative

embeddings produced by smaller protein LMs. Despite increasing protein LM size

resulting in improved performance we proved that this is a considerably less effective

and computationally efficient way to improve performance than our method of PEFT a

smaller model.

We also looked into the relative importance of embedding and fine-tuning with the

protein LLM ESM-2 [10] and the ligand LLM ChemBERTa-2 [11] in our models. Only

embedding the ligand with ChemBERTa-2 was more effective than only embedding

the protein with ESM-2, likely because ChemBERTa-2 additional pre-training on

regression tasks resulted in more optimised embeddings for property prediction. As a

result of this, there was more performance gain from fine-tuning protein LLM ESM-

2 to the binding affinity prediction task than fine-tuning ChemBERTa-2 as ESM-2

embeddings were not optimised for property prediction. These results suggest that

when computational resources are limited practitioners should focus on finding LLMs

already pre-trained on downstream tasks that require less fine-tuning to achieve good

performance. Furthermore, fine-tuning LLMs that have not already been pre-trained on

downstream tasks should be prioritised over fine-tuning LLMs that have already had

property prediction pre-training.
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Conclusions

In this paper, we test the use of protein and ligand LLMs in predicting protein-ligand

binding affinity, with a specific focus on the best PEFT methods and architectures to

maximise performance.

Predicting protein-ligand binding affinity is a very important problem due to its

potential for real-world application. In particular, screening for strong binders to a

protein can result in the discovery of potential new drugs [1], and ML methods for

predicting binding affinity have the potential to alleviate the problems of traditional wet-

lab experiments for screening, which are costly and time-consuming [5]. Current ML

methods used to predict protein-ligand binding affinity have shown potential, achieving

good results and outperforming physics-based methods [1]. However, models are

inherently limited by a lack of high-quality labelled training data which is expensive

to obtain experimentally [5]. To address this issue and improve the performance

of binding affinity prediction, we leverage protein and ligand LLMs trained with a

masked language modelling objective on large volumes of unlabelled protein amino

acid sequences and ligand SMILES sequences [10], [11]. By learning relevant structural

and property features of molecules on large amounts of unlabelled data, ML models can

take advantage of this pre-training to achieve better performance for binding affinity

prediction on smaller amounts of labelled data [12].

To test this hypothesis multiple deep learning methods for binding affinity prediction

using protein and ligand LMs were trained on the PDBbind dataset and tested on the

PDBbind 2016 core set [14]. Other than baselines, all models used protein LM ESM-2

[10] and ligand LM ChemBERTa-2 [11] to embed sequences before concatenation and

a regression head. Various PEFT methods were tested to adapt these models to the

task of binding affinity prediction. The most efficient methods were adding a joint non-

38
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linear MLP regression head and BitFit [32], which leaves LM bias vectors as trainable.

Combining these two fine-tuning methods produced our best model tested in this

paper, achieving an RMSE of 1.215 with a reasonable 3.5% of model parameters being

trainable. This result shows fine-tuning both LMs to give more relevant and informative

embeddings and fully taking advantage of these by considering non-linear relations of

embedding features gives the best binding affinity performance with molecular LMs.

Our Joint MLP Head & BitFit model compares very well to approaches in the

literature, considerably outperforming other approaches that don’t take advantage of

higher-order structural features by at least 7%, making the model the state-of-the-
art purely sequence-based protein-ligand binding affinity prediction model. This

validates our hypothesis that masked language model pre-training on unlabelled data

captures features of sequences relevant to binding affinity, and that this reduces the

amount of labelled data required to achieve good performance. Results also evidenced

that PEFT is an effective method to overcome the computational difficulty of adapting

two LLMs to model multiple sequences in interaction properties like binding affinity.

Also, results with different sizes of protein LMs proves PEFT is a more effective and

efficient way of improving performance than increasing protein LLM size.

The approaches tested in this paper could be easily adapted to improve the per-

formance of other molecule property prediction tasks, especially those involving the

interaction of two molecules like in binding affinity prediction. We also carried out

further experiments that suggested model performance could be improved even more by

considering bigger protein LLMs that capture more informative embeddings, and fine-

tuning could be made even more efficient by using molecular LLMs already pre-trained

on other downstream property prediction tasks. Future research could explore these

LLM characteristics in more detail to make the use of molecular LLMs for binding

affinity prediction even more effective and efficient. Future work could also explore how

either experimental or predicted higher order structural and interaction features could

be incorporated into models that use molecular LLMs for binding affinity prediction,

to see if molecular LLMs can also be used to achieve state-of-the-art performance in

models using higher order features as well as those only considering sequence level

information.
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