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Abstract

This projects explores discourse coherence through multi-token predictions in language

models. Previous research has mainly focused on single-token connectives, neglecting

the challenges of multi-token completion in Masked Language Models [8]. We applied

BERT, with an additional Extended Output Prediction Matrix decoder, specifically

designed to predict multi-token connectives. Additionally, we developed linguistic

resources including a vocabulary of inter-sentential multi-token discourse connectives

and their senses from the PDTB-3 Appendix and Connective-Lex. We also created

an extended preposed and non-canonical dataset respectively, for further research on

discourse relation recognition task. By using the two datasets for model inference, we

extended the claim that a preposing structure can help MLMs predict a single token

connective in a discourse to multi-token scenario. The preposing structure improves

the model’s general accuracy and accuracy across genre, and confidence in correct

predictions, especially for complex discourse relations including Arg2-as-detail, Arg2-

as-instance, and Reason.
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Chapter 1

Introduction1

A discourse is normally a sequence of clauses, or sentences. Local discourse coherence

is considered to be the relation between two adjacent clauses or sentences, which

helps the information flow and structure [24, 15]. This coherence can be explicitly

signaled by an explicit discourse connective, such as “for example”, “but”, “and”, etc.

Ex.(1) illustrates a case where ”but” functions as an explicit connective. Conversely,

if a discourse relation is not signaled by a discourse connective, then this relation is

referred to as implicit. That is, people need to infer the discourse relation based on

their understanding of the clauses or sentences being connected and their context. An

implicit relation, if it exists, can be made explicit by inserting a discourse connective

as shown in Ex.(2). The insertion does not alter the meaning of sentences and clauses,

but rather reveals the sentential relation more straightforwardly, allowing any suitable

connective to be inserted. For instance, in Ex.(2), “but”, “so”, or “because” could be

used as the inserted implicit connective each conveying a different relation between the

clauses. The Penn Discourse Treebank 3.0 (PDTB-3) [16], a corpus of articles from

Wall Street Journal with human-annotated discourse relations, and DiscoGeM 1.0 [21],

a crowdsourced corpus of implicit discourse relations, are two exemplars of the practice

of annotating discourse relations (see Section 2.2).

(1) John left butexplicit connective Bob stayed.

(2) John left, [but/so/because]implicit connective Bob stayed.

Discourse connectives include coordinating conjunctions (such as “and”, “but”,

“or”), subordinating conjunctions (such as “when”, “because”, “if”) and adverbials

1Part of the content in the Introduction is from the author’s Informatics Project Proposal.
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Chapter 1. Introduction1 2

(such as “in addition”, “for example”, “meanwhile”). While subordinating conjunctions

typically occur within a sentence (i.e. intra-sententially), connectives and adverbials

between sentences (i.e. inter-sententially) are usually coordinating conjunctions. As

illustrated in Ex.(3) and Ex.(4), subordinating conjunction “because” connects adjacent

clauses within a sentences, and the adverbial “meanwhile” acts across sentences.

(3) Intra-sentential: The federal government suspended sales of U.S. savings bonds

becausecoordinating conjunction Congress hasn’t lifted the ceiling on government

debt. [wsj 0008, PDTB-3]

(4) Inter-sentential: In another reflection that the growth of the economy is leveling

off, the government said that orders for manufactured goods and spending on

construction failed to rise in September. Meanwhilesubordinating conjunction, the

National Association of Purchasing Management said its latest survey indicated

that the manufacturing economy contracted in October for the sixth consecutive

month. [wsj 0036, PDTB-3]

Although the discourse connectives are effective in marking the relations between the

current sentence and the prior context, they are not the only way; alternatively, marked

information structure can also link a previous sentence (i.e. Arg1) with the current one

(i.e. Arg2), for example, by a preposed constituent like noun phrase (NP) or preposition

phrase (PP) [26] (see more details in Section 2.4). Ex.(5) and Ex.(6) demonstrate cases

where at the start of Arg2 — a PP in Ex (5) and an NP in Ex (6) — links with the

previous sentence (Arg1).

(5) Preposed PP: He suddenly shivered: he experienced a momentary sensation that

he didn’t understand because no one on Earth had ever experienced it before.𝐴𝑟𝑔1

In moments of great stressPP, every life form that exists gives out a tiny sublimal

signal.𝐴𝑟𝑔2 [Hitchhiker’s Guide to the Galaxy, DiscoGeM 1.0]

(6) Preposed NP: Dudley’s mouth fell open in horror, but Harry’s heart gave a

leap.𝐴𝑟𝑔1 Every year on Dudley’s birthdayNP, his parents took him and a friend

out for the day, to adventure parks, hamburger restaurants, or the movies.𝐴𝑟𝑔2

[Harry Potter, DiscoGeM 1.0]

Previous work has shown that preposed structure can help language models predict

implicit discourse relations [3]. Specifically, they used a Masked Language Models

(MLM) like BERT [2] to insert connectives as a way to predict implicit discourse
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relations between sentences. They found that BERT’s predictions were more aligned

with human annotations when the context included the preposed structure compared to

when it did not. However, their work was limited to predicting single-token connective

due to the constraint of BERT, which is trained to predict one token at a time.

1.1 Motivation and objectives

Given the limited empirical evidence on whether preposed structures can effectively

signal implicit discourse relations—only one study [3],, to our knowledge, has addressed

this—and the limitations of previous work focused on single-token prediction, our

project aims to explore multi-token connective prediction and test the impact of preposed

structures.

Multi-token connectives are expected to often less ambiguous with respect to the

discourse relations they can convey. For instance, in Ex.(7), the word “but”, with

eight possible senses including Comparison.Concession.Arg2-as-denier, Compari-

son.Contrast and so on, remains general and open to interpretation. In contrast, the

phrase “despite this” in Ex.(8), which carries only one sense in PDTB-3, clearly spec-

ifies a “Comparison.Concession.Arg2-as-denier” relation, where the Arg2 denies or

contrast with the expectation set by the Arg1, making it less ambiguous compared to

the single-token connective “but.”

(7) The weather forecast predicted rain. But the event continued as planned.

(8) The weather forecast predicted rain. Despite this, the event continued as planned.

In our experiments, we will examine whether preposing can help the model predict

a multi-token connective.

Furthermore, in previous work [3], while the model generated the top 5 single-token

connectives as output, the corresponding probabilities after the Softmax layer were

sometimes close to each other, indicating uncertainty in the predictions, and at other

times sparse, with the top choice dominating the probability distribution. There were

also instances where BERT did not generate any connectives.

Thus, it will be interesting to analyze our multi-token connective predictions, in-

cluding the mask-fillers, their corresponding senses, and probabilities, and to test some

of previous findings [3] in the context of our results.

The dissertation mainly aims to predict multi-token discourse connectives via a fine-

tuned MLM, BERT. We qualitatively validate if a multi-token connective prediction is
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indeed more specific than a single token connective prediction in Dong et al. [3]’s output.

We then compare the probability distribution of our model’s predictions on two different

test datasets, with and without preposed structures respectively, and examine how the

findings from single-token connective predictions apply to multi-token predictions,

ultimately drawing a conclusion.

1.2 Results and Contribution

Our experiments show that the model indeed give less ambiguous multi-token connec-

tives as the mask fillers, as we had hoped. Also, a preposed structure in Arg2 within a

discourse helped the model to understand the information flow, therefore gives more

accurate multi-token connective predictions. While previous researchers validated this

claim on single token prediction, we are the first validating the benefits of the preposed

structure on multi-token connectives.

We also contributed linguistic resources for further research on discourse relation

recognition task. We created a vocabulary of inter-sentential multi-token discourse con-

nectives and their sense-mapping dictionary, and developed two extended datasets—the

preposed and non-preposed datasets, each including 1598 samples—derived from both

PDTB-3 [16] and DiscoGeM 1.0 [21]. While the PDTB-3 mostly contains news articles,

DiscoGeM 1.0 includes political speeches, literature and wikipedia texts.

1.3 Structure of dissertation

The rest of this dissertation contains four chapters. Chapter 2 introduces the background

on implicit discourse relation recognition task, two frequently used datasets in this area,

and the syntactic preposed structure. Chapter 3 presents the approach to prepare datasets,

predict multi-token connectives via a modified BERT model, and the evaluation metrics

for further comparison. Chapter 4 provides the results after the implementation of the

model. We examines if the multi-token connective is less ambiguous, and compares the

model’s performance on the preposed and non-preposed test sets. Finally, Chapter 5

discusses the future work that could be done after this project in terms of the datasets,

and the model, and draws a conclusion on whether the preposed structure is effective in

signaling implicit relations or not.



Chapter 2

Background

Chapter 2 provides the background for understanding the research on multi-token

connective prediction. Specifically, Section 2.1 introduces the concept of the implicit

discourse relation recognition task, discussing its importance in NLP and the transition

from traditional machine learning techniques to neural network approaches. Section

2.2 introduces two widely used corpora in the Implicit Discourse Relation Recognition

(IDRR) task. Section 2.3 focuses on Masked Language Models (MLMs), particularly

BERT, and their tailored pre-training tasks for sense recognition. Section 2.4 introduces

the syntactic preposing strategy, explaining how syntactic structures can enhance the

prediction of implicit connectives. Finally, Section 2.5 addresses the challenge of

multi-token prediction in MLMs and presents innovative solutions.

2.1 Implicit discourse relation recognition (IDRR)

In both spoken and written communication, it is often the case that no connective is

explicitly provided, yet listeners or readers can easily infer the relationship between two

segments of text. The task of implicit discourse relation recognition (IDRR) is to detect

and identify such “covert” relations when no connective is present in the discourse.

This capability is beneficial for various downstream natural language processing (NLP)

tasks such as machine translation, question answering, sentiment analysis, etc.

Early research employed traditional machine learning strategies like Naive Bayes for

classification, which required hand-crafted features [27]. Linguistic features, including

lexical information like one-hot word representations, syntactic information like part-

of-speech (POS) [14], and so on, played a crucial role in these models. However, the

reliance on selected features and sparse one-hot vectors due to a large vocabulary size

5



Chapter 2. Background 6

[13] limited the performance of traditional machine learning methods.

In recent years, researchers have increasingly turned to neural networks or deep

learning (DL) methods for the IDRR task. In neural networks, inputs are no longer

one-hot vectors but word embeddings, which are numerical representations capturing

the linguistic information of a token and its context. Neural models have evolved from

Convolutional Neural Networks (CNN) [10, 18], Recurrent Neural Networks (RNN)

[9], and Long Short Term Memory (LSTM) networks [20] to attention mechanisms [1]

and current Large Language Models (LLMs). Using these DL methods, some studies

aim for direct sense classification [17, 23], while others propose first predicting and

inserting an implicit connective between two texts and then mapping the connective to

its sense (i.e., discourse relation) [28, 3], which is a cloze-like task.

2.2 The PDTB and DiscoGeM corpora

This section introduces two corpora used in our experiments: PDTB [16] and DiscoGeM

[21]. Other widely used discourse relation corpora include the Georgetown University

Multilayer Corpus (GUM) [31], a multilayer corpus for discourse model research

released in 2017. While PDTB and DiscoGeM follow the PDTB-style sense annotations,

GUM adheres to the Rhetorical Structure Theory (RST) framework [12]. A notable

challenge in using GUM for our experiments is that it does not distinguish between

inter-sentential and intra-sentential relations, which complicates preprocessing.

2.2.1 PDTB Corpus

The Penn Discourse Treebank (PDTB) corpus [16] is the largest and most widely

used resource for discourse relation annotation in the NLP community. The texts in

PDTB are sourced from the Wall Street Journal, with discourse relations annotated

by professionals. The latest version, PDTB 3.0, was released in 2019 and updated in

2020, containing a total of 53,676 annotated discourse relations. PDTB-3 includes both

inter-sentential and intra-sentential, as well as explicit and implicit discourse relations.

Before discussing the annotation scheme of PDTB-3, it is important to introduce some

key terminologies used in the corpus:

• Argument: A text segment containing at least a predicate that expresses an action,

event, or state.
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• Connective: A lexicon or phrase that links together two arguments, signaling the

discourse relation between them, such as “if”, “in addition”, etc.

• Sense: The type of discourse relation, such as temporal, comparison and so on.

• Explicit/Implicit connective: If there is a connective in an argument, then it is

an explicit connective. Otherwise, it is implicit because the connective doesn’t

exist but the discourse relation is there.

Most argument-pairs (Arg1 and Arg2) are annotated with an explicit or inserted implicit

connective, along with a sense and other metadata. Note that annotators can insert two

connectives and their corresponding senses, if they feel that both senses are conveyed

implicitly. To maintain consistency in identifying different types of relations, PDTB-3

employs a hierarchical sense classification with three levels (see in Appendix A). Level

1 includes four main classes: Temporal, Contingency, Comparison, and Expansion.

These are further subdivided into types (level 2) and subtypes (level 3). As shown

in Figure 2.1(a), if the connective “Instead” is explicit within the arguments, the

corresponding sense “Expansion.Substitution.Arg2-as-subst” is labeled between the

adjacent discourse units. For implicit relations, as illustrated in Figure 2.1(b), the

connective “By contrast” is inserted, and its sense “Comparison.Contrast” is annotated.

This insertion should be both semantically and syntactically appropriate and natural

within the context. It is worth noting that an argument-pair may sometimes exhibit more

than one discourse relation, leading to two connectives and senses being annotated.

However, such instances are rare (less than 10 samples in our test dataset) and are not

the focus of our experiments.
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(b) The company had a tax credit of $1.4 million. Arg1 In the year-earlier quarter, the tax credit was $3.3 million. Arg2[By contrast]

Sense: Comparison.Contrast

(a) No price for the new shares has been set. Arg1 , the companies will leave it up to the marketplace to decide. Arg2Instead

Explicit Connective

Inserted Implicit Connective

Sense: Expansion.Substitution.Arg2-as-subst

Figure 2.1: Examples of corpus annotation for connectives and their senses. Explicit

connectives are present in the raw text with their senses annotated directly, while implicit

connectives are added during annotation, with their senses annotated separately.

2.2.2 DiscoGeM corpus

The DiscoGeM corpus [21, 30] is a crowdsourced corpus of genre-mixed inter-sentential

implicit discourse relations, annotated in the PDTB-style. The DiscoGeM 1.0 corpus

[21], which is exclusively in English, includes 6,505 implicit discourse relations. Some

of the texts are not original English texts but are translated into English from other

languages. As shown in Table 2.1, the DiscoGeM 1.0 contains texts from three distinct

genres: political speeches (Europarl), literature, and encyclopedic (Wikipedia). The

updated DiscoGeM 2.0 is a parallel corpus that supports multiple languages [30], but

for our experiments, we concentrated exclusively on original English texts, which led

us to select 1741 samples from DiscoGeM 1.0 as one of our test data sources.

The annotation process in DiscoGeM is similar to that in PDTB-3, involving the

insertion of implicit connectives, with sense annotations that match the PDTB-3 style.

The developers tested four aggregation methods of combining the choices from their ten

crowd workers to best represent the discourse relations in the data. They recommended

two methods as shown in Table 2.2: (1) the CrowdTruth soft label, which kept crowd

workers’ annotations with probabilities of different sense types via Dumitrache et al.’s

CrowdTruth 2.0 method [4], and (2) the majority-single label, where the sense with the

most votes was chosen as the gold label. If there was a tie, a single sense was picked

randomly and recorded. We followed their suggestion and used the majority-single

label as the gold label in our experiments since it is preferred when only one label is

needed.
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genre Arg1 Arg2

wikipedia Analytical chemistry studies and uses

instruments and methods used to sepa-

rate, identify, and quantify matter.

In practice, separation, identification

or quantification may constitute the en-

tire analysis or be combined with an-

other method.

europarl You will be aware from the press and

television that there have been a num-

ber of bomb explosions and killings in

Sri Lanka.

One of the people assassinated very

recently in Sri Lanka was Mr Kumar

Ponnambalam, who had visited the Eu-

ropean Parliament just a few months

ago.

novel After the horses came Muriel, the

white goat, and Benjamin, the donkey.

Benjamin was the oldest animal on the

farm, and the worst tempered.

Table 2.1: DiscoGeM 1.0 data with 3 genres.

majoritylabel sampled crowdtruth softlabel

arg2-as-detail

arg2-as-detail:0.46157664794362013

conjunction:0.45508605763343674

precedence:0.04635423525438645

arg1-as-detail:0.03698305916855685

arg1-as-cond:0.0

arg1-as-denier:0.0

arg1-as-goal:0.0

...

synchronous:0.0

Table 2.2: Example Table with majoritylabel sampled, crowdtruth softlabel, arg1, and

arg2.

2.3 Masked language models for IDRR

As discussed in Section 2.1, some researchers treat sense recognition as a cloze

task. Consequently, recent studies have favored pre-trained Masked Language Models

(MLMs), particularly BERT [2] and its variants, such as RoBERTa [11], spanBERT [7],

due to their strong performance. BERT, in its off-the-shelf form, learns contextual word

embeddings during pre-training, which can be fine-tuned for various downstream tasks.
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Moreover, BERT’s pretraining task, next sentence prediction, is particularly well-suited

for discourse relation recognition, as it enhances BERT’s sensitivity to the relationships

between sentences.

2.4 Syntactic preposing

In some IDRR tasks, researchers predict a connective and then map it to its sense.

Among them, Dong et al. [3] discovered that the syntactic structure of preposing in the

second text (Arg2) improved the accuracy of MLMs, specifically BERT, in predicting

implicit connectives. Preposing can take various forms, including the preposing of noun

phrases (NP), prepositional phrases (PP), verb phrases (VP), adjective phrases (AP),

and adverbial phrases (AdvP). Their study focused exclusively on preposed PP and NP

examples, as illustrated in Ex.(5) of PP and Ex.(6) of NP in Chapter 1, respectively.

In their experiments, two datasets were created by Dong herself from PDTB-3 :

a preposed set, where the NP/PP is sentence-initial in Arg2 as shown in Ex.(6) and

Ex.(5), and a canonical set, where the NP/PP is re-positioned to the end of the first main

clause in Arg2 to create a typical sentence structure as shown in Ex(10) when “from

an administrative point of view” is right-moved to the end. The Arg2 can extend over

several clauses or even several sentences. A [MASK] token was inserted between the

two arguments, and the model was tasked with predicting a single-token connective.

The results indicated that BERT performed better on the preposed set than the canonical

set, making this study the first to empirically validate that preposing can help signal

discourse relations. Considering that many connectives consist of a single token and

given BERT’s limitation to predict only a single token as the mask filler, their research

primarily focused on single-token discourse connectives, as opposed to multi-token

connectives such as “for example” or “on the other hand.”

(9) Preposed argument: From an administrative point of view, the formalisation is a

good thing.

(10) Canonical argument: The formalisation is a good thing from an administrative

point of view.
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2.5 Multi-token completion

Multi-token completion is a significant challenge in the use of MLMs for sentence

completion [8]. Typically, these models are constrained to single-token mask fillers

or must predict a sequence of [MASK] tokens simultaneously. While the latter is

technically feasible, it requires pre-determining the length of the span or incorporating

additional supervision during training.

Exploring solutions beyond MLMs, recent pre-trained seq2seq models like T5 [19]

are capable of performing the IDRR task. However, these models are computation-

ally intensive, demanding substantial resources and time for training and inference.

To address this in the context of question-answering, Kalinsky et al. [8] propose a

straightforward yet effective solution for multi-token completion: the Extended-Matrix

(EMAT) decoder, which outputs promising results and achieves state-of-the-art ac-

curacy for named entity recognition (NER), thereby enabling multi-token names to

serve as answers to questions. Among the MLMs they evaluated, including BERT[2],

RoBERTa[11], SpanBERT[7], T5[19], BERT with the EMAT strategy outperformed all

other models, therefore was chosen and adapted to our experiments.

This approach maintains the original MLM encoder to generate contextual embed-

dings for new multi-token phrases, treating them as a single mask filler. For instance,

“New York”, “Prime Minister”, “the United Kingdom” will all be seen as single mask

fillers. The output prediction matrix is then extended to incorporate the embeddings

of these new phrases, making the model’s size dependent on the expanded vocabulary.

For example, if the model learns the embedding of “Prime Minister” during its training,

then this embedding is added to the prediction matrix. By fine-tuning the model to learn

the embeddings of these new phrases, it was expected to predict a multi-token named

entities when seeing a [MASK] token in question-answering contexts. As shown in

Ex.(11), when the masked text is fed as input, the model is expected to output “Prime

Minister”. However, our experiments focused on predicting multi-token connectives

instead of named entities, requiring us to modify their method by fine-tuning the MLM

on connectives to suit our specific task.

(11) The [MASK] of the United Kingdom at the moment is Keir Starmer.

Output: Prime Minister



Chapter 3

Approach and Implementation

Chapter 3 provides an overview of our approach to the multi-token connective prediction

task. Section 3.1 details the process of collecting the connective vocabulary and their

associated senses, and creating the training and test datasets. Section 3.2 illustrates

how the Extended-Matrix (EMAT) solution [8] for named entity recognition is adapted

for our specific task, using a concrete example to demonstrate the structure of the

model. Section 3.3 presents the evaluation metrics—accuracy, precision, surprisal, and

entropy—used to compare the performance of the preposed and canonical sets.

3.1 Data collection and preprocessing

3.1.1 Connective vocabulary and sense mapping

A vocabulary of 70 multi-token connectives was collected from the explicit and implicit

connectives listed in appendices A and C of the PDTB-3 Annotation Manual [16],

and Connective-Lex [25]. The Connective-Lex, released in 2017, complements newly-

created lexicons of discourse connectives. The Connective-Lex for English contains

connectives which are not present in PDTB-3. Connectives that typically function

as subordinating conjunctions between clauses, rather than coordinating conjunctions

between adjacent sentences, were manually excluded. Concurrently, a mapping between

each connective to its potential senses listed in the two resources was established (see

Appendix B), which would be used to calculate accuracy during the model’s inference

stage, as the accuracy of our experiments is based on predicting the sense inserted by the

human annotators instead of predicting the one and only correct connective label. That

is, if the model predicts “by contrast”, it will be considered a correct prediction when

12
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the annotated sense is “Comparison.Contrast,” even if the human-inserted connective is

“by comparison.” This is because both “by comparison” and “by contrast” can signal

“Comparison.Contrast”.

3.1.2 Training and development datasets

For training purposes, ∼838K argument-pairs where the second sentence (Arg2)1 begins

with a multi-token connective were extracted from the Wikipedia English dataset

(20220301.en) available on Huggingface [5]. We masked out the multi-token connective

in each Arg2. Together with Arg1, they formed into a masked text, formatted as “Arg1

[SEP][MASK], Arg2”. We added a comma to separate the connective and the argument

for simplicity. Each sentence pair is concatenated using [SEP], a special token that

separates two sentences in BERT. The purpose of the training is just to enable the

model to fill the [MASK] token with multi-token connectives, therefore we do not need

annotations of discourse relations during the training. Table 3.1 shows an example in

the training dataset and how it is organized in the CSV file with specified columns.

The dataset was randomly split into training (80%) and development (20%) sets, with

∼671K and ∼167K samples respectively.

span span lower range text freq masked text

As a re-

sult

as a result [153,165] At that time, people who had

confirmed COVID-19 cases in

Alberta, had recently returned

from trips to “Iran, Egypt, Spain,

Washington state and Mexico.”

As a result, the province re-

quested that “all travellers return-

ing from Italy” self-isolate for

two weeks.

83171 At that time, people who had

confirmed COVID-19 cases in

Alberta, had recently returned

from trips to “Iran, Egypt, Spain,

Washington state and Mexico.”

[SEP][MASK], the province re-

quested that “all travellers return-

ing from Italy” self-isolate for

two weeks.

Table 3.1: Example of the training dataset with columns including span: multi-token con-

nectives, span lower, range: where this connective is located, text: original concatenated

text of Arg1 and Arg2, freq: how many times a connective appears in the dataset, and

masked text.

1Note that the arguments collected here are sentences, not the Argument satisfying the strict definition
(see Section 2.2.1).
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3.1.3 Test dataset

For inference, two additional datasets were used: PDTB-3 [16] and DiscoGeM 1.0 [21],

both of which contain human annotations of implicit relations and inserted connectives.

We constructed a preposed and canonical test set from the two corpora, each including

1598 samples. A section of the preposed and canonical test CSV files can be referred in

Appendix C.

For the DiscoGeM 1.0 dataset, preposed structures were identified using the spaCy,

NLTK, and constituent treelib libraries [6] in Python. We treat each sentence in the

corpus as an individual argument. For instance, as shown in Ex.(12), the sentence is

parsed to generate a constituency tree, which outlines the syntactic structure of the

sentence by organizing it into hierarchical components such as S (sentence), PP, and

etc. The constituency tree reveals that the phrase “All through that summer” is a PP

located at the beginning of the sentence. Dependency parsing is subsequently applied to

determine if the preposed NP or PP serves as the grammatical subject of the argument,

identified by labels such as “nsubj,” “nsubjpass,” or “expl”. If the phrase does not

function as the subject (as in this example), it is classified as a preposed phrase. This

method effectively isolates non-subject phrases that have been fronted in the sentence,

often for emphasis or to provide context.

(12) Example Arg: All through that summer the work of the farm went like clockwork.

[Animal Farm, DiscoGeM 1.0]

Constituency Tree:

(S

(PP (ADVP (DT All)) (IN through) (NP (DT that) (NN summer)))

(NP (NP (DT the) (NN work)) (PP (IN of) (NP (DT the) (NN farm))))

(VP (VBD went) (PP (IN like) (NP (NN clockwork))))

(. .))

Preposed phrase:

(PP All through that summer)

Similar to the training data, each masked text in the preposed set was formatted as

“Arg1 [SEP][MASK], Arg2” before being input into the model. As illustrated in the
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preposed Ex.(13), the PP “by the light of the match” is sentence-initial in Arg2, while

in the canonical Ex.(14), the canonical masked text is constructed by right-moving the

preposed phrase (either NP or PP) to the end of Arg2.

(13) Preposed masked text: He heard a slight groan. [SEP][MASK], by the light
of the matchpreposed PP he saw a heavy shape moving slightly on the floor.Arg2

[Animal Farm, DiscoGeM 1.0]

(14) Canonical masked text: He heard a slight groan. [SEP][MASK], he saw a heavy

shape moving slightly on the floor by the light of the matchcanonical PP.

The Argument that satisfies the strict definition that it is a text segment including at

least a predicate is not marked in DiscoGeM 1.0. In fact, the arguments they collected

are all complete sentences which may include multiple clauses. Ex.(15) shows an

argument with a relative clause in DiscoGeM. The simple method of moving the

preposed phrase “for most of its history” to the end of the clause not Argument can

sometimes result in a canonical sentence that lacks natural flow, as in Ex.(16).

(15) For most of its history AI research has been divided into sub-fieldsargument,

which often fail to communicate with each otherclause. [Wikipedia, DiscoGeM

1.0]

(16) Unsatisfactory Canonical Arg2: AI research has been divided into sub-fields,

which often fail to communicate with each other, for most of its historycanonical phrase

[Wikipedia, DiscoGeM 1.0]

In contrast, positioning “for most of its history” immediately after the Argument

“AI research has been divided into sub-fields” and excluding the clause at the same time,

as shown in Ex.(17), produces a more coherent sentence than moving it to the end of

the sentence when involving a clause introduced by a complementizer such as “which”

or “that”. Although we noticed such a straightforward method may create less coherent

canonical Arg2, these cases only account for less than 2% of the canonical set including

samples from both corpus.

(17) Satisfactory Canonical Arg2: AI research has been divided into sub-fields for
most of its historycanonical phrase. [Wikipedia, DiscoGeM 1.0]

In addition to the masked text and the annotated sense, metadata for each sample

was recorded, including corpus, data source, genre, the inserted connective, and the
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preposed phrase.2 In the end, the preposed set and canonical set from DiscoGeM 1.0

each contains 157 inter-sentential discourse relation samples.

In terms of the preposed and canonical sets from PDTB-3, we directly used Dong’s

datasets [3], each comprising 1,441 inter-sentential implicit discourse relations. The

PDTB-3 marks arguments within sentences, which constructs a satisfactory canonical

Arg2 like Ex.(17) without redundant clauses.

Therefore, our contributions include the creation of a vocabulary of inter-sentential

multi-token discourse connectives and their sense-mapping dictionary, the develop-

ment of two extended mix-genre datasets—the preposed and canonical datasets, each

including 1598 samples—derived from both PDTB-3 and DiscoGeM 1.0, while PDTB-

3 contains news articles and DiscoGeM includes political speeches, literature and

wikipedia texts.

3.2 Mask-filling

Figure 3.1 illustrates the architecture with the MLM encoder [2] and the Extended-

Matrix (EMAT) decoder [8], which were built to predict an implicit discourse connective

filling the [MASK] in each argument-pair. We first obtained the contextual embedding

of each multi-token connective in our predefined connective list (see Section 3.1.1)

via the MLM encoder and then these embeddings were fed into the extended-matrix

decoder. We trained the EMAT decoder for three epochs on the whole training dataset

containing argument-pair examples extracted from Wikipedia, and mapped all word

vectors including these new phrases’ embeddings to the output prediction matrix. Note

that all new vectors will be only added to the prediction matrix instead of to the base

model’s vocabulary, which avoid retraining BERT. During inference, the formatted input,

as illustrated in Figure 3.1 with a [MASK] token representing the inserted implicit

connective, was tokenized and processed to compute the contextual embedding of

the [MASK] token. The model subsequently generated predictions along with their

probabilities. If the prediction corresponds to a multi-token connective in our pre-

defined vocabulary, it is mapped to its respective senses and compared to the gold sense.

For instance, in Figure 3.1, the sense “Comparison.Contrast” of the connective “In fact”

is highlighted in red, indicating a match with the gold sense.

2To meet the default format of the Kalinsky et al.’s test data [8], two additional columns, span: default
and span lower: default, were added in our test CSV files.
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MLM

Contextual Embedding

Extended MLM decoder

[MASK] I [SEP][SEP]
Input

I[CLS] ... ...

In fact
0.69

In contrast
0.15

For example
0.02

In addition
0.06 ...Output

Comparison.Concession.Arg2-as-denier
Comparison.Contrast

Expansion.Conjunction
... ... ...

Sense
mapping

,

Figure 3.1: Model Architecture

3.3 Evaluation metrics

3.3.1 Accuracy and precision

Since our predictions are connectives rather than senses, we calculate the accuracy in a

specific way. Multi-token connective predictions of the model would be mapped to all

relation senses according to our sense-mapping dictionary and if there is a corresponding

sense that matches the human-annotated sense, then the prediction will be counted as

correct. The average accuracy of the model’s top N predictions over the dataset, a@N,

is computed within the following equation:

a@N =
1
𝑘

𝑘∑︁
𝑖=1

max
𝑥∈pred𝑁

𝑖

(
𝟙{𝑠𝑒𝑛𝑠𝑒(𝑥)=𝑔𝑜𝑙𝑑𝑖}

)
, (3.1)

where the model’s top N predictions for sample 𝑖 are represented as pred𝑁
𝑖 . A single

lexical entry 𝑥 is considered correct if it can convey the gold sense 𝑔𝑜𝑙𝑑𝑖 as per the sense-

mapping dictionary 𝑠𝑒𝑛𝑠𝑒(𝑥). If a prediction is correct, which means the subscript

𝑠𝑒𝑛𝑠𝑒(𝑥) = 𝑔𝑜𝑙𝑑𝑖 is satisfied, thereby 𝟙{𝑠𝑒𝑛𝑠𝑒(𝑥)=𝑔𝑜𝑙𝑑𝑖} = 1, otherwise 𝟙{𝑠𝑒𝑛𝑠𝑒(𝑥)=𝑔𝑜𝑙𝑑𝑖} = 0.

Since we only consider if there is a correct answer across the top N predictions rather

than how many of them are correct, therefore a max function is applied. If any of the

top N predictions is correct, the entire prediction for sample 𝑖 is deemed correct. We

compute the dataset’s accuracy by averaging over all 𝑘 samples.
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Precision measures how many of the predictions are correct relative to how many

are made. For instance, if both of the top 2 predictions are correct, p@2 is 100%, and if

only one of them is correct, then p@2=50%. The average precision of the model’s top

N predictions over the dataset, p@N, is computed as the following equation:

p@N =
1
𝑘

𝑘∑︁
𝑖=1

∑
𝑥∈pred𝑁

𝑖
𝟙{𝑠𝑒𝑛𝑠𝑒(𝑥)=𝑔𝑜𝑙𝑑𝑖}

𝑁
, (3.2)

where items are similarly denoted as in Eq.(3.1), for a@N. For each sample 𝑖 we count

how many predictions are correct out of the top N predictions 𝑝𝑟𝑒𝑑𝑁
𝑖

and divide by 𝑁 .

This calculation is also averaged across all 𝑘 samples.

3.3.2 Surprisal and entropy

The model’s prediction certainty can be quantified using two statistical measures:

surprisal, in the context of information theory [22], and entropy. Surprisal measures

the unexpectedness or unpredictability of the human-annotated sense for the model.

Specifically, it quantifies how “surprised” the model is by a specific prediction. If the

model is less surprised by the human annotated gold sense, this means that the model

assigns a high probability to a connective which can convey that sense, indicating that

the model’s prediction is close to the gold label. Therefore, a small surprisal can suggest

that the model is confident and that the prediction is expected and matches the gold

label. It is worthwhile to explore how preposing influences this certainty. The model

generates a probability distribution over the entire vocabulary for each sample. Surprisal

for a dataset is defined as the summed negative log likelihood (NLL) over all samples:

𝑁𝐿𝐿 = −
𝑘∑︁
𝑖=1

∑︁
𝑥∈𝑉

log 𝑝𝑖 (𝑥) ·𝟙{𝑠𝑒𝑛𝑠𝑒(𝑥)=𝑔𝑜𝑙𝑑𝑖}, (3.3)

where 𝑥 denotes a lexical entry within the vocabulary 𝑉 , and the summation extends

over 𝑘 samples in the dataset.3 A lexical entry 𝑥 is considered correct if it is a connective

and can convey the annotated implicit sense.

Ex.(18) illustrates a low surprisal case. The model’s top 2 predictions are “For

example” and “For instance”, which can both convey the gold sense Arg2-as-instance

according to our sense-mapping dictionary (see Appendix B). When the model’s correct

predictions hold the larger portion of the total probability in the distribution, indicating

a greater certainty on correctness, the output’s surprisal will be low as this example.
3Here, we do not limit the predictions to top N, but use the whole vocabulary instead to compute

surprisal and the followed entropy.
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(18) Low surprisal example: Jim Beam print ads, however, strike different chords

in different countries.Arg1 [SEP][MASK], in Australia, land of the outback, a

snapshot of Jim Beam lies on a strip of hand-tooled leather.Arg2 [wsj 1274, PDTB-

3]

Gold sense: Expansion.Instantiation.Arg2-as-instance

Model output over the vocabulary (mask-filler with its probability in de-
scending order):

[({’For example’}, 0.8127207), ({’For instance’}, 0.18605553),

(’In particular’, 0.0003257261), (’In fact’, 0.00030983146),

(’In contrast’, 0.00013416453), ...]

Surprisal: 0.00047635453

In contrast, Ex.(19) shows a high surprisal case. We observe that the top 5 can

not signal the gold sense and they hold a larger portion of the total probability, thus

the correct connectives that can convey the sense only account for small probabilities,

resulting in a high surprisal. This suggests that the model is confused and uncertain

about which prediction is correct.

(19) High surprisal example: But they didn’t lose touch with the U.S. issuers.Arg1

[SEP][MASK], since 1985, Japanese investors have bought nearly 80% of $10

billion in Fannie Mae corporate debt issued to foreigners.Arg2 [wsj 0274, PDTB-3]

Gold sense: Expansion.Substitution.Arg2-as-subst

Model output over the vocabulary (mask-filler with its probability):

[(’For example’, 0.44564933), (’In fact’, 0.18052544),

(’In addition’, 0.10665635), (’For instance’, 0.09934871),

(’As a result’, 0.047118817),...]

Surprisal: 12.167008

Entropy, on the other hand, measures the model’s general certainty across all

its predictions, regardless of correctness. It assesses the spread of the probability

distribution over all possible predictions (i.e. the model’s vocabulary). A higher entropy



Chapter 3. Approach and Implementation 20

value suggests a more dispersed or even probability distribution, indicating greater

uncertainty in the model’s predictions. Conversely, a lower entropy value signifies a

more concentrated probability distribution when top predictions are generated with

significantly higher probabilities, implying a higher degree of certainty about the

predictions, nevertheless it does not specify whether these predictions are correct. The

entropy for a dataset is calculated as follows:

𝐻 = −
𝑘∑︁
𝑖=1

∑︁
𝑥∈𝑉

𝑝𝑖 (𝑥) log 𝑝𝑖 (𝑥), (3.4)

with all parameters similarly defined as in Eq.(3.3). The overall entropy for the dataset

is obtained by summing across all 𝑘 samples.

The following is an example of low entropy. The first prediction’ probability is 0.94,

almost accounting for the total probability share, and the remaining probabilities would

be accordingly small. This suggest that the model is very confident about its prediction,

so it assigns the first prediction a probability of 0.94, no matter the result is correct or

wrong.

(20) Low entropy example: He’s currently in the midst of a 17-city U.S. tour with

Yehudi Menuhin and the Warsaw Sinfonia, with stops including Charleston,

S.C. (Oct. 25), Sarasota, Fla. (Oct. 28), Tampa, Fla. (Oct. 29) and Miami

(Oct. 31).Arg1 [SEP][MASK], later this season he gives a recital at Washing-

ton’s Kennedy Center, and appears as soloist with several major orchestras.Arg2

[wsj 1388, PDTB-3]

Model output over the vocabulary (mask-filler with its probability):

[(’In addition’, 0.9442712), (’As well’, 0.025426337),

(’In fact’, 0.0075221206), (’At the same time’, 0.0028811994),

(’After that’, 0.0020392046),...],

Entropy: 0.33977264

Ex.(21) is a high entropy example. The top 1 prediction only has a relatively low

probability at 0.13, and the other illustrated probabilities are all very small ranging from

0.09 to 0.06. The remaining probability mass which is not present is definite to have a

probability no greater than 0.06. This suggest that the model is perplexed, and it does
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not sure which prediction is right or wrong, so it makes an even guess given the possible

answers it can give.

(21) High entropy example: She used the market’s wild swings to buy shares cheaply

on the sell-off.Arg1 [SEP][MASK], on the comeback, Ms. Del Signore unloaded

shares she has been aiming to get rid of.Arg2 [wsj 1208, PDTB-3]

Model output over the vocabulary (mask-filler with its probability):

[(’In fact’, 0.12930626), (’At the same time’, 0.08424396),

(’As a result’, 0.08413355), (’In addition’, 0.059824232),

(’In the end’, 0.05716916)],

Entropy: 3.2894974



Chapter 4

Results and Evaluation

In this chapter, we compared the model’s prediction result between the preposed set and

the canonical set. Section 4.1 analyzes the predicted mask-fillers. Section 4.2 evaluates

the performance between the two sets from different perspectives: their accuracy,

precision, surprisal, and entropy, the sense types that the predicted connectives are

matched with. We also identified which sense types benefit the most from the preposed

structure, and examined if preposing is helpful across genre.

4.1 Predicted mask-fillers

The output of each prediction consist of top N lexical entries and their corresponding

probabilities. Before analyzing these predictions, we assume that all lexical entries that

could serve as connectives are indeed connectives, even if they might also hold other

syntactic roles. For instance, “on the other hand” could also mean the hand of a person

or imply that someone is wearing or carrying something on that hand.

Top 5 mask fillers The model’s output is organized in descending order from the

most to the least likely predictions. Table 4.1 shows the average probabilities of each

of the top 5 predictions for both the preposed and canonical sets. Notably, the first

prediction accounts for nearly half of the total probability in both sets. The cumulative

average probability for the top 5 predictions in each set approximates 80%, with the

residual probability mass distributing over less likely predictions.

Most importantly, all of the top 5 predictions are multi-token connectives, which

gives an evidence for the effectiveness of the fine-tuning process. In contrast, Dong’s

results on single-token experiments [3] showed that only about 60% of the top 5

22
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𝑁 𝑡ℎ Prediction
Average Probability

Preposed Set Canonical Set

1 0.459621 0.414769

2 0.163837 0.161387

3 0.089585 0.093956

4 0.058879 0.064359

5 0.041498 0.046896

Top 5 Cumulative Average Prob 0.813419 0.781367

Table 4.1: Average probabilities in preposed set vs. canonical set.

predictions in the preposed set and 55% in the canonical sets can function as connectives,

and in 4% of the preposed samples and 13% of the canonical samples, BERT failed to

include any connectives in the top 5 predictions.

Ambiguity One of the reason why we extend Dong et al.[3]’s work to multi-token

scenario is that we hoped that the model’s predictions can be more specific than the

single-token connective experiments’ results, because multi-token connectives are less

ambiguous. Therefore, the preposed set’s results from Dong’s single-token experiments

and our experiments are compared qualitatively to validate our belief. Ex.(22) and

Ex.(23) are illustrated for analysis between the single token and multi-token output.

For simplicity, we only present the top 5 predictions, and the rest of predictions are

represented by “...”.

In Ex.(22), only “and” in the top 5 predictions from Dong’s results is a connective

and can convey the gold sense Expansion.Conjunction, while the ambiguous single-

token “and” actually holds 11 possible senses. Conversely, our model’s top 5 predictions

are all connectives. Among them, “In addition” with two possible senses, “In fact”

with 11 possible senses, “At the same time” with 2 possible senses can all signal the

gold sense Expansion.Conjunction. Comparatively, our multi-token predictions are less

ambiguous since their possible senses are limited and specific.

(22) Masked text: The peninsula comes off the vast southeastern alluvial plain with

fields of rice and cotton and sorghum as far as the eye can see. Near the coast

there are dense coverts of live oak interspersed with marshes and prairies. Deer,

wild hog, armadillos and alligators are the glamour quadrupeds and the birds are

innumerable, especially the herons and the spoonbills. [SEP][MASK], above
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the blossoms of lantana and scarlet pea the inky-brown and golden palamedes

butterfly floats on its lazy wingbeat. [wsj 1323, PDTB-3]

Gold sense: Expansion.Conjunction

Dong et al’s output:

[(’high’, 0.4602), (just’, 0.1779),

(’and’, 0.0686), (’far’, 0.025),

(’up’, 0.0216),...]

Our output:

[(’In addition’, 0.33142963), (’On the other hand’, 0.14200377),

(’On the other’, 0.11193432), (’In fact’, 0.10518605),

(’At the same time’, 0.09251382),...]

Another example is illustrated in Ex.(23), when the gold sense is Expansion.Level-

of-detail.Arg2-as-detail. We still observe that among Dong’s predictions, “and” is

correct but too general with 11 sense types. On the contrary, “As a result”, “In the end”,

“In addition”, and “For example” with three, eight, two, three sense types respectively,

are less ambiguous.

(23) Masked text: And pressure by big investors forced Donaldson Lufkin & Jenrette

Securities Corp. to sweeten Chicago & North Western’s $475 million junk

bond offering. [SEP][MASK], after hours of negotiating that stretched late

into Thursday night, underwriters priced the 12-year issue of resettable senior

subordinated debentures at par to yield 14.75%, higher than the 14.5% that had

been expected. [wsj 1464, PDTB-3]

Gold sense: Expansion.Level-of-detail.Arg2-as-detail

Dong et al’s output:

[(’but’, 0.2355), (’and’, 0.2304),

(’so’, 0.07), (’finally’, 0.0698),

(’"’, 0.0526),...]
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Our output:

[(’As a result’, 0.22718893), (’In the end’, 0.18287785),

(’In addition’, 0.12972623), (’For example’, 0.09070829),

(’At the same time’, 0.04366458),...]

4.2 Preposed set vs. canonical set

4.2.1 Accuracy and Precision

Table 4.2 compares the model’s predictions for the preposed and the canonical set in

terms of a@N as computed in Eq.(3.1), and p@N as computed in Eq.(3.4), where 𝑁

is 1, 2, 3, 4, 5. The preposed set consistently achieves higher accuracy across all 𝑁

values, with accuracy increasing from 58.95% at 𝑁 = 1 to 91.05% at 𝑁 = 5. The results

shows that the model’s predictions align more closely with human annotations for the

preposed set than for the canonical set, suggesting that a preposed structure can provide

hints for recognizing discourse relations.

For precision, the preposed set also consistently outperforms the canonical set, but

the difference in performance becomes marginally less pronounced as 𝑁 increases. At

𝑁=1 and 𝑁=2, precision in the preposed set is markedly higher than in the canonical

set. By 𝑁 = 5, the preposed set still leads (48.82% vs. 45.21%), but the gap marginally

narrows, indicating a decrease in the relative advantage of the preposed structure for

predicting more precisely when more predictions are considered for a sample.

Preposed Set Canonical Set

N a@N p@N a@N p@N

1 58.95% 58.95% 54.38% 54.38%

2 75.84% 56.79% 71.09% 51.56%

3 84.79% 55.09% 79.97% 49.97%

4 88.99% 51.60% 85.48% 47.50%

5 91.05% 48.82% 88.24% 45.21%

Table 4.2: a@N and p@N in preposed set vs. canonical set.
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4.2.2 Surprisal and entropy

Table 4.3 provides a comparison between the preposed and canonical sets concerning

average surprisal as computed in Eq.(3.3), and entropy as computed in Eq.(3.2) for all

discourse relation samples. The preposed set consistently demonstrates an advantage:

both the average surprisal and the entropy are substantially lower in the preposed set

compared to its canonical counterpart. This indicates that the model is not only more

certain about its general predictions, irrespective of its correctness, but also shows

greater certainty when its predictions align with human annotations, particularly when

the text has a preposed structure. This difference validates that a preposed structure can

improve the model’s performance in terms of the general certainty across the dataset

and the certainty on correct predictions.

Metric Preposed Set Canonical Set

Average Surprisal 1.118 1.228

Average Entropy 1.888 2.054

Table 4.3: Average surprisal and entropy in preposed set vs. canonical set.

Ex.(24) of the preposed set and Ex.(25) of the canonical set qualitatively compares

model’s surprisal result on the same sample in the two sets, respectively. Among the

predictions present in Ex.(24), the 2𝑛𝑑 , 4𝑡ℎ, 5𝑡ℎ prediction can convey the gold sense

Comparison.Contrast, and some of the remaining predictions may signal the gold sense

as well. A cumulative of these correct predictions results in a low surprisal of 0.95.

(24) Preposed masked text: In late afternoon New York trading yesterday, the dollar

stood at 1.8415 West German marks, up from 1.8340 marks late Monday, and

at 142.85 yen, up from 141.90 yen late Monday. [SEP][MASK], a month
agopreposed phrase, a similar survey predicted the dollar would be trading at 1.8690

marks and 139.75 yen by the end of October. [wsj 0301, PDTB-3]

Gold sense: Comparison.Contrast

Model output over the vocabulary (mask-filler with its probability):

[(’In addition’, 0.35656312), (’By comparison’, 0.12282629),

(’Since then’, 0.09480629), (’In fact’, 0.0916691),

(’In contrast’, 0.0638354),...]
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Surprisal: 0.95212275

Comparatively, in Ex.(25) of the canonical set, the 3𝑟𝑑 , 4𝑡ℎ, 5𝑡ℎ, and other correct

predictions with a lower probabilities produce a higher surprisal of 1.47.

(25) Canonical masked text: In late afternoon New York trading yesterday, the dollar

stood at 1.8415 West German marks, up from 1.8340 marks late Monday, and at

142.85 yen, up from 141.90 yen late Monday. [SEP][MASK], a similar survey

predicted the dollar would be trading at 1.8690 marks and 139.75 yen by the end

of October a month agopreposed phrase. [wsj 0301, PDTB-3]

Gold sense: Comparison.Contrast

Model output over the vocabulary (mask-filler with its probability):

[(’In addition’, 0.400831), (’At the same time’, 0.2552863),

(’In comparison’, 0.059462074), (’By comparison’, 0.04943322),

(’In fact’, 0.04680012),...]

Surprisal: 1.4653729

Ex.(26) and Ex.(27) qualitatively compares model’s entropy result on the same

sample for two sets, one with a preposed structure, and one without. The model

testing on the preposed masked text produces a probability distribution where the top 1

prediction enjoys the largest share at 0.61, while the first prediction’s probability on

the canonical masked test is 0.48. This results in sparse distribution in the former and

a more evenly distribution in the latter. After a summation of 𝑝𝑙𝑜𝑔𝑝 (see Eq.(3.4) in

Section 4.2.2), the distribution of the preposed text achieves a lower entropy compared

with the canonical text.

(26) Preposed masked text: Morgenzon has long been a special domain of Afrikan-

erdom. [SEP][MASK], according to Mr. Verwoerdpreposed phrase the early

Afrikaner pioneers were the first people to settle in the eastern Transvaal, even

before the blacks. [wsj 1760, PDTB-3]

Model output over the vocabulary (mask-filler with its probability):

[(’In fact’, 0.6146381), (’For example’, 0.25532994),

(’For instance’, 0.09028673), (’In particular’, 0.012352365),
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(’In addition’, 0.0058183167),...]

Entropy: 1.0934856

(27) Canonical masked text: Morgenzon has long been a special domain of Afrikaner-

dom. [SEP][MASK], the early Afrikaner pioneers were the first people to settle in

the eastern Transvaal, even before the blacks according to Mr. Verwoerdpreposed phrase.

[wsj 1760, PDTB-3]

Model output over the vocabulary (mask-filler with its probability):

[(’In fact’, 0.48055366), (’For example’, 0.32374576),

(’For instance’, 0.14666279), (’In particular’, 0.018653061),

(’After all’, 0.0057877456),...]

Entropy: 1.2639269

4.2.3 Prediction certainty across sense types

Figure 4.1 presents a scatter plot of the prediction probabilities when both the preposed

and canonical sets give a correct top 1 prediction. Each point represents a sample, with

the x-axis indicating the probability of correct prediction by the preposed set and the

y-axis for the canonical set. The red line, which represents y=x, is used as a reference

to evaluate the consistency between the two prediction sets.

It is observed from the distribution that the majority of the points are scattered along

the red line, suggesting that both sets are likely to give a correct prediction for a sample

with a similar probability. However, more points appear below the red line, indicating

that in many instances, when the model makes a correct prediction in both sets, it

assigns a higher probability to its prediction in the preposed set than in the canonical

set. This implies that the model is more confident in samples with a preposed structure.

To further assess the model’s performance on the two sets across various sense types,

we evaluated the number of correct top 1 predictions for each set. Chi-square tests were

performed between the sets for certain sense types. Table 4.4 lists counts for top 8 sense

types each represented by over 100 samples in the test dataset, sorted by descending

order of frequency, and the corresponding number of correct predictions for each set.



Chapter 4. Results and Evaluation 29

0.0 0.2 0.4 0.6 0.8 1.0
Preposed Correct (Prob)

0.0

0.2

0.4

0.6

0.8

1.0

Ca
no

ni
ca

l C
or

re
ct

 (P
ro

b)

Figure 4.1: Scatter plot of the probabilities of samples when both the preposed and the

canonical set predict correctly. Only Top 1 predictions are considered.

The results revealed significant differences between the two sets for three specific

sense types: Expansion.Level-of-detail.Arg2-as-detail, Expansion.Instantiation.Arg2-

as-instance, and Contingency.Cause.Reason, all at a significance level of 0.05. These

findings on multi-token connective predictions are consistent with results from Dong

et al. [3], who reported significant prediction differences in four sense types: Expan-

sion.Conjunction (𝑝𝑐𝑜𝑛 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 0.05 in our findings), Expansion.Level-of-detail.Arg2-

as-detail, Expansion.Instantiation.Arg2-as-instance, and Contingency.Cause.Reason

between the two sets. Notably, the preposed set of our experiments also consistently

predicted more samples correctly for the three significant sense types.

In light of the surprisal discussed in Section 4.2.2, which suggests that the model

predicted with greater certainty on correct predictions in the preposed set generally, we

explored whether this trend also applied specifically to the aforementioned sense types

in Dong et al.[3] and our work. Figure 4.2 employs a Kernel Density Estimate (KDE)

plot of top 1 prediction probabilities across four sense types, where the y-axis represents

the density of predictions’ probability rather than the count of a certain probability.

KDE plot is a smoothed version of a histogram. Here, it smooths the distribution of top

1 predictions’ probabilities, providing a continuous probability density curve, which

shows the likelihood of a prediction’s probability falling at different values along the x-
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Sense Type N Preposed Canonical 𝜒2 p

Expansion.Conjunction 341 176 202 3.71 .05

Expansion.Level-of-detail.Arg2-as-detail 241 226 202 11.03 *

Expansion.Instantiation.Arg2-as-instance 191 178 159 8.16 *

Contingency.Cause.Reason 191 134 99 12.72 *

Contingency.Cause.Result 184 79 88 0.70 .40

Comparison.Contrast 139 74 59 2.83 .09

Temporal.Asynchronous.Precedence 131 16 13 0.16 .69

Comparison.Concession.Arg2-as-denier 101 42 31 2.15 .14

Table 4.4: Correct top 1 predictions for senses (with more than 100 samples) in preposed

set vs. canonical set: counts, and 𝜒2 test results. N is the frequency of each sense type

in the dataset

axis. The area under the entire curve sums to one. Take Figure 4.2(a) as an example, the

red curve is labeled as Canonical Incorrect (X), which represents the canonical samples

whose top 1 prediction is incorrect, and we collect these samples’ top 1 probabilities

to draw a KDE plot. Mode is the point where the smoothed density is highest, which

represents the most frequent probability in our case. The mode of the red curve is

around 0.25, which means that this label’s probability mass is packed around 0.25, a low

probability, and therefore the model is less certain about this label. What’s more, the

steepness and flatness can also provide some information about predictions’ probability

distribution. We observe that the red curve is steep with a low variance, indicating the

model’s uncertainty is applied to many samples in this label.

Arg2-as-detail Analyzing the Figure 4.2(a), we see different distributions of predic-

tion probabilities for the four labels in the figure legend. The Preposed Correct (V),

in blue, which means that the preposed set gives a correct prediction, has the largest

mode around 0.7 among four labels, indicating the preposed set tends to make correct

predictions with high confidence. In contrast, the Preposed Incorrect (X) curve, colored

orange, has a mode around 0.3, suggesting that although the model still makes some

incorrect predictions, it is generally made with low confidence. As we mentioned before,

the red curve for Canonical Incorrect (X) is steep with its mode at 0.25, suggesting

many predictions’ of this label are made with low probabilities.
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(a) Sense: Arg2-as-detail
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(b) Sense: Arg2-as-instance
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(c) Sense: Reason
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(d) Sense: Conjunction
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Figure 4.2: Kernel Density Estimate (KDE) plots of top 1 prediction probabilities for

sense types: Arg2-as-detail, Arg2-as-instance, Reason, Conjunction.

Arg2-as-instance In Figure 4.2(b), the trend we noticed previously is more pro-

nounced. The Preposed Correct (V), represented by the blue left-skewed curve, peaks

sharply with a large mode around 0.8. This pattern suggests that when the preposed

set makes correct predictions, it does so with a high degree of confidence. This finding

validates that the preposing structure help significantly on recognizing the sense type of

Arg2-as-instance. Furthermore, this observation collaborates with Ward and Birner’s

analysis [26], which discusses how a preposed constituent following a preceding ar-

gument (Arg1) typically represents old or previously mentioned information. This

structural choice not only emphasizes known information but also improves clarity in

communication within a discourse. In the specific context of Arg2-as-instance, the

preposed constituent often relates to a hierarchical relationship, such as a set in Arg1

and its elements in Arg2, assisting a clearer understanding of the discourse relation.

Reason While the four curves in Figure 4.2(c) are closely aligned, it is still notable

that the mode of the Preposed Correct (V) curve is marginally larger than those of the

other three labels. Although the peaks of incorrect sets are higher than the other two,

the density is not equivalent of counts, which does not mean that incorrect predictions

are more than correct ones. We can only observe the curves of incorrect sets are more
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steep with a low variance, while the other two are more flat with a high variance, which

is a good sign, indicating that when the model is perplexed, it assigns a low probability

to its top 1 prediction.

Among the three sense types in Figure 4.2(a), (b), and (c), a consistent pattern is that

the canonical labels always has a smaller probability mode compared to its preposed

counterpart, and the model is more certain on the preposed set’s predictions with the

largest mode when its prediction is correct. This observation is also compatible with

our earlier comparative analysis of surprisal across all discourse relations in the two

dataset (see Section 4.2.2), where the preposed set has a smaller average surprisal.

Conjunction The last but not least, our findings diverge from those of Dong et al. [3]

in Conjunction. As detailed in Table 4.4, the preposed set demonstrates fewer correct

predictions compared to the canonical set, marking a deviation across all sense types

examined. Upon further investigation in Figure 4.2(d), we observe that despite fewer

correct predictions, the Preposed Correct (V) label still has the largest mode relative to

the other three labels.

4.2.4 Analysis of genre

Our previous analysis mainly consider top 1 predictions, but since our genre-mix

samples are limited, therefore treating each of the top 5 predictions individually can

quintuple the samples for the count and give us a broader view of prediction accuracy

across different genres. Examples for each genre in DiscoGeM 1.0 has been given in

Table 2.1 in Section 2.2.2.

Table 4.5 compares correct top 5 predictions in the preposed and canonical sets

across four different genres: News articles (WSJ), Wikipedia, Literature, and Political

speeches (Europarl). The model achieved high accuracy on news articles, approximately

half of the predictions being correct, which may due to the structured, formal style of

facts writing. Wikipedia follows a similar trend, benefiting from its encyclopedic and

descriptive nature. The genre of political speeches, due to the smallest sample size (a

narrower range because only six discourse relations are involved in this genre), makes

them easier to predict, thereby showing the highest accuracy. In contrast, Literature

presents a lower accuracy, reflecting the genre’s complexity with nuanced and diverse

language styles, including figurative expressions and intricate narrative forms that

challenge the models ability to recognize the relation between sentences.
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When comparing the two datasets across these genres, the canonical set, while

competitive, generally falls short of the preposed set’s performance, indicating that

a preposed structure improves model’s prediction accuracy across genres and this

improvement is more evident in structured genres.

Genre Frequency (N)
Preposed Set Canonical Set

N % N %

News articles 7205 3563 49.5 3305 45.9

Wikipedia 460 205 44.6 184 40.0

Literature 250 91 36.4 82 32.8

Political speeches 75 42 56.0 41 54.7

Table 4.5: Correct top 5 predictions for four genres in preposed set vs. canonical set: N:

count, %: proportion.
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Future Work and Conclusions

We concluded our project as follows:

1. We adapted the extended output prediction matrix decoder solution raised by

Kalinsky et al. [8] to train a multi-token mask-filler on the implicit discourse

relation recognition task. The top 5 outputs from our model are all less ambiguous

multi-token connective with an accuracy at ∼90%, proving that this strategy is

effective not only in their original named entity recognition task but also on other

multi-token prediction scenarios.

2. We extended the claim that a preposing structure can help MLMs predict a single

token connective in a discourse [3] to multi-token scenario. The preposing struc-

ture improves the model’s general accuracy, accuracy across genres, and certainty

on correct predictions, specifically on the three sense types: Expansion.Level-

of-detail.Arg2-as-detail, Expansion.Instantiation.Arg2-as-instance, and Contin-

gency.Cause.Reason.

In our future work, we can consider three directions: more discourse relations,

mores senses and connectives, larger high-quality datasets.

Our study focused on inter-sentential relations, but intra-sentential relations is also

worthy of more research. In choice of the gold label, a single sense was preferred, but

there are research showing that sometimes a discourse may hold more than one relations

simultaneously. The PDTB-3 also provides two connectives and senses if they exist

in the discourse, therefore can be used to apply on more cases rather than limiting on

single sense scenario.

In terms of the test data, we mentioned another corpus, namely GUM, annotated

in RST-style. If converting the RST-style into PDTB style, we can have having more

34
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discourse relations sample in the inference. We used the PDTB-3 and DiscoGeM 1.0,

while the latter did not mark the Argument, therefore we could use the NLP toolkit to

construct satisfactory canonical arguments.

Moreover, our study applied the extended decoder matrix strategy on predicting

connectives, therefore our training data only includes argument-pairs with a multi-

token connective and the model dominantly gave a multi-token prediction, showcasing

a successful fune-tuning. However, if we expects to generate a natural prediction

distribution, the training data should be single-token inclusive. Can MLMs capture the

nuances between a single-token connective and a multi-token connective when their

sense is similar or even same. Specifically, does their predictions favor a common

and light single-token connective such as “and” or “but,” rather than a heavy and

sophisticated multi-token connective like “at the same time” or “in contrast,” or vice

versa because multi-token connectives are more unambiguous? Limited studies [29]

discussed the deviation on connective selection between language models and humans,

or ever validated that a well-trained model can differentiate similar (single- and multi-

token) connectives and use them appropriately as humans do.
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Appendix A

PDTB-3 Sense Hierarchy

The sense hierarchy is from the PDTB-3 Annotation Manual [16].

Level-1 Level-2 Level-3

TEMPORAL SYNCHRONOUS –

ASYNCHRONOUS PRECEDENCE

SUCCESSION

CONTINGENCY CAUSE REASON

RESULT

NEGRESULT

CAUSE+BELIEF REASON+BELIEF

RESULT+BELIEF

CAUSE+SPEECHACT REASON+SPEECHACT

RESULT+SPEECHACT

CONDITION ARG1-AS-COND

ARG2-AS-COND

CONDITION+SPEECHACT –

NEGATIVE-CONDITION ARG1-AS-NEGCOND

ARG2-AS-NEGCOND

NEGATIVE-

CONDITION+SPEECHACT

–

PURPOSE ARG1-AS-GOAL

ARG2-AS-GOAL

COMPARISON CONCESSION ARG1-AS-DENIER

Continued on next page
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Level-1 Level-2 Level-3
ARG2-AS-DENIER

CONCESSION+SPEECHACT ARG2-AS-

DENIER+SPEECHACT

CONTRAST –

SIMILARITY –

EXPANSION CONJUNCTION –

DISJUNCTION –

EQUIVALENCE –

EXCEPTION ARG1-AS-EXCPT

ARG2-AS-EXCPT

INSTANTIATION ARG1-AS-INSTANCE

ARG2-AS-INSTANCE

LEVEL-OF-DETAIL ARG1-AS-DETAIL

ARG2-AS-DETAIL

MANNER ARG1-AS-MANNER

ARG2-AS-MANNER

SUBSTITUTION ARG1-AS-SUBST

ARG2-AS-SUBST
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Multi-token Connectives and Their

Senses

Connectives Senses

after all Contingency.Cause+Belief.Reason+Belief

Expansion.Conjunction

Expansion.Level-of-detail.Arg2-as-detail

after that Temporal.Asynchronous.Succession

along with Expansion.Conjunction

and then Expansion.Disjunction

as a consequence Contingency.Cause.Result

as a result Contingency.Cause.Result

Contingency.Cause+Belief.Result+Belief

Expansion.Level-of-detail.Arg2-as-detail

as an alternative Expansion.Disjunction

as it turns out Contingency.Cause.Result

Expansion.Conjunction

as part of that Expansion.Instantiation.Arg2-as-instance

as such Contingency.Cause+Belief.Result+Belief

Contingency.Cause.Result

as well Comparison.Similarity

Expansion.Conjunction

at that point Temporal.Synchronous

at that time Temporal.Synchronous

42
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at the same time Temporal.Synchronous

Expansion.Conjunction

at the time Temporal.Synchronous

because of that Contingency.Cause.Result

before that Temporal.Asynchronous.Succession

but then again Comparison.Concession.Arg2-as-denier

but then Comparison.Concession.Arg2-as-denier

by comparison Comparison.Contrast

Comparison.Concession.Arg2-as-denier

Expansion.Conjunction

by contrast Comparison.Contrast

Comparison.Concession.Arg2-as-denier

by doing so Expansion.Manner.Arg1-as-manner

by the way Comparison:Contrast

Expansion.Conjunction

by then Temporal.Asynchronous.Succession|Contingency.Cause.Reason

Temporal.Asynchronous.Succession

despite this Comparison.Concession.Arg2-as-denier

during that time Temporal.Synchronous

even before then Temporal.Asynchronous.Succession |Comparison.Concession.Arg2-

as-denier

even before Temporal.Asynchronous.Precedence|Comparison.Concession.Arg1-

as-denier

even then Temporal.Asynchronous.Precedence|Comparison.Concession.Arg2-

as-denier

for example Expansion.Instantiation.Arg2-as-instance

Contingency.Cause.Reason

Expansion.Level-of-detail.Arg2-as-detail

for instance Expansion.Instantiation.Arg2-as-instance

Expansion.Conjunction

Expansion.Level-of-detail.Arg2-as-detail

for one thing Expansion.Instantiation

Contingency.Cause.Reason

Expansion.Conjunction
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Expansion.Instantiation.Arg2-as-instance

Expansion.Level-of-detail.Arg2-as-detail

for one Expansion.Instantiation

Expansion.Instantiation.Arg2-as-instance

for that purpose Contingency.Purpose.Arg1-as-goal

for that reason Contingency.Cause.Result

in addition Expansion.Conjunction

Expansion.Level-of-detail.Arg2-as-detail

in any case Comparison.Concession.Arg2-as-denier

in any event Expansion.Conjunction

Expansion.Level-of-detail.Arg1-as-detail

in comparison Comparison.Contrast

in contrast Comparison.Contrast

in essence Expansion.Conjunction

in fact Comparison.Concession.Arg2-as-denier

Comparison.Contrast

Expansion.Conjunction

Expansion.Instantiation.Arg2-as-instance

Expansion.Level-of-detail.Arg1-as-detail

Expansion.Level-of-detail.Arg2-as-detail

Contingency.Cause+Belief.Reason+Belief

Contingency.Cause+Belief.Result+Belief

Contingency.Cause.Reason

Contingency.Cause.Result

Expansion.Equivalence

in general Expansion.Level-of-detail.Arg1-as-detail

in more detail Expansion.Level-of-detail.Arg2-as-detail

in other words Expansion.Equivalence

Comparison.Similarity

Contingency.Cause.Reason

Contingency.Cause.Result

Expansion.Conjunction

Expansion.Level-of-detail.Arg1-as-detail

Expansion.Level-of-detail.Arg2-as-detail
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in particular Expansion.Instantiation.Arg2-as-instance

Expansion.Level-of-detail.Arg2-as-detail

Expansion.Conjunction

in response Contingency.Cause.Result

Expansion.Conjunction

in short Expansion.Level-of-detail.Arg1-as-detail

Contingency.Cause+SpeechAct.Result+SpeechAct

Contingency.Cause.Reason

Contingency.Cause.Result

Expansion.Conjunction

Expansion.Equivalence

Expansion.Level-of-detail.Arg2-as-detail

in sum Expansion.Level-of-detail.Arg1-as-detail

Expansion.Conjunction

Expansion.Equivalence

Expansion.Level-of-detail.Arg2-as-detail

in the end Comparison.Concession.Arg2-as-denier

Comparison.Contrast

Contingency.Cause.Result

Expansion.Conjunction

Expansion.Level-of-detail.Arg1-as-detail

Expansion.Level-of-detail.Arg2-as-detail

Temporal.Asynchronous.Precedence

Expansion.Equivalence

in the meantime Temporal.Asynchronous.Succession

Temporal.Synchronous—Comparison.Contrast

Temporal.Synchronous

Temporal.Synchronous

in the meanwhile Temporal.Synchronous

in this case Expansion.Instantiation.Arg2-as-instance

in this way Contingency.Cause.Result

in turn Temporal.Asynchronous.Precedence

Contingency.Cause.Result

Expansion.Conjunction
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Expansion.Level-of-detail

Temporal.Asynchronous

later on Temporal.Asynchronous.Precedence

more accurately Expansion.Substitution.Arg2-as-subst

more specifically Expansion.Level-of-detail.Arg2-as-detail

more to the point Expansion.Level-of-detail.Arg2-as-detail

no matter Comparison.Concession.Arg1-as-denier

on the contrary Comparison.Contrast

Expansion.Level-of-detail.Arg2-as-detail

on the other hand Comparison.Concession.Arg2-as-denier

Comparison.Contrast

on the other Comparison.Concession.Arg2-as-denier

Comparison.Contrast

on the whole Expansion.Conjunction

Expansion.Level-of-detail.Arg1-as-detail

Expansion.Level-of-detail.Arg2-as-detail

prior to this Temporal.Asynchronous.Succession

quite the contrary Expansion.Substitution

since then Temporal.Asynchronous.Precedence

that is Expansion.Equivalence

Expansion.Level-of-detail.Arg2-as-detail

Contingency.Cause.Reason

Contingency.Cause.Result

Expansion.Conjunction

Expansion.Level-of-detail.Arg1-as-detail

to this end Contingency.Cause.Result

what’s more Expansion.Conjunction



Appendix C

Test datasets

corpus datasource genre connective range text masked_text sense preposed_phrase span span_lower

PDTB3 wsj_0414 wsj Thus [64,68]

The supply of experienced civil
engineers, though, is tighter. In
recent months, California's
Transportation Department has
been recruiting in Pennsylvania,
Arizona and Texas for engineers
experienced in road and bridge
design.

The supply of experienced civil
engineers, though, is tighter.
[SEP][MASK], in recent months,
California's Transportation
Department has been recruiting in
Pennsylvania, Arizona and Texas for
engineers experienced in road and
bridge design.

Contingency.Cause.Result
In recent months

default default

PDTB3 wsj_1629 wsj By comparison [97,110]

net income for the quarter was $5.9
million, or 71 cents a share, on
revenue of $145.4 million. For the
year-earlier period, the company
reported a loss of $520,000 or six
cents a share

Net income for the quarter was $5.9
million, or 71 cents a share, on
revenue of $145.4 million.
[SEP][MASK], for the year-earlier
period, the company reported a loss
of $520,000 or six cents a share.

Comparison.Contrast
For the year-
earlier period

default default

DiscoGeM1.0 0013_Christianity wikipedia In addition [145,156]

Christianity played a prominent role
in the development of Western
civilization, particularly in Europe
from late antiquity and the Middle
Ages. Following the Age of
Discovery (15th–17th century),
Christianity was spread into the
Americas, Oceania, sub- Saharan
Africa, and the rest of the world via
missionary work.

Christianity played a prominent role
in the development of Western
civilization, particularly in Europe
from late antiquity and the Middle
Ages. [SEP][MASK], following the
Age of Discovery (15th–17th
century), Christianity was spread into
the Americas, Oceania, sub- Saharan
Africa, and the rest of the world via
missionary work.

Expansion.Conjunction
Following the Age
of Discovery (15th
–17th century)

default default

DiscoGeM1.0

Harry_Potter_and
_the_Philospher_
Stone_EN_paragr
aph_09

novel Afterwards [122,132]

She let Harry watch television and
gave him a bit of chocolate cake
that tasted as though she'd had it
for several years. That evening,
Dudley paraded around the living
room for the family in his brand-
new uniform.

She let Harry watch television and
gave him a bit of chocolate cake that
tasted as though she'd had it for
several years. [SEP][MASK], that
evening, Dudley paraded around the
living room for the family in his
brand-new uniform.

Temporal.Asynchronous.Precedence That evening default default

Figure C.1: A small section of the preposed test data for illustration.

corpus datasource genre connective range text masked_text sense preposed_phrase span span_lower

PDTB3 wsj_1506 wsj But [194,197]

The guideline wasn't a law, but a
joint interpretation of how the U.S.
might operate during foreign coups
in light of the longstanding
presidential order banning a U.S.
role in assassinations.
 In fact, yesterday the
administration and Congress were
still differing on what had been

 The guideline wasn't a law, but a
joint interpretation of how the U.S.
might operate during foreign coups
in light of the longstanding
presidential order banning a U.S. role
in assassinations. [SEP][MASK],
yesterday the administration and
Congress were still differing on what
had been agreed to in fact.

Comparison.Concession.Arg2-as-
denier

In fact default default

PDTB3 wsj_0776 wsj While [46,51]

About eight firms will get the lion's
share.
 At the others, there are going to be
a lot of disappointments, after all
those promises and all that big
money that's been paid to people

 About eight firms will get the lion's
share. [SEP][MASK], there are going
to be a lot of disappointments, after
all those promises and all that big
money that's been paid to people at
the others.

Expansion.Conjunction At the others default default

DiscoGeM1.0
0027_Arctic
Ocean

wikipedia Consequently [71,83]

In September 2012, the Arctic ice
extent reached a new record
minimum. Compared to the
average extent (1979- 2000), the
sea ice had diminished by 49%.

In September 2012, the Arctic ice
extent reached a new record
minimum. [SEP][MASK], the sea ice
had diminished by 49% compared to
the average extent (1979- 2000).

Comparison.Contrast
Compared to the
average extent
(1979- 2000)

default default

DiscoGeM1.0
europarl-
original-en-ep-
00-03-17.txt

europarl
Considering
the fact that

[38,63]

Mr President, I welcome this
measure. From an administrative
point of view the formalisation is a
good thing.

Mr President, I welcome this
measure. [SEP][MASK], the
formalisation is a good thing from an
administrative point of view.

Contingency.Cause.Reason
From an
administrative
point of view

default default

Figure C.2: A small section of the canonical test data for illustration.
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