
Training Data Memorization & Performance for

Large Language Model Architectures–

Transformers vs. State Space Models

Delia McGrath

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2024

Abstract

Adversarial attacks on language models have demonstrated the ability to extract

sensitive information from the model’s training data. However, research in this area has

primarily focused on models with transformer architectures. With the recent rise of state

space models (SSMs), it is important to explore whether models with SSM architecture

exhibit similar patterns of memorization to transformer-based models, and if so to

what extent. This work specifically examines the SSM Mamba and transformer Pythia

models on their memorization of sensitive data. This was done through examining the

model’s output for extraction and membership inference attacks. The results found that

the SSM model, Mamba, consistently exhibited higher memorization than transformer

Pythia on both prefix attack and membership inference metrics.

The comparison was further extended to evaluate the trade-off between memoriza-

tion and practical utility by assessing the models’ performance on tasks not included

in their training data. This ensured the performance scores were impervious to the

effects of memorization. The experiment revealed that, on average across all tasks,

Mamba outperformed Pythia for smaller model sizes, while Pythia demonstrated su-

perior performance for larger models. However, when looking at specific categories,

Mamba consistently achieved higher scores in math-related tasks, while Pythia excelled

in instruction-following tasks. These results suggest that different architectures may

be better suited for different domains. Considering both experiments, future research

should prioritize exploring and comparing additional defenses, such as unlearning, to

enhance model safety and reexamine how these defences impact the model’s perfor-

mance.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy.

It did not involve any aspects that required approval from the Informatics Research

Ethics committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Delia McGrath)

ii

Acknowledgements

I feel lucky to have had the resources and support that empowered me to think bigger

for this project. Honestly, it was a ton of fun.

iii

Table of Contents

1 Introduction 1

2 Background 3
2.1 Related Works & Relevancy . 3

2.2 Datasets & Models . 4

2.3 Benchmark Contamination . 5

2.4 Transformers vs. State Space Models 6

2.4.1 Transformers . 6

2.4.2 State Space Models (SSMs) 8

2.5 Style of Attacks . 9

2.5.1 Graybox and Blackbox Attacks 9

2.5.2 Relevance of Prefix and Membership Inference Attacks 10

3 Prefix Attacks 11
3.1 Purpose . 11

3.2 Experimental Setup . 12

3.2.1 Preparation of Samples . 12

3.2.2 Evaluation Metrics . 13

3.3 Model Sizes and Variants . 16

3.3.1 Experimental Procedure . 16

3.3.2 Results and Analysis . 16

3.4 Subset Analysis . 19

3.4.1 Experimental Procedure . 19

3.4.2 Results and Analysis . 20

3.5 Input Prompt Length . 21

3.5.1 Experimental Procedure . 21

3.5.2 Results and Analysis . 21

iv

3.6 Summary and Insights . 23

4 Performance Evaluation 24
4.1 Purpose . 24

4.2 Experimental Setup . 25

4.3 Model Sizes and Variants . 26

4.3.1 Experimental Procedure . 26

4.3.2 Performance Evaluation for Model Sizes 26

4.3.3 Performance Comparison to SlimPajama Models 27

4.4 Summary and Insights . 29

5 Membership Inference 30
5.1 Purpose . 30

5.2 Experimental Setup . 31

5.2.1 Dataset . 31

5.2.2 Neighborhood Attack . 31

5.2.3 Min-K% and Min-K%++ Methodologies 32

5.2.4 Output Results . 34

5.2.5 Limitations . 34

5.3 Neighborhood Attacks . 35

5.3.1 Experimental Procedure . 35

5.3.2 Model Sizes . 35

5.3.3 Additional Models . 36

5.4 Comparison of Membership Inference Attacks 36

5.4.1 Experimental Procedure . 37

5.4.2 Effect of Model Size . 37

5.4.3 Effect of Input Length . 38

5.5 Summary and Insights . 38

6 Conclusions 39
6.1 Summary . 39

6.2 Limitations . 40

6.3 Future directions . 40

Bibliography 41

v

A Architectures 49
A.1 RWKV Architecture . 49

B Additional Membership Inference 52
B.1 Perplexity . 52

B.2 Zlib Compression Score . 53

B.3 Comparison of PPL & Zlib Scores 53

B.3.1 Experimental Procedures . 53

B.3.2 Effect on Model Sizes . 53

B.3.3 Effect on Data Subsets . 54

B.4 Min-K% and Min-K%++ Comparison 54

C Additional Prefix Attack 57
C.1 Subset Analysis on Large Models 57

D Performance 59
D.1 Comparison Baselines . 59

D.1.1 Reference Model Scores . 59

D.2 Model Scores by Task . 60

D.2.1 Coding Tasks . 60

D.2.2 Data Analysis Tasks . 60

D.2.3 Instruction Following Tasks 61

D.2.4 Language Tasks . 62

D.2.5 Math Tasks . 62

D.2.6 Reasoning Tasks . 64

vi

Chapter 1

Introduction

Top-performing language models excel due to their ability to identify and leverage

patterns in training data [63]. However, this strength also presents a vulnerability, as

adversaries can exploit it to extract sensitive information even without direct access

to the training data [39]. This issue is particularly concerning for private [57] and

copyrighted data [34], especially since larger models have been shown to memorize

more information [9]. Understanding these metrics, however, provides an opportunity

to improve the models and address these vulnerabilities more effectively.

Research on large language model (LLM) memorization has predominantly focused

on models with transformer architectures: exploring various metrics of memoriza-

tion [9], developing new adversarial attacks [3, 29, 64], and devising defense mecha-

nisms [33, 36]. However, with the rise of state space model (SSM) architectures like

Mamba [23], which offer faster and more efficient alternatives, there is an urgent need

to assess the implications of SSM architectures on model memorization. For certain

applications, such as retrieving biomedical terms [69], higher memorization could be

beneficial and pose minimal risk. Yet, in other areas, such as when SSM models are

trained on healthcare data [13, 38], increased memorization could pose significant

security risks. Without understanding the implications of SSM architectures on model

memorization, these vulnerabilities cannot be effectively addressed.

This paper evaluates the SSM architecture by comparing it to the transformer

architecture, which has become the standard in modern natural language processing

tasks [16]. The primary models compared are the SSM model Mamba [23] and the

transformer model Pythia [6]. To investigate memorization of sensitive data in the SSM

architecture, the study replicates experiments for prefix attacks originally designed for

transformer models [9] and examines how factors such as model size, data type, and

1

Chapter 1. Introduction 2

input length affect memorization. The impact of memorization on performance is also

considered, as it could potentially enhance performance depending on the deployment

context. This assessment involves evaluating the models across various benchmark

categories with tasks not seen during training, ensuring that any memorization does

not artificially inflate scores. Finally, the paper revisits memorization of sensitive data

by conducting membership inference tests to determine whether attackers can infer

the inclusion of specific data points. This evaluation includes testing across various

membership inference methods, input sizes, and model sizes.

This work contributes findings that the SSM model Mamba exhibits higher memo-

rization in extraction attacks across various model sizes, data subsets, and input sizes.

Further experiments that evaluated the performance of these models demonstrate that, on

average, Mamba performs better for comparable smaller models, while Pythia surpasses

Mamba for larger model sizes. Notably, across different sizes, Mamba consistently

excels in Math benchmarks, whereas Pythia leads in Instruction Following tasks. Finally,

when the models were assessed on memorization through membership inference attacks

(MIAs), Mamba consistently demonstrated greater susceptibility for attackers to infer

whether specific data points were included in the training set.

The remainder of the paper is structured as follows: Chapter 2 provides the necessary

background and context for the study, setting the stage for the experiments and analyses.

Chapter 3 focuses on adversarial attacks, specifically examining the memorization of

passages across different model sizes, input lengths, and data subsets. Chapter 4 presents

performance benchmarking of the models, evaluating their effectiveness on unseen

data to understand their generalization capabilities. Chapter 5 explores membership

inference attacks, discussing their effectiveness and potential applications for model

defences. Finally, Chapter 6 concludes the dissertation by summarizing the key findings,

limitations, and suggesting directions for future research.

Chapter 2

Background

This chapter looks into similar works that compare architectures and then gives founda-

tion for the work done in the remaining chapters of the paper.

2.1 Related Works & Relevancy

Sequence modelling is crucial in the language domain for natural language processing

(NLP), but it is also highly prevalent in other areas such as time series analysis, speech

processing, and bioinformatics. Transformers have proven to dominate across these

fields in terms of performance. However, one significant drawback is their application

to long sequences, as they suffer from O(N²) attention complexity and struggle with

handling inductive bias [61]. Recently, state space models (SSMs) have emerged as a

promising alternative due to their ability to efficiently handle long-range dependencies

with linear time complexity, making them more scalable for long sequences. Addition-

ally, SSMs inherently incorporate inductive biases, which allows them to generalize

better in certain contexts, offering a potential advantage over transformers in specific

tasks [24]. These models, particularly the structured state space sequences (S4) and its

variants such as Hippo [19], Hyena [48], and the Mamba model [23], have shown consid-

erable promise in sequence modelling. They have demonstrated superior performance

in areas traditionally dominated by transformers, such as DNA modelling [40].

The release of Mamba [23] included a suite of models trained on The Pile [20]1.

Compared to similar transformer models trained on The Pile [6, 47, 8], the Mamba

model outperforms existing transformer-based models on popular understanding and

1The Pile is an 825 GiB open source dataset for language models that is composed of 22 high-quality
datasets [20].

3

Chapter 2. Background 4

comprehension benchmarks such as LAMBADA [41] and HELLASWAG [70] in pre-

vious studies [23, 26]. However, beyond performance metrics, the architectural differ-

ences between these models have not been extensively studied. Notably, prior work

has compared transformers and state space models on copying tasks, where the model

replicates the input sequence exactly, which demonstrated transformers to have superior

performance. However, in n-gram lookup tasks, where the model predicts the next word

or sequence based on the preceding context, Mamba models outperformed transformers

for prefix lookups for longer inputs [31]. Other research has compared the models on

in-context learning (ICL) tasks and found that they perform similarly on standard ICL

tasks [44], though Mamba models excel with longer input sequences [22]. Yet, there has

been less focus on how these architectures impact adversarial attacks and memorization

capabilities. Most studies concentrate on evaluating popular open-source transformers

and recent state-of-the-art models [9, 18, 39], rather than examining how architectural

choices influence a model’s memorization abilities. This work aims to establish a

foundation for understanding the effect of architecture on model memorization and

whether this impacts performance on unseen benchmarks.

2.2 Datasets & Models

The focus of representation for the transformer and the state space model were chosen

as Pythia [6] and Mamba [23]. These were chosen because they contain a large suite of

models with comparable sizes and were trained on roughly the same number of tokens

of The Pile [20]. One extension of this work compares additional transformer models

of similar sizes, all trained on The Pile. Another extension explores the SlimPajama

dataset [55] by evaluating a different Mamba model [1] and the Bittensor Language

Model (BTLM) [17], both trained on this dataset. The comparative metrics for these

models can be seen in Table 2.1. Some models in this study exhibit slight variations

in token counts compared to the baseline metrics of Mamba and Pythia, but they offer

valuable insights by examining a broader spectrum of models rather than focusing

solely on two. The comparison of state space models is limited to Mamba due to

its compatibility with the dataset on which it was trained. Although hybrid SSM-

transformer models were not available with the same dataset, we included a hybrid

RNN-transformer model, the Receptance Weighted Key Value (RWKV) model [47].

RWKV was selected because it has been evaluated alongside Mamba in performance

studies [23] and in-context learning [22], and it is comparable in size and dataset. This

Chapter 2. Background 5

inclusion provides additional context and insight into the performance of hybrid models.

The models analyzed in this paper were trained on open-source datasets The Pile
and SlimPajama. The Pile is a comprehensive and varied dataset, but it includes sources

such as Pile-CC, which contains a subset of Common Crawl [5]. This subset introduces

redundancies in the training data, making it difficult to assess the degree of duplication

in each model’s training data and the extent to which this alters the model. In contrast,

SlimPajama [55] is a cleaned and deduplicated version of the RedPajama dataset [15].

Recent research has highlighted that data quality is as crucial as data quantity for large

language models [46]. By removing duplicates, SlimPajama enhances data density,

aiming to enable models to achieve higher accuracy with the same compute budget.

Model Architecture Dataset Number of Tokens

Mamba SSM The Pile 300 billion

Pythia Transformer The Pile 300 billion

GPT-Neo Transformer The Pile 420 billion

RWKV-42 RNN Transformer Hybrid The Pile 332 billion

Mamba SSM SlimPajama 604 billion

BTLM Transformer SlimPajama 627 billion

Table 2.1: Overview of compared language models, their architectures, training datasets,

and the number of tokens they were trained on.

2.3 Benchmark Contamination

Large language models are commonly evaluated using benchmarks that contain ques-

tions tailored to specific tasks, such as mathematical problems or summarization, to

assess their performance. Most benchmarks produce standardized results by asking

the same questions to each model, enabling effective comparisons. However, many

well-known benchmarks have become contaminated because the training data for these

models often includes content from third-party entities unconcerned with the bench-

marks [49, 59, 50]. Crawlers continuously gather data from the internet, making it

difficult to determine which benchmarks were included in training [50]. This issue is

exacerbated with closed-source models, where training data is not publicly disclosed.

For the models used in this study Table 2.1, it is unknown whether any benchmarks

2Version 4 of the RWKV pre-trained models were chosen as more recent versions were not trained on
The Pile.

Chapter 2. Background 6

appeared in their training, so it was assumed that well-known benchmarks might be

contaminated.

In response, new publicly available benchmarks have been created to evaluate

models on unseen data [65, 66]. These recent benchmarks primarily focus on newer,

fine-tuned models that score highly on other benchmark leaderboards, and the base

models discussed in this paper had not been benchmarked on them at the time of writing.

2.4 Transformers vs. State Space Models

Understanding the theoretical differences between transformer models and state
space models (SSMs) is pertinent for evaluating, as it can help explain how they will

handle data patterns and generate outputs. Thus, this section will delve into these

architectures, providing a comprehensive overview of each, their distinct characteristics,

and performance implications.

2.4.1 Transformers

Transformers are designed to capture complex patterns in sequences through their

self-attention mechanism. The primary components of a transformer block, as can be

seen in Figure 2.1a, and their implications for pattern handling are:

(a) Transformer block (b) Mamba block

Figure 2.1: Illustrative comparison of (a) transformer and (b) Mamba architectures.

1. Self-Attention Mechanism: The self-attention mechanism transforms each word

or token into three vectors: Query (Q), Key (K), and Value (V). The attention

score is computed using the formula:

Chapter 2. Background 7

Attention(Q,K,V) = softmax
(

QKT
√

dk

)
V

where dk is the dimension of the Key vectors. This mechanism allows the model

to dynamically focus on different parts of the input sequence. By computing

attention scores, the model can identify and weigh important tokens based on

their relevance to each other. This ability to attend to various parts of the se-

quence makes transformers highly effective at capturing intricate patterns and

relationships in data. This means that transformers can generate outputs that are

contextually relevant and coherent by leveraging patterns observed throughout

the sequence.

2. Feed-Forward Neural Network: Following the self-attention mechanism, the

output is processed through a feed-forward neural network:

FFN(x) = ReLU(xW1 +b1)W2 +b2

where W1 and W2 are weight matrices, and b1 and b2 are bias vectors. This

component refines the output from the self-attention layer, enhancing the model’s

ability to generate outputs based on the identified patterns. The feed-forward

network helps integrate and apply the learned patterns to produce meaningful

responses.

3. Layer Normalization and Residual Connections: Transformers incorporate

layer normalization and residual connections to stabilize training and improve

gradient flow:

LayerNorm(x+Sublayer(x))

where Sublayer(x) represents the output of the self-attention or feed-forward

network. These features facilitate effective pattern integration and ensure that

important patterns are preserved and utilized in generating outputs. Residual

connections help in managing the flow of information, making sure that key

patterns are not lost through the layers.

Chapter 2. Background 8

RWKV Model

While this paper primarily examines the differences between transformers and SSMs,

it is important to acknowledge hybrid models like RWKV, which integrate recurrent

mechanisms with transformer-like attention components. RWKV deviates from tra-

ditional transformers by incorporating a recurrent weighted key-value memory and a

modified attention mechanism that processes tokens sequentially, focusing on relevant

past information to maintain long-term dependencies efficiently. For a more detailed

overview of the RWKV architecture, please refer to Appendix A.

2.4.2 State Space Models (SSMs)

State space models like Mamba adopt a different approach to sequence modeling,

impacting their ability to manage and produce outputs based on data patterns:

1. State-Space Representation: SSMs represent sequences as evolving states over

time using state-space equations:

xt+1 = Axt +But +wt

yt =Cxt +Dut + vt

where xt is the state at time t, ut is the input, yt is the output, and wt and vt are

process and measurement noise, respectively. This representation allows the

model to handle temporal dependencies and incorporate noise in a structured

manner, affecting how well it can process and generate outputs based on the

sequence’s patterns.

2. Selective Copying and Block Architecture: Mamba’s architecture includes

specialized blocks and a selective copying mechanism, which impacts its pattern

handling:

• Selective Copying: Mamba employs selective copying to integrate rele-

vant information from past states into current computations. This approach

allows the model to focus on significant patterns and features while disre-

garding less relevant data. By selectively copying key information, Mamba

can handle complex patterns and dependencies effectively.

Chapter 2. Background 9

• Block Architecture: Instead of using self-attention, Mamba’s architecture

consists of specialized blocks designed to manage different aspects of se-

quence processing. These blocks handle temporal dependencies and noise,

offering a different approach to pattern integration compared to transform-

ers. The block architecture influences how Mamba processes sequences and

generates outputs, making it effective at managing structured patterns over

time. This architecture can be seen Figure 2.1b

2.5 Style of Attacks

In recent years, large language models (LLMs) have advanced significantly in generating

and understanding natural language. However, these advancements pose challenges in

data privacy and model security [62]. A major concern is the ability to extract sensitive

training data from models without direct access to the original dataset, highlighting

serious privacy issues as sensitive information can be inferred from model outputs [60].

2.5.1 Graybox and Blackbox Attacks

To address these security concerns, researchers have developed various attack method-

ologies to probe the resilience of machine learning models under limited knowledge

conditions. The National Institute of Standards and Technology (NIST) categorizes

these attack methodologies into gray-box and black-box attacks, where the attacker has

restricted or no full access to the model’s internals [62].

Two primary types of attacks are graybox and blackbox attacks:

1. Graybox Attacks: Graybox attacks occur when attackers have partial knowledge

about a model, which they use to enhance their data extraction techniques. Recent

research has shown that by leveraging knowledge of the model’s architecture and

specifics about its training data, attackers can significantly improve their ability

to extract sensitive information. For instance, recent research demonstrated

how attackers utilized partial insights into the model’s structure to refine their

extraction methods, resulting in more efficient and targeted data retrieval [72].

Similarly, other research illustrated that understanding a model’s parameters or

training processes could further enhance the effectiveness of these attacks, as

attackers can use this knowledge to better exploit vulnerabilities in the model [43].

Chapter 2. Background 10

2. Blackbox Attacks: Black-box attacks are conducted without any knowledge

of the model’s internal workings, with the attacker only having access to the

model’s inputs and outputs. These attacks aim to infer information about the

training data and reverse-engineer the model’s behavior based solely on input-

output interactions. Recent work has demonstrated that adversaries can extract

training data from black-box models in a manner similar to gray-box attacks [39].

While this paper focuses on gray-box attacks due to the need for models with

known architectures and training data, the vulnerabilities identified can extend to

black-box attacks for both architectures.

2.5.2 Relevance of Prefix and Membership Inference Attacks

Extraction attacks and membership inference attacks are crucial for understanding

privacy vulnerabilities in machine learning models, as outlined by NIST [62]. In our

research, we specifically focus on prefix attacks, a subtype of extraction attacks, to

investigate how they reveal memorization and potential privacy risks.

1. Prefix Attacks: These attacks involve querying a model with a specific prefix to

determine if it can continue or recall a piece of information, potentially exposing

sensitive training data. Known as prefix attacks, they reveal how well a model

memorizes and regurgitates information from its training set. For example, if a

model consistently generates similar outputs following a given prefix, it suggests

that the training data may have contained comparable information, which can be

problematic if it involves sensitive details.

2. Membership Inference Attacks: These attacks aim to ascertain whether a

specific data point was included in the training set by analyzing the model’s

responses or confidence levels. High confidence in predictions related to training

data points can indicate that those examples were part of the training set, thus

potentially exposing sensitive information.

Both types of attacks expose vulnerabilities in blackbox and graybox scenarios,

where attackers have varying levels of access to model internals. Analyzing these attacks,

alongside evaluating model performance on unseen tasks, provides a comprehensive

understanding of memorization and privacy implications for different architectures.

Chapter 3

Prefix Attacks

This chapter investigates the effect of model size, the effect of different data subsets,

and the effect of the input prompt length on the model’s memorization of training

data. Memorization metrics for exact memorization, fuzzy memorization, and the

input prompt repeating the model’s output are measured and compared within these

experiments.

3.1 Purpose

The work done on memorization that will be evaluated in this chapter further expands

some of the previous assessments of transformer and state space models on copying

tasks. Previous research demonstrated that Mamba, compared to transformers, exhibits

superior performance when using the a prefix key variant of the n-gram lookup task

compared to state space models [31]. This finding suggests that the Mamba model may

show stronger memorization capabilities than transformers when prompted with a prefix

sequence of training data that it has seen before.

Unlike the lookup tasks, however, the prefix attack in this chapter examines more

than just the next token produced by the model, and evaluates the next 50 tokens gener-

ated by the model’s output. In this way, it exposes the vulnerabilities of these models.

This attack allows for increased understanding around the practical implications of

memorization in real-world applications, such as language generation and data privacy.

By applying prefix attacks, we can assess not only how well models remember specific

sequences but also how their architecture influences the extent of memorization, provid-

ing valuable insight into their respective strengths and limitations. This comparative

analysis helps in identifying which model architecture is more robust against potential

11

Chapter 3. Prefix Attacks 12

adversarial attacks and thus better suited for tasks requiring nuanced understanding and

generation of text.

3.2 Experimental Setup

3.2.1 Preparation of Samples

Figure 3.1: Flowchart illustrating the process of the prefix attack experiment from the

source dataset to the output of the model.

The experimental framework for the prefix attack builds on the methodology pro-

posed by Carlini [9]. The initial step involves sourcing the dataset that was used to

train the model, which meant The Pile, from the training split, was used as our source

dataset. Then, as can be seen in Figure 3.1, the dataset processing began with streaming

this data into a local dataset. Data was streamed until a subset of 100,000 samples was

extracted from the dataset. The dataset was then shuffled, using a specified seed to

ensure randomness and reproducibility. These samples were concatenated into a single

string, with each individual text separated by an appropriate delimiter. A sample chunk

to assess memorization was then created by selecting a random index from the string

and extracting the next 10,000 characters.

These chunks were split based on whitespace and then tokenized. From the tok-

enized input, the prompt was then obtained by truncating to a specified input length,

and the following 50 tokens were saved as the suffix for later comparison. Both prompt

and suffix were decoded special tokens omitted to prevent complications in the analysis.

A decoded version of this split is shown in Figure 3.2.

To make the experiment more efficient, batch processing was used. This involved

dividing the total number of samples by the batch size and rounding up to determine

the number of batches needed:

Chapter 3. Prefix Attacks 13

Figure 3.2: Example of the end portion of a 200-token generated sample from The Pile.

The excerpt shows the final 50 tokens used as the suffix for comparison against the

model’s output, with the preceding 150 tokens used as the prompt.

Number of batches =
⌈

Nsamples

batch size

⌉
(3.1)

where Nsamples represents the total number of samples.

In each batch, input IDs and attention masks from the initial encoding tokenization

were grouped together, and the model processed these inputs to generate output. The

generated text was then decoded by the tokenizer, with special tokens removed to ensure

consistency.

In addition to saving the decoded samples, prompts, suffixes, and model outputs,

perplexity and zlib compression scores were recorded. The primary focus for assess-

ing memorization was the comparison of the model’s output to the original sample.

While perplexity and zlib scores have been reliable indicators of memorization when

comparing transformer models[39], they did not consistently indicate memorization

patterns across architectures in this experiment. The related work and definitions for

these metrics are detailed in Appendix B section B.1 and section B.2.

3.2.2 Evaluation Metrics

Fuzzy Memorization

Fuzzy memorization was assessed using the BLEU score, a metric originally developed

for evaluating machine translation systems. The BLEU score, introduced by Papineni

et al. [42], quantifies the overlap between the generated text and reference text by

measuring n-gram precision. The score ranges from 0 to 1, with a score closer to 1

indicating higher similarity to the reference text. The BLEU score is computed as

follows:

BLEU = exp

(
N

∑
n=1

log(pn)

)

Chapter 3. Prefix Attacks 14

(a) Fuzzy memorization (b) Exact memorization (c) Prompt repetition

Figure 3.3: Visualization of metrics for model output from samples generated from The

Pile during the experiment: (a) fuzzy memorization, where the model output partially

matched the expected output within the BLEU threshold; (b) exact memorization, where

the model output exactly matched the expected output with a BLEU score of 1; (c)

prompt repetition, where the model output was contained within the input prompt.

where pn represents the precision of n-grams for a given length n. Specifically, pn is

calculated by:

pn =
Number of n-grams in both output and reference

Total number of n-grams in output

The BLEU score was chosen for this analysis because it provides a quantitative

measure of how closely the generated output matches the training data, reflecting the

model’s memorization capability. Samples that scored between 0.75 ≤ x < 1, were

deemed to be fuzzy memorized. This range was selected to account for the fact that not

all outputs need to be exact, and high scores are still able to demonstrate a significant

level of memorization as seen in Figure 3.3a. Unlike previous studies that included

BLEU scores of 1 in their analysis of fuzzy memorization [9], our approach excludes

these exact matches to more accurately examine whether there are differentiating

patterns in the architectures’ performance on near-exact versus exact scores.

Exact Memorization

Exact memorization was evaluated by checking if the model’s response contained the

precise next 50 tokens from the prompt. This was done through examining the model’s

BLEU score where scores of 1 indicated an exact match as seen in Figure 3.3b.

Prompt Repetition

Another metric of interest was prompt repetition, where the output of the model was

compared to the prompt input, which can be observed in Figure 3.3c. This allowed

the measurement to be unaffected by varying prompt lengths as the model’s output

Chapter 3. Prefix Attacks 15

was fixed at 50 tokens. Although not a direct measure of memorization, this metric

was used to help in assessing whether the model is retaining or overfitting to specific

prompts. Further, this metric could be indicative of potential trends in how the differing

architectures process and memorize inputs.

Limitations

Despite all models being trained on The Pile dataset, the specific training segments and

total token counts, while comparable, still vary between models. This variation is due

to The Pile dataset being substantial, with a total size of 825 GiB [5], and many of the

models being trained on ≈300 tokens. Because the models in question were trained

on fewer tokens—less than half of the total available tokens—means that some of the

samples used when prompting the models may not have been seen during training. This

limitation may result in metrics demonstrating lower than actual memorization levels.

Another challenge with The Pile dataset is that some subsets have been redacted

due to copyright issues since its creation. As a result, the version of The Pile used

in this experiment lacks these copyrighted subsets, differing from the version used

during the models’ training. This discrepancy may lead to artificially higher or lower

memorization results, depending on the models’ performance on those specific subsets.

Additionally, prior studies on prefix attacks often compare significantly larger models,

such as those with 7 billion parameters, to better assess trends. However, the largest

pre-trained Mamba model, with 2.8 billion parameters, limits the comparison to smaller

models, which may not fully capture the memorization effects seen in larger models.

Baseline

To measure memorization effectively, the baseline dataset was set to stream 10,000

samples from The Pile. Each sample was processed into a single string and divided into

chunks of 200 tokens. For each chunk, the input length (prompt) was set to 150 tokens,

and the output length was evaluated for 50 tokens. This choice aligns with Carlini et.

al’s methodology [39], providing a consistent basis for comparison and validating the

experimental results.

This initial baseline setup established the groundwork for our experiments, which

could then be used as a reference point for exploring the effect of various experimental

parameters. In the subsequent sections, we build upon this baseline to investigate

variations in model sizes, architectures, data subsets, and the length of the input prompt

Chapter 3. Prefix Attacks 16

influence the model’s memorization output.

3.3 Model Sizes and Variants

Building on the baseline framework, the first set of experiments aimed to evaluate how

different model sizes within the transformer and SSM architectures impact memorization

across various evaluation metrics. The next goal was to compare these architectures,

trained on The Pile, with those trained on the SlimPajama dataset to identify any

recurring patterns within the same architecture across different datasets. Additionally,

the study explored how other transformer models and transformer-hybrid architecture

variants exhibit memorization behaviors across different sizes, providing a broader

understanding of how model architecture and size influence memorization. After initial

runs showed a pattern of variation, an additional investigation into the distribution

of memorization across multiple runs was explored to gain further insight into the

consistency and variability of memorization within the setup of each model.

3.3.1 Experimental Procedure

To assess memorization, we utilized the baseline setup with each model and corre-

sponding model size. While initially, the models were run three times to ensure the

accuracy of the evaluation metrics, this was increased to a minimum of five runs per

model size to better assess the distribution of results. This adjustment was necessary

due to the diverse content in The Pile [20], which includes code, math, English, and

other languages, potentially influencing memorization scores.

3.3.2 Results and Analysis

Impact of Model Size on Memorization

We assessed the impact of model size on memorization capabilities for both Pythia

and Mamba models. Figures Figure 3.4a and Figure 3.4b show that larger models

generally exhibit higher memorization for both exact and fuzzy metrics for both Pythia

and Mamba, with Mamba showing greater memorization. Prompt repetition values

remain fairly consistent across different model sizes, with variation between sizes less

than 0.5%, indicating that model size does not have a significant effect on prompt

repetition for Pythia and Mamba models.

Chapter 3. Prefix Attacks 17

(a) Fuzzy memorization (b) Exact memorization (c) Prompt repetition

Figure 3.4: Different sized models examined on The Pile for samples of length 200

tokens for metrics: (a) fuzzy memorization, (b) exact memorization, and (c) prompt

repetition.

Comparison of SlimPajama and The Pile-Trained Models

Model Name Dataset Prompt Rep Exact Fuzzy

Mamba-2.8b The Pile 0.0061 0.0226 0.0131
Pythia-2.8b The Pile 0.0068 0.0181 0.0123

Mamba-2.8b SlimPajama 0.0025 0.0107 0.0062
BTLM-3b SlimPajama 0.0022 0.0080 0.0058

Table 3.1: Model performance comparison for SlimPajama and The Pile datasets on the

memorization metrics for respective data sources on samples sized 200 tokens. Higher

scoring model metrics within each grouping are bolded.

Table 3.1 compares the performance of the Mamba model trained on The Pile and

SlimPajama datasets, showing similar memorization patterns across both datasets, with

SSM models demonstrating greater fuzzy and exact memorization.

For prompt repetition, models trained on SlimPajama scored lower, suggesting

that training data may influence repetition. Among models trained on The Pile, trans-

formers had the highest repetition, while SSM models showed greater repetition with

SlimPajama. This divergence indicates a need for further analysis and additional runs.

Performance of Other Transformer Models and Variants

We also examined other transformer models, including GPT-Neo and the RWKV model,

across different sizes to gain a broader understanding of how the Mamba model com-

Chapter 3. Prefix Attacks 18

pares. Figure 3.4a and Figure 3.4b display their memorization performance. The

transformer model GPT-Neo shows behavior very similar to Pythia in fuzzy memoriza-

tion and slightly lower exact memorization. In contrast, the RNN-transformer hybrid

RWKV demonstrates notably lower memorization, likely due to the vanishing gradi-

ent problem. This issue arises when gradients become exceedingly small, leading to

information loss over long-term dependencies as it propagates through the network [45]

Distribution and Averaging

Figure 3.5: Box-and-whisker plot illustrating the distribution of exact memorization across

multiple runs for each model on The Pile dataset for sample lengths of 200 tokens.

To ensure robustness, each model was run at least five times, and the box-and-

whisker plot in Figure 3.5 reflects the distribution of results. The plot shows variations

in memorization performance, with noticeable skewness in the median values for many

models, indicating a non-uniform distribution. The outliers for the smaller models,

Mamba 130m and Pythia 160m, suggest that memorization may depend on the type of

data sampled.

The plot also highlights variability across different runs, showing both the con-

sistency and variability of memorization for each model. Smaller models in both the

Pythia and Mamba suites display some outliers, with memorization values around 1.5%

lower than their medians, indicating greater variability in memorization compared to

larger models. Despite this variability, the medians across model suites remain relatively

consistent, suggesting that each model type has a characteristic memorization perfor-

mance. The broad distribution range for both Pythia and Mamba models underscores

Chapter 3. Prefix Attacks 19

how memorization can fluctuate depending on the specific data samples from The Pile

dataset.

3.4 Subset Analysis

Given the observed variation in memorization from models trained on the full The Pile

dataset [20], as depicted in Figure 3.5, we extended our analysis to investigate how

memorization patterns differ across various subsets of data. By using split versions of

The Pile, categorized into different subsets, we aimed to determine whether certain types

of data are more susceptible to memorization than others. This approach provides insight

into whether state space models, like Mamba, are particularly prone to memorizing

structured and predictable data types, such as mathematical sequences and programming

code, which align well with their architecture [4].

Initial experiments focused on smaller model sizes, as these often reveal how

architectural features influence memorization due to their reduced complexity [52].

Smaller models offer a clearer view of the effects of various architectural components [2]

and allow findings to be extrapolated to larger models [11]. This approach also enables

more efficient iterative testing and experimentation [27]. Subsequently, larger Pythia

and Mamba models were tested on selected subsets to evaluate how increased model

capacity influences memorization, which showed similar patterns, with results discussed

in Appendix C.

3.4.1 Experimental Procedure

For this analysis, instead of streaming from The Pile as a whole, we used a version of

the dataset that had been split into its respective subsets. Each subset was streamed

individually for sample evaluation, allowing us to investigate how memorization varies

across datasets with distinct characteristics and sizes. It’s important to note that some

subsets, particularly those containing copyrighted content like books and subtitles, were

excluded from the study for ethical reasons.

Aside from the data source, all other parameters such as number of samples and

batch size remained consistent with the baseline setup, ensuring that the analysis of

memorization patterns across different subsets was directly comparable to previous

conditions.

Chapter 3. Prefix Attacks 20

3.4.2 Results and Analysis

(a) Fuzzy memorization (b) Exact memorization

(c) Prompt repetition

Figure 3.6: Memorization and prompt repetition patterns measured on different subsets

of The Pile dataset for memorization metrics: (a) fuzzy memorization, (b) exact memo-

rization, and (c) prompt repetition.

The results indicate that both fuzzy and exact memorization scores follow a similar

pattern, with the GitHub subset showing the highest memorization scores across both

metrics. Notably, the Enron Emails subset also exhibits high memorization scores,

particularly in fuzzy memorization, suggesting its conversational nature might contribute

to its prominence. This is in contrast to the FreeLaw and HackerNews subsets, which

have lower memorization scores.

Interestingly, while the fuzzy and exact memorization scores align, prompt repeti-

tion shows some divergence. GitHub, PubMed Central, and Enron Emails stand out

with the highest levels of prompt repetition. Despite StackExchange demonstrating

Chapter 3. Prefix Attacks 21

higher memorization scores compared to PubMed Central in both exact and fuzzy

memorization, it exhibits lower prompt repetition. This discrepancy highlights the

variability in how different types of data influence memorization and prompt repetition

patterns.

3.5 Input Prompt Length

This section examines how input prompt length affects memorization in transformer-

based models. This also allows for a greater exploration of the role of attention mech-

anisms across different architectures. Recent research shows that attention dynamics

are central to capturing long-range dependencies and can influence memorization [63].

Since attention mechanisms manage contextual information, variations in input length

could reveal how attention is distributed among models of different sizes. Based on

Carlini et al.’s findings [9], input length alone may not significantly influence memo-

rization for transformers, but this has not been explored for SSMs. This study expands

on this by evaluating whether varying input lengths impact memorization differently

across model architectures.

3.5.1 Experimental Procedure

To analyze the effect of input prompt length, three model sizes were selected from both

the Mamba and Pythia suites trained on The Pile dataset: the smallest, intermediate,

and largest models.

Data samples of varying lengths—100, 200, 500, and 1,000 tokens—were streamed

from The Pile dataset. Each sample retained the last 50 tokens for evaluation, and used

the rest as the input to the model. This setup was designed to assess whether longer

prompts, which offer more context, affect memorization patterns differently across

model architectures.

3.5.2 Results and Analysis

The results for exact memorization reveal that input length influences memorization

patterns differently across models. While the transformer model Pythia aligned with

the trends found in Carlini et al.’s research [9], showing memorization increasing

across different sized input lengths, the exact memorization for the Mamba model is

more complex. While Mamba exhibits similar trends for the shorter input lengths of

Chapter 3. Prefix Attacks 22

(a) Exact memorization (b) Fuzzy memorization (c) Prompt repetition

Figure 3.7: Results of memorization across different sized sequence lengths, which

affect the size of input prompt to models. Metrics are shown for (a) exact memorization,

(b) fuzzy memorization, and (c) prompt repetition.

sample sizes 100, 200, and 1,000, it provides a divergent result for sample length 500.

Notably, the largest size Mamba model demonstrates expected findings, but the small

and medium-sized models show slight inversions at this length. This divergence might

be related to how attention mechanisms manage longer contexts in state space models,

where attention behavior could differ significantly at higher input lengths, impacting

memorization.

Interestingly, this finding is exacerbated when looking at the fuzzy memorization of

the models. While the Pythia models show an increase in memorization up to length

500, the smallest Mamba model shows the greatest inversion at this length, with the

medium showing slightly less inversion. These results suggest that model size affects

how memorization scales with input length, indicating that larger models might handle

longer contexts differently, possibly due to variations in attention dynamics.

Despite the divergence of results for Mamba within exact and fuzzy memorization,

the results for both Pythia and Mamba models show similar patterns for prompt rep-

etition. The pattern for prompt repetition memorization follows a similar pattern to

Carlini et. al’s results for exact memorization [9]. While not against the same metric,

it is interesting to note that the type of memorization metrics shows that the Mamba

acts similarly to the Pythia model in some of its output and differently for other metrics.

These discrepancies may be influenced by dataset variance, yet both Pythia and Mamba

models display increased prompt repetition for smaller models and longer input lengths.

This warrants further investigation into the underlying causes and implications.

Chapter 3. Prefix Attacks 23

3.6 Summary and Insights

Across the various experiments, the role of prompt repetition initially appeared to offer

little insight when examining model sizes. However, when considering subsets and input

lengths, prompt repetition revealed deeper patterns of model memorization that were

not as evident from other metrics. Notably, Mamba demonstrated greater memorization

compared to the Pythia model. This observation was somewhat contradicted by the use

of a sample size of 500 in the experiments. To gain a clearer understanding, it would be

valuable to investigate larger Mamba models (e.g., 6.9 billion parameters) and to test a

broader range of input lengths, between 200 and 1000, to identify if there is a specific

length where memorization is minimal for smaller models.

Another significant finding was the higher memorization of GitHub content in both

Pythia and Mamba models compared to other subsets. Further experiments could

explore whether certain coding languages are more frequently memorised than others.

Additionally, the DM Mathematics subset exhibited almost no memorization, which is

intriguing given that code and mathematical content are often considered similar. This

discrepancy suggests that different types of structured data may impact memorization

differently.

Chapter 4

Performance Evaluation

In the previous chapter, we explored the prefix attack, examining how memorization

can be exploited in models. Building on that foundation, we now shift our focus to

evaluating the overall performance of these models on a variety of practical benchmarks.

This chapter focuses on assessing how these models perform in tasks that reflect different

domains of real-world challenges.

4.1 Purpose

Mamba has demonstrated stronger performance over transformers on a range of bench-

marks [23, 26], including WinoGrande[51], ARC-C[14], ARC-E[14], PIQA[7], and

HellaSwag[70]. Given these results, we anticipate that Mamba will achieve higher

average scores on the LiveBench benchmarks compared to traditional transformers.

Mamba’s architecture, optimized for handling structured and sequential data through

state-space dynamics, gives it a distinct edge in tasks requiring complex pattern recog-

nition and analytical reasoning. In contrast, transformers, while highly effective in

general-purpose tasks, may struggle with the analytical reasoning required in these

benchmarks [63].

However, Mamba has shown greater memorization tendencies. Since LiveBench

is uncontaminated—designed to assess performance on fresh, unseen data that was

not in training—Mamba may score lower if its previous high scores were due to

memorization rather than genuine capability. This raises a critical point: was Mamba’s

superior performance on prior benchmarks genuinely reflective of its strengths, or was

it artificially inflated by memorization?

This chapter evaluates model performance across various benchmarks, focusing

24

Chapter 4. Performance Evaluation 25

on how memorization influences their effectiveness in real-world applications. The

primary objective is to compare transformer models with the state space model (SSM)

Mamba, highlighting their respective performance across diverse tasks.

4.2 Experimental Setup

To assess model performance beyond memorization, we used LiveBench, which pro-

vides six distinct benches: Data Analysis, Math, Coding, Instruction Following, Lan-

guage, and Reasoning. These benchmarks contain multiple tasks that are regularly

updated to reflect current standards and minimize biases from prior exposure, which aid

in finding whether there is a tradeoff between memorization and performance between

architectures.

Retrieval and Evaluation of Benchmarks

Figure 4.1: Diagram illustrating the workflow for benchmark evaluation and performance

scoring. Bench, tasks, and questions are represented from 1 to n where 1 represents

the first object and n lists the last object for each collection. The CSV file names ‘all

tasks’ and ‘all groups’ correspond to the automatic files generated upon evaluation.

LiveBench ensures accurate and relevant question retrieval through an automated

query system that is illustrated in Figure 4.1. Questions are selected based on recency

and relevance to maintain alignment with current standards. Retrieved questions are

organized and stored in a structured database, categorized by type, difficulty, and

benchmark area, facilitating efficient access and updates.

The model’s generated answers for each task’s questions are saved in a corre-

sponding JSONL file1 containing question IDs, answer IDs, model IDs, choices, and

1A ‘JSONL’ file, or JSON Lines file, is a file format where each line is a separate JSON object. It is
often used for storing large datasets where each line represents an individual data entry.

Chapter 4. Performance Evaluation 26

timestamps. As seen in Figure 4.1, these files are then evaluated with task scoring and

bench group re-scoring.

4.3 Model Sizes and Variants

The primary focus of this section is to investigate the impact of model size on bench-

mark performance and to identify any emerging trends. Additionally, we then explore

whether models of similar parameter sizes but trained on different datasets (The Pile vs.

SlimPajama) exhibit comparable performance patterns.

4.3.1 Experimental Procedure

To address these questions, we first conducted experiments to compare the performance

of the Pythia and Mamba models across five different sizes. For each model size, the

models were tasked with generating answers for each bench’s tasks. After all tasks were

completed, the scores were gathered for each model.

Secondly, to explore models trained on different datasets, we evaluated the transformer-

based BTLM-3b model and the SlimPajama Mamba model. For the BTLM model, a

new adapter was created to ensure compatibility with Hugging Face and proper tokenizer

setup, allowing it to be evaluated using the same methodology. Additionally, although

updates were made to the LiveBench repository during the extension to the SlimPajama

models—including new question sets and structural changes—these updates were ex-

cluded from this experiment to maintain consistency with prior benchmarks. While

LiveBench aims to provide current benchmarks, we used the same dataset and questions

as in previous experiments to ensure standardization and to facilitate direct comparisons

of task breakdowns and category scores.

4.3.2 Performance Evaluation for Model Sizes

Table 4.1 presents the performance results across the categories, with specific analysis

of each benchmark task comoposition scores in section D.2. When looking first to

the Math benchmark, it is seen that Mamba models consistently outperform Pythia

models for all model sizes. This trend is particularly noticeable when comparing the

largest models, where Pythia scores 0.08 and Mamba scores 3.52. However, it is

interesting to note that for this category the results do not indicate an increase with

Chapter 4. Performance Evaluation 27

model performance, as the smallest model is able to achieve a score of 4.15 and the

largest decreases to 3.52.

Next, looking to the Reasoning benchmark, while the transformer models show

a trend of scores being greater for larger models, Mamba models demonstrate high

variability, as the highest score on this benchmark is for the model sized 370m and the

largest 2.8b Mamba model scores zero. Further analysis of the tasks in this benchmark

in Appendix D subsection D.2.6 demonstrate that the variation in scores is due to the

Mamba model being only able to score on the second task, while the transformer model

only able to score on the first task.

Table 2.1 also indicates no scores for Coding benchmark and Data Analysis
benchmark. The evaluation producing scores of zero suggests that these tasks may

require specific capabilities or fine-tuning that the evaluated models did not possess.

However, low-scoring models of the leaderboard also showed scores of zero for this

metric as seen in section D.2 Table D.1, which demonstrates the difficulty of this metric.

Factors contributing to the no-score entries could include the complexity of the tasks,

potential differences in benchmark design, and limitations of the models themselves.

Additionally, the specific evaluation criteria of the benchmarks may have also played a

role in the zero score.

The Language benchmark shows notably similar performance for the Pythia and

Mamba models. While the Mamba is able to outperform the Pythia for the largest

and smallest sizes, Pythia shows greater performance for mid-sized models. On the

Instruction Following benchmark the Mamba model shows similar and slightly

greater performance on smaller models. However, for larger models Pythia increasingly

outperforms the Mamba model.

When analyzing the Global Average of the performance scores, it is evident that

the models were not specifically fine-tuned for individual tasks, which could explain

some of the observed variations. The Mamba-130m and Pythia-160m models exhibit

similar average performance, with Mamba slightly outperforming Pythia. However,

performance tends to deteriorate for larger Mamba models, particularly with the Mamba-

1.4b and Mamba-2.8b models.

4.3.3 Performance Comparison to SlimPajama Models

After analyzing models trained on The Pile, we extended our comparison to models

trained on the SlimPajama dataset to see if the trends maintained for architectures on a

Chapter 4. Performance Evaluation 28

Model
Global

Average
Coding

Data
Analysis

Math Language Reasoning
Instruction
Following

Mamba-130m 3.41 0.00 0.00 4.15 2.51 1.00 12.82
Pythia-160m 3.26 0.00 0.00 4.00 2.44 1.00 12.15

Mamba-370m 3.96 0.00 0.00 3.54 1.47 5.00 13.77
Pythia-410m 2.85 0.00 0.00 1.76 2.31 1.00 12.05

Mamba-790m 3.54 0.00 0.00 2.31 2.03 4.00 12.91

Pythia-1b 3.23 0.00 0.00 0.00 2.12 4.00 13.25

Mamba-1.4b 3.92 0.00 0.00 4.45 2.01 1.00 16.07

Pythia-1.4b 4.71 0.00 0.00 2.12 3.68 4.00 18.43

Mamba-2.8b 2.60 0.00 0.00 3.52 2.19 0.00 9.88

Pythia-2.8b 3.19 0.00 0.00 0.08 2.06 3.00 13.98

Mamba-2.8b-SP 2.22 0.00 0.00 0.44 2.34 0.00 10.50

BTLM-3b-SP 6.68 0.00 0.19 0.90 1.88 12.00 25.09

Table 4.1: Performance of models on global average of all categories and the results

of each benchmark category from LiveBench: Coding, Data Analysis, Math, Language,

Reasoning, and Instruction Following. Bolded values represent the highest result within

each benchmark category, with bolded models indicating highest overall average. The

bottom two models, denoted with the -SP suffix, were trained on the SlimPajama dataset,

while the other models were trained on The Pile. Scores reflect the automatic evaluation

results from LiveBench.

different dataset.

Overall, the trends exhibited for the largest size Mamba and Pythia model maintain

for the Mamba-SP and BTLM-SP models. The only category that does not follow this

trend is for the Math benchmark, where the Mamba performs noticeably lower than

it had previously and the transformer BTLM is able to score higher. Additionally, the

BTLM transformer model was able to achieve a score for the Data Analysis benchmark

that had previously only acheived zero scores. This suggests that the training data may

be an important factor for models being able to score on this metric.

Further comparison of the SlimPajama against The Pile models reveal that the

SlimPajama dataset allowed the transformer model to score four times greater for the

Reasoning benchmark and almost double for the Instruction Following benchmark when

compared to The Pile transformer counterpart. For these metrics, the Mamba showed

negligible difference.

Chapter 4. Performance Evaluation 29

Overall, the comparative analysis between models trained on The Pile and SlimPa-

jama datasets reveals that while Mamba models perform strongly in certain bench-

marks like Math, transformer models maintain superior performance in reasoning and

instruction-following tasks for large model sizes. These insights underline the influence

of training data and model architecture on overall performance.

4.4 Summary and Insights

The Mamba models exhibit clear advantages in math-related benchmarks compared

to transformers, highlighting the effectiveness of the state space model architecture in

managing numerical and pattern-based tasks. Despite this strength, there is notable vari-

ability in Mamba’s performance on reasoning tasks, with larger models showing reduced

effectiveness. This suggests that while Mamba excels in mathematical problem-solving,

its capabilities in reasoning and instruction-following require further investigation or

fine-tuning.

Additionally, Mamba’s underperformance in data analysis and coding tasks raises

questions about its generalizability across different benchmarks. This discrepancy could

indicate that the model struggles with more complex tasks or that the benchmarks used

were particularly challenging. Further analysis should explore whether Mamba’s lower

performance is due to the inherent difficulty of these benchmarks or limitations in the

model itself, by evaluating its ability to produce nonzero scores on simpler coding and

data analysis tasks. Including transformer models in this investigation would provide a

clearer understanding through comparison.

Notably, Mamba’s performance decline on tasks where it previously excelled sug-

gests that earlier high scores may have been influenced by memorization rather than

genuine model capabilities. To address this, a detailed analysis is needed to determine

if memorization of specific training data contributed to these discrepancies.

The evaluation of models trained on the SlimPajama dataset reinforces the significant

impact of training data and model size on performance. Future research should focus

on fine-tuning models for specific tasks to improve their performance to see if that

could improve its performance. Additionally, exploring adjustments in training data

and model architecture may help overcome current limitations. Overall, while Mamba

demonstrates strong performance in certain benchmarks, ongoing research is essential

to address its limitations and enhance its capabilities across a wider range of tasks.

Chapter 5

Membership Inference

This chapter looks more closely into the memorization of the architectures through the

lens of membership inference attacks (MIAs) – an attack that examines the likelihood

of a specific data sample being included in the model’s training dataset. This section

compares the architectures by exploring the performance of the models across MIA

attacks for methods of Neighborhood Attack, Min-K%, and Min-K%++. It also explores

the metrics across model variants, different-sized models, and different input lengths.

5.1 Purpose

While Mamba has shown greater memorization when evaluated on prefix adversarial

attacks, it was still able to outperform transformer models for mathematical tasks. This

suggests that though it has demonstrated increased memorization of passages of training

data, it may be a worthwhile choice depending on the purpose of the model. Expanding

on the initial work done on memorization to MIA attacks allows for a greater assessment

of the susceptibility to different styles of attacks by being able to generate metrics for

the likelihood that the model will be able to identify data it has been trained on.

Although a different style of attack, due to the high memorization observed for

prefix attacks, suggests that the Mamba model may also show heightened susceptibility

to MIAs compared to Pythia. If models that performed well in memorization tasks are

vulnerable to membership inference, it would suggest that their ability to retain and

recall training data could be compromising their privacy [28].

MIA attacks were also chosen as they often lay the groundwork for defense mech-

anisms for unlearning as they help identify which data points are memorized by the

model. Through this, data can be classified to find the best candidates for unlearning,

30

Chapter 5. Membership Inference 31

which has shown to be successful in improving the model’s privacy and robustness

against MIA vulnerabilities [12, 54]. In using this attack, this experiment can better

offer insight into the best future direction for unlearning to apply defenses to the models.

This chapter aims to provide a comprehensive evaluation of membership inference

risks associated with the models studied, using the observed memorization patterns

to gauge privacy vulnerabilities and highlight potential avenues for future privacy

enhancements.

5.2 Experimental Setup

5.2.1 Dataset

Because the dataset for membership inference attacks includes data used in training

and similar data not used in training, allows for the attacks to assess the likelihood

of the seen versus unseen data. Instead of sourcing The Pile and non-The Pile data

for this experiment, this study utilizes a benchmarked membership inference dataset

WikiMIA [56]. WikiMIA was selected because it offers different-sized input lengths

(32, 64, 128, and 256 tokens), which are useful for examining how models handle

different text lengths. Additionally, because the set is benchmarked, it allows the results

of this study to not only be reproducible but also allows the findings to be compared

to other MIA studies. This choice enables an analysis of the impact of input length on

membership inference.

MIA attacks do this by calculating the score of the likelihood for the input given

to be included in the training data. In methods like the Neighborhood Attack and Min-

K% attacks, thresholds are used to classify samples based on their loss or probability

characteristics. For instance, in the Neighborhood Attack, a threshold might be set to

decide if the loss of a target sample significantly deviates from its neighbors. Similarly,

Min-K% and Min-K%++ use thresholds to classify tokens or sequences based on their

probabilities. While the application of thresholds differs, the underlying concept of

setting criteria to classify samples is similar across these methods.

5.2.2 Neighborhood Attack

The Neighborhood Attack method, as shown in Figure 5.1, infers membership by

comparing the loss of a target sample with the losses of its syntactically and semantically

similar neighbors. This technique operates under the assumption that if a sample was

Chapter 5. Membership Inference 32

included in the training data, its loss would be comparable to that of its neighbors.

For this study, we employed the BERT-base-cased model [16] for the proposal model

that would create the neighbor samples as it aligns with prior research done for the

neighborhood attack [37, 67]. To evaluate the membership inference, we evaluated 10

neighbors against each target sample, as this number aligned with established practices

in the literature [37], and allowed for a meaningful comparison while maintaining

manageable computational requirements.

Figure 5.1: For a given target sample x, a pretrained masked language model generates

a set of neighbor sentences by substituting words in the original sample. The losses of

these generated neighbors and the original sample are then compared using the target

model. If the losses for the neighbors are similar to the loss for the target sample, and

the difference between them is below a specified threshold γ, this suggests that the

target sample is likely to be part of the model’s training data.

5.2.3 Min-K% and Min-K%++ Methodologies

The Min-K% and Min-K%++ methods are used to determine whether a text sequence

was part of a model’s training data by analyzing token probabilities. These methods are

both scoring functions, with process illustrated in Figure 5.2.

The Min-K% method focuses on tokens with the lowest probabilities within a

sequence. It calculates the average log-likelihood of the lowest k% of these tokens.

This approach works on the assumption that tokens from non-member sequences often

exhibit unusually lower probabilities, making them easier to identify. The log-likelihood

and corresponding score for this method is computed using the following formula:

Min-K%token(xt) = log p(xt | x<t), (5.1)

Chapter 5. Membership Inference 33

Figure 5.2: Process of evaluation for both the the Min-K% and Min-K%++ methodologies.

Both methods are used for scoring is able to determine whether the text that the model

was prompted with was included in the training data.

Min-K%(x) =
1

|min-K%| ∑
xt∈min-K%

Min-K%token(xt). (5.2)

where p(xt | x<t) represents the probability of token xt given the preceding tokens

x<t . The overall Min-K% score is then calculated by averaging these log-likelihood

values over the minimum-K% of tokens.

The Min-K%++ method extends Min-K% by introducing a normalization step to

reduce the impact of variability in token probabilities. This method calculates the log

probability of each token, but then normalizes this value by subtracting the mean and

dividing by the standard deviation of the log probabilities for all candidate tokens. The

normalized log probability and given score is given by:

Min-K%++token(xt) =
log p(xt | x<t)−µx<t

σx<t

, (5.3)

Min-K%++(x) =
1

|min-K%| ∑
xt∈min-K%

Min-K%++token(xt). (5.4)

where µx<t and σx<t are the mean and standard deviation of the log probabilities,

respectively.

It can be seen from Equation 5.2 and Equation 5.4 that these methodologies are

structured similarly, with the only difference being the normalization of tokens of Equa-

tion 5.1, which can be seen in Equation 5.3. While Min-K% has proven effective

for evaluating membership inference and unlearning, this research incorporates the

newer Min-K%++ method because of the strong findings. Min-K%++ introduces σx<t ,

inspired by temperature scaling [25], to calibrate prediction confidence by adjusting

model outputs with a dynamic, input-adaptive factor rather than a fixed constant. This

approach has shown to improve performance, especially in cases with variable token

distributions. By normalizing log probabilities, the Min-K%++ research aims to provide

a more balanced and accurate assessment compared to the simpler Min-K% method [71].

Chapter 5. Membership Inference 34

Because of the similarities, both will be evaluated against the architectures to examine

if the differing architectures of comparable sizes present similar patterns across the

evaluation metrics.

5.2.4 Output Results

Figure 5.3: Receiver Operating Characteristic (ROC) curve is created from plotting the

True Positive Rate (TPR) against the False Positive Rate (FPR). This curve illustrates

how well the model distinguishes between training data members and non-members.

The Area Under the ROC Curve (AUROC) represents the overall effectiveness of the

model, with higher values indicating better performance in identifying whether a sample

was part of the training data.

For evaluating membership inference attacks, we used consistent rates across all

models. Specifically, a True Positive Rate (TPR) threshold of 95% was set, meaning the

model aims to correctly identify 95% of actual members. This threshold automatically

determines the False Positive Rate (FPR) as 5%, indicating the proportion of non-

members incorrectly classified as members. This approach balances sensitivity and

specificity, as shown in Figure 5.3 and uses values that are in line with standard practices

for evaluating membership inference attacks [67, 57, 10].

5.2.5 Limitations

Although the WikiMIA dataset contains sizes of input up to 256 tokens, later experi-

ments for input length only tested the lower three input sizes of 32, 64, and 128 tokens

due to time constraints. Additionally, these experiments were limited to the WikiMIA

dataset to focus on input length, but further experiments could expand to different

subsets of The Pile through testing with the other benchmarked membership inference

dataset MIMIR [18], which contains subsets of MIA data collection for subsets of The

Chapter 5. Membership Inference 35

Pile. This was not done due to the time needed to evaluate each subset, however, it

would help expand on the initial work done for prefix attacks on subsets. This direction

would allow for a greater understanding of security for specific domains.

5.3 Neighborhood Attacks

The goal of this section is to evaluate how the SSM and transformer architectures exhibit

memorization based on their AUROC score on the neighborhood attack, and whether a

smaller model and larger model will show similar patterns. Additionally, experiments

were done to expand the study to transformer and transformer-like models of different

sizes to broaden the study, as was done previously for prefix attacks.

5.3.1 Experimental Procedure

To address the SSM and transformer architecture on the Neighborhood Attack, we first

selected the smallest and largest models from the Mamba and Pythia suites. They were

then evaluated on 10 generated neighbor samples and compared to the initial sample.

Each model was subjected to the attack from the WikiMIA sample with an input length

of 64, which was chosen as the (something about 64 is greater than 32 but less than 128

so it is a central metric).

This evaluation was then extended to include RWKV-4 and GPT-Neo models as

well as including the small, medium, and large variants for each model type. Each

model was attacked on the same set of samples and 10 neighbors for standardization.

5.3.2 Model Sizes

The results of this experiment indicate that Mamba shows greater memorization as

indicated by the larger ROC blue curves for the Mamba model compared to the green

curves for the Pythia in Figure 5.4a. Further looking at the lighter colored curves that

are drawn for the smaller architectures against the darker colored curves for the larger

in Figure 5.4a, demonstrates a similar increase in memorization across small to large

model sizes for both Mamba and Pythia.

Chapter 5. Membership Inference 36

(a) (b)

Figure 5.4: (a) Shows the TPR against the FPR for the smallest and largest Pythia and

Mamba models, which create the ROC curve on an input length of 64. (b) Shows the

measurement of different models, and their respective sizes against their corresponding

AUROC score on an input length of 64.

5.3.3 Additional Models

Expanding on the initial findings of the comparison between the small and large Mamba

and Pythia models on the Neighborhood Attack, other models with transformer and

transformer-like architectures were examined to see the effect of model size on the

memorization which can be viewed in Figure 5.4b. When observing the line graph,

transformer-based architectures GPT-Neo and Pythia perform similarly, with the Pythia

model showing less memorization for the smaller model size.

The greatest divergence of the memorization metrics occurs for the larger sizes

of Mamba and the RNN-transformer hybrid RWKV-4. These demonstrate greater

memorization than the transformer models. The high metric for RWKV-4 suggests that

the previous low memorization performance of the RWKV-4 model on the prefix attack

was due to the difficulty in tokenizing the longer input. It is also notable that the hybrid

RNN appears to exhibit higher memorization than the pure transformer models, but still

less than the SSM architecture of Mamba.

5.4 Comparison of Membership Inference Attacks

This section examines the performance of membership inference attacks across model

sizes and input lengths to see if there are similar trends to those found for the prefix

attacks. The goal is to assess how sample input length and model size influence

membership inference across all metrics to identify any common trends. This analysis

Chapter 5. Membership Inference 37

parallels similar experiments done previously for prefix attacks to determine if they

exhibit comparable effects.

A more detailed analysis to compare the Min-K% and Min-K%++ methods on

the influence of k on AUROC values for the 2.8b Pythia and Mamba models was also

explored and can be found in Appendix B section B.4.

5.4.1 Experimental Procedure

For testing the effect of the model size across the three attacks, the small, large, and

extra large were chosen for Pythia and Mamba models. These were tested on WikiMIA

lengths of 64. Within the Neighborhood Attack, 10 neighbors were used for comparison.

Next, for testing the WikiMIA length, lengths 32, 64, and 128 were tested on the largest

Pythia and Mamba models. The 2.8b models were chosen for analysis as it showed

the largest models demonstrated the most divergence in the previous experiment(Fig-

ure 5.4b), and thus might be easiest to visualize the divergent patterns between the

architectures.

5.4.2 Effect of Model Size

(a) (b)

Figure 5.5: (a) AUROC scores of Min-K% and Min-K%++ methods across different model

sizes to demonstrate memorization. (b) Effect of input length on Min-K% and Min-K%++

performance of classification, demonstrated by the AUROC score.

Figure 5.5a displays the performance of the MIA methods across different model

sizes. Most notable is as size increases for the Mamba and Pythia models, on the

Neighborhood Attack in green is the slightly lower score for Mamba. This differs

from the other MIA attacks, where Mamba, in solid lines, consistently shows greater

Chapter 5. Membership Inference 38

memorization than its dashed counterpart. The overall trends of the graph indicate

that for scoring, the MIA Min-K%++ attack demonstrates the greatest AUROC scores,

followed by the Neighborhood Attack, with the Min-K% having the lowest scores.

However, for the smallest models, the Neighborhood Attack demonstrates the most

effective at getting both Pythia and Mamba models to achieve the highest AUROC

scores. This suggests that for smaller models the Neighborhood Attack may be more

effective, but for larger models, the Min-K%++ could be more effective.

5.4.3 Effect of Input Length

When comparing the results for input lengths of 32 and 64 tokens, there is a notable

decrease in AUROC scores for all models and MIA attacks(Figure 5.5b). Interestingly,

the decrease appears smallest for the Mamba model in the Min-K%++ attack and

greatest for the Mamba model in the Neighbor attack. This suggests that depending on

the size of the input sequence, there could be more optimal MIA attacks. Across all

MIA attacks the Mamba is shown to memorize more than its Pythia counterpart, which

reflects similar results to the previous experiment on model size.

5.5 Summary and Insights

Evaluation of the variety of MIA attacks demonstrated that Mamba had greater memo-

rization, as predicted by the AUROC scores across Min-K%, Min-K%++, and Neigh-

borhood Attack. While demonstrating less memorization than Mamba, the RWKV-4

exhibited interesting behavior by showing greater memorization for larger-sized models

than the transformer models. Additionally, The findings across model sizes indicate that

the Neighborhood attack for mid-sized Mamba and Pythia models should be further

examined as Mamba showed less performance. Lastly, when examining the effect of

the input length, the results for size 64 appeared the smallest. As the base experiment

for the experiments conducted in this chapter, similar experiments of sizes 32 and 128

could be done to further assess if the results are a novelty of the 64 lengths or whether

they are consistent. Additionally, adding the input length of 256 could help evaluate the

trend of input length and may highlight the patterns better.

Chapter 6

Conclusions

6.1 Summary

This work focused on analyzing the memorization and performance of SSM and trans-

former architectures by comparing the Mamba (SSM) and Pythia (transformer) models.

The initial exploration focused on analyzing memorization using prefix attacks, where

the model was given the start of a training data passage and its output was compared to

the actual end of that passage. The findings showed that Mamba exhibited greater exact

and fuzzy memorization, consistent with previous research suggesting a correlation

between Mamba’s superior recall in n-gram prefix lookup tasks and its performance

in these memorization tests [31]. Further analysis revealed higher memorization for

both models on the GitHub subset compared to other subsets of The Pile. Additionally,

when examining input lengths for larger samples of 500 tokens, the Mamba model

displayed divergent behavior, possibly due to varying attention mechanisms across

different Mamba model sizes. Next, evaluations on the uncontaminated LiveBench

benchmark aligned with previous research [23, 26] for smaller models, with Mamba

averaging higher scores than Pythia. However, for larger models, the results deviated,

with Pythia outperforming Mamba on these tasks. Mamba models generally excelled

in mathematical tasks, while transformers performed better in instruction-following

tasks. Notably, neither model scored on the data analysis and coding tasks, likely due

to the benchmarks’ difficulty. Lastly, memorization was revisited in the domain of

membership inference, which can determine the likelihood that a piece of data was

shown in the model’s training. The findings across multiple MIA attacks demonstrated

greater memorization for Mamba models, which supported the previous findings for the

prefix attacks.

39

Chapter 6. Conclusions 40

6.2 Limitations

The greatest limitation within this study was the availability of pre-trained Mamba

models. As larger models demonstrate are shown to exhibit greater memorization with

memorization examined on models of sized 6.9b and greater [39], the trends found for

this study may not scale the same for the Mamba architecture as they do for the Pythia

architecture. Additionally, because of the divergent architectures, pre-trained models on

de-duped and quantized models would allow for greater ability to measure the effect of

those as defences [33, 36] across the different architectures in being able to analyze the

strongest defense technique per architecture.

Another limitation of this study was the focus on generative models, such as Pythia

and Mamba, did not allow for other adversarial attacks such as masked attacks that

require fill-mask functionality [73]. This constraint prevented the analysis of masked

attacks on these models. The study would have also benefited from further evaluation

of the models on easier performance benchmarks for coding and data analysis tasks to

better understand the performance difference between the architectures. However, such

an analysis was not feasible due to computational constraints.

6.3 Future directions

Based on the initial experiments with prefix attacks, a more detailed analysis of mem-

orization on 500-token samples across different sizes of the Mamba model is needed.

This should include how it performs for tasks that have a prompt of this length as well

as assessing the variation of memorization across the subsets of The Pile to assess the

distribution of membership inference across the subsets. However, the results suggest

that this could be due to attention, and should be explored further. Additionally, further

work on analyzing the comparative performance of the models on less difficult coding

and data analysis tasks, such as Codereval [68] and InfiAgent-DABench [30], is needed

to better understand whether the 0 score was due to both models’ inability to perform

these styles of attacks, or if, on simpler tasks, one of the models is capable of superior

performance. Lastly, additional work should be done to expand on the initial MIA work

to determine the effect unlearning has on the models. Specifically, if for the same setup,

the Mamba model is more effective at unlearning and retaining performance compared

to transformer models, which have been shown to be effective at unlearning by targeting

data identified as likely memorized through MIA [54].

Bibliography

[1] Together AI. Mamba 3b and slimpajama: Scaling language models and datasets,

2024.

[2] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using

linear classifiers. ICLR, 2016.

[3] Markus Bayer, Markus Neiczer, Maximilian Samsinger, Björn Buchhold, and

Christian Reuter. Xai-attack: Utilizing explainable ai to find incorrectly learned

patterns for black-box adversarial example creation. In Proceedings of the 2024

Joint International Conference on Computational Linguistics, Language Resources

and Evaluation (LREC-COLING 2024), pages 17725–17738, 2024.

[4] Yoshua Bengio. Learning deep architectures for ai. In Foundations and Trends®

in Machine Learning, volume 2, pages 1–127. Now Publishers Inc, 2013.

[5] Stella Biderman, Kieran Bicheno, and Leo Gao. Datasheet for the pile. arXiv

preprint arXiv:2201.07311, 2022.

[6] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley,

Kyle O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit,

USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite for analyzing large

language models across training and scaling. In International Conference on

Machine Learning, pages 2397–2430. PMLR, 2023.

[7] Yejin Bisk, Carlos C. H., and Robyn Zhang. Piqa: Reasoning about physical

interactions with objects. In Proceedings of the 2020 Conference on Empiri-

cal Methods in Natural Language Processing (EMNLP 2020). Association for

Computational Linguistics, 2020.

41

Bibliography 42

[8] Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo:

Large Scale Autoregressive Language Modeling with Mesh-Tensorflow, March

2021.

[9] Nicholas Carlini, Luke Melis, Iulian Serban, et al. Extracting training data from

large language models. In USENIX Security Symposium, 2021.

[10] Nicholas Carlini and David Wagner. Membership inference attacks against ma-

chine learning models. In 2019 IEEE Symposium on Security and Privacy (SP),

pages 3–18. IEEE, 2019.

[11] Rich Caruana, Steve Lawrence, and C. Lee Giles. Overfitting in neural networks:

An analysis. Journal of Machine Learning Research, 2:1–22, 2001.

[12] A. Carvalho, A. Nascimento, and A. Cramer. Machine learning unlearning: A

survey of unlearning techniques. ACM Computing Surveys, 52(4):1–24, 2019.

[13] Shan Chen, Jack Gallifant, Mingye Gao, Pedro Moreira, Nikolaj Munch, Ajay

Muthukkumar, Arvind Rajan, Jaya Kolluri, Amelia Fiske, Janna Hastings, et al.

Cross-care: Assessing the healthcare implications of pre-training data on language

model bias. arXiv preprint arXiv:2405.05506, 2024.

[14] Christopher Clark and Matt Gardner. Think you have solved reading comprehen-

sion? try arc, the ai2 reasoning challenge. In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language Processing (EMNLP 2018). Associa-

tion for Computational Linguistics, 2018.

[15] Together Computer. Redpajama: an open dataset for training large language

models, 2023.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2019.

[17] Nolan Dey, Daria Soboleva, Faisal Al-Khateeb, Bowen Yang, Ribhu Pathria,

Hemant Khachane, Shaheer Muhammad, Robert Myers, Jacob Robert Steeves,

Natalia Vassilieva, et al. Btlm-3b-8k: 7b parameter performance in a 3b parameter

model. arXiv preprint arXiv:2309.11568, 2023.

Bibliography 43

[18] Michael Duan, Anshuman Suri, Niloofar Mireshghallah, Sewon Min, Weijia

Shi, Luke Zettlemoyer, Yulia Tsvetkov, Yejin Choi, David Evans, and Hannaneh

Hajishirzi. Do membership inference attacks work on large language models?

arXiv preprint arXiv:2402.07841, 2024.

[19] Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and

Christopher Ré. Hungry hungry hippos: Towards language modeling with state

space models. arXiv preprint arXiv:2212.14052, 2022.

[20] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles

Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The

pile: An 800gb dataset of diverse text for language modeling. arXiv preprint

arXiv:2101.00027, 2020.

[21] Adam Goodkind and Klinton Bicknell. Predictive power of word surprisal for

reading times is a linear function of language model quality. In Proceedings of the

8th workshop on cognitive modeling and computational linguistics (CMCL 2018),

pages 10–18, 2018.

[22] Riccardo Grazzi, Julien Siems, Simon Schrodi, Thomas Brox, and Frank Hutter.

Is mamba capable of in-context learning? arXiv preprint arXiv:2402.03170, 2024.

[23] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective

state spaces. arXiv preprint arXiv:2312.00752, 2023.

[24] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences

with structured state spaces. arXiv preprint arXiv:2111.00396, 2021.

[25] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of

modern neural networks. In International conference on machine learning, pages

1321–1330. PMLR, 2017.

[26] John T Halloran, Manbir Gulati, and Paul F Roysdon. Mamba state-space models

can be strong downstream learners. arXiv preprint arXiv:2406.00209, 2024.

[27] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a

neural network. In NIPS, 2015.

[28] B. Hitaj, G. Ateniese, and J. Spillner. Deep models under the gan: Information

leakage from gradients. In 2017 ACM SIGSAC Conference on Computer and

Communications Security (CCS), pages 603–618. ACM, 2017.

Bibliography 44

[29] Sanghyun Hong, Michael-Andrei Panaitescu-Liess, Yigitcan Kaya, and Tudor Du-

mitras. Qu-anti-zation: Exploiting quantization artifacts for achieving adversarial

outcomes. Advances in Neural Information Processing Systems, 34:9303–9316,

2021.

[30] Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin Wang, Xuwu Wang,

Jing Su, Jingjing Xu, Ming Zhu, Yao Cheng, et al. Infiagent-dabench: Evaluating

agents on data analysis tasks. arXiv preprint arXiv:2401.05507, 2024.

[31] Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat

after me: Transformers are better than state space models at copying. arXiv

preprint arXiv:2402.01032, 2024.

[32] S Jeremy. Einstein’s Riddle: Riddles, Paradoxes, and Conundrums to Stretch Your

Mind. Bloomsbury USA, 2009.

[33] Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data

mitigates privacy risks in language models. In International Conference on

Machine Learning, pages 10697–10707. PMLR, 2022.

[34] Antonia Karamolegkou, Jiaang Li, Li Zhou, and Anders Søgaard. Copyright

violations and large language models. arXiv preprint arXiv:2310.13771, 2023.

[35] Phil Katz. File compression. In ACM SIGMOD Record, volume 21, pages 46–56.

Association for Computing Machinery, 1992.

[36] Ji Lin, Chuang Gan, and Song Han. Defensive quantization: When efficiency

meets robustness. arXiv preprint arXiv:1904.08444, 2019.

[37] Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schölkopf,

Mrinmaya Sachan, and Taylor Berg-Kirkpatrick. Membership inference at-

tacks against language models via neighbourhood comparison. arXiv preprint

arXiv:2305.18462, 2023.

[38] Avijit Mitra, Emily Druhl, Raelene Goodwin, and Hong Yu. Synth-sbdh: A

synthetic dataset of social and behavioral determinants of health for clinical text.

arXiv preprint arXiv:2406.06056, 2024.

[39] Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder

Cooper, Daphne Ippolito, Christopher A Choquette-Choo, Eric Wallace, Florian

Bibliography 45

Tramèr, and Katherine Lee. Scalable extraction of training data from (production)

language models. arXiv preprint arXiv:2311.17035, 2023.

[40] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow,

Callum Birch-Sykes, Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua

Bengio, et al. Hyenadna: Long-range genomic sequence modeling at single

nucleotide resolution. Advances in neural information processing systems, 36,

2024.

[41] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Nghia The Pham, Raf-

faella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel

Fernández. The lambada dataset: Word prediction requiring a broad discourse

context. In Proceedings of the 54th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages 1525–1534, 2016.

[42] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method

for automatic evaluation of machine translation. In Proceedings of the 40th Annual

Meeting of the Association for Computational Linguistics (ACL), pages 311–318.

Association for Computational Linguistics, 2002.

[43] R. Parikh, C. Dupuy, and R. Gupta. Canary extraction in natural language under-

standing models. arXiv preprint arXiv:2203.13920, 2022.

[44] Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho,

Samet Oymak, Kangwook Lee, and Dimitris Papailiopoulos. Can mamba learn

how to learn? a comparative study on in-context learning tasks. arXiv preprint

arXiv:2402.04248, 2024.

[45] Rupesh Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. In Proceedings of the 30th International Conference

on Machine Learning (ICML), pages 1310–1318. JMLR.org, 2013.

[46] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru,

Alessandro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,

and Julien Launay. The refinedweb dataset for falcon llm: Outperforming curated

corpora with web data, and web data only. 2023.

[47] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella

Biderman, Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv:

Reinventing rnns for the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Bibliography 46

[48] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen

Baccus, Yoshua Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy:

Towards larger convolutional language models. In International Conference on

Machine Learning, pages 28043–28078. PMLR, 2023.

[49] Adam Roberts, Colin Raffel, Katherine Lee, Michael Matena, Noam Shazeer,

Peter J Liu, Sharan Narang, Wei Li, and Yanqi Zhou. Exploring the limits of

transfer learning with a unified text-to-text transformer. Google, Tech. Rep., 2019.

[50] Oscar Sainz, Jon Ander Campos, Iker Garcı́a-Ferrero, Julen Etxaniz, Oier Lopez

de Lacalle, and Eneko Agirre. Nlp evaluation in trouble: On the need to measure

llm data contamination for each benchmark. arXiv preprint arXiv:2310.18018,

2023.

[51] Claudia Schmaus, Jason Davidson, and Stephen Mo. Winogrande: A large-scale

benchmark for coreference resolution. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP 2020). Association

for Computational Linguistics, 2020.

[52] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:

From theory to algorithms. Cambridge university press, 2014.

[53] Claude E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(3):379–423, 1948.

[54] Rohan Sharma, Shijie Zhou, Kaiyi Ji, and Changyou Chen. Discriminative

adversarial unlearning. arXiv preprint arXiv:2402.06864, 2024.

[55] Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Joel Hestness, Natalia

Vassilieva, Daria Soboleva, and Eric Xing. Slimpajama-dc: Understanding data

combinations for llm training. arXiv preprint arXiv:2309.10818, 2023.

[56] Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra

Blevins, Danqi Chen, and Luke Zettlemoyer. Detecting pretraining data from

large language models. arXiv preprint arXiv:2310.16789, 2023.

[57] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Member-

ship inference attacks against machine learning models. In 2017 IEEE Symposium

on Security and Privacy (SP), pages 3–18, 2017.

Bibliography 47

[58] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay,

Hyung Won Chung, Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al.

Challenging big-bench tasks and whether chain-of-thought can solve them. In

Findings of the Association for Computational Linguistics: ACL 2023, pages

13003–13051, 2023.

[59] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. Llama: Open and efficient foundation language models. arXiv

preprint arXiv:2302.13971, 2023.

[60] J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot. Data-free model extraction.

In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 4771–4780, 2021.

[61] Dušan Variš and Ondřej Bojar. Sequence length is a domain: Length-based

overfitting in transformer models. arXiv preprint arXiv:2109.07276, 2021.

[62] Apostol Vassilev, Alina Oprea, Alie Fordyce, and Hyrum Anderson. Adversarial

machine learning: A taxonomy and terminology of attacks and mitigations. Tech-

nical Report NIST AI 100-2e2023, National Institute of Standards and Technology

(NIST), 2023.

[63] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, Ł. Kaiser,

and I. Polosukhin. Attention is all you need. In Advances in Neural Information

Processing Systems (NeurIPS), pages 5998–6008, 2017.

[64] Jeffrey G Wang, Jason Wang, Marvin Li, and Seth Neel. Pandora’s white-box:

Increased training data leakage in open llms. arXiv preprint arXiv:2402.17012,

2024.

[65] Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang.

Benchmark self-evolving: A multi-agent framework for dynamic llm evaluation.

arXiv preprint arXiv:2402.11443, 2024.

[66] Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha

Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, Chinmay

Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger, and Micah Goldblum.

Bibliography 48

Livebench: A challenging, contamination-free llm benchmark. arXiv preprint

arXiv:2406.19314, 2024.

[67] Seongju Yeom, Iacopo Giacomelli, Seungjin Oh, and Sanmi Koyejo. Privacy risks

across ML models: A case study on membership inference. In Proceedings of the

2018 ACM Conference on Computer and Communications Security (CCS), pages

89–106. ACM, 2018.

[68] Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang,

Ying Li, Qianxiang Wang, and Tao Xie. Codereval: A benchmark of pragmatic

code generation with generative pre-trained models. In Proceedings of the 46th

IEEE/ACM International Conference on Software Engineering, pages 1–12, 2024.

[69] Ling Yue, Sixue Xing, Yingzhou Lu, and Tianfan Fu. Biomamba: A pre-trained

biomedical language representation model leveraging mamba. arXiv preprint

arXiv:2408.02600, August 2024. Submitted on 5 Aug 2024.

[70] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hel-

laswag: Can a machine really finish your sentence? In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, pages 4791–

4800, 2019.

[71] Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi

Zhang, Hao Yang, and Hai Li. Min-k%++: Improved baseline for detecting

pre-training data from large language models. arXiv preprint arXiv:2404.02936,

2024.

[72] Z. Zhang, J. Wen, and M. Huang. Ethicist: Targeted training data extraction

through loss smoothed soft prompting and calibrated confidence estimation. arXiv

preprint arXiv:2307.04401, 2023.

[73] He Zhu, Ce Li, Haitian Yang, Yan Wang, and Weiqing Huang. Prompt makes

mask language models better adversarial attackers. In ICASSP 2023-2023 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 1–5. IEEE, 2023.

Appendix A

Architectures

A.1 RWKV Architecture

RWKV models leverage a combination of recurrent mechanisms and weighted key-

value memory to handle sequential data. Their design and components are tailored to

capture and memorize patterns effectively. The diagram of the components can be seen

in Figure A.1, with the key aspects of RWKV models being:

1. Recurrent Weighted Key-Value Memory: The RWKV architecture incorporates

a recurrent mechanism with a key-value memory component. This mechanism

maintains a dynamic memory of past information, where each token in the

sequence is associated with a set of weighted key-value pairs. The recurrence

enables the model to retain and use information from previous tokens, which

is crucial for understanding long-range dependencies in the data. The memory

update process involves:

Memoryt+1 = Update(Memoryt , Inputt)

where Update represents a function that combines the previous memory with the

current input. This setup allows the model to store and recall information over

extended sequences, making it adept at capturing and utilizing patterns observed

in the data.

2. Recurrent Processing with Weighted Key-Value Storage: RWKV models

process inputs recurrently, applying transformations to the input tokens and their

associated memory:

49

Appendix A. Architectures 50

Outputt = Transform(Inputt ,Memoryt)

where Transform represents the function that computes the output based on the

input and the current memory. This approach helps the model generate outputs

by leveraging both the current input and the stored context, allowing it to capture

complex patterns and relationships in the data.

3. Scalable Memory Management and Efficiency: RWKV models are designed

to be efficient in handling large-scale data. The architecture balances the need for

comprehensive memory with computational efficiency:

Efficient Memory Management = Scale(Memory,Data Size)

where Scale adjusts the memory capacity according to the size of the input data.

This feature ensures that the model can handle long sequences and large datasets

effectively, making it scalable for various applications.

4. Integration of Recurrence with Transformer-like Components: While RWKV

models utilize recurrent mechanisms, they also incorporate components inspired

by transformer architectures, such as attention mechanisms. This hybrid approach

enables the model to benefit from both recurrent and attention-based processing:

Hybrid Processing = Recurrent Processing+Attention Mechanisms

This integration allows RWKV models to leverage the strengths of both recurrent

and attention-based methods, improving their ability to capture and generate

patterns in data.

Appendix A. Architectures 51

R'

? V'

K'

?'

LayerNorm

R

?

V K

WKV

?

Out

LayerNorm

Channel
mixing

Time
Mixing

Figure A.1: Architecture of the RWKV model, illustrating the integration of RNN and

transformer components.

Appendix B

Additional Membership Inference

B.1 Perplexity

Perplexity is a common metric used to evaluate language models and their ability to

predict a sample of text. It is defined as the exponentiation of the entropy, which

measures the average uncertainty in predicting the next token. For a given model, the

perplexity PP of a sequence of tokens is calculated as:

PP = exp

(
− 1

N

N

∑
i=1

log p(xi)

)

where p(xi) is the probability assigned by the model to token xi, and N is the total

number of tokens. Lower perplexity values indicate that the model is better at predicting

the sequence, reflecting a more accurate representation of the language structure.

The concept of perplexity originates from information theory and was introduced

to the field of natural language processing as a way to assess the performance of

probabilistic models. The metric was initially used by researchers like Shannon in the

1940s to measure the uncertainty in predicting sequences of symbols [53]. In modern

NLP, perplexity provides insight into how well a model captures the statistical properties

of the language [21].

While perplexity can be a measure of membership inference, other studies on

the perplexity for response to LAMBADA questions by measuring the responses of

perplexity demonstrated lower perplexity scores for each Mamba model than to each

transformer counterpart [23, 26]. Despite studies from Calini using perplexity as a

metric [9] for a partial relation to the model per

52

Appendix B. Additional Membership Inference 53

B.2 Zlib Compression Score

The zlib compression score measures the compressibility of the text, which can indirectly

reflect how much redundancy or repetitive patterns are present in the output. Zlib is a

widely used compression library that implements the DEFLATE algorithm. This score

is computed by:

zlib score =
length of compressed output

length of original text
A lower zlib score indicates higher compressibility, meaning the text contains more

redundant or repetitive information.

The DEFLATE algorithm, which zlib is based on, was designed by Phil Katz and

first introduced in the 1990s [35]. It combines LZ77 compression and Huffman coding

to effectively reduce the size of data while preserving the original information. In

the context of evaluating text models, the zlib score helps quantify how much the

generated text can be compressed, providing another dimension to assess the model’s

memorization and output characteristics.

B.3 Comparison of PPL & Zlib Scores

B.3.1 Experimental Procedures

Similar to the way the results were analyzed for results of the memorization metric, the

results of the different model sizes on the perplexity and Zlib scores were also measured,

to see if there were any trends between them. For this, the model output was analyzed

by the tokenizer and model and the zlib evaluated the model’s output string.

B.3.2 Effect on Model Sizes

The results for the Zlib score indicate that the Mamba and the Pythia have extremely

similar results, with the results looking like they overlap. The average zlib score appears

to remain relatively the same throughout changes of the model’s size. However, when

evaluating the average perplexity of the models, the Mamba model shows less perplexity

than the compared Pythia model. This is notable as some literature notes that perplexity

reflects higher memorization, but it was shown that Mamba memorizes more than

Pythia.

Appendix B. Additional Membership Inference 54

Figure B.1: Average zlib score of the model’s output compared to the model sizes.

Figure B.2: Increasing model sizes against the average perplexity of the model.

B.3.3 Effect on Data Subsets

When analyzing the results from the prefix attacks, the Zlib and perplexity metrics

revealed that the DM Mathematics subset exhibited lower perplexity and Zlib scores.

This suggests a higher level of memorization for both exact and fuzzy memorization.

However, this was not reflected in the actual text. In contrast, subsets like EuroParl and

PubMed Abstracts also showed lower perplexity, but they exhibited minimal memo-

rization in both fuzzy and exact metrics. This indicates that perplexity scores might

be more indicative of memorization in certain domains or when comparing specific

samples across different subsets.

B.4 Min-K% and Min-K%++ Comparison

A comparison of the line plots confirmed the findings of the Min-K%++ research [71],

with the Min-K%++ method showing less deviation for different values of k. It is also

Appendix B. Additional Membership Inference 55

(a) PPL

(b) Zlib

Figure B.3: Results of small Mamba and Pythia models for membership inference metrics

on subsets of The Pile: (a) perplexity (PPL) and (b) Zlib.

visible that the AUROC values are higher for the Min-K%++ experiment. It is important

to note that the k values may aid in identifying patterns to unlearn for the model. While

the Min-K% method has been proven to help with defense, the Min-K%++ method

has not yet been used in that manner. It is also interesting to note that both models

exhibit similar responses and patterns, although the Mamba model scores higher in

the Min-K% evaluation. Additionally, for potential unlearning tasks, higher k values

indicating greater memorization could suggest that the Mamba model might show better

performance after initial stages of unlearning, given its propensity to memorize more

during training.

Appendix B. Additional Membership Inference 56

Figure B.4: Comparison of the Min-K% PROB, represented by mink and Min-K%++,

represented by mink++, methods across different values of k for 2.8b sized Mamba and

Pythia models. The figure illustrates how the performance metrics, such as AUROC,

vary with changes in k. Min-K%++ generally shows less deviation and higher AUROC

scores compared to Min-K%.

Appendix C

Additional Prefix Attack

C.1 Subset Analysis on Large Models

The results for the larger run models on the subset data indicate similar patterns of

memorization for the subsets. However, the prompt repetition measured for the larger

subsets when compared to the smaller experiment run Figure 3.6c that the Mamba

models show greater repetition than Pythia models for larger sized models in Figure C.1c.

Additionally, the prompt repetition for the Enron Emails subset becomes slightly larger

than that for Github in both models. Interestingly, on the datasets tested, Mamba shows

similar patterns of greater memorization for both fuzzy and exact memorization metrics

as seen in Figure C.1a and Figure C.1b.

57

Appendix C. Additional Prefix Attack 58

(a) Fuzzy memorization

(b) Exact memorization

(c) Prompt repetition

Figure C.1: Results on 2.8b sized Mamba and Pythia models for memorization metrics:

(a) fuzzy memorization, (b) exact memorization, and (c) prompt repetition.

Appendix D

Performance

D.1 Comparison Baselines

While the primary focus of this study was on the Pythia and Mamba models, it is

important to contextualize their performance within the broader landscape of models

evaluated on this benchmark. Notably, many top-scoring and leaderboard models

are significantly larger and fine-tuned beyond the 2.8B parameter size of the Pythia

and Mamba models. Therefore, it is crucial to compare these results with those of

lower-scoring models to provide a complete picture.

The low scores (0) observed for both the Data Analysis and Coding metrics in the

Pythia and Mamba models highlight the challenges of this benchmark. The reference

models, as shown in Table D.1, also achieved a score of 0 in these categories. This

aligns with the benchmark’s characterisation of being exceptionally challenging, as

previously outlined.

D.1.1 Reference Model Scores

Model
Global

Average
Coding

Data
Analysis

Math Language Reasoning
Instruction
Following

llama-2-7b-chat 10.25 0.00 0.00 44.88 6.86 4.78 5.00

qwen1.5-0.5b-chat 5.26 0.00 0.00 21.30 2.88 3.39 4.00

Table D.1: Performance of reference models across different categories.

When evaluating how other models perform in the Math category Table D.1, the

results are comparable to those of the Mamba models, which is promising. However, it

59

Appendix D. Performance 60

is noted that most models scored lower in Instruction Following metrics compared to

the reference models. This disparity is expected, as the reference models are fine-tuned,

whereas the main models in this study are baseline models. Consequently, the baseline

models generally underperform in these sections.

Overall, it is notable that the highest-performing model from our experiments

surpasses the lowest-scoring model on the leaderboard, specifically the Qwen-1.5-0.5b-

chat model from the LiveBench leaderboard with the average of 5.26 being lower than

the best performig transformer model seen in this study which received an average of

6.678 as seen in Table 4.1. This finding is promising and suggests that the adaptations

made to the benchmark for the Mamba models and BTLM model were effective, as

demonstrated by their improved performance.

D.2 Model Scores by Task

While the large overview was covered in the main portion of the paper, it can be

more beneficial to comprehend the performance of the models and gain a further

understanding by looking at how they perform on each task, rather than just on the total

averaged benchmark for each section. This chapter divides into a section of each of the

respective section tasks and the scores for each.

D.2.1 Coding Tasks

For the Mamba and transformer models trained on The Pile and SlimPajama, the overall

benchmark averaged to 0 for all of the models Table 4.1. None of the tasks show a

deviance from the original analysis as all indicate 0 here as well Table D.2.

D.2.2 Data Analysis Tasks

For the data analysis tasks it is interesting to note that despite the average of 0 for all of

the averaged models on the data analysis benchmark Table 4.1, not all of the results are

zero when looking at the individual tasks. The BTLM transformer model was able to

retrieve a non-zero score for one of the tasks.

In the TableJoin task, the model is provided with two tables that have partially

overlapping columns and is required to create a valid join mapping between them. This

task is conceptually similar to the Summarize task, where the model must infer and

consolidate information from the provided data. Transformer models have demonstrated

Appendix D. Performance 61

Model LCB Generation Coding Completion

Mamba-130m 0.00 0.00

Pythia-160m 0.00 0.00

Mamba-370m 0.00 0.00

Pythia-410m 0.00 0.00

Mamba-790m 0.00 0.00

Pythia-1b 0.00 0.00

Mamba-1.4b 0.00 0.00

Pythia-1.4b 0.00 0.00

Mamba-2.8b 0.00 0.00

Pythia-2.8b 0.00 0.00

Mamba-2.8b-SP 0.00 0.00

BTLM-3b-SP 0.00 0.00

Table D.2: Individual scores for each task in the Coding benchmark from LiveBench.

strong performance in the Summarize task, as shown in Table D.4. This suggests that

transformer models may also perform well in the TableJoin task due to their ability to

effectively handle and integrate complex information.

D.2.3 Instruction Following Tasks

Looking at each individual task for instruction following, for the models Pythia and

Mamba that were trained on The Pile, it is interesting to note that while the mod-

els averaged to show that the Pythia models showed higher scores for instruction

following Table 4.1 that the Mamba model is often better on the story generation met-

ric Table D.4. The prompt of this task is that given a set of sentences, the model is asked

”Please generate a story based on the sentences provided” [66]. When compared to

the other tasks that are based on understanding the text, the Pythia transformer models

show higher results. However, for results that require less memorization of the prompt,

the Mamba demonstrates stronger performance.

Appendix D. Performance 62

Model CTA Table Join Table Reformat

Mamba-130m 0.00 0.00 0.00

Pythia-160m 0.00 0.00 0.00

Mamba-370m 0.00 0.00 0.00

Pythia-410m 0.00 0.00 0.00

Mamba-790m 0.00 0.00 0.00

Pythia-1b 0.00 0.00 0.00

Mamba-1.4b 0.00 0.00 0.00

Pythia-1.4b 0.00 0.00 0.00

Mamba-2.8b 0.00 0.00 0.00

Pythia-2.8b 0.00 0.00 0.00

Mamba-2.8b-SP 0.00 0.00 0.00

BTLM-3b-SP 0.00 0.58 0.00

Table D.3: Individual scores for each task in the Data Analysis benchmark from

LiveBench.

D.2.4 Language Tasks

For the language tasts, the Pythia models consistently outperform the Mamba models. It

is also intresting to note that the Mamba model values seem to increase for sizes 790m

and 1.4b, which are when the comparable sized Pythia models decrease in their own

performance. This trend then changed for the 2.8b sized model for the models, where

the Pythia performs approximately four times as well than the Mamba model.

An interesting observation when looking at the 2.8b slimpajama models is that the

mamaba model appears to outperform the transformer model on this metric. Similarly,

unlike the Pythia 2.8b sized model that was also able to score on the connections task,

the BTLM model is unable to score. This may suggest that the type of data the model is

trained on is important, and that the possibility of a de-duplified dataset may result in a

more difficult ability to perform well on language tasks.

D.2.5 Math Tasks

In the main metrics, the Mamba models were able to significantly outperform the trans-

former models for The Pile, but were quite similar on the SlimPajama dataset Table 4.1.

Appendix D. Performance 63

Model Paraphrase Simplify Story Generation Summarize

Mamba-130m 10.78 13.87 13.92 12.70

Pythia-160m 13.02 14.53 11.33 9.70

Mamba-370m 12.62 11.40 16.08 14.98

Pythia-410m 11.45 11.20 12.75 12.78

Mamba-790m 12.70 10.87 17.25 10.83

Pythia-1b 13.78 9.20 14.25 15.75

Mamba-1.4b 13.70 14.47 18.42 17.70

Pythia-1.4b 23.83 15.12 13.67 21.12

Mamba-2.8b 6.50 8.17 12.08 12.78

Pythia-2.8b 2.33 16.33 7.83 29.40

Mamba-2.8b-SP 12.53 11.87 9.17 8.45

BTLM-3b-SP 21.08 24.72 21.92 32.65

Table D.4: Individual scores for each task in the Instruction Following benchmark from

LiveBench. Models that are bolded indicate the highest overall performance within their

model size and dataset grouping, while bolded numbers represent the highest result for

each task within the respective grouping.

It is interesting to note that within the individual metrics that for the Mamba

2.8b model was a slight reduction in performance on the Olympiad benchmark, but

was able to score on the AMPS Hard metric. The Olympiad benchmark is based in

questions from international IMO competitions that are prestigious competitions for

high school students. Additionally, the AMPS dataset is are synthetically generated

math questions that are harder as random primitives are drawn from a larger and more

difficult distribution across the 10 most difficult tasks within AMPS. For this metric, it

is notable that a non-tuned Mamba model was able to score on this metric.

Another thing to notice from the table is that the SlimPajama models were not able

to score as well on these metrics. This demonstrates the importance of data within the

models training and demonstrate that the distribution of data within the dataset could be

important in the baseline models ability to perform.

Appendix D. Performance 64

Model Connections Plot Unscrambling Typos

Mamba-130m 0.00 5.02 0.00

Pythia-160m 0.00 4.87 0.00

Mamba-370m 0.00 4.40 0.00

Pythia-410m 0.00 6.94 0.00

Mamba-790m 0.00 6.08 0.00

Pythia-1b 0.00 6.36 0.00

Mamba-1.4b 0.00 6.04 0.00

Pythia-1.4b 0.00 7.36 0.00

Mamba-2.8b 0.00 4.37 0.00

Pythia-2.8b 0.00 4.12 0.00

Mamba-2.8b-SP 0.00 7.13 0.00

BTLM-3b 0.00 5.64 0.00

Table D.5: Individual scores for each task in the Language benchmark from LiveBench.

Models that are bolded indicate the highest overall performance within their model size

and dataset grouping, while bolded numbers represent the highest result for each task

within the respective grouping.

D.2.6 Reasoning Tasks

Within the Mamba and Pythia models in the averaged category of reasoning Table 4.1

the Mamba model proved to have higher overall performance on the reasoning task

for the 370m when compared to Pythia sized 410m. Notably, when looking at the task

breakdown for the reasoning benchmark in Table D.7, the results show that for the

models of that size, each only scored non-zero for different tasks. The Web of Lies

v2, is a harder version of Big-Bench Hard [58] that evaluates the truth for a boolean

function that is expressed as a word problem. The task Zebra Puzzles was based off of

the existing well-known reasoning task [32] that tests models on their ability logically

deduce information given a list of statements that create constraints. Additionally, the

Mamba models are unable to score on the Web of Lies v2 task, but are able to score on

the Zebra Puzzle task.

This suggests that the Mamba model may be capable of reasoning through logic,

but may struggle with following instructions in language. This is supported by the

Appendix D. Performance 65

Model AMPS Hard Olympiad Math Comp

Mamba-130m 0.00 12.43 0.00

Pythia-160m 0.00 11.99 0.00

Mamba-370m 0.00 9.58 1.04

Pythia-410m 0.00 5.28 0.00

Mamba-790m 0.00 6.92 0.00

Pythia-1b 0.00 0.00 0.00

Mamba-1.4b 0.00 13.36 0.00

Pythia-1.4b 0.00 6.35 0.00

Mamba-2.8b 1.00 9.57 0.00

Pythia-2.8b 0.00 0.23 0.00

Mamba-2.8b-SP 0.00 1.31 0.00

BTLM-3b-SP 0.00 2.70 0.00

Table D.6: Individual scores for each task in the Math benchmark from LiveBench.

Models that are bolded indicate the highest overall performance within their model size

and dataset grouping, while bolded numbers represent the highest result for each task

within the respective grouping.

higher scores of the Mamba model on the mathematical benchmarks that have a greater

focus on logic Table D.6 and the Pythia models performing higher on the instruction

following tasks Table D.4.

Appendix D. Performance 66

Model Web of Lies v2 Zebra Puzzle

Mamba-130m 0.00 2.00

Pythia-160m 0.00 2.00

Mamba-370m 0.00 10.00

Pythia-410m 2.00 0.00

Mamba-790m 0.00 8.00

Pythia-1b 4.00 4.00

Mamba-1.4b 0.00 2.00

Pythia-1.4b 8.00 0.00

Mamba-2.8b 0.00 0.00

Pythia-2.8b 2.00 4.00

Mamba-2.8b-SP 0.00 0.00

BTLM-3b-SP 4.00 20.00

Table D.7: Individual scores for each task in the Reasoning benchmark from LiveBench.

Models that are bolded indicate the highest overall performance within their model size

and dataset grouping, while bolded numbers represent the highest result for each task

within the respective grouping.

	Introduction
	Background
	Related Works & Relevancy
	Datasets & Models
	Benchmark Contamination
	Transformers vs. State Space Models
	Transformers
	State Space Models (SSMs)

	Style of Attacks
	Graybox and Blackbox Attacks
	Relevance of Prefix and Membership Inference Attacks

	Prefix Attacks
	Purpose
	Experimental Setup
	Preparation of Samples
	Evaluation Metrics

	Model Sizes and Variants
	Experimental Procedure
	Results and Analysis

	Subset Analysis
	Experimental Procedure
	Results and Analysis

	Input Prompt Length
	Experimental Procedure
	Results and Analysis

	Summary and Insights

	Performance Evaluation
	Purpose
	Experimental Setup
	Model Sizes and Variants
	Experimental Procedure
	Performance Evaluation for Model Sizes
	Performance Comparison to SlimPajama Models

	Summary and Insights

	Membership Inference
	Purpose
	Experimental Setup
	Dataset
	Neighborhood Attack
	Min-K% and Min-K%++ Methodologies
	Output Results
	Limitations

	Neighborhood Attacks
	Experimental Procedure
	Model Sizes
	Additional Models

	Comparison of Membership Inference Attacks
	Experimental Procedure
	Effect of Model Size
	Effect of Input Length

	Summary and Insights

	Conclusions
	Summary
	Limitations
	Future directions

	Bibliography
	Architectures
	RWKV Architecture

	Additional Membership Inference
	Perplexity
	Zlib Compression Score
	Comparison of PPL & Zlib Scores
	Experimental Procedures
	Effect on Model Sizes
	Effect on Data Subsets

	Min-K% and Min-K%++ Comparison

	Additional Prefix Attack
	Subset Analysis on Large Models

	Performance
	Comparison Baselines
	Reference Model Scores

	Model Scores by Task
	Coding Tasks
	Data Analysis Tasks
	Instruction Following Tasks
	Language Tasks
	Math Tasks
	Reasoning Tasks

