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Abstract
Emergent Communication is a flexible, bottom-up framework for studying the

protocols created by artificial agents (sender-receiver pairs) to coordinate and
solve tasks. This project explores how individual idiolects, formed through local
interactions, develop into a communal language. But does a communal language
always emerge? And how can we understand the heterogeneity that persists at
the individual level despite the formation of a communal language? Previous
studies have primarily used a single metric—synchronisation, based on the edit
distance between two utterances. However, this metric fails to recognize equiva-
lent expressions in human languages with flexible word order, imposing similar
limitations on emergent languages. Consequently, this project advocates for a
broader set of metrics to assess convergence to a communal language, including a
performance-based metric of mutual intelligibility, qualitative metrics like n-gram
overlap, and a new parameter-based token-relationship (TR) alignment to measure
convergence in the internal embedding spaces of the senders and receivers (their
”worldviews”).

Artificial agents were studied in simple social configurations: pairs, triads in a
uni-directional ring, and fully connected triads. A new cognitive architecture called
inner speech, based on the Rational Speech Acts (RSA) framework, successfully
led to a symmetrical communal protocol for both a pair of agents and a uni-
directional ring of three agents, which would otherwise have failed to do so.
However, a fully connected triad of agents managed to converge to a communal
protocol both with and without inner speech, indicating that convergence to a
communal language is an inherent outcome of training a well-connected population.
When partial competitiveness was introduced to the fully connected population,
the agents converged more slowly to comparable levels of mutual intelligibility
and TR alignment, but with more qualitatively varied utterances. The inner
speech architecture enforces two-way object-utterance mappings, aligning with
a Saussurean strategy. Finally, the project highlights the limitations of relying
solely on mutual intelligibility to identify dialects, as equally intelligible protocols
may still differ in the qualitative diversity of utterances.
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Chapter 1

Introduction

Heterogeneity is the norm in human languages [Ke, 2004], and there is no rea-
son this should not be the same for the protocols that artificial agents create
organically. This dissertation project aims to holistically analyse the qualita-
tive aspects of Emergent Communication (EC) to understand its applicability
to studying human language evolution. Such clarity can also improve the inter-
pretability of such protocols used for coordinating autonomous artificial agents.
Emergent communication offers an elegant bottom-up approach to modelling
language while making minimal centralised decisions. It has seen great success in
demonstrating properties of human languages, for example, in linguistic structure
[Smith et al., 2013] and expressivity [Guo et al., 2021], despite some underlying
philosophical differences.

The bulk of this project is specifically oriented towards studying the dy-
namics of convergence of multiple agents to a common protocol. The project
first studies idiolects, the unique way each individual learns to use a language
[Kirby and Christiansen, 2003], and then the communal language that emerges as
a consensus among idiolects. The level of consensus is measured by communicative
success and qualitative similarity metrics. The initial motivation for this project
was from Daniel Defoe’s Robinson Crusoe, which tells the story of a man stranded
on a remote island and a native whom he names ‘Friday’. Focusing purely on
the communication dynamics of the duo, we find that they develop a pidgin to
communicate and coordinate actions with each other. We could break down their
process of communication into the elementary steps of an emergent communication
game, as below:

1



Chapter 1. Introduction 2

(i) Crusoe’s intended thought → Crusoe’s Utterances → Friday’s perception
of Crusoe’s Utterances → Friday’s Reconstruction of Crusoe’s intended thought
(and subsequent actions).

(ii) Friday’s intended thought → Friday’s Utterances → Crusoe’s perception
of Friday’s Utterances → Crusoe’s Reconstruction of Friday’s intended thought
(and subsequent actions).

If and when the other party takes subsequent actions aligned with the first
party’s intention, we may model these two participants as being rewarded for
successfully coordinating their actions, incentivising them to continue speaking in
certain informative sound patterns. This model of language is underpinned purely
by communication through an incentive for cooperation. It also turns out that
this model of their communication is analogous to the well-studied Reconstruction
Game within the Lewis Games [Lewis, 1969]. One important consideration here,
however, is that there is no reason for Crusoe and Friday to end up speaking the
same language! Simply put, Crusoe could speak to Friday using one distribution
of sounds, while Friday could speak to Crusoe in a different distribution of sounds
while still perfectly understanding each other. To an outside listener, this might
sound like one was speaking Chinese while only understanding English if spoken
back to. Likewise, for the other English speaker who would only seem to under-
stand Chinese and not English if spoken back to. This sounds counter-intuitive,
but the fact remains that there is no explicit modelling constraint for these two
protocols to converge symmetrically, where the two agents use similar utterances
to describe similar objects. The incentives for convergence to a single protocol
seem to lie somewhere outside the dynamics of just a pair of communicating agents.

Despite these reasons, the fact that the pidgin that emerges between the two
characters in the book is symmetrical should not be too surprising. Apart from
the importance of the English readers being able to understand the plot, Crusoe
and Friday were fully brought up in their own cultures and learnt to speak fully
evolved languages. Thus, the pidgin that evolves in the book is just a one-way
transfer of knowledge from Crusoe to Friday, where the latter learns to speak
English approximately. What might happen if both were stranded on an island
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as children with no previous knowledge of any language? What kind of language
would they develop? Would there be any reason for them to develop a symmetrical
protocol in just a pair of agents? Would a symmetrical protocol be easier to
extend to a new individual in the future?

While this proposition sounds remote, it is already a reality in artificial agents
that use EC to coordinate and accomplish tasks for us. Examples could include mo-
bile robot coordination for semi-transparent environments [Atay and Bayazit, 2008]
and supply chain optimisation [Franco et al., 2024]. These protocols have been
shown to have greater fitness than pre-determined protocols and have been imple-
mented as physical robots, too [Trianni and Dorigo, 2006]. There are also links
to distributed computation, with special emphasis on the dynamics of swarms
of robots whose gradients may be updated asynchronously but with needs for
certain guarantees of convergence [Otte, 2018]. For these reasons, studying the
convergence of artificial protocols is interesting and relevant to embodied artificial
intelligence beyond modelling human language.

This dissertation will first lay out the theoretical background of emergent
communication and explain state-of-the-art work in multi-agent coordination. I
aim to answer the following 3 research questions:

1. How can we measure convergence to a communal language in Emergent
Communication?

2. Can a pair of agents be encouraged to create a symmetrical protocol?

3. How can other inductive biases, such as partial competition, influence the
variation of utterances?

Subsequently, all the relevant experimental methods and implementation de-
tails for replication will be explained. The results are then collected for the
experiments over multiple seeds and plotted with their uncertainties. The lat-
ter sections of the document will discuss the implications of the results and
recommendations for future work.



Chapter 2

Background

2.1 Emergent Communication

Emergent languages are the unsupervised communication protocols artificial agents
learn to signal cooperation and solve tasks. These protocols have been proposed
to coordinate autonomous robot swarms and seem promising to study the ties
between linguistic production and comprehension and other behavioural skills
[Cambier et al., 2020]. The use of multi-agent reinforcement learning (MARL)
offers us the opportunity to study the emergence of language in a population
of agents [Chaabouni et al., 2021] in human-like communication scenarios, such
as the Lewis games [Lewis, 1969]. Successful examples of emergent languages to
solve tasks are seen in referential games [Lazaridou et al., 2018], signalling games
[Rita et al., 2022], and even negotiation games [Cao et al., 2018].

The fundamental factor enabling emergent protocols to emerge has been iden-
tified as cooperation, as exemplified in the negotiation game of [Cao et al., 2018].
Agents that played a purely zero-sum game failed to develop a protocol. In
contrast, agents whose utilities included the other agent’s utility managed to
create meaningful protocols that led to greater overall rewards. Research into
partially cooperative games has shown that as long there is some overlap of
interests between agents, they will successfully develop an emergent protocol
[Noukhovitch et al., 2021a]. These games can also be played in a three-player
adversarial reference game, where a pair of agents must cooperate while preventing
information leakage to a third adversarial agent [Yu et al., 2022].

4



Chapter 2. Background 5

Implementations of emergent communication usually have two sub-modules
per Agent: a Sender and a Receiver. Agents come together and ‘speak’ over an
un-grounded linguistic channel (i.e., where tokens are not assigned any meanings a
priori), through which each Sender may send a sequence of variable-length tokens
from a pre-determined vocabulary. These could represent the symbols of the
International Phonetic Alphabet (IPA) [Association, 1999], which correspond to
discrete points sampled from a continuous spectrum of possible sounds. At each
turn, the Sender may perceive an object (for example, an image) that needs to be
communicated and then encode a message of discrete tokens to be perceived by
the Receiver. With no knowledge of the original encoded object, the Receiver must
learn to decode the meaning of the message to perform a variety of tasks such as
those enumerated in the Lewis Games [Lewis, 1969]. These may include correctly
reconstructing the original object (aptly called a reconstruction game) or discerning
between a range of candidates to predict the correct object being referred to (called
a referential game). In a purely cooperative setting such as a referential game,
both agents are rewarded equally for task success [Havrylov and Titov, 2017]. In
a partially competitive and partially cooperative environment, such as in the
negotiation game developed in [Noukhovitch et al., 2021a], each agent would be
rewarded differently based on the final outcome, with some overlap of interests.
Finally, in a purely adversarial game, the rewards are often zero-sum and distinct
for both agents. Note that this final variety alone is not typically meaningful
without another cooperative element, as seen in covert signalling [Yu et al., 2022].

Implementations of EC for negotiation ([Cao et al., 2018, Noukhovitch et al., 2021a])
often use multi-agent reinforcement learning (MARL) with two agents that have
learnable parameters and are optimised to maximise their respective rewards.
These agents can be trained in a decentralised manner [Schmidt et al., 2022],
which assumes agents are trained independently and have their own policies for
deciding their utterances. The policy gradient algorithm REINFORCE is often
employed [Sutton et al., 1999] but converges poorly on its own without some
adjustments to reduce variance. A useful baseline policy is found to be useful
[Havrylov and Titov, 2017], from which a KL-divergence regularisation penalty
can be applied. Alternatively, the Gumbel-Softmax relaxation with a straight-
through estimation may be used to train purely using a differentiable loss function
instead. This method passes gradients between the Sender and Receiver, which
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would be lost in a reinforcement learning process, which instead outputs discrete
utterances. Meta’s EGG package [Kharitonov et al., 2021] has ready-made envi-
ronments to build EC experiments, supporting RL and Gumbel-Softmax-based
approaches. It is limited, however, at the time of writing, for it does not allow each
agent to receive independent rewards, thus only allowing a study of cooperative
scenarios.

A range of architectures are possible for generating variable-length utter-
ances. Most implementations [Havrylov and Titov, 2017, Chaabouni et al., 2021]
employ Long Short-Term Memory (LSTM) models [Sherstinsky, 2020] or Gated
Recurrent Units (GRUs) [Mu et al., 2023], which can keep track of long-term
dependencies without easily falling prey to gradient-explosion problems. Alterna-
tively, transformer architectures pioneered in [Vaswani et al., 2023] are also used
[Ri et al., 2023] but are prone to overfitting, especially for EC scenarios that are
relatively simple, such as the Lewis Games. They would thus require rigorous
regularisation to be generalisable.

The applications of EC have ranged from studying language evolution [Michel et al., 2023,
Mu and Goodman, 2021] to robot control [Mu et al., 2023]. Lately, it has also
seen great success as a fine-tuning method for Large Language Models (LLMs).
EC has been shown to improve LLMs’ few-shot performance on translation for
low-resource languages [Li et al., 2020]. EC has also been seen to be a fine-tuning
method for pre-trained and multi-modal models that can handle text and images
simultaneously [Steinert-Threlkeld et al., 2022]. Overall, the EC framework has
been an elegant way to extrapolate the effects of individual learners’ communi-
cation on their behaviour in groups. It is thus a robust framework to study the
formation of idiolects in individuals that are then aggregated in group settings to
create a communal language.

2.2 Convergence of Protocols and Symmetry

This project focuses on developing a new cognitive architecture called Inner
Speech, examining the role of self-speech in convergence to a common language in
a population of agents. Past research in EC suggests that a minimum of 3 agents
are required in a population trained over many epochs to get agents’ emergent
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protocols to converge so they can understand each other [Graesser et al., 2019].
The utterances converge to a communal protocol in a densely connected social
network of agents, implying that different agents use similar utterances to describe
similar objects. However, this keeps the question of whether having two agents
to develop a symmetrical protocol is sufficient. In particular, this experiment
draws inspiration from the Rational Speech Act (RSA) framework [Degen, 2023],
where each agent makes pragmatic estimations of what the other agent is likely to
understand from an utterance. Here, it is achieved by the agent first listening to
itself before passing on the information to the other agent. Thus, the agent learns
to ’empathise’ with the other agent and uses the same apparatus to converse with
itself that it uses to speak and listen to other agents.

Previous work examining the convergence of agents to a single protocol employs
a metric called Synchronisation, averaged across all pairs of speakers’ utterances
[Rita et al., 2022]. Synchronisation is defined using the edit distance, which is
itself defined as the minimum number of editing operations that convert one string
into the other [Masek and Paterson, 1980]. It is symmetrical when comparing
strings and is thus a valid metric and has been used to measure the closeness of
dialects [Nerbonne et al., 1999]. The lower bound of this metric is 0 (where both
strings are identical), and the upper bound is the maximum length of the two
strings (if every single character of both strings needs to be changed). It can thus
be normalised to a value between zero and one by dividing the raw edit distance
by the larger of the lengths of the two strings. This normalised edit distance is
thus a measure of how different two strings are, and to measure their closeness,
we can compute Synchronisation as (1-Normalised Edit Distance) instead. They
then incorporated this feature in studying emergent languages’ structure and
quality. In their work, they find that heterogeneously trained agents which learn
at different rates produce more synchronised languages.

Nonetheless, synchronisation is not likely the only sensible metric to measure
the convergence of different agents’ protocols. In the Phonological reconstruction
of proto-languages, edit distance was found to lack knowledge of deeper structure
within a language [List, 2019]. Synchronisation may thus not be all that we
can measure convergence to a common protocol, and it thus leaves ample room
for other metrics that try to capture other structural and qualitative aspects
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of similarity between utterances. Another compelling alternative metric is N-
gram overlap, which has consists of measuring the number of common tuples
of size N that appear in a pair of documents. The actual metric is computed
by dividing the cardinality of the intersection set of n-grams by that of the
union of all n-grams. This measure has seen use in measuring reuse and copying
[Bosanac and Štefanec, 2011], although the optimal maximum size of N to track
varies by language. It also shows up as an evaluation metric of machine translation,
with the BLEU score being computed as the geometric mean of N-gram recall
scores, with N ranging from 1 to 4 [Papineni et al., 2002].

2.3 Inner Speech

Understanding the intentions of artificial agents is a challenging task, especially
given their increasing reliance upon deep neural networks that serve as black-
box models that consist of up to trillions of parameters that are not readily
interpretable. Namely, we need help to predict how they may behave in novel
situations. Inner speech, defined as a form of language oriented towards the self,
offers a promising route to understanding the intentions of artificial agents. It
can thus be interpreted as an agent speaking to itself and then perceiving its
own speech before acting on its initial intentions. This strategy has already been
associated with activities such as strategising and memory retrieval in humans
[Fernyhough and Borghi, 2023].

Compelling artificial agents to articulate their inner thoughts and reasoning
through inner speech has shown some success in improving the robustness of
robotic systems in solving tasks that include interacting with humans to receive
instructions and manipulate objects accordingly [Chella and Pipitone, 2020]. This
cognitive architecture was an early attempt to integrate Theory of Mind (ToM)
insights into artificial systems and managed to improve indicators such as Robust-
ness of Interaction (ROI), timeliness and transparency [Pipitone and Chella, 2021].
However, this implementation relied on the retrieval and composition of produc-
tion rules and required pre-programmed grammar. Thus, it remains a very open
question whether this may apply to the most powerful artificial agents powered
by deep neural networks that infer these rules in abstract spaces with minimal
human programming.



Chapter 2. Background 9

The Rational Speech Acts (RSA) framework [Degen, 2023] offers a way to
set up inner speech by using emergent communication to induce a bias towards
generating a symmetrical protocol. The inner speech cognitive architecture
(figure 3.6) gets an agent to first speak to itself and reconstruct the object before
communicating it to the other agent. This inner speech, or utterances directed
to itself, enable the agent to empathise with the other agent and behave as a
pragmatic listener capable of estimating what the receiving agent is likely to
understand from a given utterance. The reconstruction losses from both stages
are added up and back-propagated accordingly.

2.4 EC in Populations

Prior work has shown that EC works differently when applied at scale, where more
high-level factors are at play. For instance, decisions must be made about situating
agents in an environment and getting them to interact. The number of agents has
also been shown to affect the types of languages they develop [Raviv et al., 2019],
with larger communities generating greater systematicity. There is also work to
suggest that more than just the number of agents matters. However, their level of
heterogeneity in training speeds also determines the quality of the language devel-
oped, as measured by entropy and generalisation [Rita et al., 2022]. Furthermore,
there are also choices to be made on how a pair of agents should be selected to
communicate in the first place, with the ‘Individualized Controlled Continuous
Communication Model (IC3Net)’ [Singh et al., 2018] demonstrating agents being
able to make such decisions autonomously. For example, agents could cut off
communication entirely when they realised it was purely competitive or predicted
that a conversation was unlikely to be profitable.

There is also a need to study the topology of the population of agents and
how they are connected. This can be done by visualising each agent as a node on
a graph, with each edge representing a transmission from one agent and reception
by the other. Note that the graph can be either unidirectional, where each edge
represents one side transmitting utterances and the other party receiving them, or
bidirectional, where both parties play the roles of Sender and Receiver. Previous
work [Michel et al., 2023] has typically focused on bidirectional graphs, where
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agents are sampled according to the weights associated with each edge. They also
explore two topologies - a ring of agents, where each agent only communicates with
its neighbours to its left and right, and a fully connected community where every
agent can be paired up with every other agent. Nonetheless, this leaves open the
topic of what would happen if communication is left to be purely unidirectional
within these topologies, especially if we have communities that only listen to
another community but never speak back to them.

2.5 EC with Partial Competitiveness

The flexibility of the EC framework is evident when applied to games that are
not purely cooperative. The negotiation game of [Cao et al., 2018] examined the
interaction of agents who must decide to distribute a pool of available resources
while having their own private utilities for each type of resource. For example, one
available resource may be much more critical to one agent than the other; thus,
that agent would be willing to part with other less critical resources to gain it.
At the beginning of the game, however, these utilities are hidden from the other
agent, and the EC framework is presented as a method for the agents to share
information and come to an agreement. These agents were again trained using a
MARL framework and achieved an equilibrium based on their private utilities.
The experiments tested two scenarios - a selfish one, where agents each only tried
to optimise their own utilities, and a pro-social one, where both agents were
rewarded for the total utility of the group. These experiments revealed that selfish
agents failed to develop an EC protocol that improved either agent’s utilities and
supported the hypothesis that cooperation is crucial to communication. Pro-social
agents, on the other hand, managed to develop a protocol that maximised the
total reward as a sum of the two-agents’ private utilities.

This study, however, had many limitations. Firstly, the two alternatives con-
sidered were impractical as a model of human communication, which is often
neither purely selfish nor purely pro-social. There is thus a need for an EC game
that rewards agents differently based on a common overlapping interest. Such
a game was described in [Noukhovitch et al., 2021a], which presents a circular
biased sender-receiver game, where the Sender has an incentive to get the Receiver
to output a value on a circle close to its own private target Ts. The Receiver,
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however, is rewarded for outputs close to its private target of Tr, which is separated
from Ts by a bias b. If the bias b is set to 180°, the game is purely competitive,
and any game in between, from bias ε[0,180) represents partially competitive/co-
operative games, where communication appears. The results of that study showed
that agents’ losses converged more quickly with greater cooperation (and lower
bias) and that with full competition, agents are better off not communicating at all.

The negotiation game of [Cao et al., 2018] also suffered from the asymmetry of
the two agents, with one agent developing a far more expressive emergent language
than the other. This behaviour by the agent, which started second, effectively
revealed far more of its private utilities than the first agent. This is akin to a
negotiation where one agent repeatedly makes proposals to bargain. In contrast,
the other agent only responds with terse yes-or-no answers, giving away little
information about its private utilities. This does not seem to be a realistic model of
human communication, which is typically far more symmetrical. The negotiation
game also suffered from the problem of becoming an ultimatum game - with the
first agent refusing to agree to any proposals until the last negotiating turn and
forcing the second agent to accept any offer to gain any utility at all. Even when the
number of rounds of negotiation varied stochastically, the first agent nonetheless
had a significant advantage. This might be a feature of negotiation games in
general, found empirically in human negotiation as well [Loschelder et al., 2014],
especially when the first proposal carries only distributional information and not
information of their preferences, viz., their private utilities. Therefore, to study
convergence to a common symmetrical protocol, choosing a negotiation game
would not be appropriate despite the very rich insights into the dynamics of
EC under competition. Modifying an existing fully cooperative to approximate
competitiveness and analyse symmetrical protocols may be more advantageous.



Chapter 3

Methodology

3.1 Reconstruction Game

Figure 3.1: Reconstruction Game Overview

At the heart of Emergent Communication is its task, in which the agents
are to be judged and rewarded (in a reinforcement learning framework). In a
gradient-based framework, maximising the reward can be rewritten to minimise a
loss function. In these experiments, the paradigm is a reconstruction game, an
example of the Lewis Signalling Games [Lewis, 1969]. A sender must perceive
an object in an environment, often pixels of an image [Chaabouni et al., 2021],
a bundle of discrete items or a vector. The sender then encodes the object
into a variable-length sequence of tokens (‘utterance’), each belonging to a fixed
vocabulary. A receiver then perceives the utterance alone and tries to recon-
struct the original object that the sender perceived. If the reconstruction is a
good approximation, both agents are rewarded, and the current language use

12
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patterns are reinforced. If the reconstruction is poor, the agents are punished
or given a lower reward and discouraged from using their current language patterns.

Each agent consists of a sender and receiver, modelled separately as PyTorch
modules and written in Python. Each object in the simulated environment is
defined as a randomly sampled vector of dimension NUM_CONCEPTS, set equal
to 5 in these experiments. Five hundred objects were sampled, split 80% into
the training set, 10% into the validation set, and 10% into the test set. Each
experiment was run with three random seeds.

3.2 Sender Architecture

Figure 3.2: Sender Architecture

1. Object Encoder: modelled as an affine transformation from the object
vector into a dense space, using the nn.Linear module of PyTorch. The
input dimension is 5 (NUM_CONCEPTS), and the output dimension is 32
(HIDDEN_SIZE).

2. Vocabulary Encoder: modelled as a linear transformation (nn.Linear)
without a bias to mimic the function of an embedding layer for previously
generated tokens while still allowing gradient estimates from the Gumbel-
Softmax trick to pass through. If a purely RL approach was used, an
nn.Embedding layer would be more efficient. The input dimension is 9
(VOCAB_SIZE), and the output dimension is 32 (HIDDEN_SIZE).
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3. Gated Recurrent Unit (GRU): a sequential neural network cho-etal-
2014-learning, that makes use of reset and memory gates to keep track
of long-term dependencies. Its hidden state is updated using previously
generated tokens, uses the tanh activation function, and is of dimension
32 (HIDDEN_SIZE). There is a maximum sequence length (MAX_LEN)
as well, set to either 5 or 10. The “0” token is always taken as the end-of-
sequence (EOS) token. The nn.GRUCell module is used to model the GRU
at each timestep.

4. Vocabulary Output: modelled as an affine transformation (nn.Linear) onto
the vocabulary space followed by a softmax activation function to produce a
probability distribution. The input dimension is 32 (HIDDEN_SIZE), and
the output is 9 (VOCAB_SIZE).

3.3 Receiver Architecture

Figure 3.3: Receiver Architecture

Receiver

1. Vocabulary Encoder: mimics an embedding layer as a linear transforma-
tion without a bias using the nn.Linear module. The input dimension is 9
(VOCAB_SIZE), and the output dimension is 32 (HIDDEN_SIZE).

2. Gated Recurrent Unit (GRU): A sequential model to process the
incoming embeddings of the sender’s tokens. The nn.GRUCell module is
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used again, with its hidden vector dimension set as 32 (HIDDEN_SIZE).

3. Output: An affine transformation onto the object space using the nn.Linear
module, followed by the softmax activation function to produce a probability
distribution. The input dimension is 32 (HIDDEN_SIZE), and the output
dimension is 5 (NUM_CONCEPTS).

3.4 Loss Function

The loss function employed in the purely cooperative scenario is the mean square
error (MSE), computed as:

MSE =
1

N
ΣN

i=1(xi − x̂i)
2 (3.1)

where xi refers to the original object, x̂i refers to the reconstructed object, i

refers to the i-th sample in the dataset, and N is the size of the dataset.

To introduce partial competition, random sign-flips are introduced to the loss
function to represent an incentive to deceive a communicative partner, with a
probability called the competitiveness level. This is implemented at the batch
level using a Bernoulli distribution:

Lb = (−1)c ×MSEb, c ∼ Bernoulli(competitiveness) (3.2)

P(c) =

(1− competitiveness) if c = 0

competitiveness if c = 1
(3.3)

L = ΣB
b=1Lb = ΣB

b=1(−1)cbMSEb (3.4)

where L refers to the overall loss, Lb refers to the batch loss, and MSEb refers
to the mean square error for a batch b. B is the total number of batches, and
cb refers to whether the sign-flip occurs. A purely cooperative scenario would
have a competitiveness = 0, and an on-average random incentive would have
a competitiveness = 0.5. If competitiveness is set to 1, a purely competitive
incentive should theoretically lead to no communication.
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3.5 Gradient Optimisation with Gumbel Softmax

The Gumbel-Softmax relaxation is a method by which a continuous distribution
can approximate a categorical distribution to optimise using gradient-based meth-
ods [Jang et al., 2017].

Within a purely Reinforcement Learning approach, the sender would produce
a sequence of discrete tokens chosen from the distribution P(w0,w1, ...wT |xi) of all
possible token sequences given an input object xi. A range of techniques (‘decoding
strategies’) could be used to select a token sequence, such as choosing one at each
step. The most straightforward approach is greedy decoding, which selects the
most probable next token wt+1 by selecting argmaxwt+1

([P(wt+1|w0,w1, ...wt ,xi)],
based on the previously chosen tokens and the input. However, this strategy
often results in trivial repetitions of sequences [Vijayakumar et al., 2018]. One
solution is to instead sample tokens based on the softmax output as a probability
distribution, with a temperature level added to sharpen the probabilities through
Annealing [Agarwala et al., 2020]. This sampling of tokens, however, is inherently
not differentiable and is not amenable to gradient optimisation. To achieve this,
the Gumbel-Softmax relaxation instead takes the following steps:

1. Compute the raw linear result from the vocabulary output layer (4) of the
sender before applying the softmax activation.

2. Sample logits from the Gumbel Distribution of the form shown in equation
3.5, with µ = 0 and β = 1. These samples can be obtained by first sampling
from the Uniform Distribution Unif[0,1], and applying the inverse of the
cumulative distribution function (CDF) 3.6 of the Gumbel distribution.

3. Add the Gumbel logits to the raw logits

4. Divide the sum of logits by the temperature

5. Apply the softmax activation function

6. Select the token with the highest activation and create a one-hot vector
with VOCAB_SIZE as its dimension

7. Keep the gradients of the original output of the softmax distribution. This
thus implements the ‘straight-through’ estimator, which maintains the
weights’ differentiability.
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P(z) =
1

β
e−(z+e−z), where z =

x−µ
β

(3.5)

P(X < x) = e−e−(x−µ)/β

(3.6)

3.5.1 One Conversation

For each object in the dataset, a conversation is triggered by sampling a permuta-
tion of agent pairs, where one must act as the sender to communicate an object
so the other may reconstruct it as a receiver, as seen in figure 3.4. Both agents
may or may not play both roles of sender and receiver, depending on the social
network’s topology.

Figure 3.4: One End-to-End Conversation

3.6 Population of Agents

3.6.1 Topologies Studied

Owing to the relatively short time frame of this project, only a few topologies are
considered: a pair of agents, three agents that are fully connected, and three agents
in a uni-directional ring. Three agents were chosen as three was the minimum
number of agents required to obtain symmetrical communication in other work
such as [Graesser et al., 2019]. These topologies are sketched below:
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Figure 3.5: A pair of agents, without Inner Speech

Figure 3.6: Two Agents, with Inner Speech, repeated with Agent A and Agent B
switching roles as well.

Figure 3.7: Three Agents Communicating in a Uni-directional Ring
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Figure 3.8: Three Fully Connected Agents

3.6.2 Topological Similarity

Topological similarity [Brighton and Kirby, 2006] estimates compositionality to
verify that the emergent languages produced are systematic and represent a
structured relationship between objects and their utterances. Suitable measures
of distance need to be identified nonetheless within the object and message spaces
respectively. The steps used to calculate topological similarity in these experiments
are:

1. Calculate ordered pairwise distances between objects in the dataset (mea-
sured using Euclidean distance)

2. Calculate ordered pairwise Edit distances between utterances as a heuristic
for the differences in the messages.

3. Calculate the Spearman correlation between pairwise object distances and
the pairwise message distances.

3.7 Metrics of Convergence to a Communal Proto-
col

When measuring the convergence of protocols, minimal assumptions must be made
about the linguistic properties of the emergent language (for example, word order).
Among the qualitative similarity metrics of utterances, the longest common
sub-sequence (LCS) is feasible for a small number of agents (time complexity of
O(LN) for utterance length L and number of agents N). The metric of n-gram
overlap is a heuristic for capturing repeated patterns in agents’ utterances that may
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appear in different orders in each sentence. An n-gram is a tuple of n consecutive
characters found in a string. The n-gram overlap is thus the proportion of such
n-sized tuples that are found in all utterances, as shown in equation 3.8. All
these metrics are normalised to be interpretable across different utterance lengths.
The latest literature usually uses the normalised edit distances between a pair of
utterances to calculate synchronisation in equation 3.7 [Michel et al., 2023]. The
average synchronisation is then reported across all pairs of utterances.

Synchronisation(A, B) = 1− Edit-Distance(A, B)
max(len(A), len(B))

(3.7)

n-gram overlap(A, B) = |n-grams(A)∩n-grams(B)|
|n-grams(A)∪n-grams(B)|

(3.8)

Among the performance metrics, self-play loss has been referenced in
[Graesser et al., 2019], where they formally defined mutual intelligibility as the
ability of an agent to successfully play against itself. That work also showed that
a dialect continua could arise, once again measured by mutual intelligibility.

Finally, a new parameter-based metric ‘Token Relationship (TR) Align-
ment’ metric is calculated by:

1. Computing the pairwise cosine similarities between tokens in each vocabulary
encoder (figure 3.9)

2. Flattening out the cosine similarity matrices.

3. computing the Spearman correlations between each pair of cosine similarity
matrices and averaging across pairs.
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Figure 3.9: Token Relationships = Pairwise Cosine Similarities for Vocab Encoders in
Senders (row1) and Receivers (row 2)

For example, consider two vocabulary encoders with VOCAB_SIZE = 3, and
HIDDEN_SIZE = 2. Each encoder can be seen as a look-up table that consists
of 3 tokens (0, 1 and 2), with a vector embedding each.

Encoder A = {0 :

[
0.2

−0.4

]
,1 :

[
0.3

0.5

]
,2 :

[
0.1

0.2

]
}

Encoder B = {0 :

[
0.4

−0.5

]
,1 :

[
−0.3

0.2

]
,2 :

[
0.1

0.7

]
}

The world view of an agent can be visualised as its pairwise token relationships
(TRA and TRB), calculated by computing cosine similarities. Only the lower trian-
gular matrix is considered, as the diagonal values are all 1 (self-cosine similarities),
and the upper triangle contains duplicated information from the lower triangle.
The lower triangular matrix is then flattened into a new vector. The Token
Relationship (TR) Alignment is finally computed as the Spearman correlation
between TRA and TRB. For a fully converged population, this metric should
ideally be 1, indicating that every agent sees the same similarity (‘relationship’)
in meaning between every pair of tokens. The interpretation of this metric can
thus be seen as the alignment of the world views of the two agents’ encoders. In a
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population of agents, the average TR alignment is calculated across all pairs of
agents.

TRA = Token Relationships A =


− − −

−0.5369 − −
−0.6 0.9971 −

≡


−0.5369

−0.6000

0.9971



TRB = Token Relationships B =


− − −

−0.9529 − −
−0.6847 0.4315 −

≡


−0.9529

−0.6847

0.4315


TR Alignment = Correlation (TRA,TRB) = 0.9762
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Results

4.1 Pair of Agents - With and Without Inner Specch

The first experiment examined the role of inner speech in a pair of agents to
encourage symmetrical communication between agents. At the end of the training,
as seen in figure 4.1, agents without inner speech produce distinct idiolects with
low n-gram overlaps despite a small maximum sequence length. Normalised LCS
scores are also low, skewed towards zero. Agents with inner speech, on the other
hand, clearly develop a more symmetrical protocol with much higher n-gram
overlaps and normalised LCS scores.

We may also examine these metrics during training to gain a more compre-
hensive picture. Figure 4.2 marks values of the metrics across multiple runs, with
the solid line being the mean value and the highlighted range indicating the range
(mean-standard deviation, mean+standard deviation). The pair of agents
with inner speech can understand themselves well, and their Token Relation (TR)
Alignment metrics also increase and tend towards 1 as training proceeds. In
contrast, for a pair of agents without inner speech, Sender-Sender, Sender-Receiver
and Receiver-Receiver TR Alignment all do not significantly deviate from zero.
The qualitative metrics of N-gram overlap also indicate that the agent pair with
inner speech develop a more symmetrical protocol. Some example utterances are
produced in table 4.1. These results indicate that each agent can simulate what
its counterpart will likely infer from its utterance and adjust its own utterances
accordingly.

23
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Figure 4.1: Distribution of qualitative metrics across utterances at the end of training.
These utterances are produced on objects from the test dataset.

Original Object Utterances Reconstruction of Object
[0.43 0.28 0.16 0.01 0.12] hhh [0.47 0.36 0.07 0.06 0.05]
[0.43 0.28 0.16 0.01 0.12] hhgb [0.41 0.28 0.13 0.11 0.07]

[0.2 0.07 0.13 0.24 0.35] aghg [0.2 0.14 0.15 0.16 0.34]
[0.2 0.07 0.13 0.24 0.35] aghf [0.18 0.13 0.14 0.27 0.28]

Table 4.1: Sample Symmetrical Utterances from the Test Dataset with Inner Speech
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Figure 4.2: Evaluation metrics of a pair of agents, with (red) and without inner speech
(yellow). The self-play loss (mutual intelligibility) worsens over time without inner
speech, in contrast to uniform decays seen with it. Without inner speech, the TR
alignments all hover around zero, while with it, they converge towards 1. All the
qualitative metrics of n-gram overlap also evidence a symmetrical protocol with inner
speech, while they hover around zero without it, with the exception of 1-gram overlap.
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4.2 Three Fully Connected Agents (No Inner Speech)

Training a population of three fully connected agents results in expected behaviour
based on other previous studies. As expected, the agents’ training losses decrease
steadily (figure 4.3), as do their validation losses as well as self-play losses on
unseen data (figure 4.4). Decreasing Self-play loss indicates that agents’ languages
are mutually intelligible with each other. The TR Alignment metrics all score high
(greater than 0.8), with the Sender-Receiver alignments being the weakest at a
value of around 0.6. The qualitative metrics are also very strong, with all N-gram
overlap metrics improving steadily during training. None of the metrics actually
reach 1, however, indicating that variation is an integral part of the equilibrium
achieved.

Another important observation is that the training, validation and self-play
losses are at their lowest value after 100 epochs and flatten out after that. On the
other hand, the qualitative metrics continue to increase steadily, especially with
1-gram, 2-gram, 3-gram, and 4-gram overlap. Thus, slight differences in mutual
intelligibility and communicative success can actually translate to significant
variations in qualitative convergence metrics. Compositionality, measured by
topological similarity, on the other hand, converges very rapidly to its maximum
value and stays constant throughout. Thus, the emergent protocols become
structured and systematic early on and merely change qualitatively to converge
to a common protocol while retaining their information-bearing capacity.
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Figure 4.3: Training Loss for 3 Fully Connected Agents without Inner Speech. The X-
axis tracks epochs, while the Y-axis tracks the total loss in one round of communication,
adding up all pairs’ conversation losses.
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Figure 4.4: Evaluation metrics during training for 3 fully connected agents without
inner speech. The qualitative metrics of synchronisation and n-gram overlap all rise
steadily and stabilise. Cross-play loss, and self-play loss decrease steadily, improving
mutual intelligibility. TR Alignments all rise consistently and stabilise at high values
closer to 1. Training loss, cross-play loss, self-play loss and TR alignment converge
much faster than the qualitative metrics.
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4.3 Three Fully Connected Agents With Inner Speech
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Figure 4.5: Evaluation metrics during training for 3 fully connected agents with inner
speech (red) and without inner speech (yellow). Self-play loss (mutual intelligibility),
TR Alignment and topological similarity are mostly unchanged. Ironically, qualitative
metrics of n-gram overlap and synchronisation are lower with inner speech.
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4.4 Three Agents - Fully Connected vs Ring
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Figure 4.6: Evaluation metrics during training for 3 agents without inner speech,
comparing fully connected agents yellow, to a uni-directional ring in red. TR alignment
for the ring agents hovers around zero, and so do the n-gram overlaps. topological
similarity is comparable, while synchronisation is much lower for the ring agents.
Self-play loss, and thus mutual intelligibility actually worsens over time for the ring.
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4.5 Adding Inner Speech to a Uni-directional Ring
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Figure 4.7: Evaluation metrics during training for 3 agents in a uni-directional ring with
inner speech (red) and without inner speech (yellow). The agents with inner speech
converge to a communal protocol by all qualitative metrics, while those without it
hover around zero. Mutual intelligibility improves over time with inner speech. Observe
by comparing with figure 4.6, that the ring with inner speech converges more slowly
to a communal language than a fully connected population without inner speech.
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4.6 Three Fully Connected Agents - Increasing
Maximum Sequence Length (No Inner Speech)
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Figure 4.8: Evaluation metrics during training for 3 fully connected agents without
inner speech, increasing the maximum length of utterances. The mutual intelligibility,
topological similarity and TR alignment seem to benefit from a marginal improvement,
while the the qualitative metrics of n-gram overlap and synchronisation converge more
slowly to comparable values.
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4.7 Three Fully Connected Agents with Partial Com-
petitiveness (No Inner Speech)
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Figure 4.9: Evaluation metrics during training for 3 Fully Connected Agents with partial
competitiveness and no inner speech. With competitiveness, mutual intelligibility,
topological similarity and TR alignment all converge slower to comparable values,
while the the qualitative metrics of n-gram overlap and synchronisation converge and
stabilise at lower values.



Chapter 5

Discussion

5.1 Inner Speech is helpful for a Pair of Agents and
Uni-directional Ring, but not for Fully Connected
Populations

As seen in figure 4.2, inner speech enables a pair of agents to communicate us-
ing a symmetrical protocol. To understand this behaviour, we can turn to the
Obverter Strategy expounded by Oliphant [Oliphant and Batali, 1997], which is
very similar to the setup of the experiments here. It is important to note that
there is no explicit constraint that agents can understand their own utterances,
unlike the Saussurean sign in Hurford’s work [Hurford, 1989]. Oliphant points
out that the bi-directionality of the utterances is a natural result of the training
process in a population of agents, though without explaining why. The results in
figure 4.2 thus show that a symmetrical protocol cannot emerge in a population
of only two ‘Obverters’, replicating the results in [Graesser et al., 2019]. However,
the bidirectional nature of the Saussurean sign is baked into the architecture of
our pair of agents with Inner Speech. By ensuring that an agent can understand
itself before speaking to another agent, we enforce the two-way mapping between
utterances and concepts in the object space, implementing the optimum strategy
in Hurford’s work [Hurford, 1989].

Interestingly, Inner Speech in a population of three or more fully connected
agents does not contribute positively to any of the communality metrics, and even
slows down convergence, as seen in figure 4.5. However, this is not the case for
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three agents situated in a uni-directional ring, where inner speech does indeed lead
to a communal protocol, as seen in the results of figure 4.7. Comparing the results
for three agents in a ring without inner speech with three fully connected agents
in figure 4.6, we find that the ring agents fail to develop a communal protocol
by all qualitative and parameter (TR alignment) metrics. Therefore, as long as
a given agent is speaking to only one other agent and listening to only
one other agent (for example, a uni-directional ring or a pair), a communal
protocol does not seem to develop without inner speech. Inner speech is probably
redundant in a fully connected population, as a communal protocol seems to
be a natural consequence of the training process of a population of Obverters
[Oliphant and Batali, 1997]. By seeing communal language as the extrapolation of
idiolects based on interaction [Mufwene, 2014], languages can be seen as emergent
phenomena, changing and settling into equilibrium before being disturbed again
by new changes. It is further argued that a common vocabulary, especially in
the first human languages, would have emerged due to a self-organising system
that developed through local interactions [Ke et al., 2002]. The iterated nature
of the game may explain the process by which self-organised extrapolation may
occur in a population of more than two fully connected Obverters. The scenario
rewards agents for successfully communicating the sub-concepts of an object and
reconstructing them in as much detail as possible. Let us take the example of
two agents, A and B, in the i-th iteration of the training in a population of at
least one more agent, called C. The receivers of agents A and B would have
updated their gradients to better understand agent C’s utterances in the previ-
ous iteration (i-1). Thus, in the i-th iteration, both Agent A and B would be
better rewarded by speaking like Agent C and will update their model weights
to make more utterances like C despite not actively trying to copy C’s utter-
ances. Over time, this influence is likely to converge into a protocol with lots of
shared patterns that show up as the higher N-gram overlaps over time in figure 4.4.

We may also visualise each agent as having a message space (‘bandwidth’) it
can employ to communicate with another agent. This bandwidth is determined by
the VOCAB_SIZE, which decides the number of possible tokens at each position
in an utterance, and the MAX_LEN, which determines the maximum length of
an utterance. For each new agent that one needs to communicate with, a portion
of this bandwidth is dedicated to those utterances. If there is only one other
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agent (for example, in a pair without inner speech) to cater to, each agent has
full freedom to allocate the message space to meanings. The two agents’ message
spaces have no reason to be aligned except at random, which once again explains
the results seen in figure 4.2 for the pair without inner speech. However, when
inner speech is added (for a pair of agents) or more agents are added to the
population, this message space needs to be allocated to more agents, and the
agent is likely to learn to reuse some of the already allocated message space to be
able to accommodate the additional communication while maintaining accuracy.
While this conclusion will need further experiments with a larger number of agents
to confirm, we get an inkling of these results in figure 4.8, where an increase
in the MAX_LEN increases the message space, and thus allows the agents to
allocate more bandwidth separately to the different agents it communicates with.
All the qualitative metrics, including synchronisation and N-gram, overlap and
take longer to converge to the same value, indicating more variation in utterances,
while the performance-based metric of self-play loss remains comparable.

5.2 Edit Distance, and hence, Synchronisation, is
not a complete measure of Convergence to a
Communal Language

The most common metric used in literature to measure convergence is synchro-
nisation, measured as (1-Normalised Edit Distance) between utterances. This is
calculated as a mean value across all agent pairs. To calculate one pair’s edit
distance, the time complexity is O(m×n) [Hyyrö, 2005], where m and n are the
lengths of the respective strings. Assuming all the strings are of length L, this
complexity comes up to O(L2). With this process repeated for every pair within
N agents, the overall time complexity of calculating synchronisation using edit
distance is O(N2L2). Longest Common Sub-sequence (LCS) is similar, with a
time complexity of O(L2) per pair and a complexity of O(N2L2) across all pairs.
However, suppose LCS is instead calculated across the whole population of N
utterances by N agents for a given sample input. In that case, the time complexity
rises exponentially to O(LN), which becomes intractable very quickly. The LCS
metric is thus more meaningful for a small number of agents and is used to
compare only a pair of agents. In contrast, N-gram overlap is a flexible metric
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that can be scaled up to cater to a large number of agents. The time complexity
of listing the set of n-grams (of fixed size n) within a given string of length L is
O(L) by using hash-maps. Repeating this process across N agents linearly scales
up the complexity to O(NL). Computing the overlap of n-grams across the N
agents involves computing the intersection and union sets, which are once again
O(NL). The n-gram overlap metric is thus a much more scalable metric than
synchronisation in terms of computational resources.

Another consideration to keep in mind is word order. The edit distance
(and hence, synchronisation) assumes a simplistic, character-level, uniform, and
context-independent view of language. For example, in an inflectional language
like Sanskrit, word order flexibility allows the phrase “aham varte” (literally, “I
am”) to be rewritten as “varte’ham” using IAST romanisation. Another pair of
phrases, from Latin, “domi est” and “est domi” are also identical, both meaning
“He is at home”. These equivalent phrases should ideally be identified as identical
by symmetry measures, but the following results are seen with different qualitative
metrics in table 5.1. Edit distance almost fails to identify the similar features
of the two utterances. At the same time, N-gram overlap can give us a better
picture, especially when viewed holistically across a range of N values. This is
especially important as it is necessary to make as few assumptions about the
emergent language as possible and that judging symmetry by using synchronisa-
tion is wholly inadequate for inflectional languages that offer relatively free word
order. In a similar vein, LCS is also ultimately not a good measure as it inherently
pre-supposing that word order is important by looking for the longest sub-sequence.

However, it is not to say that word order is not important at all: n-grams
also inherently track word order, just at a smaller level than edit distance does.
However, n-gram overlap metrics pre-suppose that there are reusable systematic
sub-sequences that can be arranged flexibly in an emergent language, thus making
them a better metric for measuring convergence to a common protocol and
symmetry. Edit distance and N-gram overlap do contain significant information
about each other, as demonstrated in figure 5.1, with deviations increasing with
the size of N. Edit distance also has significant correlations with the new token
relationship (TR) alignment metric, which measure the alignment of world views
within the vocabulary encoders. The TR alignment metrics deviate the most
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during the initial training period and converge to similar values towards the end,
except for the Sender-Receiver alignment, whose deviation is a question for future
work. Topological similarity is also seen to correlate little with synchronisation,
which makes sense, as topological similarity only measures compositionality, which
is seen to stabilise very early on in the training process.

0.0 0.2 0.4 0.6 0.8 1.0
Synchronisation = (1-Normalised Edit Distance)

0.0

0.2

0.4

0.6

0.8

1.0

N-
gr

am
 O

ve
rla

p

Synchronisation vs N-gram Overlap
1-gram
2-gram
3-gram
4-gram

0.0 0.2 0.4 0.6 0.8 1.0
Synchronisation = (1-Normalised Edit Distance)

0.0

0.2

0.4

0.6

0.8

1.0

TR
 A

lig
nm

en
t

Synchronisation vs TR Alignment
S-S
R-R
S-R

0.0 0.2 0.4 0.6 0.8 1.0
Synchronisation = (1-Normalised Edit Distance)

0.0

0.2

0.4

0.6

0.8

1.0

To
po

lo
gi

ca
l S

im
ila

rit
y

Synchronisation vs Topological Similarity
Topological Similarity

Figure 5.1: Information that Edit Distance carries about other metrics, based on
evaluation data during from three fully connected agents.

“aham varte” vs “varte’ham” (Sanskrit)
Synchronisation (1-normalised edit distance) 0.1000

Normalised LCS 0.5
1-gram overlap 0.7778
2-gram overlap 0.5455
3-gram overlap 0.3636
4-gram overlap 0.1818

“domi est” vs “est domi” (Latin)
Synchronisation (1-normalised edit distance) 0.0000

Normalised LCS 0.5
1-gram overlap 1.0000
2-gram overlap 0.5556
3-gram overlap 0.3333
4-gram overlap 0.1111

Table 5.1: The limitations of edit distance to identify semantically identical utterances
in inflectional languages with flexible word order, as opposed to N-gram overlap
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5.3 Mutual Intelligibility alone is not a good way to
identify dialects

As seen in the results for the fully connected population of agents, mutual in-
telligibility, as measured by the self-play loss (defined in [Graesser et al., 2019]),
does not imply that the qualitative language usage patterns are the same. Small
changes in communicative success can be associated with much more significant
changes in language usage patterns (figure 4.4), as measured through qualitative
metrics such as n-gram overlap and synchronisation between utterances. A corol-
lary to these results is that mutual intelligibility is not a good way to identify
dialects and clusters of agents speaking a common language. This result is also
validated through empirical studies in the field [Tang and Van Heuven, 2009]. It
is thus necessary to develop a holistic approach to identifying these dialect clusters,
potentially using all metrics, ranging from the performance (mutual intelligibility)
to world view alignment (TR alignment) to qualitative metrics (n-gram overlap
and synchronisation of utterances).

5.4 Role of Competitiveness

The role of partial competitiveness can be seen as adding noise to the training
process, slowing down the convergence of the loss metrics, as seen in figure
4.9. However, while self-loss and TR alignment stabilise at similar values to
those without competition, the qualitative metrics in terms of n-gram overlap
and synchronisation converge and stabilise at lower values. This indicates that
while adding a partial competitive influence will produce an equally successful
protocol, it will lead to a more varied communal language. To confirm these
results, it would be beneficial to repeat these experiments in more complex EC
scenarios that have competition built into them, such as the game suggested by
[Noukhovitch et al., 2021b]. Interestingly, when the competitiveness was set to
0.5, totally random behaviour resulted, as the loss metric being optimised was
zero on average across batches. When competitiveness was set to 1, the agents
chose not to communicate any symbols at all, as seen in figure A.1 in the appendix.
Overall, these results affirm that communication is proportionate to cooperation.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The overall aim of the experiments in this dissertation project has been to explore
the domain of emergent communication, especially the process of developing a
communal language extrapolated from the idiolects generated organically by in-
teractions of simulated agents. One of its biggest takeaways has been to approach
the question of comparing the similarity of languages holistically through a range
of performance, qualitative and world-view metrics beyond only the commonly
used edit distance-based ‘Synchronisation’ metric found in the literature.

The project also sought to explore the inner speech architecture inspired by the
Rational Speech Acts (RSA) framework, where one speaker behaves pragmatically
to estimate how their utterances are likely to be perceived by the listener and
adjusts their utterances accordingly. This approach also seems to implement
the bi-directional Sausserian sign between objects and utterances, even when
there are only two agents in an environment. Two ordinary agents that do not
share parameters between their perception and expression modules implement the
‘Obverter’ strategy instead and will successfully learn to communicate, albeit not
symmetrically. Finally, we come to the surprising conclusion that inner speech
does not accelerate convergence to a communal protocol in a connected population
where one agent converses with more than one other agent. In that scenario,
convergence to a communal language seems to be already a fundamental part of
the self-organisation that occurs in the training process.

39



Chapter 6. Conclusion and Future Work 40

Overall, this project aimed to highlight the pitfalls of making assumptions
about the linguistic properties of emergent languages, which, in their truest sense,
ought to be minimally bound. In learning to grasp how these protocols are similar
to each other, I hope to gain a deeper understanding of the processes that bring
about human language in all its rich diversity. Within an emergent language,
there will always be multiple ways of saying the same things correctly, and within
this variation lies a deeper structure for us to unravel.

6.2 Future Work: Incorporating Iterated Learning

This project’s experiments were limited to training and evaluating artificial agents
that learned protocols to optimise communicative success, like those that devel-
oped an Obverter strategy in [Oliphant, 1996]. As the experiments above show,
this can often lead to slow convergence to a communal language, driven primarily
by previous gradient adjustments to cater to other agents. Introducing another
inductive bias can ameliorate this limitation - that of conforming to the immedi-
ate peer group. Simon Kirby’s framework of Bayesian Iterated Learning (BIL)
[Kirby et al., 2014] demonstrated that the compositional nature of language can
be explained by the bottleneck of limited utterances that an individual hears in
their lifetime. Here, individuals learn to speak based on the language expressed
by generations before them. Incorporating iterated learning has been shown to
encourage faster convergence and higher compositionality in emergent languages
[Guo, 2019]. Iterated learning can be implemented by keeping track of the pre-
vious utterances that an agent received and training speakers to replicate them.
This would give us a scenario with two loss functions - communicative success and
similarity to other speakers. Interesting questions to answer include discerning
the optimum relative importance of these two losses during the training process
and a comprehensive method to determine an individual’s overall fitness. In its
purest form, BIL determines fitness purely on how close an agent’s utterances
are to the population’s while assuming that “individuals who have the same
language type are deemed to communicate successfully” [Thompson et al., 2016].
As demonstrated in these experiments above, individuals who can communicate
successfully do not necessarily need to speak in similar ways. There is, thus, plenty
of room to explore this subject further, balancing the impetus to communicate
successfully with fitting in with a peer group.



Bibliography

[Agarwala et al., 2020] Agarwala, A., Pennington, J., Dauphin, Y., and Schoen-
holz, S. (2020). Temperature check: theory and practice for training models
with softmax-cross-entropy losses.

[Association, 1999] Association, I. P. (1999). Handbook of the International Pho-
netic Association: A guide to the use of the International Phonetic Alphabet.
Cambridge University Press.

[Atay and Bayazit, 2008] Atay, N. and Bayazit, B. (2008). Emergent Task Al-
location for Mobile Robots. In Robotics: Science and Systems III. The MIT
Press.

[Bosanac and Štefanec, 2011] Bosanac, S. and Štefanec, V. (2011). N-gram over-
lap in automatic detection of document derivation.

[Brighton and Kirby, 2006] Brighton, H. and Kirby, S. (2006). Understanding
linguistic evolution by visualizing the emergence of topographic mappings.
Artificial life, 12(2):229–242.

[Cambier et al., 2020] Cambier, N., Miletitch, R., Frémont, V., Dorigo, M., Fer-
rante, E., and Trianni, V. (2020). Language evolution in swarm robotics: A
perspective. Frontiers in Robotics and AI, 7:12.

[Cao et al., 2018] Cao, K., Lazaridou, A., Lanctot, M., Leibo, J. Z., Tuyls, K.,
and Clark, S. (2018). Emergent communication through negotiation.

[Chaabouni et al., 2021] Chaabouni, R., Strub, F., Altché, F., Tarassov, E., Tallec,
C., Davoodi, E., Mathewson, K. W., Tieleman, O., Lazaridou, A., and Piot,
B. (2021). Emergent communication at scale. In International conference on
learning representations.

41



Bibliography 42

[Chella and Pipitone, 2020] Chella, A. and Pipitone, A. (2020). A cognitive
architecture for inner speech. Cognitive Systems Research, 59:287–292.

[Degen, 2023] Degen, J. (2023). The rational speech act framework. Annual
Review of Linguistics, 9(1):519–540.

[Fernyhough and Borghi, 2023] Fernyhough, C. and Borghi, A. M. (2023). Inner
speech as language process and cognitive tool. Trends in cognitive sciences.

[Franco et al., 2024] Franco, F. A. et al. (2024). Emergent communication in
simulated robotics: supporting supply chains through evolutionary computation.

[Graesser et al., 2019] Graesser, L., Cho, K., and Kiela, D. (2019). Emergent
linguistic phenomena in multi-agent communication games. arXiv preprint
arXiv:1901.08706.

[Guo, 2019] Guo, S. (2019). Emergence of numeric concepts in multi-agent au-
tonomous communication.

[Guo et al., 2021] Guo, S., Ren, Y., Mathewson, K., Kirby, S., Albrecht, S. V.,
and Smith, K. (2021). Expressivity of emergent language is a trade-off between
contextual complexity and unpredictability. arXiv preprint arXiv:2106.03982.

[Havrylov and Titov, 2017] Havrylov, S. and Titov, I. (2017). Emergence of
language with multi-agent games: Learning to communicate with sequences of
symbols.

[Hurford, 1989] Hurford, J. R. (1989). Biological evolution of the saussurean sign
as a component of the language acquisition device. Lingua, 77(2):187–222.

[Hyyrö, 2005] Hyyrö, H. (2005). Bit-parallel approximate string matching algo-
rithms with transposition. Journal of Discrete Algorithms, 3(2-4):215–229.

[Jang et al., 2017] Jang, E., Gu, S., and Poole, B. (2017). Categorical reparame-
terization with gumbel-softmax.

[Ke, 2004] Ke, J. (2004). Self-organization and language evolution: system,
population and individual. PhD diss., City University of Hong Kong.

[Ke et al., 2002] Ke, J., Minett, J. W., Au, C.-P., and Wang, W. S.-Y. (2002).
Self-organization and selection in the emergence of vocabulary. Complexity,
7(3):41–54.



Bibliography 43

[Kharitonov et al., 2021] Kharitonov, E., Dessì, R., Chaabouni, R., Bouchacourt,
D., and Baroni, M. (2021). EGG: a toolkit for research on Emergence of
lanGuage in Games. https://github.com/facebookresearch/EGG.

[Kirby and Christiansen, 2003] Kirby, S. and Christiansen, M. H. (2003). From
language learning to language evolution. Studies in the Evolution of Language,
3:272–294.

[Kirby et al., 2014] Kirby, S., Griffiths, T., and Smith, K. (2014). Iterated learning
and the evolution of language. Current opinion in neurobiology, 28:108–114.

[Lazaridou et al., 2018] Lazaridou, A., Hermann, K. M., Tuyls, K., and Clark,
S. (2018). Emergence of linguistic communication from referential games with
symbolic and pixel input. arXiv preprint arXiv:1804.03984.

[Lewis, 1969] Lewis, D. K. (1969). Convention: A Philosophical Study. Wiley-
Blackwell, Cambridge, MA, USA.

[Li et al., 2020] Li, Y., Ponti, E. M., Vulić, I., and Korhonen, A. (2020). Emergent
communication pretraining for few-shot machine translation. arXiv preprint
arXiv:2011.00890.

[List, 2019] List, J.-M. (2019). Beyond edit distances: Comparing linguistic
reconstruction systems. Theoretical Linguistics, 45(3-4):247–258.

[Loschelder et al., 2014] Loschelder, D. D., Swaab, R. I., Trötschel, R., and Galin-
sky, A. D. (2014). The first-mover dis advantage: The folly of revealing
compatible preferences. Psychological science, 25(4):954–962.

[Masek and Paterson, 1980] Masek, W. J. and Paterson, M. S. (1980). A faster
algorithm computing string edit distances. Journal of Computer and System
sciences, 20(1):18–31.

[Michel et al., 2023] Michel, P., Rita, M., Mathewson, K. W., Tieleman, O., and
Lazaridou, A. (2023). Revisiting populations in multi-agent communication.

[Mu and Goodman, 2021] Mu, J. and Goodman, N. (2021). Emergent communi-
cation of generalizations. Advances in neural information processing systems,
34:17994–18007.

https://github.com/facebookresearch/EGG


Bibliography 44

[Mu et al., 2023] Mu, Y., Yao, S., Ding, M., Luo, P., and Gan, C. (2023).
Ec2: Emergent communication for embodied control. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6704–6714.

[Mufwene, 2014] Mufwene, S. S. (2014). Language ecology, language evolution,
and the actuation question. The sociolinguistics of grammar, pages 13–36.

[Nerbonne et al., 1999] Nerbonne, J., Heeringa, W., and Kleiweg, P. (1999). Edit
distance and dialect proximity. Time Warps, String Edits and Macromolecules:
The theory and practice of sequence comparison, 15.

[Noukhovitch et al., 2021a] Noukhovitch, M., LaCroix, T., Lazaridou, A., and
Courville, A. (2021a). Emergent communication under competition.

[Noukhovitch et al., 2021b] Noukhovitch, M., LaCroix, T., Lazaridou, A., and
Courville, A. (2021b). Emergent communication under competition. arXiv
preprint arXiv:2101.10276.

[Oliphant, 1996] Oliphant, M. (1996). The dilemma of saussurean communication.
Biosystems, 37(1):31–38.

[Oliphant and Batali, 1997] Oliphant, M. and Batali, J. (1997). Learning and
the emergence of coordinated communication. Center for research on language
newsletter, 11(1):1–46.

[Otte, 2018] Otte, M. (2018). An emergent group mind across a swarm of robots:
Collective cognition and distributed sensing via a shared wireless neural network.
The International Journal of Robotics Research, 37(9):1017–1061.

[Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine translation. In Proceedings
of the 40th annual meeting of the Association for Computational Linguistics,
pages 311–318.

[Pipitone and Chella, 2021] Pipitone, A. and Chella, A. (2021). What robots
want? hearing the inner voice of a robot. Iscience, 24(4).

[Raviv et al., 2019] Raviv, L., Meyer, A., and Lev-Ari, S. (2019). Larger commu-
nities create more systematic languages. Proceedings of the Royal Society B,
286(1907):20191262.



Bibliography 45

[Ri et al., 2023] Ri, R., Ueda, R., and Naradowsky, J. (2023). Emergent commu-
nication with attention.

[Rita et al., 2022] Rita, M., Tallec, C., Michel, P., Grill, J.-B., Pietquin, O.,
Dupoux, E., and Strub, F. (2022). Emergent communication: Generalization
and overfitting in lewis games. Advances in Neural Information Processing
Systems, 35:1389–1404.

[Schmidt et al., 2022] Schmidt, L. M., Brosig, J., Plinge, A., Eskofier, B. M., and
Mutschler, C. (2022). An introduction to multi-agent reinforcement learning
and review of its application to autonomous mobility. In 2022 IEEE 25th
International Conference on Intelligent Transportation Systems (ITSC), pages
1342–1349. IEEE.

[Sherstinsky, 2020] Sherstinsky, A. (2020). Fundamentals of recurrent neural net-
work (rnn) and long short-term memory (lstm) network. Physica D: Nonlinear
Phenomena, 404:132306.

[Singh et al., 2018] Singh, A., Jain, T., and Sukhbaatar, S. (2018). Learning when
to communicate at scale in multiagent cooperative and competitive tasks.

[Smith et al., 2013] Smith, K., Tamariz, M., and Kirby, S. (2013). Linguistic
structure is an evolutionary trade-off between simplicity and expressivity. In
Knauff , M., Pauen , M., Sebanz , N., and Wachsmuth , I., editors, Proceedings
of the 35th Annual Conference of the Cognitive Science Society, pages 1348–1353.
Cognitive Science Society. 35th Annual Conference of the Cognitive Science
Society, CogSci 2013 ; Conference date: 31-07-2013 Through 03-08-2013.

[Steinert-Threlkeld et al., 2022] Steinert-Threlkeld, S., Zhou, X., Liu, Z., and
Downey, C. (2022). Emergent communication fine-tuning (ec-ft) for pretrained
language models. In Emergent Communication Workshop at ICLR 2022.

[Sutton et al., 1999] Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
(1999). Policy gradient methods for reinforcement learning with function
approximation. Advances in neural information processing systems, 12.

[Tang and Van Heuven, 2009] Tang, C. and Van Heuven, V. J. (2009). Mutual
intelligibility of chinese dialects experimentally tested. Lingua, 119(5):709–732.



Bibliography 46

[Thompson et al., 2016] Thompson, B., Kirby, S., and Smith, K. (2016). Culture
shapes the evolution of cognition. Proceedings of the National Academy of
Sciences, 113(16):4530–4535.

[Trianni and Dorigo, 2006] Trianni, V. and Dorigo, M. (2006). Self-organisation
and communication in groups of simulated and physical robots. Biological
cybernetics, 95:213–231.

[Vaswani et al., 2023] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2023). Attention is all you
need.

[Vijayakumar et al., 2018] Vijayakumar, A. K., Cogswell, M., Selvaraju, R. R.,
Sun, Q., Lee, S., Crandall, D., and Batra, D. (2018). Diverse beam search:
Decoding diverse solutions from neural sequence models.

[Yu et al., 2022] Yu, D., Mu, J., and Goodman, N. (2022). Emergent covert
signaling in adversarial reference games. In Emergent Communication Workshop
at ICLR 2022.



Appendix A

Raw Training Curves

47



Appendix A. Raw Training Curves 48

A.1 Three Fully Connected Agents with Competi-
tiveness=1

Figure A.1: Competitiveness = 1 leads to no utterances at all.
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A.2 Uni-directional Ring

Figure A.2: Training and Evaluation data for uni-directional ring of 3 Agents. Observe
how some validation losses are decreasing (in the direction of the communication),
and other validation losses are increasing, just like self-play loss.
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