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Abstract

The activity of a neural population can be studied through a dynamic system perspective.

Research that has used this approach to gain insight into the emergence of behaviour,

usually only considers the final dynamic system. Yet, to fully comprehend how neural

dynamics lead to computations, their evolution during learning needs to be understood.

This study investigates how the dynamic systems evolve in Recurrent Neural Networks

(RNNs) while learning a context-dependent decision making task. By using two tensor

decomposition methods (CANDECOMP and Low tensor rank RNN) on the weights

of the RNNs, the low-dimensional dynamics of the neural activities over training are

captured. These reveal that the evolution of the dynamics consists of two phases which

timings differ between RNNs: the integration of 1) stimuli evidence and 2) context.

These findings give insight into the steps involved in learning a task as well as the

individual differences between network dynamics.
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Chapter 1

Introduction

One of the main aims of neuroscience is to understand how neural activity leads to

computations and behaviours. This is usually accomplished by analysing the neural

recordings of animals and humans while they perform tasks. These investigations

have revealed that the activity of a single neuron is often more complex than simple

correlation with stimuli or internal triggers could explain [40]. Instead, the whole

population or network of neurons need to be considered, to understand how their joint

activity gives rise to the investigated phenomenon.

One approach to achieve this is by viewing the neural population as a dynamical

system and studying its latent dynamics. Since the underlying model for biological

networks is usually not known, recurrent neural networks (RNNs) are used in their

place to simulate them and form hypotheses about their dynamics. For instance, Mante

et al. [24] and Pagan et al. [29] investigated how the same stimuli can have different

influences on a decision depending on the context (context-dependent decision-making)

using this approach. They found that the dynamic systems consider only relevant

stimuli by forming different dynamic characteristics for each context. How exactly

these dynamics vary can differ between networks [29].

To be able to understand why specific solutions are found, the evolution of the

dynamics during learning needs to be considered. Yet, most research using dynamic

system theory for biological and neural networks only studies the final network [40, 43].

For this reason, this project aims to investigate how the dynamics observed in the

task-trained RNNs from Pagan et al. [29] come to be. This can be accomplished

by considering the evolution of the weights of the RNN since they determine its

dynamic system [16]. The change of the weights over training can be analysed and

visualised using tensor decomposition. Tensor decomposition offers the possibility to

1



Chapter 1. Introduction 2

simultaneously capture changes across all dimensions of a higher-order array under

weak uniqueness constraints [19], making it perfectly suited for this aim.

It is hypothesised that by investigating the changes in the weights, different phases

in the evolution of dynamics for solving the context-dependent decision making task

can be detected. These stages are assumed to be captured by the components of the

tensor decomposition and differ between RNNs. Through this, insights can be gained

into how learning influences neural activity on the population level and their latent

dynamics.

The following section (Chapter 2) introduces the background knowledge about

dynamical system theory and context-dependent decision making needed to understand

the investigated dynamics. Two different tensor decomposition methods are then

described in Chapter 3 and 4 and applied to the RNNs trained by Pagan et al. [29]. The

insights gained from these methods and their implications are discussed in Chapter 5.



Chapter 2

Background

2.1 Notation

To aid in understanding the discussed topics, relevant notations and definitions of

concepts are given here, which are based on Kolda and Bader [19]. An Nth-order

tensor X ∈ RI1×I2×...×IN is a multidimensional array with N indices, resulting from

the tensor product of N vector spaces. The order of a tensor specifies its number of

dimensions/modes. A vector is, therefore, a 1st-order tensor, a matrix is a 2nd-order

tensor, and anything with a higher order is called a higher-dimensional tensor.

A vector of length I will be referred to as a bold, lowercase letter, x ∈ RI, while a

matrix of size I× J will be notated as a bold, uppercase letter, X ∈ RI×J. Any higher-

order tensor will be an uppercase letter in Euler script. For example, a 3-way tensor of

size I× J×K is X ∈ RI×J×K. Scalars are notated as a lowercase letter: a ∈ R.

To refer to a single element of a tensor each of its indices needs to be fixed, e.g. xijk
is an element of X ∈ RI×J×K where i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, and k ∈ {1, . . . ,K}. In

general, to refer to arrays within a tensor, each index either gets fixed or is denoted as a

colon, which indicates that all elements of that mode are accessed. For instance, for the

third-order tensor X ∈ RI×J×K, fixing its third mode but referring to all elements in the

first two modes gives a matrix X::k ∈ RI×J which is also called a frontal slice.

The inner product of two tensors X,Y ∈ RI1×I2×...IN is the sum of the product of

each of its elements: < X,Y>=
∑I1

i1=1

∑I2
i2=1 . . .

∑IN
iN=1xi1i2...iNyi1i2...iN .The Frobe-

nius norm of a tensor X ∈ RI1×I2×...IN is then defined as the square root of the inner

product of X with itself: ||X||F =
√∑I1

i1=1 . . .
∑IN

iN=1x
2
i1i2...iN

. In contrast, the ele-

ments of the vector outer product a(1) ◦a(2) ◦ . . .◦a(N) =X ∈RI1×I2×...IN , for vectors

a(1) ∈ RI1 , . . . ,a(N) ∈ RIN , are defined as xi1i2...iN = a
(1)
i1
a
(2)
i2

. . .a
(N)
iN

.
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Chapter 2. Background 4

2.2 Computations through dynamics

To understand how neural activity transforms stimuli input into behaviour, it is often not

enough to only consider each neuron on its own. Instead how the population carries out

computations needs to be studied [40]. One way to do this is by viewing the network of

neurons as a dynamical system. The activity in a population of N neurons at a specific

time point t can be denoted by x(t) ∈ RN. This vector can be understood as a point in

an N dimensional state space where coordinate n ∈ {1, . . . ,N} represents the activity of

neuron n [43]. The population’s activity over time then carves out a trajectory of this

point across the space. The state space’s latent dynamics determine these trajectories

and thus the computations carried out on the population level. Hence, by determining

the dynamic’s characteristics through dynamical system theory, insights can be gained

into how neural activity elicits behaviour.

In more detail, the change in neural activity over time is determined by the dif-

ferential equation dx
dt = f(x(t),u(t)), where u(t) is external input into the neural

population at time t and f is the change in activity based on the current state and

the external input [43]. It is f which determines the activities’ trajectory and thus

by “reverse engineering” it, the underlying dynamics can be characterised. Since f

tends to be nonlinear in neural networks, this is usually accomplished by dividing

the state space up into different areas which get linearised separately [41]. For in-

stance, common centres of linearisation are fixed points (x∗,u∗), which are points

where the neural activity does not change, i.e. dx
dt = 0. The nonlinear dynamics

f(x∗+∆x,u∗+∆u) around a fixed point (x∗,u∗) can then be linearised using Tay-

lor’s theorem as f(x∗+∆x,u∗+∆u) = f(x∗,u∗)+ δf
δx(x

∗,u∗)∆x+ δf
δu(x

∗,u∗)∆u+ ...

[41]. Assuming ∆x= x(t)−x∗ and ∆u= x(t)−u∗ are small, higher-order terms are

negligible. Thus, since f(x∗,u∗) = 0,

f(x∗+∆x,u∗+∆u)≈ δf

δx
(x∗,u∗)∆x+

δf

δu
(x∗,u∗)∆u (2.1)

=A(x∗,u∗)∆x+U(x∗,u∗)∆u (2.2)

[29]. The trajectories of activity in the linearised system can then be understood by

computing the Eigendecomposition on the Jacobian matrix A. The resulting right

eigenvectors are the directions in the state space where activity evolves independently

of each other, with the corresponding eigenvalue capturing the type of change in activity

they exhibit [39]. For instance, if all the eigenvalues have negative real parts values, i.e.

the system is stable in all directions, then the fixed point is an attractor. Nearby activity
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converges towards the fixed point, which for instance can be understood as a form of

memory. Other possible trajectories that can be captured through this, is neural activity

being repelled from or orbiting around the fixed point [43].

These fixed points can then be arranged in various ways in the state space to carry

out complex computations. For instance, a line attractor is an arrangement of fixed

points along a line in the state space. Each of these fixed points has one eigenvalue

close to 0 which corresponding right eigenvector pointing in the direction of the line

attractor, while all other eigenvalues are negative [29]. Through this surrounding activity

is attracted onto the line attractor but only external input can cause movement along it.

A line attractor can therefore be used for accumulating evidence (external input) for and

against two possibilities (2 ends of the line) [24, 29]. Hence it can be used for making a

binary choice [9], highlighting how the underlying dynamics of the neural population

lead to computations and behaviour.

One problem of using dynamical system theory in neuroscience is that the exact

underlying function f is typically not known for biological networks [43]. To overcome

this drawback, artificial neural networks are commonly employed to model biological

networks. In particular, RNNs are often used since they allow for feedback and a time

notion, similar to biological networks [2]. The RNNs are typically defined as discrete

or continuous models in one of two forms [28] :

τ
dx

dt
=−x(t)+Wϕ(x(t))+Bu(t)+b,or (2.3)

τ
dr

dt
=−r(t)+ϕ(Wx(t)+Bu(t)+b), (2.4)

which will be referred to as the current rate model and the firing rate model respectively.

x ∈ RN is considered the synaptic currents in each of the N neurons (called hidden

units for RNNs), which can get transformed into the unit’s firing rates r ∈ RN through

a non-linear function ϕ, i.e. rn = ϕ(xn). W ∈ RN×N is the recurrent weight between

each unit while B ∈ RN×M is the input weight for external input u ∈ RM . b ∈ RN is

the bias of each unit and τ is the time constant. The activity of the network is read out

linearly through the output z=Wr(t).

The two models represent the network’s activity and thus the state space in different

ways. While this leads to different reversed engineered dynamics, they are related to

each other since the two models can be mapped to each other [28, 30].

Both models can be used in two different ways to study biological network activity

during a behaviour. The RNN can be trained directly on the recorded neural data so

that its activity resembles the biological activity. Otherwise, it can be trained to perform
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Figure 2.1: The context-dependent decision making task in [29] (a) At the start of the

trial, the rat was given either the location or the frequency cue. It was then played a

series of sound pulses, where each was either low or high frequency and came either

from the left or right speaker. Depending on the cue, the rat had to pay attention either

to the location or the frequency of the sounds. The predominant pulses for the relevant

stimulus type then determined whether it had to turn left or right at the end of the trial.

(b) When evaluating the rat’s or RNN’s performance multiple trials were carried out

where the proportion of the inputs was fixed. The proportion between the left:right

pulses / low-frequency:high-frequency pulses could fall into one of six bins respectively,

representing their evidence strength for turning left vs right. Source: [29].

the same task as the animal, whose activity was recorded [43]. Either way, this leads to

networks whose underlying model is known and can be reverse-engineered as described

in this section. The results can then be used to form and test hypotheses about the

dynamics in biological networks.

2.3 Context-dependent decision making

One area in neuroscience where this approach has been used to understand the emer-

gence of behaviour is context-dependent decision-making. Depending on the context,

e.g. one’s goals, the same stimuli can elicit completely different behaviour [24]. It

has been theorised that the prefrontal cortex’s (PFC) activity represents this setting

and influences lower cortical areas through top-down signals in how they process the

context-relevant and irrelevant stimuli [26, 27]. Yet, there has been found contradicting

evidence for [3, 44] and against [34, 36] this early, top-down gating of stimuli based on
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their relevance.

To investigate this on the population level, Mante et al. [24] trained two monkeys

and some RNNs to make a binary decision, based on either the colour or the direction

of motion of some moving dots and the given context (attention to colour vs movement).

When using target dimensionality reduction on both the monkey’s neural activity in

the PFC and the RNNs activity, they observed similar patterns. These were explained

by reverse-engineering the RNNs dynamics, which showed two line attractors, one

for each context. Colour/Motion inputs caused neural activity to move away from its

location on the active line attractor to a similar extent, independent of their relevance.

However, if the input was relevant to the context then the activity relaxed back onto the

Line Attractor at a distance from its point of origin towards the choice evidenced by the

stimuli, while activity perturbed by irrelevant inputs returned to the original location.

Hence they concluded that it is the PFC itself that integrates the relevant stimuli using

the line attractors instead of them being preselected through early gating.

However, when Pagan et al. [29] trained rats and RNNs on a similar task using

auditory cues (see Figure 2.1), they were able to show that there exists a larger solution

space that can explain the biological neural activity than what the RNNs discovered. For

each trial, a rat was played a series of sound pulses which could come out either from a

left or right speaker (location) and be low- or high-frequency (frequency). Depending

on an initial context cue, it had to pay attention to one of the two stimuli types (location

vs frequency) to make a binary choice. In the location context, it had to turn right

if more sounds were coming from the right than the left speaker and other else left.

Similarly, in the frequency context, more high-frequency pulses meant turning right

as opposed to left. The task was also used to train the RNNs, which used a discrete

version of the firing rate model (Equation 2.4 ) for the RNNs, where ϕ= tanh() and

Bu(t)+b = i = wLociLoc+wFrqiFrq+WCtxiCtx+b. For each time step during

a trial, the location input iLoc ∈ R represented the difference in right vs left pulses,

iFrq ∈R the difference in low vs high-frequency pulses, and the context input iCtx ∈R2

the one-hot encoded context. wLoc ∈RN,wFrq ∈RN, and WCtx ∈RN×2 were then the

corresponding input weights. The sign of the readout at the end of the trial indicated the

RNN’s choices. The linearization of the model at each fixed point (r∗, i∗), as described

in Equation 2.2 , is

τṙ(r∗+∆r, i∗+∆i)≈A(r∗, i∗)∆r+U(r∗, i∗)∆i (2.5)

= (−I+DW)(r∗, i∗)∆r+D(r∗, i∗)∆i, (2.6)
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where D is a diagonal matrix, which diagonal entries are defined as djj= g ′(wj: r
∗+i∗).

Assuming that there are no sound pulses at the fixed points, i∗ =WCtxiCtx+b takes

one of two values depending on the context. This leads to the two context-dependent

line attractors, differing in their dynamics. The net movement along the attractor for a

stimuli pulse (location or frequency) is defined by the inner product of the linearised

input D(r∗, i∗)∆i, which perturbs the activity of the line attractor, and the selection

vector s. s is the left eigenvector of DW corresponding to the eigenvalue 0 and

determines how the activity relaxes back onto the attractor [29].

The taught RNNs in both Mante et al. [24] and Pagan et al. [29] mainly differed in

their selection but not in their input vectors between contexts and input types. However,

there exist other solutions where the inputs can differ through early gating, which still

shows the same low-dimensional activity patterns as the trained RNNs and biological

networks [29]. Hence, the contradicting findings about early gating are just different,

equally valid solutions. Indeed, the rats in Pagan et al.[29] showed large differences in

both their neurological and behavioural data, suggesting that they might use various

solutions. This observation raises the question not whether early gating exists or not,

but what causes it to be used in one situation/individual but not in another. To be able

to understand this, the emergence of the dynamics needs to be considered and not just

the final system. Yet, studies in neuroscience using dynamical system theory have only

used it on the final trained networks.

2.4 Bifurcations in dynamics during learning

As can be seen in Equation 2.6, the dynamics of the system are defined by the weights,i.e.

parameters, of the RNN. For instance, the Jacobian, which determines the direction of

the line attractor and selection vector, consists of the recalled columns of the recurrent

weight matrix [30]. The parameter space of the model consists of various regions with

different dynamical systems, which are separated by bifurcation curves. Bifurcation is a

qualitative change in the dynamic system, such as the emergence of fixed points, when

changing a parameter [14]. Thus, while a network learns and adapts its parameters, it

crosses these bifurcation boundaries, changing its dynamics, until it ends up with its

final system. Hence, by studying the changes in the weights during learning insights

can be gained into the different dynamic characteristics that emerge.

Most studies which consider bifurcation in RNNs are concerned with how it can

hinder optimisation through gradient decent [14, 31, 13, 33]. Haputhanthri et al. [16]
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is one of the only studies that have considered bifurcation as a potential to better

understand learning in both biological and artificial neural networks and not just as a

nuisance. They were able to show that the change in dynamics is reflected in the loss and

change in the models’ parameters. However, they mainly considered the average across

models to understand these relations, instead of comparing the differences between

them to better understand how different dynamical systems can be learned.

This study aims to build on this to increase an understanding of individual differ-

ences in learned dynamics concerning context-dependent decision making. While the

dynamics of the trained RNNs in Pagan et al. [29] only encompassed parts of the

possible solution space, they still showed enough variances between them, that it can

be assumed that they differ in their learning. Thus, the change in their weights will

be studied, to understand how dynamics emerge and their differences and similarities

across models.

2.5 Tensor decomposition

One method to study the change in the RNNs’ weights during training is tensor de-

composition, the higher-order version of matrix decomposition. The recurrent weight

matrices of an RNN for different trial points across learning can be stacked along

a third dimension, giving a 3rd order tensor of size Unit×Unit× Trial. A tensor

decomposition method then separates this tensor into three factorisation matrices, each

relating to one of the tensor modes (columns, rows, and trials).

Through this, the change of different rows and columns factors of the recurrent

weight matrix over training can be captured. This reveals components of the weights

that differ in their trajectories during training and thus the dynamics they are involved

in. This is the advantage of tensor decomposition as opposed to decomposing each

matrix individually: the interaction across all modes is captured simultaneously [45].

Moreover, some tensor decomposition methods, as opposed to matrix decomposition

methods, can find unique solutions under weak constraints [19]. This makes it more

useful for this task since it helps to ensure that the discovered weight patterns are indeed

the ones related to the dynamics and not just one of multiple explanations.

This study will use two different tensor decomposition methods: CANDECOMP

and Low Tensor Rank RNN (LtrRNN). Each of them will be introduced in the following

two chapters alongside how they were applied to the RNNs and their results.



Chapter 3

CANDECOMP decomposition

3.1 Methodology

One of the most popular tensor decomposition methods is CANDECOMP (CP; also

known as canonical decomposition or PARAFAC) [10, 17]. This method decomposes

an N-way tensor X ∈ RI1×I2×...×IN into the sum of R rank-one Nth-order tensors. An

N-way tensor is rank-one if it can be expressed as the outer product of N vectors,

X= x1 ◦x2 ◦ . . .xN, where xn ∈ RIn for n ∈ {1, . . .N}. For example, for the 3th-order

recurrent weight tensor W ∈ RN×N×K

W≈ Ŵ=

R∑
r=1

ar ◦br ◦cr, (3.1)

where ar ∈ RN, br ∈ RN, and cr ∈ RK for all r ∈ {1, . . . ,R} are the factors of

the decomposition (see Figure 3.1). Each variable corresponds to one of the modes

of W and all R factors belonging to the same dimension can be concatenated into a

factorisation matrix. For example, the factors ar are the column factors of W and

A= [a1 a1 . . .aR] ∈ RN×R is the mode’s respective factorisation matrix. Similarly, br

are the factors for the rows and cr to the trial points of W, each being concatenated

to B ∈ RN×R and C ∈ RK×R respectively. The rank-one tensor ar ◦br ◦cr is referred

to as a component, e.g. a1 ◦b1 ◦c1 is component one of the decomposition. R is the

rank of the decomposition and Ŵ is of tensor rank R since it is the sum of R rank-one

tensors. Hence, W is rank R if W= Ŵ for a rank R CP decomposition.

Note that each of the factors can be normalised, with the weights of all factors

in the same component captured by λr, i.e. Ŵ =
∑R

r=1λr ar ◦br ◦ cr. In general,

10
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Figure 3.1: CANDECOMP decomposition of the 3rd order weight tensor for rank R.

factors within a component can always be rescaled as long as the overall component

value does not change, i.e. Ŵ =
∑R

r=1ar ◦br ◦cr =
∑R

r=1αrar ◦βrbr ◦γrcr, where

αrβrγr = 1, ∀r ∈ {1, . . . ,R}. Additionally, the order of the R components in the sum

can always be changed. Besides these two exceptions, the decomposition of the rank

R tensor Ŵ =
∑R

r=1ar ◦br ◦cr is unique [19]. Moreover, a sufficient condition for a

CP decomposition of rank R to be unique for a 3-way tensor X is that kA+kB+kC ≥
2R+2, where A,B, and C are the factorisation matrices and kX is the Kruskal/k-rank

of a matrix X [21]. The k-rank indicates the maximum number of columns in X such

that any combinations of them are linearly independent.

The CP decomposition of the 3rd-order weight tensors was carried out using the

Python package Tensorly [20]. The package uses an alternative least squared (ALS)

algorithm, where all three of the factorisation matrices are initialised randomly. ALS

keeps two of them fixed while optimising the third factorisation matrix and then moves

on to the next factorisation matrix. This procedure is carried out until some threshold is

met [19].

3.2 Data

The data used in this study are the simulated RNNs from Pagan et al. [29] that were

taught by them to perform context-dependent decision making for auditory stimuli. Ten

of their trained RNNs were investigated. Five of these had 20 hidden units and the other

five had 100, with each having different initial weights. Each is named based on its

unit size, e.g. RNN20-1 is the first RNN with 20 hidden units. For the 20 hidden units,

120000 training/batch steps were carried out. After each batch, which consists of 256

trials, the weights were updated using backpropagation with the Adam optimizer. The
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100 hidden units were trained over 60000 steps. After every 1000 batches, the recurrent

and input weights were sampled for each RNN. These K sample points will be referred

to as the trial points k ∈ {1, . . . ,K}. Hence, the recurrent weight tensor W ∈ RN×N×K

for an RNN with 20 hidden units was of size 20×20×120 and for 100 hidden units of

size 100×100×60. This tensor will be referred to as the “Full Tensor”.

To gain different insights into how the weights change and account for the fact

that the weights were randomly initialised, two additional recurrent weight tensors

were formed for each of the RNNs. Firstly, for the “Delta Tensor” ∆W ∈ RN×N×K,

the first sampled weight matrix was subtracted from all following weight matrices,

i.e. ∆W::k =W::k−W::1 for k ∈ {1, . . . ,K}. Secondly, for the “Tensor of Differences”

W ′ ∈ RN×N×K, the weight for each trial point was subtracted from the weight of

the following trial point: W ′
::k = W::k+1−W::k for k = {1, . . . ,K− 1} (W ′

::K = 0).

Whether a weight tensor is a Full Tensor, Delta Tensor, or Tensor of Differences will be

referred to as its tensor type.

3.3 Rank selection

To be able to decompose these weight tensors, the rank of the CP decomposition needs

to be selected. Computing directly the rank of a tensor with rational entries is NP-hard

and thus usually not possible [18]. Instead, a common method is to decompose the

tensor for consecutive ranks from r= 1, . . . ,R until some threshold is met. Ideally, this

threshold would be that the reconstructed tensor of that rank is the same as the original

tensor and thus its tensor rank is found [19]. However, this is often not the case since

the original tensor might contain noise or components that are not of interest. Instead

other evaluation methods are used to determine this threshold and hence the rank (see

[12, 35] for an overview). Since there exists a wide range of them, five of the most

common ones were used for evaluating the weight decompositions.

3.3.1 Evaluation methods

Firstly, one of the most common methods to evaluate models is to use cross-validation.

Cross-validation helps to ensure that only relevant data instead of noise is captured by

the components by withholding entries of the tensor during decomposition [22]. This

was accomplished by sorting each tensor element randomly into one of ten bins. Its

decomposition was then carried out ten times, masking each of the bins once (alongside
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entries around it to account for correlation between neighbouring elements). The masked

elements in the bin were then reconstructed based on the decomposition results and

compared to the original tensor. However, it has been suggested that cross-validation is

not the most suitable method for tensor rank determination [7]. This is because a rank r

and rank r+1 decomposition do not necessarily have similar components (since ALS

computes all of the factors at the same time). While for matrix decomposition methods

a higher rank simply means that factors are added and thus cross-validation is therefore

able to detect when these additional factors only capture noise, this is not the case for

tensor decomposition [6].

A different method that can be used either on the directly decomposed tensor or on

the cross-validation results, is to calculate how much variance of the original tensor can

the reconstructed tensor explain. One measure which encapsulates this is the fit value

which is defined as fit(R) = 1− ∥W−Ŵ ∥F
∥W ∥F

for a rank R decomposition [12]. Either a

certain fit threshold, e.g. 70% of variance explained, or the elbow in the fit curve is

used to determine the rank. However, since that value changes gradually it is often hard

to see which exact rank value is the most optimal. For this reason, [42] defined Diffit

which considers how the fit value for a specific rank relates to the fit of its neighbouring

ranks: Diffit(R) = fit(R)−fit(R−1)
fit(R+1)−fit(R) . The rank with the highest Diffit value would then

be chosen which is a more clear measurement.

Another method that was developed to prevent this gradual change between ranks

is core consistency diagnostic (CORCONDIA) [8]. The CP decomposition X̂ =∑R
r=1λrar ◦br ◦ cr can be understood as a special form of the tensor decomposi-

tion method Tucker3 decomposition X̂ =
∑R

r=1G×1A×2B×3C, where the core

tensor G only has entries along its super-diagonal equal to the λ values and A,B and

C being the factorisation matrices (×n is the n-mode matrix product). CORCONDIA

takes advantage of this by comparing the CP decomposition with a Tucker3 decom-

position of the same rank, based on the assumption that if the CP decomposition is

appropriate for the tensor then the core tensor of the Tucker3 decomposition will mainly

have entries along the super-diagonal. The highest rank for which the decomposition is

appropriate would then be the selected rank.

Lastly, [15] developed the method NORMO which determines the similarity between

different factors of the same mode. The idea behind it is, that if the decomposition has a

higher rank than the actual rank of the tensor then it will split up single components into

multiple ones, which have similar factors. Hence, by calculating the similarity between

two components based on the correlation of its factors, redundant components can be
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identified. The highest rank for which none of the components are redundant is then

determined as the tensor rank.

3.3.2 Evaluation results

20 Hidden units 100 Hidden units

Full Delta Dif Full Delta Dif

Cross-Validation 13 5 45 67 5 53

Fit Threshold 11 4 9 53 5 13

Fit Elbow 14 8 10 36 9 9

Diffit 41 43 30 97 93 75

CORCONDIA 1 2 2 1 2 2

NORMO 15 3 2 25 4 2

Table 3.1: Best rank for RNNs with the same hidden unit size for different tensor types

(Full Tensor, Delta Tensor, Tensor of Differences) and evaluation methods.

CP decomposition was applied to each of the three tensor types for each of the

RNNs for a range of different ranks. The tensors of RNNs with 20 hidden units were

decomposed using ranks between 1 to 50, while for RNNs with 100 units decompo-

sitions with a maximum rank of 100 were computed. To account for the fact that the

components are in a random order, which makes it more difficult to compare results,

each decomposition was normalised, i.e. Ŵ=
∑R

r=1λr ar ◦br ◦cr. The components

were then reordered by their weights such that λ1 ⩾ λ2 ⩾ . . . ⩾ λR. Hence, the first

component is the most “important” one with the highest weight, followed by the second

one, and so on.

Each of the evaluation methods was then applied to the decomposition results of

each RNN and tensor type, which can be seen in Appendix A. Since for the same

unit size, tensor type, and evaluation method, the RNNs exhibited similar ranks, a

representative rank was computed across them, shown in Table 3.1. For the fit value,

the best rank was chosen both based on when the decomposition explained 70% of the

variance of the original tensor (see Figure 3.2) and based on where the elbow in the

plot was (using the python package [37]). The fit threshold of 0.7 was also used to

determine the rank for the cross-validation results. The representative rank across RNNs

for evaluation methods using the fit value was calculated by computing the average fit at

each rank across RNNs and determining the rank based on that. Similarly, for NORMO
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Figure 3.2: Fit error fit(R) = 1− ∥W−Ŵ ∥F
∥W ∥F

of the decompositions for different ranks

R. Each subfigure shows the fit error, i.e. the variance of the original tensor explained,

for all recurrent weights of a specific tensor type (Full Tensor, Delta Tensor, Tensor of

Differences) and hidden unit size (20 in the top row and 100 in the bottom row). Each line

depicts one of the five RNNs of that unit size. The horizontal line is when the threshold

of 0.7 (70%) is met.

the average similarity scores of the components were used across RNNs. Lastly, for

CORCONDIA the mode across RNNs was taken to determine the best rank.

These suggested ranks differ strongly between evaluation methods (Table 3.1).

Some methods, such as CORCONDIA, suggest a very low rank, while others, like

Diffit, assume a rank double the unit size of the RNNs. This makes it hard to select

the best rank for the decompositions. However, some insights can still be gained from

these methods, even if the true ranks of the weights remain unclear. Firstly, the fact

that RNNs within the same groups showed similar ranks, such as in Figure 3.2, is an

indication that their weights exhibit similar patterns, i.e. dynamics. Furthermore, when

comparing the Full Tensor type to the other types for both unit sizes, most evaluation

methods show a higher rank for the first. The ranks of the Full tensor appear to be

similar and thus probably related to the unit size of the RNNs. In contrast, the ranks for

the Delta and Differences tensors are low for most evaluation methods (except Diffit
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and cross-validation for the Tensor of Differences) and both unit sizes, due to them

capturing the change in the weights which seems to be independent of the number of

units.

3.4 Factor Visualisation

To form a better understanding of these various decompositions and the change in

weights they picked up, the resulting factors were visualised. Since there was no clear

best rank, decompositions between ranks of one to five were considered. The lower

value makes it easier to understand the main patterns that the components picked up and

are in line with some of the suggested ranks of the decomposition results, especially for

the Delta Tensors and Tensor of Differences.

Firstly, an individual decomposition was considered. Figure 3.3 shows the rank

three decompositions of RNN20-4 (see the same decomposition for all other RNNs

in Appendix B). Each subfigure is the decomposition of one of the tensor types of the

RNN’s recurrent weights. Each column shows all of the factors corresponding to the

columns, rows, and trial points respectively. For example, the first column in Figure

3.3a are the column factors a1,a2,a3 of the rank three decomposition of the full weight

tensor (Equation 3.1). When considering the column and row factors on their own,

no particular pattern can be observed, since it is random which units are associated

with which dynamics. However, the trial factors display how the weights of the units

captured by the row and column factors, and thus the dynamics they are involved in,

change over time. One of the trial factors for the Full Tensor (Figure 3.3a) and all of the

trial factors of the Delta Tensor (Figure 3.3b) show a strong increase of the components

over time with changes in their trajectory at various points between training steps 20000

to 40000. Around these same trial points, in particular points 20000 and 27000, the trial

factors for the Tensor of Differences (Figure 3.3c) exhibit peaks.

These trajectories indicate that there are specific points during training where the

weights of the RNN suddenly change quickly (based on the Tensor of Differences).

These changes in the neural weights are permanent, as can be seen by trial factors of

the Full and Delta tensor. Hence, it can be assumed that these long-lasting changes are

related to the formation of the line attractors.

Before trying to further investigate what these changes in trajectory mean and

whether they can be observed in all RNNs, other ranks were considered. This was

done to make sure that the observed patterns are indeed related to the overall dynamics
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Figure 3.3: Rank three decomposition results for RNN20-4. Each subplot shows all of

the resulting factors for all three modes (row,column,trial) for one of the tensor types of

the recurrent weights of the RNN: (a) Full Tensor, (b) Delta Tensor, and (c) Tensor of

Differences.

learned by the RNN and not just an individual characteristic of a specific decomposition,

especially since the ranks of the tensors are ambiguous. Figure 3.4 shows the trial factors

of rank one to five decompositions of all tensor types of RNN20-4. The decompositions
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Figure 3.4: Trial factors of RNN20-4 for different rank decompositions. Each row used

a different rank for the decomposition of each of the tensor types (Full Tensor, Delta

Tensor, Tensor of Differences) ranging from one to five.

of the same tensors for two neighbouring ranks can theoretically exhibit completely

different factors since in ALS all factors are identified at the same time. Yet, when

considering Figure 3.4, it can be noted that adding a component simply adds another

factor with one of the lowest weights, without changing the existing ones too much.

Through this, the main points of change observed in Figure 3.3 appear to be preserved

across ranks. Higher rank decomposition simply picks up smaller variations of these,

but their changes are still in the same time window of 20000 to 40000 training steps. The

same observation was also found for the other RNNs which can be seen in Appendix C.

It should be noted that while there appears to be a big change between rank three
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Figure 3.5: Trial factors of the rank three decompositions of the recurrent weights of

five different RNNs with 20 hidden units. Each column is a different tensor type of the

weights (Full Tensor, Delta Tensor, Tensor of Differences).

and four for the trial factors of the Tensor of Differences when considering the first

peak, this can be explained through scaling. As mentioned before, the component

ar ◦br ◦cr = αrar ◦βrbr ◦γrcr as long as αrβrγr = 1. Hence, while factors c2 in

the rank four and five decompositions have a negative peak around 20000, multiplying

them and either the corresponding row or column factor of that component with −1

would make it positive and thus more similar to the lower rank factors.

As a next step, the decompositions of different RNNs were compared to investigate

whether they exhibit similar patterns as RNN20-4. Figure 3.5 shows the trial factors of

the rank three decompositions for all weight tensor types for all RNNs with 20 hidden
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Figure 3.6: Trial factors of the rank three decompositions of the recurrent weights of

five different RNNs with 100 hidden units. Each column is a different tensor type of the

weights (Full Tensor, Delta Tensor, Tensor of Differences).

units. Figure 3.6 shows the decompositions of the RNNs with 100 hidden units.

The decompositions show similar patterns between RNNs for the same tensor type,

independent of unit size. The Full Tensors consist of one trial factor, which normally

has the largest or second largest weight, with a strong increase while the other two

exhibit smaller changes. Similarly, for the Delta Tensors, all the factors have these

increasing trajectories and the factors of Tensor of Differences exhibit peaks at certain

time points. The changes in the trajectories of the trial factors for the Full and Delta

Tensors align with the peaks of factors for the Tensor of Differences for the same RNN.

Hence, as has been observed before, there are certain time points for each RNN where
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the weights undergo quick, permanent changes.

However, there are also some notable differences. Firstly, the exact training step

when weight changes occur varies between the RNNs. For instance, RNN20-3 main

peak is at around 20000 while RNN20-5 has its at 40000 (Figure 3.5). Secondly, the

number of peaks differs between the RNNs. While some RNNs, such as RNN20-4

(Figure 3.5) and RNN100-1 (Figure 3.6) have 2 main peaks, most of the RNNs only

exhibit one. Lastly, the RNNs differ in the behaviour of the trial factors of the Tensor of

Differences after the main peaks. Some show strong oscillations (e.g. RNN20-1) while

others simply return to 0 (e.g. RNN100-3).

Overall these findings show that tensor decomposition is able to pick up changes

in the recurrent weights of the RNNs, even if it is probably of a lower rank than the

true rank of the tensor. The detected trajectories are consistent across ranks and RNNs,

suggesting that they are related to the formation of the dynamic system used to solve

the task and not to unique, non-relevant characteristics of the RNNs. This indicates that

the dynamics form rapidly in discrete steps (peaks in the trial factors). However, when

the dynamics form (timing of peaks) and the steps they involve (number of peaks and

oscillations) appear to vary across RNNs.

3.5 Comparison to RNNs’ performances

To better understand the changes in the dynamics that were picked up by the trial

factors, their trajectories were compared to performance metrics of the RNNs. Figure

3.7 shows the trial factors of the rank three decompositions of the Tensor of Differences

for RNN20-4 and two different performance measurements of the RNN during training.

Firstly, Figure 3.7b is the loss of the RNN during training. The two vertical lines in the

factor and loss plots are aligned with the peaks of the trial factors. Secondly, Figure 3.7c

plots the performance of the RNN at each trial point for different inputs and contexts.

The proportion between left and right location pulses and low- and high-frequency

pulses for a trial can take one of six values (see the six different bins in Table 3.2 and

Figure 2.1b). For each possible combination of evidence strength of the two stimuli

types and context, multiple trials were created for each training step. The percentage of

times that the RNN chooses to turn right across the trials was then plotted.

It can be observed that the loss suddenly starts decreasing at the same training step

at which the peak of the first trial factor occurs (step 21000). The RNN’s performance

matrices show that by that point the RNN has learned to correctly identify which
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Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6

Evidence

strength

Strong

left

Medium

left

Weak

left

Weak

right

Medium

right

Strong

right

Proportion 39:1 35:5 25:15 15:25 5:35 1:39

Table 3.2: Different proportions that frequency and location pulses can have. Each

bin determines the exact proportion between the pulses for the two choices for the

specific stimuli type and thus how strong the overall evidence for a specific direction is.

For location stimuli the proportion is left:right pulses and for the frequency stimuli it is

low-frequency:high-frequency pulses.
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Figure 3.7: Different performance measures of RNN20-4 in comparison to the trial

factors of its weight tensor. (a) The trial factors for the Tensor of Differences. Vertical

lines indicate the trial point at which the peaks occur. (b) Loss of the RNN during training.

(c) Percentage of times the RNN chooses the direction right across trials for a specific

location and frequency proportion (see Table 3.2) and context for different training steps.

direction to choose based on the evidence. However, it considers and integrates both

stimuli types equally and there is no difference between the two contexts. These three

plots together suggest that the first peak corresponds with the formation of the line

attractors. The line attractors do not differentiate between stimuli relevance yet (the

product between the input and the selection vector is the same for both contexts and
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Figure 3.8: Different performance measures of RNN20-3 in comparison to the trial

factors of its weight tensor. (a) The trial factors for the Tensor of Differences. Vertical

lines indicate the trial point at which the peaks occur. (b) Loss of the RNN during training.

(c) Percentage of times the RNN chooses the direction right across trials for a specific

location and frequency proportion (see Table 3.2) and context for different training steps.

stimuli types). This ability emerges between steps 21000 to 27000, as can be seen in

the performance matrices. In fact, by step 27000, which is the peak of the second and

third trial factors, context integration has fully formed. Hence, the second change in the

weights is when the line attractor dynamics become context-dependent. These weights

then keep getting refined until point 40000, which is reflected by the slower decrease in

factor c3 and the continuous reduction in loss.

These observations suggest that the trial factors captured two phases in the formation

of the dynamic system: the formation of the line attractor and the integration of context.

Yet, many of the RNNs’ Tensor of Differences’ trial factors only have one peak. Figure

3.8 shows the performance for RNN20-3. As before, the peak is located where the loss

shows a steep drop. The performance matrices show at the peak point a similar diagonal

pattern of evidence integration as in RNN20-4 for step 21000. However, there is already

a light difference in the matrices across contexts with a preference for relevant stimuli

and at the next trial point they already switched to full context integration. This suggests

that while the RNN still firstly forms the line attractor and then the context integration,
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these two phases overlap more. This is also reflected in the trajectories of the trial

factors. For RNN20-4 the factors capturing context-integration related dynamics only

start changing around when the first factor is peaking, fully separating the two stages. In

contrast, for RNN20-3 the second trial factor follows closely after factor 1, as it would

be expected if the two phases overlap. If the weights were sampled more often, this

timing difference would likely be more clear and perhaps even show two close peaks

for the factors.

Similar observations can be seen for the other RNNs in Appendix D. In particular,

for RNN100-1 (Figure D.4) the timing of the line attractors formation and context

integration differs between the two contexts. The trial factors appear to pick up when

the phase has been completed for both contexts. Moreover, RNN20-1’s (Figure D.1)

trial factors showed strong oscillation after the peak. These appear to be associated with

the RNN having difficulties fully forming the context integration, leading to constant

changes in weights and loss.

Overall, by considering performance matrices alongside the tensor decomposition

insights were gained about the dynamics caused by the weight changes. It appears that

the trial factors capture two different phases of the formation of the final dynamics:

formation of the line attractor and context integration. The timing of these and how

much they overlap differs between RNNs which is reflected in their trial factors.

3.6 Factor alignment to input weights

To further investigate whether the assumption of the two-step process in the formation

of the dynamics is correct, the input weights were considered. The integration of the

evidence along the line attractor depends on the alignment of the selection vector and

the linearised input for that context. The selection vector is a left eigenvector of the

Jacobian and thus is related to the rows of the recurrent weight matrix. Similarly, the

linearised inputs are associated with the input weights. Hence, it was hypothesised that

this alignment will be reflected in the inner product of the input weights and the row

factors of the decompositions, with different relationships for components capturing

line attractor formation compared to context integration.

The RNNs have four different input weight vectors: wLoc,wFrq, and WCtx =

[wLocCtx wFrqCtx]. Since these changed during learning the sampled, normalised input

vectors at each trial point can be concatenated to the matrices WLoc,WFrq,WLocCtx,

WFrqCtx ∈ RK×N. Taking the row factorisation matrix B ∈ RN×R of a decomposition,
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Figure 3.9: Alignment of each input weight WLoc,WFrq,WLocCtx,WFrqCtx with the

row factors b1,b2,b3 of the rank three decomposition of RNN20-4 over time. Each

subfigures is one of the tensor types: (a) Full tensor, (b) Delta tensor, (c) Tensor of

Differences. The vertical lines indicate the peaks of the trial factors of the Tensor of

Differences.

the angle between the weights and factors across learning can be calculated by multiply-

ing the corresponding matrices. For instance, the rth ∈ {1, . . . ,R} column of the product

WLocB ∈ RK×R represents the alignment between the location input weight wLoc and

the rth row factor br for each trial point k.

The results of these computations for the rank-3 decomposition of RNN20-4 for each

tensor type can be seen in Figure 3.9 (see the same for the other RNNs in Appendix E).

Each column corresponds to one of the input weights ( Location, Frequency, Location

Context, Frequency Context), with each of its lines being the alignment of that weight

with one of the row factors over training. It can be observed that for all tensor types, the

alignment between the weights and row factors change at the two peak points of the

trial factors of the Tensor of Differences (training steps 21000 and 27000; vertical lines
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in the plots). Since the row factors are constant, this indicates that the input weights

change at similar points as the recurrent weights, which is likely related to the phases in

the evolution of the dynamics.

When considering the alignments for the Delta tensor more closely some interesting

patterns can be observed. b3 is aligned with the location and location context weights

but not with the two frequency weights. The opposite is true for the second row factor

b2, but the difference between the two stimuli types is less distinct. Lastly, b1 shows

predominantly an alignment with the frequency input weights. When considering the

row factors corresponding trial factors ( Figure 3.3b ), these alignments make intuitively

sense. Component one changes its weights early (see trial factor c1 in Figure 3.3b)

and is thus related to the formation of the line attractor. Hence, as would be expected,

the weights for pulse integration show a stronger relationship with its row factor and

change their alignment more with it than the context integration weights. In contrast,

components two and three appear to be related to context integration (trial factors c2 and

c3 in Figure 3.3b respectively) and thus have a stronger alignment for both pulse and

context input. Moreover, it appears that each factor captures more changes for one of the

stimuli types than the other to a certain extent. The strength of these correspondences

varies, probably because the decomposition is only of rank three.

Overall these observations show that the two-phase assumption matches with the

change in the input weights. While this computation can not capture exactly the angles

between inputs and selection vector, since the non-linearised weights are considered and

a low rank, overall patterns are observable that align with them. Besides the differences

in the alignments of the weights to the components for the two different phases, it also

appears as if every component is related more to one than the other stimuli type.
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Low tensor rank RNN

4.1 Methodology

The CP decomposition of the weights has given insights into the evolution of dynamics

in the RNNs. However, identifying the correct rank for the decomposition was not

straightforward. Consequently, lower ranks than the true ones were probably used.

Some important changes in the dynamics might have been missed due to this. Yet using

a higher rank would have made it harder to interpret the results and might have split up

related dynamic characteristics into multiple components. This problem emerges from

the fact that the CP decomposition tries to preserve the high rank. However, not all of

the components might be necessary for the dynamics. In fact, it has been observed that

low rank recurrent weight matrices capture complex dynamics in neural networks such

as line attractors [25]. CP decomposition is not able to identify these dynamic relevant

components since it simply aims to explain the variance in the weights.

To overcome this drawback, Pellegrino et al. [32] developed LtrRNN. This RNN

is trained on reproducing neural activity, while its weight tensor is restricted to be

of low tensor rank. Through this, the weight factors capture only dynamic relevant

changes needed to reproduce the activity. The frontal slice of a 3rd-order rank-R tensor

X=
∑R

r=1ar ◦br ◦cr ∈RN×N×K can be expressed as X::k =
∑R

r=1(ar ◦br)c
(k)
r where

c
(k)
r is the kth element in cr. Thus by restricting the recurrent weight to evolve during

training in the R dimensional subspace of RN×N spanned by {vec(ar ◦br)}
R
r=1, the

resulting weight tensor is of rank R. LtrRNN uses a current rate model (Equation 2.3)

27
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without the bias. The activity dynamics for trial k are hence

τẋ(k) =−x(k)+W::kϕ(x
(k))+Bu(k)(t) (4.1)

=−x(k)+

R∑
r=1

(ar ◦br)c
(k)
r ϕ(x(k))+Bu(k)(t), (4.2)

which are fitted to the given activity. cr is also restricted to only change smoothly across

trials to reflect learning better.

4.2 Data

The data used to train the LtrRNNs were the firing rates of the original RNNs trained

by Pagan et al. [29]. For each trial point, the activity of all units at each time point

across multiple trials was recorded which can be concatenated across trials to form

a 3rd order tensor of size Time× Trial×Unit. Two types of activity tensors were

created, which differed in the inputs used for the simulated trials. Firstly, for the variable

input activity tensor, the proportions between right and left/low- and high-frequency

pulses were randomly chosen from a wide range of potential values, which resembled

the inputs during training. To be able to gain insight into the different influences the

proportions and thus their strength of evidence for a direction had on the activity, the

proportions for both stimulus types for each trial were classed into one of six, equally

sized bins (their strength of evidence reflecting the bins in Table 3.2). To be able to

better capture the evidence strength dependent activities, the fixed input activity tensor

was generated, where the inputs for each location/frequency bin were always the same

with their proportions corresponding to Table 3.2 (see also Figure 2.1b). For both

activity tensor types, the condition for each trial was then defined as [Context, Location

Bin, Frequency Bin], leading to 72 possible different condition labels.

4.3 Variable Input Results

The LtrRNN was first trained with the variable input activity tensors, which consisted

of 120 trials (one for each trial point). The activity of RNN20-4 was used to tune

for different hyperparameters using cross-validation (see Appendix F.1). In particular,

the mean squared error (MSE) between the LtrRNN’s and RNN20-4’s activities were

computed for different ranks which results are shown in Figure 4.1a. It can be noted
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Figure 4.1: Rank selection and colouring of the conditions for the LtrRNN. (a) MSE

between the LtrRNNs activity and the original activity of RNN20-4 for different ranks. The

value l= 20000 refers to the smoothness of the trial factor. (b) The colours used for the

activities for each trial, based on the trial’s condition [Context, Location Bin, Frequency

Bin].

that at rank three there is a prominent elbow in the error. Thus, as was expected, the

LtrRNN could capture the dynamics with a low rank weight tensor.

The results for the rank three LtrRNN for the activity of RNN20-4 can be seen in

Figure 4.2 (the results for all other RNNs with 20 hidden units are in Appendix F.2).

The activity x can be expressed in terms of the column factors a (see Equation 4.2),

making it possible to visualise the low-dimensional activity by projecting x onto the

factors [32]. These projections onto each factor can be seen in Figure 4.2 d and the 3D

visualisation for all three of them in Figure 4.2 h. Each line corresponds to the activity

for a trial at each time point and its colour represents the condition for that trial (see

Figure 4.1b for the exact colour of each condition). When considering the 3D projection,

it can be noted that the activities at the end of a trial (darkest colour) are sorted along

two lines. One line captures the activities for trials in the location condition and the

other for the frequency condition, with the activities sorted along the two lines based on

the evidence strength for the relevant stimuli type. Hence, LtrRNN was able to capture

the low-dimensional dynamics along the two line attractors. In contrast, using principal

component analysis (PCA) (Figure 4.2 c) does not show any interpretable patterns.
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Figure 4.2: Results of using LtrRNN on the flexible input activity of RNN20-4 for rank

three. The colours correspond to the conditions of the trials. The darker the colour

the later in the trial/training it is. (a) Neurons of the RNN sorted by their peak. (b) The

gradient of two neurons over time. (c) 3D visualisation of the activity projected onto the

first 3 Principal Components of the weights. (d) Trial factors cr of each of the components

of the weight tensor. (e) Projection of the activity for each trial over time onto each of

the column factors ar. (f) 3D controls of each condition over time. (g) Visualisation of

the trial factors c1:3 in 3D. (h) 3D visualisation of the projection of the activities onto

the column factors a1:3. (i) Eigendecomposition of the weight for each trial W::k. (j)

Training and testing MSE of the activity during training. (k) Vector field of the activity in

the subspace spanned by the column factors.
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Figure 4.3: Results of using LtrRNN on the fixed input activity of RNN20-4 with rank

three. The subfigures are the same as in Figure 4.2.

4.4 Fixed Input Results

LtrRNN assumes that the inputs are fixed for a specific condition. However, this is not

the case for the original task where the inputs and their proportion varied from trial to

trial. Thus the original RNNs’ activity varies a lot for the same condition, which is not

accounted for. For this reason, the fixed input activity tensors were created where the

inputs for a specific condition were always the same. This allowed to plot more clearly

the projections of each condition onto the column factors, especially for a higher trial

number (three per trial point in this case).

Figure 4.3 shows the results for the fixed input for RNN20-4. The same dynamics
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as before can be observed for the 3D projection of the activity onto the column factors.

Considering the projection of each of the column factors (Figure 4.3 e), it appears

that the first column factor a1 captures the two different contexts while the third (a3)

relates to the strength of evidence. Their corresponding trial factors c1 and c3 show

an earlier and stronger increase of the third component than the first. This aligns with

the assumption that the RNN learned to first accumulate evidence (formation of line

attractor) and then to integrate context. Hence, the activity dynamics of the RNN at first

reflect only the evidence strength, captured by the third component, and then later on

also the context, captured by the first component. The second component a2 appears

to be a mixture of the two, also capturing evidence strength but having a similar trial

factor c2 as the first component.

4.5 Comparison to CP decomposition results

Besides not accounting for flexible inputs and the weight tensors having different ranks,

the original and LtrRNN models differ in other aspects that could influence the results.

LtrRNN uses a continuous current rate model while the original RNNs were defined as

discrete firing rate models. These lead to different linearised dynamics, which however

are related since the two models can be mapped to each other [30, 28]. Furthermore,

while in the LtrRNN the input weights are fixed over trial points and spanned by the

column factors, they were learned by the original RNNs.

To better understand how these differences lead to discrepancies in the decom-

position of the weights, the trial factors for both decomposition methods were plot-

ted. For this purpose, the trial factors c ′
r of the Tensor of Differences W ′ of the

LtrRNN were computed based on the factors of the full weight tensor, W=
∑R

r=1ar ◦
br ◦ cr. The frontal slices of W ′ can be expressed as W ′

::k = W::k+1 −W::k =∑R
r=1(ar ◦br)c

(k+1)
r −

∑R
r=1(ar ◦br)c

(k)
r =

∑R
r=1(ar ◦br)(c

(k+1)
r − c

(k)
r ). Hence,

c
′(k)
r = c

(k+1)
r −c

(k)
r for k= {1, . . . ,K−1} and c

′(K)
r = 0.

For each of the RNNs with 20 hidden units, the trial factors for the Full and

Difference Tensor for the LtrRNN and for the Tensor of Difference for the original

RNN are plotted in Figure 4.4. While the factors for the Full Tensor for the LtrRNN do

not appear related to the factors and their peaks of the original RNNs, some similarities

can be seen between the Tensors of Differences. The LtrRNNs trial factors c ′
r have

peaks at similar points as the RNNs (vertical lines). Yet, for the LtrRNNs these are

one of multiple peaks. This could be due to the LtrRNN picking up more changes in
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Figure 4.4: Comparison of trial factors for the Full Tensor for LtrRNN, Tensor of Differ-

ences for LtrRNN, and Tensor of Differences for the original RNN for all RNNs with 20

hidden units. Both RNNs used a rank three decomposition. For LtrRNN the variable

input activity tensor was used with 120 trials.

the weights, that CP was not able to capture without a much higher rank. For example,

the change in evidence and context integration dynamics for each context and stimuli

type. However, a different reason could be the fixed input vectors. Since the LtrRNN

cannot vary these, any differences in the activities due to changes in the input integration

during learning must be captured by changes in the recurrent weights. Thus, the weights

change more than for the original RNNs.
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Discussion

By applying tensor decomposition to task-trained RNNs, insights were gained into how

their dynamics evolve while learning to solve a context-dependent decision-making

task. The decomposition of the recurrent weights revealed that the dynamics go through

two phases. Firstly, they learn to integrate the evidence strength for both stimuli types.

This is accomplished by forming two line attractors, i.e. lines of fixed points which

Jacobians have an eigenvalue that is close to 0 and the other ones have negative, real

parts. In the second step, they then adapted the dynamics around the attractors so

that only context-relevant stimuli cause movement along them, by changing the left

eigenvector corresponding to the 0 eigenvalue of the Jacobians.

These dynamics change because the weights cross bifurcation boundaries in the

parameter space during learning. A crossing during gradient-based optimisation that

influences the current neural dynamics has been associated with explosive and vanishing

gradients [13, 14, 31, 33]. Gradient explosion is when the gradient strongly increases,

leading to large changes in the weights and loss [5, 31]. This linkage can explain why

the weights exhibit sudden prominent changes instead of slow continuous ones to form

the dynamics. During learning, there appears to come a point where the small changes

in weights cause the neural activity to come within the basin of the fixed points that

have started to form. This causes a large change in gradients and weights, which leads

to the formation of the full line attractors and thus reduces the loss.

The formation of the line attractors divides the training process into two stages

[16]. Firstly, the model is in the exploration stage where it passes different attractor

landscapes without a large change in loss until the line attractors are found. It then

enters the refinement phase where it adapts the dynamics around the attractors, i.e.

learns to integrate the context, which is associated with a decrease in the loss. This

34
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two-step process has been noted both when considering bifurcation [16] as well as when

studying the loss in neural networks during stochastic gradient-decent [1]. Achille et

al. [1] observed that a network during training crosses through loss landscapes with

high curvatures, which they refer to as bottlenecks, until a flat loss basin is found which

the model stays in. These bottlenecks could be interpreted from the dynamic system

perspective as the attractor formations that the model passes, with the flat minima being

the task-relevant dynamic landscape in the parameter space. Further investigations into

this relationship might reveal insight into the types of dynamics that RNNs tend to learn

due to gradient descent.

It can be noted that RNNs which exhibit the second weight peak for context integra-

tion, did not display an associated prominent change in the loss trajectory. This type of

change in the dynamics was termed ’hidden bifurcation’ by Haputhanthri et al. [16].

They compared the singular values of the weights of task-trained RNNs between time

points, observing that the peaks in weight change are associated with bifurcations but

not necessarily with a permanent shift in loss trajectory. While in their task the hidden

bifurcation was found during the exploration stage, here it was shown that it can also

occur during the refinement stage. This highlights the advantage of considering the

weights to understand changes in the dynamics since the context-related bifurcation

might have not been identified when considering only the loss.

Tensor decomposition has several advantages compared to matrix decomposition

methods to investigate these changes in weights [11, 38, 45]. Firstly, tensor decomposi-

tion allows for the row and column factors to be the same for each training point, with

the trial factor scaling them. In contrast, the changes observed between time points in

Haputhanthri et al. [16] when using singular value decomposition (SVD) could also

have been due to the singular vectors themselves changing between weights and not

just the value. Moreover, tensor decomposition has weak constraints for uniqueness

and its factors do not have to be necessarily orthogonal, as opposed to SVD [19].

These properties made it possible for the components of the tensor to represent

different bifurcations and to visualise their trajectories over time. This is particularly

useful when using LtrRNN since it overcomes the obstacle of the high-rank weight

tensor that hinders CP decomposition by forcing the number of components to be

low. Through this, all of its components capture different dynamic relevant changes.

The role of each component can then be investigated in more detail, by projecting

the low-dimensional dynamics onto them, which were found to be more interpretable

than using standard dimension reduction methods such as PCA [32]. Even though
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LtrRNN used a different model than the original RNN and thus did not have the exact

same dynamics, it was still able to capture its main characteristics. This aligns with

Maheswaranathan et al. [23] finding that RNNs with different models exhibit similar

dynamic structures such as their fixed points and the linearised dynamics around them.

Pagan et al. [30] also showed that the linearised dynamics between the discreet versions

of the current and firing rate models are related. It is expected that changing the LtrRNN

to be the same as the original RNNs, in particular allowing it to account for varying

input and learning of input weights, will give even deeper insights into the evolution

of the dynamics. Moreover, LtrRNN can also be applied directly to the neural activity

of animals. Through this, the emergence of the wider solution space of the dynamics

that are assumed for the rats in Pagan et al [29] can be explored directly. This will

potentially help overcome the current drawback of gradient descent in task-trained

RNNs restricting their found dynamics.

In general, while gradient descent might not be representative of biological learning

[4], relevant insights about individual differences in the dynamics of neural networks

were still gained. In particular, the timing of the two phases and how much they

overlapped, differed between RNNs. This is likely due to where in the parameter

space they are initialised and thus how far away the task-relevant dynamics are in

the space. These differences are likely to be even greater in animals since biological

networks consist of a higher number of neurons and thus potential dynamics. Under

this assumption, the initial position in the parameter space probably also accounts for

why some animals and RNNs are never able to learn a task.

Yet, the similarities observed in the RNNs dynamics might suggest a potential

solution to this problem. The line attractors appear to always form before the context in-

tegration. Thus the RNNs might learn more effectively by first being trained to integrate

the evidence of the stimuli so that it can find the correct dynamic landscape without

any additional input that might distract from it (the context). Once the exploration

phase is finished, the context can be added so that it finds the full solution during re-

finement. This is hypothesised to reduce heterogeneity and help RNNs to learn quickly.

This assumption aligns with the success of newer training algorithms that emphasized

considering the dynamics instead of just general loss minimisation, such as [16].

Indeed, this procedure of breaking the task down into sub-steps to help learn the

task is normally how animals are trained. In fact, Pagan et al. [29] taught the decision-

making task to the rats by first having them learn to associate the two stimuli types with

the correct directions and then as a second step consider the context alongside them.
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Thus, the two dynamic phases that the RNNs underwent to learn the task are the same

ones as the ones used to teach the rats. This analogy highlights the theoretical insights

that can be gained about learning in biological networks by studying the evolution of

RNNs dynamics. By considering how they evolve, the steps required in learning can be

better understood through the dynamic system perspective and can potentially be used

for teaching more complicated tasks to animals and humans.



Chapter 6

Conclusion

To better understand how neural activity leads to computation and behaviour, the evolu-

tion of neural dynamics during learning was considered using tensor decomposition.

These revealed that the formation of the dynamic system consists of multiple phases of

learning to integrate different, relevant features needed to solve the task, which were

captured by the components of the tensor decomposition.

The order of these steps gives a theoretical understanding of training protocols for

both artificial and biological networks and how to improve them. Moreover, how much

the phases overlap and their timing depend on individual characteristics of the networks.

While the RNN only used a sub-sample of the potential solutions, their variations in

how the dynamics evolved offer a potential explanation for the difference observed in

context-dependent decision-making, both between as well as within the same task.

Overall, these results emphasise that to understand computation through neural

activity, the observed dynamic systems have to be considered as one of many, equally

valid solutions, instead of a single, exclusive answer. Hence the focus has to shift away

from detecting the one final system, and instead concentrate on understanding how the

dynamics get shaped and determined during learning.
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Appendix A

Evaluation results for each RNN and

tensor type

RNN20-1

Full Delta Differences

Cross Validation 13 5 >50

Fit Threshold 10 5 12

Fit Elbow 14 8 11

Diffit 44 32 36

CORCONDIA 1 2 2

NORMO 17 3 3

Table A.1: Best rank for RNN20-1 for different tensor types and evaluation methods.

RNN20-2

Full Delta Differences

Cross Validation 13 4 ¿50

Fit Threshold 11 4 9

Fit Elbow 14 6 11

Diffit 39 36 41

CORCONDIA 1 2 2

NORMO 13 5 2

Table A.2: Best rank for RNN20-2 for different tensor types and evaluation methods.

44
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RNN20-3

Full Delta Differences

Cross Validation 14 5 42

Fit Threshold 11 4 8

Fit Elbow 15 8 10

Diffit 40 37 32

CORCONDIA 1 2 2

NORMO 12 3 2

Table A.3: Best rank for RNN20-3 for different tensor types and evaluation methods.

RNN20-4

Full Delta Differences

Cross Validation 13 4 37

Fit Threshold 11 4 7

Fit Elbow 15 6 8

Diffit 41 45 43

CORCONDIA 1 2 1

NORMO 15 3 1

Table A.4: Best rank for RNN20-4 for different tensor types and evaluation methods.

RNN20-5

Full Delta Differences

Cross Validation 14 4 31

Fit Threshold 11 3 6

Fit Elbow 14 9 9

Diffit 24 30 22

CORCONDIA 1 2 3

NORMO 15 2 3

Table A.5: Best rank for RNN20-5 for different tensor types and evaluation methods.
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RNN100-1

Full Delta Differences

Cross Validation 67 6 58

Fit Threshold 53 5 12

Fit Elbow 37 10 9

Diffit 97 73 93

CORCONDIA 2 2 3

NORMO 5 5 4

Table A.6: Best rank for RNN100-1 for different tensor types and evaluation methods

RNN100-2

Full Delta Differences

Cross Validation 67 6 37

Fit Threshold 53 5 13

Fit Elbow 34 8 11

Diffit 95 57 83

CORCONDIA 2 2 2

NORMO 13 4 2

Table A.7: Best rank for RNN100-2 for different tensor types and evaluation methods

RNN100-3

Full Delta Differences

Cross Validation 67 5 41

Fit Threshold 53 5 13

Fit Elbow 36 9 13

Diffit 99 64 92

CORCONDIA 1 3 2

NORMO 8 4 2

Table A.8: Best rank for RNN100-3 for different tensor types and evaluation methods
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RNN100-4

Full Delta Differences

Cross Validation 67 5 46

Fit Threshold 53 5 12

Fit Elbow 39 8 10

Diffit 93 99 82

CORCONDIA 1 2 1

NORMO 16 4 1

Table A.9: Best rank for RNN100-4 for different tensor types and evaluation methods

RNN100-5

Full Delta Differences

Cross Validation 66 6 64

Fit Threshold 53 5 14

Fit Elbow 41 9 11

Diffit 92 46 97

CORCONDIA 1 2 2

Normo 11 4 1

Table A.10: Best rank for RNN100-5 for different tensor types and evaluation methods
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Figure B.1: Rank three decomposition results for RNN20-1. Each subplot shows all of

the resulting factors for all three modes (row,column,trial) for one of the tensor types of

the recurrent weights of the RNN: (a) Full Tensor, (b) Delta Tensor, and (c) Tensor of

Differences.
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Figure B.2: Rank three decomposition results for RNN20-2. Each subplot shows all of

the resulting factors for all three modes (row,column,trial) for one of the tensor types of

the recurrent weights of the RNN: (a) Full Tensor, (b) Delta Tensor, and (c) Tensor of

Differences.
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Figure B.3: Rank three decomposition results for RNN20-3. Each subplot shows all of

the resulting factors for all three modes (row,column,trial) for one of the tensor types of

the recurrent weights of the RNN: (a) Full Tensor, (b) Delta Tensor, and (c) Tensor of

Differences.
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Figure B.4: Rank three decomposition results for RNN20-5. Each subplot shows all of

the resulting factors for all three modes (row,column,trial) for one of the tensor types of

the recurrent weights of the RNN: (a) Full Tensor, (b) Delta Tensor, and (c) Tensor of

Differences.
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Figure B.5: Rank three decomposition results for RNN100-1. Each subplot shows all

of the resulting factors for all three modes (row,column,trial) for one of the tensor types

of the recurrent weights of the RNN: (a) Full Tensor, (b) Delta Tensor, and (c) Tensor of

Differences.
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Figure B.6: Rank three decomposition results for RNN100-2. Each subplot shows all

of the resulting factors for all three modes (row,column,trial) for one of the tensor types

of the recurrent weights of the RNN: (a) Full Tensor, (b) Delta Tensor, and (c) Tensor of

Differences.
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Figure B.7: Rank three decomposition results for RNN100-3. Each subplot shows all

of the resulting factors for all three modes (row,column,trial) for one of the tensor types

of the recurrent weights of the RNN: (a) Full Tensor, (b) Delta Tensor, and (c) Tensor of

Differences.
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Figure B.8: Rank three decomposition results for RNN100-4. Each subplot shows all

of the resulting factors for all three modes (row,column,trial) for one of the tensor types

of the recurrent weights of the RNN: (a) Full Tensor, (b) Delta Tensor, and (c) Tensor of

Differences.
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Figure B.9: Rank three decomposition results for RNN100-5. Each subplot shows all

of the resulting factors for all three modes (row,column,trial) for one of the tensor types

of the recurrent weights of the RNN: (a) Full Tensor, (b) Delta Tensor, and (c) Tensor of

Differences.
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Figure C.1: Trial factors of RNN20-1 for different rank decompositions. Each row used

a different rank for the decomposition of each of the tensor types (Full Tensor, Delta

Tensor, Tensor of Differences) ranging from one to five.
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Figure C.1: Trial factors of RNN20-2 for different rank decompositions. Each row used

a different rank for the decomposition of each of the tensor types (Full Tensor, Delta

Tensor, Tensor of Differences) ranging from one to five.
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Figure C.1: Trial factors of RNN20-3 for different rank decompositions. Each row used

a different rank for the decomposition of each of the tensor types (Full Tensor, Delta

Tensor, Tensor of Differences) ranging from one to five.
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Figure C.1: Trial factors of RNN20-5 for different rank decompositions. Each row used

a different rank for the decomposition of each of the tensor types (Full Tensor, Delta

Tensor, Tensor of Differences) ranging from one to five.
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Figure C.2: Trial factors of RNN100-1 for different rank decompositions. Each row used

a different rank for the decomposition of each of the tensor types (Full Tensor, Delta

Tensor, Tensor of Differences) ranging from one to five.
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Figure C.2: Trial factors of RNN100-2 for different rank decompositions. Each row used

a different rank for the decomposition of each of the tensor types (Full Tensor, Delta

Tensor, Tensor of Differences) ranging from one to five.
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Figure C.2: Trial factors of RNN100-3 for different rank decompositions. Each row used

a different rank for the decomposition of each of the tensor types (Full Tensor, Delta

Tensor, Tensor of Differences) ranging from one to five.
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Figure C.2: Trial factors of RNN100-4 for different rank decompositions. Each row used

a different rank for the decomposition of each of the tensor types (Full Tensor, Delta

Tensor, Tensor of Differences) ranging from one to five.
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Figure C.2: Trial factors of RNN100-5 for different rank decompositions. Each row used

a different rank for the decomposition of each of the tensor types (Full Tensor, Delta

Tensor, Tensor of Differences) ranging from one to five.
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Figure D.1: Different performance measures of RNN20-1 in comparison to the trial

factors of its weight tensor. (a) The trial factors for the Tensor of Differences. Vertical

lines indicate the trial point at which the peaks occur. (b) Loss of the RNN during training.

(c) Percentage of times the RNN chooses the direction right across trials for a specific

location and frequency proportion (see Table 3.2) and context for different training steps.
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Figure D.2: Different performance measures of RNN20-2 in comparison to the trial

factors of its weight tensor. (a) The trial factors for the Tensor of Differences. Vertical

lines indicate the trial point at which the peaks occur. (b) Loss of the RNN during training.

(c) Percentage of times the RNN chooses the direction right across trials for a specific

location and frequency proportion (see Table 3.2) and context for different training steps.
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Figure D.3: Different performance measures of RNN20-5 in comparison to the trial

factors of its weight tensor. (a) The trial factors for the Tensor of Differences. Vertical

lines indicate the trial point at which the peaks occur. (b) Loss of the RNN during training.

(c) Percentage of times the RNN chooses the direction right across trials for a specific

location and frequency proportion (see Table 3.2) and context for different training steps.
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Figure D.4: Different performance measures of RNN100-1 in comparison to the trial

factors of its weight tensor. (a) The trial factors for the Tensor of Differences. Vertical

lines indicate the trial point at which the peaks occur. (b) Loss of the RNN during training.

(c) Percentage of times the RNN chooses the direction right across trials for a specific

location and frequency proportion (see Table 3.2) and context for different training steps.
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Figure D.5: Different performance measures of RNN100-2 in comparison to the trial

factors of its weight tensor. (a) The trial factors for the Tensor of Differences. Vertical

lines indicate the trial point at which the peaks occur. (b) Loss of the RNN during training.

(c) Percentage of times the RNN chooses the direction right across trials for a specific

location and frequency proportion (see Table 3.2) and context for different training steps.
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Figure D.6: Different performance measures of RNN100-3 in comparison to the trial

factors of its weight tensor. (a) The trial factors for the Tensor of Differences. Vertical

lines indicate the trial point at which the peaks occur. (b) Loss of the RNN during training.

(c) Percentage of times the RNN chooses the direction right across trials for a specific

location and frequency proportion (see Table 3.2) and context for different training steps.
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Figure D.7: Different performance measures of RNN100-4 in comparison to the trial

factors of its weight tensor. (a) The trial factors for the Tensor of Differences. Vertical

lines indicate the trial point at which the peaks occur. (b) Loss of the RNN during training.

(c) Percentage of times the RNN chooses the direction right across trials for a specific

location and frequency proportion (see Table 3.2) and context for different training steps.
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Figure D.8: Different performance measures of RNN100-5 in comparison to the trial

factors of its weight tensor. (a) The trial factors for the Tensor of Differences. Vertical

lines indicate the trial point at which the peaks occur. (b) Loss of the RNN during training.

(c) Percentage of times the RNN chooses the direction right across trials for a specific

location and frequency proportion (see Table 3.2) and context for different training steps.
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Figure E.1: Alignment of each input weight WLoc,WFrq,WLocCtx,WFrqCtx with the

row factors b1,b2,b3 of the rank three decomposition of RNN20-1 over time. Each

subfigures is one of the tensor types: (a) Full tensor, (b) Delta tensor, (c) Tensor of

Differences.
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Figure E.2: Alignment of each input weight WLoc,WFrq,WLocCtx,WFrqCtx with the

row factors b1,b2,b3 of the rank three decomposition of RNN20-2 over time. Each

subfigures is one of the tensor types: (a) Full tensor, (b) Delta tensor, (c) Tensor of

Differences.
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Figure E.3: Alignment of each input weight WLoc,WFrq,WLocCtx,WFrqCtx with the

row factors b1,b2,b3 of the rank three decomposition of RNN20-3 over time. Each

subfigures is one of the tensor types: (a) Full tensor, (b) Delta tensor, (c) Tensor of

Differences.
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(c) Tensor of Differences

Figure E.4: Alignment of each input weight WLoc,WFrq,WLocCtx,WFrqCtx with the

row factors b1,b2,b3 of the rank three decomposition of RNN20-5 over time. Each

subfigures is one of the tensor types: (a) Full tensor, (b) Delta tensor, (c) Tensor of

Differences.
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Figure E.5: Alignment of each input weight WLoc,WFrq,WLocCtx,WFrqCtx with the

row factors b1,b2,b3 of the rank three decomposition of RNN100-1 over time. Each

subfigures is one of the tensor types: (a) Full tensor, (b) Delta tensor, (c) Tensor of

Differences.
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Figure E.6: Alignment of each input weight WLoc,WFrq,WLocCtx,WFrqCtx with the

row factors b1,b2,b3 of the rank three decomposition of RNN100-2 over time. Each

subfigures is one of the tensor types: (a) Full tensor, (b) Delta tensor, (c) Tensor of

Differences.
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Figure E.7: Alignment of each input weight WLoc,WFrq,WLocCtx,WFrqCtx with the

row factors b1,b2,b3 of the rank three decomposition of RNN100-3 over time. Each

subfigures is one of the tensor types: (a) Full tensor, (b) Delta tensor, (c) Tensor of

Differences.
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Figure E.8: Alignment of each input weight WLoc,WFrq,WLocCtx,WFrqCtx with the

row factors b1,b2,b3 of the rank three decomposition of RNN100-4 over time. Each

subfigures is one of the tensor types: (a) Full tensor, (b) Delta tensor, (c) Tensor of

Differences.
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Figure E.9: Alignment of each input weight WLoc,WFrq,WLocCtx,WFrqCtx with the

row factors b1,b2,b3 of the rank three decomposition of RNN100-5 over time. Each

subfigures is one of the tensor types: (a) Full tensor, (b) Delta tensor, (c) Tensor of

Differences.



Appendix F

LtrRNN results

F.1 Hyperparameters for LtrRNN

The hyperparameters for which the LtrRNN was tuned alongside their considered

and chosen values can be seen in Table F.1. Any other hyperparameters were left as

recommended by Pellegrino et al. [32] in their example code. The code was adapted to

keep control dim as is, even when in space control=True.

Hyperparameter Considered Values Chosen value

rank 1-10 3

l 1000,5000,10000,20000,50000 20000

rnn dim 20 20

in space control True, False True

control execution True, False True

control preparatory True, False False

sigma observation 0.1,0.01,0.001,0.0001 0.01

regularization 0.01,0.001 0.001

control dnn dim [20,20] [20,20]

control hidden dim [20] [20]

Table F.1: Hyperparameters for LtrRNN that were changed from the default. All consid-

ered values during hyperparameter tuning as well as the final chosen value are shown.
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F.2 Variable Input Results for all RNNs with 20 units
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Figure F.1: Results of using LtrRNN on the fixed input activity of RNN20-1 with rank

three. The subfigures are the same as in Figure 4.2.
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Figure F.2: Results of using LtrRNN on the fixed input activity of RNN20-2 with rank

three. The subfigures are the same as in Figure 4.2.
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Figure F.3: Results of using LtrRNN on the fixed input activity of RNN20-3 with rank

three. The subfigures are the same as in Figure 4.2.
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Figure F.4: Results of using LtrRNN on the fixed input activity of RNN20-5 with rank

three. The subfigures are the same as in Figure 4.2.
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