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Abstract
Vision Transformers (ViTs) have emerged as a strong alternative to Convolutional

Neural Networks (CNNs), which have been dominant in the field of computer vision

over the past decade. Whilst ViTs excel across various tasks and perform well on

medium to large datasets, they tend to underperform on smaller datasets. This is

due to their lack of locality-focused inductive biases, which are inherent in CNNs,

requiring ViTs to learn local features from excess data. Motivated by this limitation, this

study explores the enhancement of ViTs, during supervised training on small datasets,

through self-supervised techniques. Specifically, it experiments with the Dense Relative

Localisation (DRLoc) task and introduces a Masked Embedding (ME) task, inspired by

DRLoc and Masked Autoencoders (MAEs). Results demonstrate that ME consistently

improves model performance on CIFAR, outperforming DRLoc on most baselines.
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Chapter 1

Introduction

1.1 Vision Transformers and Limited Data

Vision Transformers (ViTs) have garnered significant interest as a rival to Convolutional

Neural Networks (CNNs), which have been dominant in the field of computer vision

since the success of AlexNet [1], being applied on tasks such as image classification

[2], image segmentation [3] and object detection [4]. ViTs have already demonstrated

their potential in such tasks [5, 6, 7] as well as more sophisticated ones like image

generation [8]. They draw their inspiration from the original Transformer architecture

[9], responsible for major breakthroughs of Natural Language Processing (NLP) in the

following years such as GPT-4 [10]. One attractive aspect of ViTs is their potential to

create a unified framework for processing both visual and textual information, driving

multi-modal applications such as image captioning [11]. The original ViT architecture

[5] divides an image into a grid of non-overlapping patches, each linearly projected into

the input embedding space to create a patch token. These tokens are processed through

a sequence of multi-head attention and feed-forward layers, in a similar way to how

word tokens are handled in NLP Transformers.

One key advantage of ViTs is their ability to utilise the attention mechanism to capture

global relationships between patch tokens, which contrasts with CNNs, where the

receptive field of convolutional kernels limits the relationships that can be learned to

local contexts. However, this greater representational capacity comes with the drawback

of lacking the inherent inductive biases found in CNNs, such as locality, translation

invariance, and the hierarchical structure of visual information [12, 13, 14]. ViTs
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Chapter 1. Introduction 2

therefore tend to require significantly more training data as they learn local visual

properties from samples. These properties, in CNNs, are instead modelled in their

architecture [15].

To address this issue, various methods have been proposed through the development

of newer generations of the ViT as well as different training strategies. A common

approach is to combine convolutional layers with attention layers, thereby introducing

priors for locality into the ViT [12, 13, 14]. These hybrid architectures offer the best

of both worlds: attention layers capture long-range dependencies, whilst convolutional

layers emphasise the local properties of the image content. Although these architectures

have been proven capable of matching Residual Network (ResNet) [2] performance

on medium-sized datasets such as ImageNet-1K [16], they are yet not able to reach

the same performance on smaller datasets like CIFAR-10 [17] [18]. This dependency

on large training sets presents a significant challenge in fields like medical imaging,

environmental monitoring and surveillance, where available labeled data is often limited.

Other approaches, such as self-supervised learning [19], have demonstrated great

potential, enabling the acquisition of visual representations in unlabelled data via pretext

tasks. Whilst these methods have often been used for pre-training large models, they

may also be combined with the supervised learning paradigm to facilitate learning from

small datasets [20]. This is especially important for domains in which fine-tuning may

not be optimal due to substantial differences in samples to large-scale, general-purpose

datasets.

1.2 Aims and Objectives

Focusing on the auxiliary role of self-supervised learning when training with labelled

data, the aim of this thesis was to study how these methods perform on different archi-

tectures for classification under limited data regimes, specifically using the (relatively

small) CIFAR-10 [17] and CIFAR-100 [21] datasets. The objectives were the following:

• Implementing the Dense Relative Localisation (DRLoc) [22] task for 32× 32

images and investigating whether its distance-based learning objective on the

final embedding grid remains beneficial when the spatial resolution of the input

image is low.

• Developing a novel self-supervised task, inspired by the Masked Autoencoder

(MAE) [23], that operates on the same embedding grid as DRLoc to assist in
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capturing both local and global features.

• Assessing how these self-supervised losses impact classification accuracy when

added to the standard cross-entropy, both individually and collectively, includ-

ing an ablation study for different weight values and a brief investigation on

robustness.



Chapter 2

Background

2.1 Vision Transformers

Although the attention mechanism had been previously applied on CNNs [24, 25], the

first entirely transformer-based architectures for vision were iGPT [26] and ViT [5].

iGPT is trained with a self-supervised method involving masking pixels in an image

and training a model to predict them, similarly to the masked-word task used in NLP

architectures such as BERT [27] and GPT [28]. In contrast, ViT follows a supervised

training approach, employing a special class token in the input, aggregating information

from all image patches during the self-attention process, and a classification head that is

connected to the final embedding of this token, shown in Figure 2.1. Both approaches

are computationally intensive and, even though they deliver impressive results on

large datasets, they fall short of CNN-based architectures when trained from scratch

on medium-sized ones such as ImageNet-1K [18]. To minimise the dependence of

ViTs on extensive training, DeiT [29] implemented comprehensive data augmentation,

regularisation techniques and the use of distillation tokens, derived from CNNs.

4



Chapter 2. Background 5
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Figure 2.1: The ViT architecture [5].

ViT’s success has gained significant attention in the computer vision scene, leading

to the emergence of various architectural variants for a wide range of tasks. Despite

that, the absence of inductive biases for locality in ViTs makes it challenging to train

effectively without requring large datasets. Consequently, recent efforts have focused

on developing newer generations of ViTs that combine convolutional operations with

long-range attention layers. The central idea behind these hybrid architectures is to

organise the sequence of token embeddings into a grid, where each embedding vector

aligns with a specific location in the input image. This geometric arrangement allows

convolutional layers to operate on neighbouring embeddings, thereby encouraging

the network to capture local image features. The primary differences amongst these

approaches lie in where the convolutional operations take place. This, for instance, can

be in the initial representations [13], across all layers [12, 14] or in the query/key/value

projections [14]. Similar to the first Transformer design proposed for NLP [9], the

original ViT includes (absolute) positional embeddings to encode the order of input

tokens. In some architectures, relative positional embedding is used, representing the

position of each token in relation to the others. As mentioned in the previous chapter,

these hybrid Transformer-CNN structures can perform similarly to strong CNNs when

trained from scratch on ImageNet-1K, yet a performance gap persists on small datasets

such as CIFAR-10 [18].

2.2 Self-Supervised Learning

Self-supervised learning initially gained traction in NLP, where it provided a way to

replace expensive manual annotations by creating pretext tasks that allow the model
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to learn from text itself [19]. A common example is BERT [27], which involves

masking a word in a sentence and training the model to predict the missing word. In

computer vision, contrastive methods like SimCLR [30] and MoCo [31] have been used

to minimise the distance between augmented versions of the same image (positive pairs)

whilst maximising it for different images (negative pairs). Non-contrastive approaches

such as BYOL [32] and DINO [33] focus solely on minimising the distance between

positive pairs, without requiring negative pairs. Reconstruction-based methods have also

been proven effective for self-supervised learning in computer vision [23, 34]. These

methods typically involve an encoder that processes a portion of an image to generate

a latent representation, which a decoder then uses to reconstruct the original image

from the latent representation. A notable example is Masked Autoencoders (MAEs)

[23], which work by masking parts of an input image, encoding the remaining visible

patches and then reconstructing the masked regions. An illustration of this is shown is

Figure 2.2, in which the encoder and decoder are jointly trained. During inference, only

the encoder is used, which has learned to efficiently encode images for downstream

tasks. Another approach is to predict the correct arrangement of a scrambled grid of

3×3 image patches, a task known as Jigsaw [34], which was inspired by deshuffling in

NLP [35].

Encoder

....

....

Decoder

Input Target

Figure 2.2: The Masked Autoencoder (MAE) task [23].

Although self-supervised learning is often used to pre-train ViTs on a large scale,

boosting their performance on various downstream tasks, these pretext tasks can also be

combined with supervised training to regularise the training process, a form of multi-task

learning [20]. This strategy can help improve a model’s performance without altering

its architecture. Dense Relative Localisation (DRLoc) [22], for instance, is an auxiliary
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self-supervised task that enhances the robustness of ViTs on smaller datasets. It uses

a classifier predicting the relative distances amongst token embeddings, with a loss

function derived from the offset predictions that complements the standard cross-entropy

computed from the image classification task. This multi-task approach eliminates the

need for extensive pre-training and helps ViTs learn meaningful representations with

limited data. A diagram of this is shown in Figure 2.3. The MAE and jigsaw tasks

have also been incorporated into the multi-task framework [36, 37], demonstrating the

potential of these self-supervised auxiliary methods to play a vital role in enhancing ViTs

in situations where annotated data for a specialised domain is limited and large-scale

fine-tuning ineffective in reaching ResNet performance.
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Figure 2.3: The Dense Relative Localisation (DRLoc) task [22].



Chapter 3

Methodology

3.1 Experimental Setup

This study explores the use of self-supervised auxiliary tasks to enhance different

models for image classification. Specifically, the experiments utilise Dense Relative Lo-

calisation (DRLoc) [22] and a task operating on the former’s embedding space, inspired

by Masked Autoencoders (MAEs) [23]. This is being referred to here as the Masked

Embedding (ME) task. Four baseline architectures were employed, each adjusted to

have approximately 15 million trainable parameters. To ensure a fair comparison, the

supplementary modules used for self-supervised training were allocated an equivalent

number of parameters for each baseline. The architectures include a custom ResNet

[2] composed entirely of residual blocks with convolutional layers, the original Vision

Transformer (ViT) [5] and two second-generation hybrid models: Tokens-to-Token

(T2T) [13] and Convolutional Vision Transformer (CvT) [14]. Since these methods are

used as part of a multi-task learning framework, acting as regularisation for supervised

training, the underlying architectures remained unchanged. The models were trained

and evaluated on the CIFAR-10 [17] and CIFAR-100 [21] datasets, each of which

contains 50,000 training images and 10,000 test images, with 10 and 100 balanced

classes, respectively. Both datasets consist of images with a resolution of 32×32. The

training process utilised the Adam optimizer with a learning rate of 10−4, a batch size

of 128 and 100 epochs. All experiments were carried on a single NVIDIA A100 GPU,

with 80GB VRAM, on the university’s Eddie cluster.

8



Chapter 3. Methodology 9

3.2 Dense Relative Localisation (DRLoc) Task

The DRLoc task works by densely sampling multiple pairs of embeddings from each

image and having a simple network predict their relative distances. This is used jointly

with supervised learning to train the model to generate features that are more informative,

capturing both local and global information.

More specifically, let X be an image batch, where X ∈ Rb×c×h×w, with b, c, h and w

being the batch size, number of channels, height and width, respectively. The baseline

model used is f , where femb is the sequence of layers up until the last feature map

(before the classification head). This model encodes the image to generate embeddings

E:

E = femb(X), E ∈ Rb×cemb×hemb×wemb (3.1)

During training, multiple pairs of embeddings from E are randomly sampled. For every

pair (ei, j,el,m), where ei, j ∈ Rb×cemb , the normalised target distance vector (tu, tv)T is as

follows:

tu =
|i− l|
hemb

, tv =
| j−m|
wemb

, 1 ≤ i, j ≤ hemb,wemb, (tu, tv)T ∈ [0,1]2 (3.2)

The two embedding vectors ei, j and el,m are concatenated and fed into a small Multi-

Layer Perceptron (MLP) g, which has two hidden layers and two output neurons (one

for each spatial dimension). This MLP predicts the relative offset between points (i, j)

and (l,m) on the matrix as shown below:

(du,dv)
T = g(ei, j,el,m)

T (3.3)

The dense relative localisation loss Ldrloc is defined as follows:

Ldrloc = E(ei, j,el,m)∼E[|(tu, tv)T − (du,dv)
T |1] (3.4)

In the above equation, for each image batch X, the expectation is calculated by uniformly

sampling n pairs (ei, j,el,m) from E and averaging the L1 loss between the respective

(tu, tv)T and (du,dv)
T . Throughout this project, the sample size n is fixed at 32. The
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dense relative localisation loss Ldrloc is weighted by a hyperparameter λdrloc and added

to the cross-entropy loss Lce of each model. The overall loss is thus given by:

Ltot = Lce +λdrlocLdrloc (3.5)

Experiments used a range of values between 0.025 and 2 for λdrloc.

In the paper that introduced DRLoc [22], experiments assumed a resolution of 224×224

(h = w = 224), and all datasets had been scaled to accommodate this, leading to a 7×7

embedding grid (hemb = wemb = 7). In this work, since the 32×32 images from CIFAR

are used unmodified, some minimal adjustments to architectural hyperparameters were

made to obtain an 8×8 embedding grid. The grid’s embedding dimension cemb was

set to 312 for all models. Having the exact same grid dimensions across experiments

ensures that both the DRLoc task and the ME task discussed below behave consistently

and that the number of parameters associated with them remains the same.

3.3 Masked Embedding (ME) Task

The recent success of MAEs as an auxiliary task for enhancing ViTs [36], along with

DRLoc’s focus on the latent space, has inspired the development of a Masked Embed-

ding (ME) task as part of this project. In the original MAE [23], patches of an image are

masked during training before being fed into the model (encoder), and the unmasked

image is reconstructed by a decoder to calculate the Mean Squared Error (MSE) loss

between the original and reconstructed image. However, the modified ME task does not

apply masking on the input image but directly on its latent representation. The decoder

does not reconstruct the image but instead attempts to restore the missing embeddings,

with the loss function being the MSE between the original and reconstructed latent

grids. An illustration of this task is shown in Figure 3.1. This approach was selected

primarily for the following reasons:

• In tasks such as image classification, not all patches of an image may be useful

for correctly identifying the class. For example, in an image of a cat, patches

containing background elements like sky or grass offer little information about its

presence. Masking embeddings, which represent higher-level features extracted

from the image patches, allows the model to focus on reconstructing and learning

from the most informative parts of the image, such as the cat’s fur or facial
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features, as opposed to redundant features. This gives the model a task that is

consistently challenging.

• Masking embeddings is computationally more efficient than masking patches as

the encoder only needs to be used once for every training batch instead of twice.

• Especially in smaller datasets such as CIFAR-10, which are prone to overfitting,

masking embeddings can improve generalisation performance by encouraging the

model learn more robust and meaningful features rather than relying on specific,

possibly noisy details in the data.

Encoder

Decoder

MLP Head Output
Class

Target
Class

32x32 Image Original
Embeddings

Reconstructed
Embeddings

Masked
Embeddings

Figure 3.1: The Masked Embedding (ME) task.

Just like the traditional MAE, the ME variant discussed consists of an encoder, belonging

to the host architecture, and a decoder, which is trained alongside the encoder and is

ignored during inference. Encoding is done as discussed for DRLoc, assuming the

previous definitions, with the same image batch X (where X∈Rb×c×h×w) being encoded

by femb to obtain the embedding grid E (where E ∈ Rb×cemb×hemb×wemb). A masking

function Mr is applied on the embeddings, which masks a ratio r from E, giving the

compressed tensor Z. The value of r in the main experiments was set to 0.75, as done

in the paper proposing MAE:

Z = Mr(E), Z ∈ Rs×b×cemb , s = hembwembr, r ∈ [0,1] (3.6)

The decoder D attempts to reconstruct the embeddings E by giving a prediction Ê:
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Ê = D(Z), Ê ∈ Rb×cemb×hemb×wemb (3.7)

Within the decoder, trainable parameters serving as mask tokens are introduced in the

masked positions, padding Z to a tensor Z′, where Z′ ∈ Rhembwemb×b×cemb . Learnable

positional embeddings are then added to Z′ to encode information about order. Z′ is

then reshaped to be b×hembwemb×cemb. The latter is fed to a sequence of 4 transformer

blocks, each with 4 attention heads, and the output is further reshaped to give Ê.

Let M be a tensor of zeros, where M ∈Rb×cemb×hemb×wemb , for which entries correspond-

ing to masked tokens are set to one. The masked embedding loss Lme is defined as

follows:

Lme =
E[(E− Ê)2 ⊙M]

r
(3.8)

The above is similar to the MAE loss, with the original and reconstructed embedding

grids E and Ê being used as opposed to image batches X and X̂. The element-wise

multiplication with M ensures that the loss is evaluated only at the embeddings being

masked, and the masking ratio r is used in the denominator to normalise its value. Just

like with DRLoc, the masked embedding loss Lme is weighted by a hyperparameter λme

and added to the cross-entropy loss Lce of each model. The overall loss is hence given

by:

Ltot = Lce +λmeLme (3.9)

Similarly to DRLoc, experiments for ME used a λme ranging between 0.025 and 2.
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Results

4.1 Overview

This chapter presents the results obtained by applying the DRLoc and ME self-supervised

tasks on the four baselines. The models were evaluated based on classification accuracy

on the CIFAR-10 and CIFAR-100 test sets. The following tables compare accuracy

obtained solely from supervised training (i.e. using only cross-entropy loss) with the

total self-supervised loss, dictated by parameters λdrloc and λme. The results primarily

focus on experiments keeping the masking ratio r fixed at 0.75 and varying the lambda

values, as well as combining them. However, an ablation study is also included at the

end of the chapter, experimenting with different masking ratios.

4.2 DRLoc Performance

Table 4.1 shows the effect of DRLoc on the baseline models. The best accuracy values

are highlighted in bold. For ResNet there is an evident increase in accuracy, which

is highest at λdrloc = 0.1. Results show an increase of 4% and 3% on CIFAR-10 and

CIFAR-100, respectively, hinting that the DRLoc task provides the model with a better

capacity to capture global features. Despite that, it is proven ineffective on the original

ViT on both datasets and on T2T, for CIFAR-10. The reason the task appears to confuse

the model in these cases could be due to nonoptimal selection of λdrloc. On the contrary,

T2T’s performance on CIFAR-100 with λdrloc = 0.2, and CvT’s on both datasets, with

λdrloc = 0.1 and λdrloc = 0.025, respectively, improve, albeit not by more than 2%. The

last two, being hybrid transformer models with built-in locality, are not expected to

13
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benefit as much as the first two, which have weaker inductive biases.

Dataset CIFAR-10 CIFAR-100

Model Loss Classification Accuracy

ResNet

Lce 78.65% 35.08%

Lce +0.025×Ldrloc 80.28% 35.56%

Lce +0.05×Ldrloc 81.68% 36.72%

Lce +0.1×Ldrloc 82.90% 38.60%
Lce +0.2×Ldrloc 79.24% 33.96%

ViT

Lce 62.45% 33.44%
Lce +0.025×Ldrloc 60.57% 33.21%

Lce +0.05×Ldrloc 61.80% 32.81%

Lce +0.1×Ldrloc 61.08% 32.71%

Lce +0.2×Ldrloc 61.10% 32.97%

T2T

Lce 74.12% 41.53%

Lce +0.025×Ldrloc 73.01% 42.42%

Lce +0.05×Ldrloc 72.45% 41.04%

Lce +0.1×Ldrloc 72.72% 42.49%

Lce +0.2×Ldrloc 73.46% 43.09%

CvT

Lce 71.28% 39.30%

Lce +0.025×Ldrloc 71.69% 40.21%
Lce +0.05×Ldrloc 71.31% 39.46%

Lce +0.1×Ldrloc 71.90% 38.73%

Lce +0.2×Ldrloc 71.26% 39.43%

Table 4.1: Comparison of models using DRLoc, with different values of λdrloc.

4.3 ME Performance

Table 4.2 illustrates how ME impacts model performance, using the same setup as before.

As in Table 4.1, the best accuracies are highlighted in bold. ResNet appears to benefit

substantially from the information acquired through demasking embeddings, with a

5% and 12% increase, on CIFAR-10 and CIFAR-100, respectively, using λme = 0.2.

Using the same λme, the task improves accuracy in the vanilla ViT by 1% on CIFAR-10

and 2% on CIFAR-100. Just like in the DRLoc case, performance increase is even

smaller in the 2nd generation transformers, with a trivial increase for T2T on CIFAR-10

and less than 2% on CIFAR-100. The task appears to hinder feature learning on CvT,

something that could be attributed to nonoptimal choice of hyperparameters, such as
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λme or the masking ratio.

Dataset CIFAR-10 CIFAR-100

Model Loss Classification Accuracy

ResNet

Lce 78.65% 35.08%

Lce +0.025×Lme 82.58% 40.58%

Lce +0.05×Lme 83.17% 43.28%

Lce +0.1×Lme 83.62% 44.32%

Lce +0.2×Lme 83.83% 47.39%

ViT

Lce 62.45% 33.44%

Lce +0.025×Lme 62.36% 33.51%

Lce +0.05×Lme 62.45% 34.02%

Lce +0.1×Lme 63.82% 34.52%

Lce +0.2×Lme 63.82% 35.56%

T2T

Lce 74.12% 41.53%

Lce +0.025×Lme 74.13% 43.14%
Lce +0.05×Lme 74.10% 42.76%

Lce +0.1×Lme 72.71% 42.22%

Lce +0.2×Lme 73.37% 42.65%

CvT

Lce 71.28% 39.30%
Lce +0.025×Lme 70.28% 37.80%

Lce +0.05×Lme 70.34% 38.40%

Lce +0.1×Lme 70.06% 37.79%

Lce +0.2×Lme 70.76% 37.23%

Table 4.2: Comparison of models using ME, with different values of λme.

4.4 Mixed Loss Performance

Table 4.3 compares the accuracies from Tables 4.1 and 4.2 for λdrloc and λme values of

0.05 and 0.1, respectively, with the losses obtained by combining the two self-supervised

tasks. The best performances are denoted in bold. ResNet’s accuracy is increased by

6% on CIFAR-10 and 9% on CIFAR-100. In both cases, the mixed loss with λdrloc

and λme set to 0.1 yields better performance than each term on its own, suggesting

that they complement one another in the features they teach the model. On the other

hand, ViT, T2T and CvT do not seem to benefit from the hybrid self-supervised loss

even further. The introduction of a third task likely confuses these models, which are

already sensitive to just a second term being added. Nonetheless, the limited data points
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obtained for this ternary loss may be insufficient to draw robust conclusions, and a more

in-depth investigation would be needed, acquiring results for different combinations of

λdrloc and λme.

Dataset CIFAR-10 CIFAR-100

Model Loss Classification Accuracy

ResNet

Lce 78.65% 35.08%

Lce +0.05×Ldrloc 81.68% 36.72%

Lce +0.1×Ldrloc 82.90% 38.60%

Lce +0.05×Lme 83.17% 43.28%

Lce +0.1×Lme 83.62% 44.32%

Lce +0.05×Ldrloc +0.05×Lme 83.58% 44.27%

Lce +0.1×Ldrloc +0.1×Lme 84.71% 44.99%

ViT

Lce 62.45% 33.44%

Lce +0.05×Ldrloc 61.80% 32.81%

Lce +0.1×Ldrloc 61.08% 32.71%

Lce +0.05×Lme 62.45% 34.02%

Lce +0.1×Lme 63.82% 34.52%
Lce +0.05×Ldrloc +0.05×Lme 63.21% 33.40%

Lce +0.1×Ldrloc +0.1×Lme 63.68% 34.15%

T2T

Lce 74.12% 41.53%

Lce +0.05×Ldrloc 72.45% 41.04%

Lce +0.1×Ldrloc 72.72% 42.49%

Lce +0.05×Lme 74.10% 42.76%
Lce +0.1×Lme 72.71% 42.22%

Lce +0.05×Ldrloc +0.05×Lme 72.17% 42.61%

Lce +0.1×Ldrloc +0.1×Lme 72.42% 42.64%

CvT

Lce 71.28% 39.30%

Lce +0.05×Ldrloc 71.31% 39.46%
Lce +0.1×Ldrloc 71.90% 38.73%

Lce +0.05×Lme 70.34% 38.40%

Lce +0.1×Lme 70.06% 37.79%

Lce +0.05×Ldrloc +0.05×Lme 70.32% 38.69%

Lce +0.1×Ldrloc +0.1×Lme 70.67% 38.11%

Table 4.3: Comparison of models using DRLoc, ME and both, with different values of

λdrloc and λme.

4.5 Cross-Comparison

The best accuracies from Tables 4.1, 4.2 and 4.3, with non-zero λdrloc and λme, have

been placed in Table 4.4. Bold is used to highlight the overall highest values on

each baseline. With the exception of CvT, in which the ME task was unsuccessful at

enhancing the model, ME appears to outperform DRLoc, especially on ResNet, which
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is weaker at capturing global information on its own.

Dataset CIFAR-10

Model Loss Classification Accuracy

ResNet

Lce 78.65%

Lce +0.1×Ldrloc 82.90%

Lce +0.2×Lme 83.83%

Lce +0.1×Ldrloc +0.1×Lme 84.71%

ViT

Lce 62.45%

Lce +0.05×Ldrloc 61.80%

Lce +{0.1,0.2}×Lme 63.82%
Lce +0.1×Ldrloc +0.1×Lme 63.68%

T2T

Lce 74.12%

Lce +0.2×Ldrloc 73.46%

Lce +0.025×Lme 74.13%
Lce +0.1×Ldrloc +0.1×Lme 72.42%

CvT

Lce 71.28%

Lce +0.1×Ldrloc 71.90%
Lce +0.2×Lme 70.76%

Lce +0.1×Ldrloc +0.1×Lme 70.67%

Dataset CIFAR-100

Model Loss Classification Accuracy

ResNet

Lce 35.08%

Lce +0.1×Ldrloc 38.60%

Lce +0.2×Lme 47.39%
Lce +0.1×Ldrloc +0.1×Lme 44.99%

ViT

Lce 33.44%

Lce +0.025×Ldrloc 33.21%

Lce +0.2×Lme 35.56%
Lce +0.1×Ldrloc +0.1×Lme 34.15%

T2T

Lce 41.53%

Lce +0.2×Ldrloc 43.09%

Lce +0.025×Lme 43.14%
Lce +0.1×Ldrloc +0.1×Lme 42.64%

CvT

Lce 39.30%

Lce +0.025×Ldrloc 40.21%
Lce +0.05×Lme 38.40%

Lce +0.05×Ldrloc +0.05×Lme 38.69%

Table 4.4: Comparison of the best models using DRLoc, ME and both, with different

values of λdrloc and λme.

4.6 Masking Ratio Ablation

Table 4.5 provides accuracies obtained on CIFAR-10 for the previous baselines with the

ME task when λme is set to 0.1 and the masking ratio r is changed. The highest values

appear in bold. ResNet and and T2T perform better when 85% of the embeddings are

masked, whereas the best value reimains at 0.75 for ViT. CvT accuracy is consistently

below the standard cross-entropy. Varying the masking ratio in the range 0.65 to 0.90

does not seem to significantly influence learning.
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Dataset CIFAR-10

Model Loss Classification Accuracy

ResNet

Lce 78.65%

Lce +0.1×Lme, r = 0.65 83.57%

Lce +0.1×Lme, r = 0.70 83.06%

Lce +0.1×Lme, r = 0.75 83.62%

Lce +0.1×Lme, r = 0.80 81.90%

Lce +0.1×Lme, r = 0.85 83.80%
Lce +0.1×Lme, r = 0.90 83.37%

ViT

Lce 62.45%

Lce +0.1×Lme, r = 0.65 63.23%

Lce +0.1×Lme, r = 0.70 63.72%

Lce +0.1×Lme, r = 0.75 63.82%
Lce +0.1×Lme, r = 0.80 62.97%

Lce +0.1×Lme, r = 0.85 62.86%

Lce +0.1×Lme, r = 0.90 63.33%

T2T

Lce 74.12%

Lce +0.1×Lme, r = 0.65 73.85%

Lce +0.1×Lme, r = 0.70 73.43%

Lce +0.1×Lme, r = 0.75 72.71%

Lce +0.1×Lme, r = 0.80 72.96%

Lce +0.1×Lme, r = 0.85 74.32%
Lce +0.1×Lme, r = 0.90 73.90%

CvT

Lce 71.28%
Lce +0.1×Lme, r = 0.65 70.27%

Lce +0.1×Lme, r = 0.70 70.36%

Lce +0.1×Lme, r = 0.75 70.06%

Lce +0.1×Lme, r = 0.80 70.06%

Lce +0.1×Lme, r = 0.85 69.95%

Lce +0.1×Lme, r = 0.90 70.48%

Table 4.5: Comparison of models using ME, with different values of r.

4.7 Robustness to Adversarial Attacks

To assess the robustness of features between the two self-supervised methods, the images

in the test set were altered using adversarial noise [38] to artificially worsen classification

accuracy. More specifically, let X be a batch of images, with X ∈ Rb×c×h×w, where

b is the batch size, c the number of channels, h the image height and w the image

width. Furthermore, let Y be a batch of class labels, with Y ∈ Rb×k, and Ŷ is a batch

of predictions, with Ŷ ∈ Rb×k, where k the number of classes. The gradient of the
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cross-entropy loss Lce(Ŷ,Y) with respect to the image batch X is computed, indicating

the direction in which the input should be altered to increase the loss:

g = ∇XLce(Ŷ,Y), g ∈ Rb×c×h×w (4.1)

The image batch is then updated as follows:

Xadv = X+ ε · sign(g), Xadv ∈ Rb×c×h×w (4.2)

where ε is a small value controlling the impact of the adversarial attack, set to 1
255 here.

This corresponds to at most a single pixel change in the images and results in adversarial

perturbations that are imperceptible.

Table 4.6 demonstrates how this alteration of the CIFAR-10 test set impacts model

performance when the DRLoc, ME and mixed losses have been employed with λdrloc

and λme set to 0.1. Bold is used where the reduction in accuracy is lowest. The results

hint that DRLoc produces embeddings that are more robust to such attacks in all four

models.

Dataset CIFAR-10 Adversarial CIFAR-10

Model Loss Classification Accuracy

ResNet

Lce 78.65% 50.93% (-27.72)

Lce +0.1×Ldrloc 82.90% 61.04% (-21.86)
Lce +0.1×Lme 83.62% 55.48% (-28.14)

Lce +0.1×Ldrloc +0.1×Lme 84.71% 59.09% (-25.62)

ViT

Lce 62.45% 34.13% (-28.32)

Lce +0.1×Ldrloc 61.08% 35.48% (-25.60)
Lce +0.1×Lme 63.82% 36.69% (-27.13)

Lce +0.1×Ldrloc +0.1×Lme 63.68% 37.78% (-25.90)

T2T

Lce 74.12% 35.65% (-38.47)

Lce +0.1×Ldrloc 72.72% 34.43% (-38.29)
Lce +0.1×Lme 72.71% 34.11% (-38.60)

Lce +0.1×Ldrloc +0.1×Lme 72.42% 32.19% (-40.23)

CvT

Lce 71.28% 38.95% (-32.33)

Lce +0.1×Ldrloc 71.90% 40.11% (-31.79)
Lce +0.1×Lme 70.06% 37.45% (-32.61)

Lce +0.1×Ldrloc +0.1×Lme 70.67% 36.95% (-33.72)

Table 4.6: Comparison of models using DRLoc, ME and both, with different values of

λdrloc and λme, in terms of robustness to adversarial inputs.
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Conclusion

5.1 Summary

Vision Transformers (ViTs) have proven to be a powerful alternative to Convolutional

Neural Networks (CNNs), particularly on medium to large datasets. However, their

lack of locality priors, a strength of CNNs, limits their effectiveness on smaller datasets.

This study attempts to address this challenge by incorporating self-supervised learning

techniques into supervised training, specifically through the Dense Relative Localisation

(DRLoc) task and a novel Masked Embedding (ME) task drawing inspiration from

DRLoc and Masked Autoencoders (MAEs). The findings reveal that the ME task

consistently enhances ViT performance across the baselines, offering a promising

approach to improving ViTs’ capability on small datasets. Given the above results, there

are numerous refinements that could be applied on the methodology presented here as

well as directions for further work. These are outlined in this chapter.

5.2 Limitations and Future Work

Due to time and resource constraints, certain potential improvements and topics for

further exploration were not addressed in this research. The following recommendations

are presented for consideration in future work:

• In-Depth Hyperparameter Tuning: A more extensive investigation could be

carried regarding the hyperparameters used in the DRLoc and ME losses. A wider

range of coefficients λdrloc and λme, and masking ratio r can be used. This would

20
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be especially beneficial in the ternary loss previously studied where insight was

limited. Other hyperparameters that could be tweaked are the spatial and channel

dimensions of the embedding grid E, as well as the ME decoder’s number of

transformer blocks and attention heads.

• More Datasets: All the experiments presented here were based on the CIFAR-10

and CIFAR-100 datasets, which are both limited to 32× 32 images. A wider

range of spatial resolutions could be used to acquire a more holistic view of

how the ME loss performs. Furthermore, having larger images would make the

distinction between local and global features more meaningful.

• More Baselines: Additional baseline models could be used to perform enhance-

ments, such as the Shifted window (Swin) ViT [12], CCT [39], SL-ViT [40] and

DHVT [18]. Moreover, the auxiliary ME task introduced could be compared and

combined with MAE [36] and Jigsaw [37].

• Other Learning Tasks: New self-supervised tasks could be introduced, poten-

tially inspired from existing ones in computer vision or NLP. Similarly to this

work’s direction, existing tasks previously applied on images could be adapted to

operate on the embedding space.
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