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Abstract

Are large language models (LLMs) capable of behaving like pragmatic speakers? While

most current studies focus on evaluating LLMs’ ability to understand the implicature of

non-literal content, there has been limited investigation into their ability to generate such

content. We present an evaluation for the communicative effectiveness of LLMs using

the Rational Speech Act framework, which is a probabilistic method for understanding

pragmatic reasoning in the context of human communication. Our research uses this

framework to evaluate the communicative effectiveness of large language models by

comparing the probabilities assigned by the LLM (a variant of Llama3-8B-Instruct) to

certain utterances against the probabilities assigned by an RSA model. We find that

the LLM’s output is positively correlated to that from an RSA model (PCC = 0.203,

SRCC = 0.342).
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Chapter 1

Introduction

1.1 Background: Pragmatic reasoning in human com-

munication

Humans are typically pragmatic agents in communication. Imagine you’re in a room

with three pieces of furniture: a small red desk, a small yellow desk, and a large red chair.

If your roommate refers to one of these items as “the red one”, you would first eliminate

the yellow desk as a possibility, since it’s not red. Then, you’d turn your attention to the

two remaining red objects. Given that both are red, you might reconsider, thinking that

if your roommate intended to refer to the chair, they would have simply said “the chair”,

as it is a more distinctive feature among the three objects in the room. Ultimately, you

would likely interpret your roommate’s reference as pointing to the small red desk.

This process of back-and-forth thinking to infer another person’s intention is known as

pragmatic reasoning in our daily lives.

Humans use an intensional strategy in their “theory of mind”, a concept in cognitive

science that involves understanding and predicting the beliefs, desires, and intentions of

others by treating them as rational agents and considering their place in the world and

their purpose [15, 40].

In communication, we tend to use the intensional strategy to enhance efficiency. One

of the most influential frameworks for modelling pragmatic reasoning is the Rational

Speech Act (RSA) framework [21, 14]. It formalises how speakers and listeners use

context, shared knowledge, and probabilistic reasoning to communicate effectively.

This framework operates language understanding as a recursive process, where both

speakers and listeners in a conversation behave rationally to reason each other’s intention.

1



Chapter 1. Introduction 2

Speakers choose their words to optimally convey their message, anticipating that

listeners will interpret these words in the most likely context. Meanwhile, listeners use

the context and their linguistic knowledge to infer the speakers’ intended meaning.

In the earlier example, when your roommate refers to “the red one”, you first exclude

the yellow desk because it does not match the description—acting as a “literal listener”

within the RSA framework. This decision is guided by a “meaning function”, which

evaluates whether the literal interpretation aligns with the speaker’s words. Meanwhile,

the pragmatic speaker, your roommate, strategically selects their words, anticipating

how you, as the listener, will interpret the message. As a pragmatic listener, you then

refine your interpretation, considering both the explicit message and the surrounding

context, ultimately inferring your roommate’s intended meaning. This dynamic interplay

between speaker and listener, with each considering the other’s perspective, is central to

effective communication as modelled by the RSA framework.

1.2 Motivation: Are LLMs pragmatic speakers?

One of the enduring challenges in Natural Language Processing is creating models that

can accurately reflect human pragmatic behaviour. With the emergence of large language

models (LLMs) [5, 1, 11, 29, 31, 49, 50], a key question arises: can these models exhibit

pragmatic reasoning similar to humans? Determining the extent to which LLMs can

engage in this type of reasoning is vital for establishing their reliability, and it also has

the potential to shed light on human pragmatic abilities [27]. While much research

has focused on evaluating LLMs’ pragmatic abilities as listeners, specifically how well

they understand non-literal input [27, 34, 42, 47, 39], there has been comparatively

less investigation into their capabilities as speakers. The question remains: can LLMs

effectively use context to generate output that conveys more than just the literal meaning?

Exploring this aspect is essential for gaining deeper insight into the internal mechanisms

of LLMs during generation, ultimately enhancing their reliability and trustworthiness.

1.3 Research question

With the constructed RSA framework for modelling human pragmatic reasoning in

communication, we investigate whether LLMs employ similar reasoning when gen-

erating text and, if so, to what extent they use the same framework for pragmatic

communication.
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1.4 Contributions

To achieve this, we employ a reference game task, asking the experimented models

to refer to a target object. We compare the output of a vanilla LLM with that of an

RSA-based model, which serves as the benchmark for pragmatic generation, to assess

whether their output sequences are correlated. Our results indicate that our vanilla LLM

model (a variant of Llama3-8B-Instruct [56, 50]) shows a positive correlation with the

two RSA models that utilise different meaning functions in the context of the reference

game task. The contributions of the research includes:

• We propose a pipeline for the pragmatic generation evaluation for LLMs using

the RSA framework at inference. The pipeline is model-agnostic, which could be

applied to different models for comprehensive analysis.

• We present two methods to construct the utterance space of the RSA framework.

The utterance space are sequences that the model could generate, given its inten-

tion. The two methods are: sampling from top-k sequences by a beam search

algorithm, and constructing pragmatic and literal utterances using logical rules.

The development of the utterance space is essential to the RSA framework, since

both agents in communication would reason over all the possible utterances the

other agent could have said, given their intention.

• Additionally, we present two methods of constructing the meaning function within

the RSA framework. The first is a prompt-based one, which leverages the in-

context learning ability of the LLM, and returns the meaning function decision

from the LLM. The other is a rule-based meaning function, which is a specialised

meaning function to our reference game task, which has proved to have better

performance in the meaning function task compared to the prompt-based one in

our evaluation.

• Our research provides insights into the pragmatic generation capabilities of the

LLaMA3 variant model and examines how its correlation with the RSA model

varies depending on different types of utterances. Additionally, we analyse how

the alignment is affected when the RSA model is applied with different meaning

functions.
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Related Work

2.1 Large Language Models (LLMs)

2.1.1 What are they

A language model is a probabilistic framework that generates a probability distribution

over potential tokens based on the sequence of preceding tokens [4]. For instance, given

a sequence of k tokens (x1, ...,xk), the model computes the probability for each possible

next token as follows:

p(xk+1|x1, ...,xk) = σ( f (x1, ...,xk;Θ)), (2.1)

where f is a function parameterised by learned weights Θ, and σ(:) is the softmax

function, which transforms the output of f into a probability distribution.

Large language models (LLMs) mainly refer to transformer-based [52] language

models that are pre-trained on massive text data and characterised by a substantial

parameter count. This extensive training endows LLMs with exceptional learning

capabilities, enabling them to exhibit superior performance across various downstream

tasks [38].

2.1.2 In-context learning ability of LLMs

A notable feature of LLMs is their in-context learning (ICL) capability, as identified in

GPT-3 [5]. This ability enables the model to generalise and perform novel, previously

unseen tasks when provided with one or more examples within the prompt during

inference. In contrast to the traditional method of fine-tuning language models through

4



Chapter 2. Related Work 5

supervised learning, ICL offers a training-free learning paradigm, significantly reducing

the computational resources and time required for completing specific tasks [16].

Despite the flexibility and efficiency of ICL, its performance is highly sensitive

and susceptible to biases stemming from prompt design [53]. Factors influencing this

sensitivity include the selection of examples, the structure of the prompt template, and

even the sequence in which examples are presented. The underlying mechanism of how

LLMs utilise ICL remains largely opaque. Consequently, identifying an optimal prompt

necessitates considerable human effort to experiment with various prompt designs to

maximise LLM performance. This iterative process of crafting and refining prompts to

achieve desired outputs is known as prompt engineering.

2.1.3 Prompt engineering

Prompt engineering has emerged as a prominent research focus in recent years [32,

33, 30, 43, 9], especially following the remarkable ICL capabilities demonstrated by

several LLMs [5, 1, 11, 29, 31, 49, 50].

Few-shot prompting is one of the more lightweight approaches for prompt engineer-

ing [5]. It focuses on the textual design of the prompt without necessitating additional

resources. Few-shot prompting involves presenting the model with a limited number

of input-output examples to induce an understanding of a given task. This technique

not only helps the model generalise the mapping between input and output but is also

effective for generating results in a specific format.

2.1.4 Pragmatic reasoning ability of LLMs

Mahowald et al. delineate the linguistic and cognitive capabilities of LLMs [35].

They define formal linguistic competence as the model’s expertise in understanding

and applying language rules, encompassing skills such as syntax, lexical semantics,

phonology, and morphology. In contrast, they define functional linguistic competence
as an advanced stage, emphasising the ability of LLMs to appropriately select and

use language in real-world contexts. This includes skills such as formal reasoning,

which involves logical and mathematical reasoning; world knowledge, encompassing

common sense, concepts, and factual information processing; and social reasoning,

which involves pragmatics and theory of mind.

Their findings indicate that with the expansion of training data and model capacity,

LLMs have largely mastered formal linguistic competence in English. However, non-
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augmented LLMs still fall short in functional linguistic competence [45, 44], specifically

social reasoning [8].

2.1.5 Research in the field about LLM’s pragmatic reasoning ability

The field of explainable AI (XAI) seeks to determine whether the increasing scale of

LLMs endows them with similar functional linguistic capabilities. Here, we focus on

the pragmatic reasoning abilities of LLMs.

Most researchers have evaluated LLMs’ pragmatic understanding in terms of their

ability to interpret non-literal linguistic inputs. These evaluations predominantly focus

on LLMs’ interpretive abilities (or their performance as listeners), assessing whether

they can comprehend the underlying implications of the input [27, 34, 42, 47, 39]. Most

of this research concludes the limitations of LLMs’ pragmatic abilities by comparing

the output from the LLM to human output within pragmatic scenarios [48, 27, 19].

However, there is limited research on evaluating LLMs’ generative abilities (or their

performance as speakers), particularly concerning the pragmatics of their generated

outputs.

2.2 Measurement of pragmatics

Pragmatics encompasses various dimensions, including physical, linguistic, social,

and epistemic aspects [24]. Our research concentrates on linguistic pragmatics, an

essential component of communicative competence [6]. Diverse methodologies exist

for assessing linguistic pragmatics across different disciplines.

2.2.1 Linguistic approach

In linguistics, pragmatics refers to the notion that utterances convey meaning beyond

their literal semantics [23, 26]. Grice proposed a framework for measuring pragmatic

reasoning through various conversational maxims: truthfulness, relevance, informa-

tiveness, and perspicuity [21]. These maxims operate under a cooperative principle

between the speaker and the listener to lead to implicatures. Although this framework

is challenging to formalise due to the complexity of natural language and the absence

of definitive interpretations, making it difficult to obtain quantitative results, it serves as

a foundational element for future proposed frameworks.
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One attempt to get pragmatic implicatures using linguistic theories is a grammatical

model [10]. The core idea of the grammatical model is that pragmatic implicatures are

derived from the grammar of a sentence by using logical principles to determine which

alternative utterances can be excluded or included based on a speaker’s assertion and

the set of non-contradictory alternatives.

This model is constrained by its restrictive method of formulating alternative utter-

ances, primarily through the substitution of scalar items (such as quantifiers, numerals,

and modals) in embedded positions [46]. Additionally, the discrete selection process

may result in scenarios where multiple referents remain after the exclusion process,

rendering the listener unable to discern the intended meaning among the remaining

alternatives.

2.2.2 Statistical approach

Researchers have been using statistical models to study pragmatic reasoning in commu-

nication [57]. These models considering both the speaker and listener as cooperative

agents, and derive implicatures through iterative statistical inferences about each other’s

intentions. On a very high level, these models iteratively refine a heterogeneous relation

between utterances U and meanings M, such that the relations begin being purely literal,

and is refined using pragmatic reasoning. Here, we introduce the Iterated Best Response

(IBR) model [18], which uses a proper relation:

U×M→ Bool. (2.2)

As well as the Rational Speech Act (RSA) framework [21], which approximates a

relation:

U×M→ [0,1]. (2.3)

The listener and the speaker can then use the relation to choose an appropriate meaning

for each utterance, and vice verse.

2.2.2.1 IBR

The IBR model treats each interaction as a level, where the speaker expresses their

intention, and the listener comprehends it. The model quantifies pragmatic implicature

by iteratively calculating the probability of the other agent’s intention based on the

output from the previous level of that agent.
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Level-0 agents are unstrategic and consider only the literal truthfulness of the

utterance. In contrast, a level-(t +1) agent assumes the other agent behaves as a level-

t player and responds rationally. The following equations define the behaviour of

level-(t +1) agents [57]:

Lt+1(m | u) ∝


1 if m = argmax

m∈M
St(u | m)P(m)

0 o.w.

St+1(u | m) ∝


1 if u = argmax

u∈U
Lt(m | u)

0 o.w.,

where at t = 0, the speaker S0 expresses things literally, and the listener L0 assigns equal

probability to all possible utterances u ∈U that are literally true for the meaning m

from a set of possible meanings M. This step acts as a filtering mechanism to exclude

irrelevant sentences. In subsequent levels, both agents assign equal probabilities to all

best responses and zero otherwise. However, a limitation of the IBR model is that it

treats each possible sentence as equally likely, which can be unrealistic in practical

communication.

2.2.2.2 RSA

The most distinctive difference between the RSA framework and the IBR model is that,

aside from S0 (referred to as the literal speaker in RSA), the distributions of the agents

are not necessarily uniform, as outlined in Equation 2.2.2.

In the RSA framework, there are two types of communication agents: literal agents

(equivalent to level-0 agents in IBR) and pragmatic agents (equivalent to level-t agents

in IBR). The framework iteratively updates the relation (on U,M) of the current level

agent based on that of the other agent from the previous level.

The framework starts with a literal listener L0:

PL0(m|u) ∝ δm∈[[u]] ·P(m), (2.4)

where δ is the meaning function that returns 1 if u contains the meaning m and 0

otherwise. The prior function P(m) indicates the prior probability of m being true.

Next, the pragmatic speaker S1 reasons about L0 and select the best u by:

PS1(u|m) ∝ (PL0(m|u))
α, (2.5)
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where α is a parameter that scale the rational level of S1. A higher α will sharpen the

probability distribution and vice verse.

Finally, the pragmatic listener L1 selects their interpretation m by reasoning about

S1:

PL1(m|u) ∝ PS1(u|m) ·P(m). (2.6)

Zhou el. al show that RSA-based models align more to human predictions than

the IBR model and the grammatical model in a reference game setting [57]. Neverthe-

less, both models serves as foundational building blocks for the more advanced RSA

framework.

2.3 RSA-based models in the field

The RSA framework has been widely employed by researchers for various pragmatic

reasoning tasks [14]. The core of these tasks is the generation and interpretation

of referring expressions. Notably, Monroe et al. adapted an RSA model using an

LSTM architecture for a colour reference game. Their findings indicate that the trained

RSA-based neural model significantly enhances the accuracy of interpreting human-

produced colour descriptions compared to a basic RNN listener. This improvement

underscores the potential of the RSA framework for tasks necessitating grounded

language understanding [37]. Similarly, researchers have successfully trained RSA

models in image reference games [12, 13, 3] with pragmatically annotated training

data, further underscoring the model’s applicability in conceptual understanding tasks.

These studies collectively highlight the RSA framework’s robustness in enhancing

interpretative interactions, and thus, we wonder whether LLMs, with their power on

natural language generation and understanding tasks, are also using this framework

internally.

2.4 Applying RSA to LLMs

To date, only one study has examined the pragmatic reasoning ability of LLMs at

inference using the RSA framework. Carenini et al. [7] demonstrate that the reasoning

mechanisms of the GPT-2 XL model can be accurately predicted within the RSA

framework for a metaphor understanding task structured as “X is Y ”. In this study, the

meaning space M is confined to a pre-defined feature set F , and the utterance space U



Chapter 2. Related Work 10

is limited to a pre-defined set of nouns. The experiment involves prompting the LLM

to generate the adjective or feature f implied by the input metaphor and comparing

the resulting distribution to that produced by the RSA model. Their findings indicate

that the LLM’s behaviour aligns with predictions made by the RSA pragmatic listener

model in this task.

This study primarily evaluates the LLM as a pragmatic listener rather than a prag-

matic speaker. Furthermore, the task is constrained to a specific metaphor format, which

may not generalise to arbitrary natural language contexts.

2.5 Summary of related work and research gap

In summary, there is a growing trend in the XAI literature to evaluate the pragmatic

reasoning ability of LLMs. The probabilistic RSA framework is considered the most

powerful tool for pragmatics evaluation. Several studies have constructed and trained

RSA-based language models for pragmatic tasks, finding that these models behave more

similarly to human predictions compared to vanilla neural models. One study evaluated

the pragmatic interpretation abilities of a LLM using the RSA framework in a metaphor

understanding task, finding that the LLM’s interpretation closely aligned with that of

the RSA model. However, there is a notable gap in evaluating LLMs using the RSA

framework, particularly regarding their performance as pragmatic speakers.

To address this, we propose a pipeline that integrates a reference game to evaluate

the distribution generated by the RSA model in comparison with that of a standard

LLM during inference.
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Methodology

In this chapter, we detail our proposed pipeline for assessing the communicative effec-

tiveness of LLMs within the RSA framework, as shown in Figure 3.1. The research

question will be quantified by comparing the output distributions of the LLM and an

RSA model on a specific task. We begin by introducing the task specification for the

evaluation — a text-based reference game, and the corresponding dataset. Subsequently,

we construct a probability table that records the scores generated by each model for

each instance of the reference game, where each utterance u describes an object o.

The methodology is organised into three stages: first, constructing the utterance U

and meaning O spaces within the context of the reference game; second, scoring the

probability table between U and O using both the vanilla LLM and the RSA model; and

finally, evaluating the output distribution across various metrics.

3.1 Task specification

We use a reference game as the task for our pipeline [41, 28], where a set of objects

O is presented, including a target object ot ∈ O. Since our reference games include

exactly one target object, the set of potential meanings is precisely the set of objects.

The speaker’s role is to choose from a set of possible utterances U the utterance ut that

most effectively conveys ot to the listener. The listener, upon receiving the set of objects

O and the selected utterance ut , must identify the target object ot .

This task is ideal for evaluating pragmatic reasoning within a goal-oriented com-

municative context and provides a straightforward framework for eliciting pragmatic

and discourse-level phenomena. Since we work with pre-trained LLMs that operate on

textual inputs, we use text-based reference games.

11
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Phase 2: Scoring each relation (o_i,u_j)

Phase 1: Constructing the 
utterance (U) and meaning (O) space

Phase 3: Comparing both models’ output

LLM

Prompt Engineering

Evaluation

Vanilla LLM RSA-model

compose

Construct objects 
descriptions

X 420

Same input prompt

Speaker output

o1: a large, grey desk facing forwards

o2: a large, blue desk facing forwards


....

o7: a small, green fan facing to the left

Utterance space 
construction

Constructed utterances  
by rules based on formal logic

topk utterances from llm by  
prompt engineering, 

sampling by beam search

prompt-based

LLM

Literal Listener

Pragmatic Speaker

meaning function

rule-based

logical exclusion rules

Probability difference (PCC)Rank Difference (SRCC)

Figure 3.1: Project methodology pipeline
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3.2 Dataset for the referring expression task

For the task specification, we employ the TUNA dataset [51], which is centred on

a referring expression task grounded in images. The TUNA dataset organises each

reference game world around seven distinct objects within the same domain, with

predefined attributes and fixed possible features for each attribute, as outlined in Table

3.1. These fixed attributes and features enable the construction of a meaning and

utterance space within a constrained set, thereby reducing the inherent complexity of

natural language. For our experiment, we use data from the furniture domain, which

includes 420 reference game worlds. Within each game world, we conduct a reference

game for each object as the referent, resulting in a total of 2,940 reference game

instances.

Attribute Possible features

Type chair, sofa, desk, fan

Colour blue, red, green, grey

Size large, small

Orientation left, right, front, back

Table 3.1: Preset attributes and corresponding possible features for the ‘furniture’ domain

in the TUNA dataset.

3.3 Construction of the meaning space

The TUNA dataset presents each object in an XML file [20], from which we parse the

attributes of each object to construct the literal meaning utterances. For each reference

game, we generate a noun phrase (NP) description for each object based on the following

structure:

a <SIZE>, <COLOUR> <TYPE> facing <ORIENTATION> (3.1)

Here, the values of each object’s attributes are mapped into the corresponding positions

within this template. Thus, the meaning space of each reference game would be a set of

7 object descriptions (Examples given at the purple border box in Figure 3.1).
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3.4 Construction of the utterance space

In the RSA framework, speakers and listeners interpret the meaning of utterances

by taking into account other possible utterances that could have been used. These

alternatives define the meaning space used in the probability table. In a reference game,

the utterance space includes all potential utterances within the restricted world that

could describe any object in the meaning space. An optimal utterance space would

encompass both literal and pragmatic expressions, enabling a thorough assessment of

communicative effectiveness. However, even in a restricted setting, the construction

of such an utterance space, accounting for the wide variety of sentence structures and

connotations found in natural language, can be difficult.

Previous research has predominantly concentrated on producing sentences that are

pragmatic, rather than exploring the full spectrum of meaning generation [54]. In

pragmatic referring expression generation, this typically involves sampling from a

learned model during inference [54, 3, 37]. However, this method inherently produces

only pragmatic sequences, as LLM is trained on pragmatic data.

We present two approaches for constructing the utterance space U . The first ap-

proach involves sampling the top-k utterances from LLM using the beam search algo-

rithm, which produces pragmatic sequences with greater flexibility in phrasing. The

second approach constructs both pragmatic and literal utterances based on logical rules,

inspired by grammatical model logic. This method is particularly effective in a text-

based reference game setting, where a literal utterance includes all relevant features,

while a pragmatic sequence may involve omitting some features, thereby simulating

more natural communication strategies.

3.4.1 Sampling top-k utterances from LLM

Several sampling methods are commonly used in the literature, with top-k [17], top-p

[25], and temperature sampling [2] being the most prevalent. In top-p sampling, the

sequence is generated by sampling from the smallest set of tokens whose cumulative

probability exceeds a certain threshold p. Temperature sampling adjusts the smoothness

of the probability distribution, allowing control over the diversity of the output. In

contrast, top-k sampling involves selecting the next token from the k most likely tokens

in the distribution.

We choose top-k sampling because it allows us to evaluate sequences that are more

likely to be generated by the language model, aligning with the default generation
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settings.

We sample top-k utterances from the LLM by a beam search presented as Algorithm

1. As observed by [54], humans are unlikely to consider the entire space of possible

utterances each time they speak. Instead, we consider a smaller set of utterances, those

which are both relevant to the topic at hand and aligned with typical patterns of speech.

Additionally, this approach aligns with the practical constraints of text generation

models, where evaluating the full search space is computationally infeasible due to the

vast number of potential utterances [22, 36]. Beam search helps to mitigate this by

narrowing down the possibilities to the most promising candidates, allowing the model

to generate high-quality outputs without needing to explore every possible sequence.

3.4.1.1 Algorithm input

Before we go into the detail of the algorithm, we explain more about the construction

of input to the algorithm.

Using a prompt-based inference method to sample from the LLM, we design the

prompt by incorporating both the world context (the meaning space, encompassing

the descriptions of all seven objects) and a clear task description to identify the target

referent object ot . To ensure that the task evaluates the inherent pragmatic reasoning

ability of the LLM, the instruction is kept minimal and focused on the task’s core

objective, avoiding explicit guidance on pragmatic principles. An example of this

prompt is shown in Figure 3.2.

There are 7 objects in a room:



Identify object  in the room to 
distinguish from other objects using the 
fewest possible words (not numbers).



Answer:

1.
2. 
3.
4. 
5. 
6.
7.

 a large, grey desk facing forwards

a large, blue desk facing forwards

 a large, red desk facing backwards

a small, green desk facing to the left

a large, blue fan facing forwards

 a large, red fan facing backwards

 a small, green fan facing to the left  

3

context

instruction

Figure 3.2: Example of the prompt used for generating top-k sequences with the LLM.

The blue text indicates variable elements specific to each reference game instance.
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We set a beam width w of 60, determined through trial and error. We find that, with

the designed prompt template, the LLM begins to generate redundant sequences when

w > 50 approximately. Therefore, increasing the beam width beyond this point does

not enhance the generation of pragmatic sequences and only results in unnecessary

computational overhead.

The model M generates tokens with log probabilities, based only on the previous

prompt, and outputs w possible tokens with their log probabilities for the next step.

3.4.1.2 Top-k Sampling process

In Algorithm 1, the sampling process begins by initialising a beam with an empty

sequence and iteratively expands it by generating w alternative tokens for each sequence,

updating their log probabilities accordingly. The beam is updated at each step to retain

only the top w sequences, with the process continuing until all sequences in the beam

are marked as complete with a boolean indicator, indicated by the presence of a stop

token. This approach ensures the identification of the most probable utterances while

controlling computational complexity.

During our exploration, we observe that without a starting word prompt, the LLM

generates some sequences with consistent pragmatics but varied phrasing, such as

“A red desk”, “red desk”, “a red desk”, “the red desk”, or “THE RED DESK” etc.

Pragmatically, these four instances share two semantic meanings - “a red desk” and “the

red desk” represent two different implications, with the latter suggesting the existence

of only one red desk in the world. To maintain consistency and avoid unnecessary

variability, such as different capitalisations that do not alter pragmatics, the generation

process is initiated with both “a” and “the” separately. This also ensures that the answer

is a noun phrase referring expression format. This approach ensures the capture of top-k

sequences that are both relevant and pragmatically coherent within the context.

We generate the top 60 sentences starting with “a”, and only 20 with “the” due to

time constraints. After generating this many sequences, we then deduplicate sentences

that have the same semantic meaning but differ only in, for instance, ending punctuation.

The algorithm ultimately outputs w sequences along with their log probabilities.

3.4.2 Logic-based utterances construction from the world

We also construct sequences for the utterance space based on logical rules. The core

idea is that in a reference game setting, the pragmatics of referring to a particular object
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Algorithm 1: Beam search
Input: prompt P, language model M, beam width w

Output: dictionary of generated utterances and their log probabilities

1 B←{ε : (logprob= 0,stopped= False)}; /* Initialise a beam */

2 while ∃u ∈ B.¬B[u].stopped do
3 B′← /0;

4 for u ∈ B do
5 if B[u].stopped then
6 B′[u]← B[u];

7 else
/* The model produces w alternative tokens t, with

matching logprobs p. */

8 for (t, p) ∈M(P+u,w) do
9 B′[u+ t]← (

10 logprob= B[u].logprob+ p,

11 stopped= "\n" ∈ t,

12 );

13 end

14 end

15 end
16 B← B′;

17 if |B|> w then B← dict( sortlogprob(list(B))[: w] ) ;

18 end
19 return {u : B[u].logprob | u ∈ B}

involve using one or more of its features. When an utterance includes all the features of

the object, it is considered a literal utterance. In contrast, a pragmatic utterance refers to

expressions that omit some of the object’s features. The formalisation is as follows:

F∗ = ×
A∈Attributes

(FA∪{ε}), (3.2)

Ulogic(O) = {u(f)|f ∈ F∗|∃o ∈ O.f⊆ o}, (3.3)

where F∗ represents all possible combinations of features in the reference game setting,

and O is a set of objects in a particular game. Ulogic(O) is a set of possible utterances

that describe objects in O. u() is a function we define to transform the feature set f to
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an utterance. In particular, since the generated sequence should follow a noun phrase

format, ε for the ‘Type’ feature would be rephrased as ‘thing’. Figure 3.3 displays an

example of the logical construction process.

Figure 3.3: Example of logical construction process, given the attribute sets in the world.

3.5 Scoring the probability table

In the scoring phase, the aim is to examine the behaviour of the LLM as it generates a

specific preset sequence, given the context and target object. This process is similar to

how a pragmatic speaker produces an utterance to convey a particular meaning. The

logit probabilities, which are the raw output values from the LLM before they are

transformed into a probability distribution, directly indicate the model’s preferences.

Therefore, these logit probabilities are used as scores to assess the LLM’s behaviour.

3.5.1 The vanilla LLM

For the vanilla LLM, the scores will be the log probabilities of the sequences within

each reference game setting:

p(u|O,ot) = p(uuu|ccc(O,ot)) =
n

∏
i=1

p(ui|ccc(O,ot)uuu1:i−1), (3.4)

where ccc() is the prompt template, as displayed in Figure 3.2, which produces a textual

prompt for a particular object set O and designated referent ot .

The scores for the top-k sequences will be generated along with the sequence using

a beam search (Algorithm 1). For the logic-constructed sequences, we compute the

probability retroactively for each utterance.

Since several of the constructed utterances share common prefixes with each other,

we can reduce the computation time required for this calculation by using memoisation
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with a recursive form of the probability formula:

p(uuu1:i|ccc(O,ot)) = p(uuu1:i−1|ccc(O,ot)) · p(ui|ccc(O,ot)uuu1:i−1). (3.5)

For example, consider the utterances “a large red desk” and “a large fan”. When we

compute the first sequence, we store the log probability of “a”, “a large”, “a large red”

and “a large red desk”. When we encounter the second utterance with the common

prefix “a large”, we need only use the LLM to compute the probability of the final token,

since we can retrieve the rest from memory.

3.5.2 The RSA model

The RSA model’s scoring process begins with the literal listener L0:

PL0(o|u) ∝ M(u,o) ·P(o), (3.6)

where, in the context of our reference game, each object is equally likely to be selected,

resulting in a uniform prior P(o). The literal listener’s interpretation relies entirely on

the meaning function M().

The function M(u,o) returns a value in [0,1], indicating whether the utterance u

literally describes the object o, which is a task of natural language understanding. To

achieve this, we construct two types of meaning functions: a prompt-based meaning

function that leverages an LLM to make judgements, and a rule-based meaning function

that determines the boolean value according to predefined logical rules.

3.5.2.1 Meaning function - prompt-based

Large-scale language models excel in natural language understanding tasks and can be

effectively leveraged during inference [55]. We employ prompt engineering to obtain a

numeric score, using few-shot prompting techniques to guide the LLM by providing

input-output examples that establish a fixed output template. Figure 3.4 illustrates the

prompt used for the meaning function, which was refined through trial and error.

The prompt-based meaning function is defined as:

Mp(u,o) =
P(Yes |LLM(o,u))

P(Yes ∪ No |LLM(o,u))
, (3.7)

which is the probability of the model answering “Yes”.
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Does the description apply to the object?



1.

Description: That's a green sofa facing left.

Object: small, green sofa facing to the left

Yes



2.

Description: That's a green sofa facing left.

Object: small, grey sofa facing to the left

No



3.

Description: A fan.

Object:  large, grey fan facing backwards

Yes



4.

Description: {u}

Object: {o}\n

Figure 3.4: 3-shot prompt for the prompt-based meaning function using the LLM. The

variables o and u represent the object and utterance, respectively, and are customised

for each instance. Here, each new blank line corresponds to the newline character ‘\n’

in actual implementation.

3.5.2.2 Meaning function - rule-based

The core idea of the rule-based meaning function is based on feature exclusion: an

utterance u that includes a feature contradicting those of the object o does not describe

o. For example, if o is “a large, grey chair facing forwards”, then the utterance u as “a

green thing” does not describe o because the colour feature in u contradicts the colour

feature of o.

Before applying the rule, we first eliminate nonsensical generated utterances, such

as “a”, “a large”, etc., which do not meaningfully describe any object. We also create a

set of synonym mappings (see Appendix A.1), enhancing accuracy when scoring top-k

sequences that exhibit greater variation in phrasing.

We define the rule-based meaning function as follows:

o = { f1, f2, ... fn}⊊ F, (3.8)

o := F \o, (3.9)

Mr(u,o) := ∄w.(∃ f . f ∈ o∧D(w, f ))∧ (w ∈ u), (3.10)
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where f1, f2, ... are the specific features of the object o, F is a full set of predefined

features of the furniture domain in the TUNA dataset (Table 3.1), and D is a relation

containing (w, f ) iff word w describes feature f . This formula gives a Boolean result,

which is mapped to {0,1} with 1 being True.

3.5.2.3 Meaning function - evaluation

We evaluate these two meaning functions by comparing their results on a set of test cases

against human-labelled data. This evaluation is essential for fine-tuning parameters

such as the number of examples given in the prompt, as well as for assessing the relative

performance of the two meaning functions. We selected four constructed worlds for

this purpose: “topk1” and “topk2”, each comprising 2,072 (o,u) pairs generated from

top-k sequences, and “logic1” and “logic2”, containing 504 and 609 pairs respectively,

with utterances derived from rule-based logical constructions.

For the prompt-based meaning function, we test with 3-shot prompts and 6-shot

prompts (presented in Appendix B.1), and calculate the threshold T that would give the

best performance for each n-shot prompt setting. The threshold allows us to compare

the prompt-based meaning function to our ground-truth annotations, by considering

values of at least T as 1 and other values as 0.

Table 3.2 displays the performance of the prompt-based meaning function across dif-

ferent metrics using n-shot (n = {3,6}) with optimised thresholds for best performance,

as well as the performance of the rule-based meaning function. Overall, the rule-based

meaning function consistently identifies the literal relationships of all tested pairs, while

the prompt-based method occasionally falls short. Notably, the prompt-based meaning

function performs better with our constructed 3-shot prompt compared to the 6-shot

prompt.

We consider the rule-based meaning function particularly well-suited for our ref-

erence game setting due to the restricted attribute set for each object. Although the

generated top-k sequences may exhibit more diverse phrasings — such as when utopk

is “a tiny green table” and o is “a small green desk”, where “tiny” and “table” are

not present in the world vocabulary, the variations still fall within the attribute space

of the furniture domain (Afurniture = {‘Type’, ‘Colour’, ‘Orientation’, ‘Size’}). Con-

sequently, the rule-based meaning function can effectively capture these variations

through synonym mapping.

We anticipate that a more carefully crafted prompt or a more advanced language

model could improve the performance of the prompt-based meaning function, although
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this would necessitate additional human and time resources. Nonetheless, this type

of meaning function may be more suitable in a more flexible task setting, where the

relationships between o and u extend beyond literal templates.

3-shot (T = 0.5) 6-shot (T = 0.8) rule-based

Acc P R Acc P R Acc P R

topk1 0.99 1.00 0.92 0.95 0.83 0.87 1.00 1.00 1.00

topk2 0.98 0.96 0.89 0.97 0.98 0.83 1.00 1.00 1.00

logic1 0.96 1.00 0.81 0.93 0.91 0.78 1.00 1.00 1.00

logic2 0.95 1.00 0.71 0.94 0.91 0.78 1.00 1.00 1.00

Table 3.2: Performance of the prompt-based and rule-based meaning function across

different metrics (Accuracy, Precision and Recall), the prompt-based meaning functions

are using n-shot (n = {3,6}) with optimised thresholds T for best performance.

3.5.2.4 Pragmatic speaker

The pragmatic speaker S1 of the RSA model is:

PS1(u|o) ∝ eα(lnPL0(o|u)−ln |u|) =

(
PL0(o|u)
|u|

)α

, (3.11)

where α is a scaling parameter that adjusts the level of rationality attributed to PS1 , and

|u| is the length of the utterance which imposes a cost on longer productions. In our

evaluation, we set α = 1, as this allows us to directly assess the inherent rationality of

the language model without artificially amplifying or dampening its behaviour.

3.6 Technical details

Although there are many popular pre-trained LLMs that excel in various downstream

tasks, not many are open-source and provide access to logit probabilities during usage.

For this project, we use the MiniCPM-Llama3-V 2.5 model [56], which is built on

Llama3-8B-Instruct [50] available on HuggingFace1 with a full license. Specifically,

we employ the LLM with the python-llama-cpp library 2, which provides bindings

for the source C++ implementation of the LLaMA model.
1https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main
2Source code and Documentation available at: https://github.com/abetlen/

llama-cpp-python

https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main
https://github.com/abetlen/llama-cpp-python
https://github.com/abetlen/llama-cpp-python
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Evaluation and Results

4.1 Data overview

Table 4.1 presents an example of a probability table showing the LLM and RSA models

scores for possible utterances describing an object. Due to time constraints, we focus

exclusively on the furniture domain within the TUNA dataset. This ‘furniture’ dataset

consists of 420 XML files, each representing a reference game world containing 7

distinct furniture objects. In total, this results in 2,940 reference games corresponding

to the same number of utterance sets, with each set describing one object in one world.

We treat each utterance in each game as a separate utterance instance1, totalling 427,200

instances. Among these, 298,200 instances are generated by top-k sampling, while

129,000 instances are produced using logic-based rules.

Regarding the models we experiment on, we have the probability outputs from the

vanilla LLM, as well as two sets of outputs from the two constructed RSA-based models.

One RSA model uses a prompt-based meaning function, while the other employs a rule-

based meaning function. By examining the correlation between the vanilla LLM output

and these two RSA models, we can not only determine whether the LLM behaves like a

pragmatic speaker, but also investigate how the different approaches to constructing the

meaning function influence this correlation.

1That is, utterances produced for two different games are considered as different instances, even if the
utterances themselves are identical.

23
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o = a large, grey desk facing forwards
possible utterances Score LLM Score RSA sequence type

a large grey desk facing forwards is

in the room

6.143601e-13 0.008319 topk

a grey desk facing forward 7.591893e-13 0.015358 topk

a large desk 6.755013e-12 0.011092 topk

a grey desk facing forwards 7.591893e-13 0.015358 topk
...

...
...

...

a grey thing facing forwards 1.880327e-16 0.014261 logic

a grey thing facing to the left 1.932432e-21 0.000000 logic

a grey thing 1.561245e-07 0.033276 logic

Table 4.1: Example of a probability table showing the LLM and RSA model scores for

possible utterances describing an object, categorised by sequence type (topk and logic).

The RSA score here is caculated with a rule-based meaning function.

4.2 Evaluation intuition and selected metrics

There are two types of evaluations we aim to conduct. Firstly, we focus on each

reference game separately. Specifically, for each object and all the utterances describing

it, we want to determine whether the two models we compare exhibit similar scoring

preferences for that set of utterances. To achieve this, we compare the two sets of scores

using both the Pearson Correlation Coefficient (PCC) and Spearman’s Rank Correlation

Coefficient (SRCC). PCC measures the linear relationship between the two sets of data,

providing insight into whether the scores are correlated and whether they change in

the same direction. SRCC, on the other hand, assesses whether the models rank the

scores in a similar order, regardless of the exact values. This allows us to evaluate the

consistency in how the models prioritise or rank the different utterances, even if their

scoring magnitudes differ.

We also aim to analyse the overall correlation across all reference games by exam-

ining the scoring for each utterance instance related to any object. This analysis will

help us identify trends in scoring differences and determine whether the scores exhibit

a linear relationship or are randomly distributed. To evaluate this, we will plot each

data point in a common space (427,200 in total) to assess the strength of the overall
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correlation between the two models, using PCC and SRCC for quantification.

The first evaluation will provide insight into the correlation of the models’ scoring

within each reference game, allowing us to determine whether individual game instances

impact scoring. The second evaluation will focus on the overall correlation of the

models’ scoring across all data points, independent of the game context.

4.3 Evaluation between each reference game

4.3.1 Performance on PCC

Figure 4.1 illustrates the distribution of Pearson Correlation Coefficient (PCC) scores

for each reference game, categorised by the type of utterance (logic-constructed or top-k

generated) and the overall performance, irrespective of utterance type. The scores are

calculated between the vanilla-LLM and each of the RSA-models using prompt-based

and rule-based meaning functions separately.

Both subplots reveal similar patterns in the distribution of PCC scores. The PCC

scores for top-k generated sequences display a broader spread, predominantly ranging

between −0.25 and 0.25. In contrast, the PCC scores for logic-constructed sequences

are mainly concentrated between 0.25 and 0.5, indicating a stronger correlation between

the scores from the two models when evaluating logic-constructed sequences. This

suggests that the two models are more aligned in their evaluation of logic-constructed

utterances compared to top-k generated sequences. Overall, the positive correlation

observed in most game sets across both subplots suggests that the LLM scores sequences

in a manner that closely resembles a pragmatic model.

The primary difference between the two subplots is observed in the distribution

of PCC scores for top-k generated sequences. In Figure 4.1b, where the RSA-model

scores are calculated using the rule-based meaning function, the distribution is broader

and more varied compared to Figure 4.1a, where the prompt-based meaning function is

used. This broader distribution in the rule-based model indicates greater variability in

the correlation between the RSA model and LLM when evaluating top-k generated se-

quences, suggesting that the rule-based meaning function may introduce more variation

in the alignment of these models compared to the prompt-based function.
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(a) RSA-model scores calculated by the prompt-based meaning function.
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(b) RSA-model scores calculated by the rule-based meaning function.

Figure 4.1: Plots of Pearson Correlation Coefficient score count between the RSA (with

different meaning functions) and LLM scores of utterances (divided by the source of the

utterance) in each reference game.

4.3.2 Performance on SRCC

Figure 4.2 shows the distribution of Spearman’s Rank Correlation Coefficient (SRCC)

scores for each reference game, categorised by the type of utterance (whether logic-

constructed or top-k generated) and the overall performance, regardless of utterance



Chapter 4. Evaluation and Results 27

type. Similar to the PCC plots, the two SRCC distribution subplots display a comparable

pattern, where the SRCC scores for logic-constructed sequences are more concentrated

compared to those of the top-k generated sequences.

Notably, when SRCC scores were calculated across the entire sequence space for

each reference game set, the distribution of correlation scores divided into two distinct

groups: one primarily showing negative correlation, mostly between -0.25 and 0, and

the other between 0.25 and 0.75, indicating positive correlation. This separation may be

attributable to the different sources of utterance construction, where the characteristics

of logic-constructed and top-k generated sequences impact their correlation with the

RSA model differently.

For the LLM model, the top-k scoring will be higher than that of the logic-

constructed utterance. We also expect the top-k utterances to, at least, describe the

object accurately, meaning that these utterances will generally receive a higher score

from the RSA model than the average logic-constructed utterance (since, by design,

the majority of those will not describe the target object). When this is the case, the

combined ranking shows a strong correlation between LLM and RSA scores. However,

often the top-k utterances will contain frequent hallucinations and therefore not describe

the object accurately. When this occurs, the combined ranking contains a very weak

correlation, since several of the logic-constructed sequences will be scored more highly

by the RSA model than many of the top-k sequences.

Interestingly, the SRCC scores for the logic-constructed utterances cluster around

0.25 when the RSA model employs a rule-based meaning function. This suggests

that the variability in the reference game settings has a reduced impact on the rank

correlation between the two models’ scoring of logic-constructed sequences when the

RSA model uses a rule-based meaning function.

4.3.3 Results overview on evaluation between each reference game

Table 4.2 presents the mean scores and standard deviations of PCC and SRCC across

all reference games, when the utterance space is composed of different utterance types,

and the RSA model is calculated with two different meaning functions.

Overall, the 6 sets of model evaluation all show a positive correlation of the vanilla-

LLM and the RSA model. In terms of the utterance type, when we only investigate the

correlation when the models are scoring the logic-constructed sequences, the correlation

of the models scoring are more strongly correlated than that of the top-k constructed
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(a) Prompt-based meaning function
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(b) Rule-based meaning function

Figure 4.2: Plots of Spearman’s Rank Correlation Coefficient count between the RSA

(with different meaning functions) and LLM scores of utterances (divided by the source

of the utterance) in each reference game.

sequences. In terms of different types of RSA models, the table suggests that the vanilla-

LLM has a better correlation to the RSA model that is calculated with a rule-based

meaning function.

In summary, this table suggests that the rule-based approach for the RSA model’s

meaning function more accurately captures the LLM’s tendency to produce pragmatic
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speech. Additionally, the vanilla-LLM and the RSA model are more correlated when

scoring the logic-constructed utterances.

PCC SRCC

Utt. Type RSA MF Mean σ Mean σ

Logic
Prompt-based 0.382 0.074 0.050 0.086

Rule-based 0.405 0.077 0.255 0.045

Top-k
Prompt-based 0.073 0.097 0.184 0.146

Rule-based 0.170 0.134 0.188 0.137

All
Prompt-based 0.148 0.061 0.329 0.303

Rule-based 0.202 0.071 0.415 0.321

Table 4.2: Comparison of the mean and standard deviation (σ) for PCC and SRCC

metrics across different reference games, highlighting the correlation between the LLM

model and two RSA models using different meaning functions (MFs), and with different

utterance types.

4.4 Evaluation across all reference games

Figure 4.3 illustrates the correlation between the scoring of the vanilla-LLM and the

RSA models using different meaning functions and different utterance types across

all reference games. The scatter plots reveal that there isn’t a clear linear relationship

between the scores from the vanilla-LLM and the RSA models under the reference

game setting.

However, the distribution of points suggests that the LLM’s scoring aligns better

with the RSA model that is calculated with a rule-based meaning function (Figure 4.3b)

than with a prompt-based function (Figure 4.3a), despite the overall lack of strong linear

correlation. Interestingly, the scoring of the RSA-model with a prompt-based meaning

function cluster between 0.00 to 0.04. We investigate whether using a probability-based

meaning function makes the final scoring of the model too smooth, so we experiment

by changing the probability to a boolean value using a threshold of 0.5, as investigated

in Section 3.5.2.3. We find that even with a more extreme prompt-based meaning

function scoring for the RSA model, the pattern of the plot does not change, as shown

in Appendix C.1.
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Notably, in the plot corresponding to the rule-based meaning function (Figure 4.3b),

the data points are more tightly clustered, especially in regions where the RSA model

assigns higher probabilities. This pattern might suggest that the nuances of the LLM’s

scoring is better captured by a RSA model with a rule-based meaning function, reflecting

a more structured relationship, albeit still non-linear. In contrast, the prompt-based

function (Figure 4.3a) shows a more dispersed distribution of points, indicating weaker

and less consistent alignment with the LLM’s output. These observations align with the

quantitative results presented earlier, where the rule-based meaning function exhibited

higher correlation metrics, suggesting its superior capacity to mirror the LLM’s scoring

tendencies, particularly in pragmatic contexts.

Table 4.3 shows the PCC and SRCC score across all utterances, scored by the vanilla

LLM and each of the RSA models, regardless of the reference game context. The table

shows that the correlation of the vanilla-LLM with the RSA models are positive. The

vanilla-LLM model is more correlated to the RSA model with a rule-based meaning

function for both metrics.

PCC SRCC

RSA MF Score p Score p

Prompt-based 0.148 0.000 0.251 0.000

Rule-based 0.203 0.000 0.342 0.000

Table 4.3: Comparison of mean and standard deviation (σ) for PCC and SRCC metrics

across different reference games for each of the two meaning functions.
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(a) Prompt-based meaning function

(b) Rule-based meaning function

Figure 4.3: Visualisations of probability correlation of each utterance for every reference

game on the vanilla-LLM and the two RSA models using different meaning functions.
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Discussion

The evaluation conducted in the previous chapter reveals several insights into the

pragmatic generative capabilities of the vanilla-LLM within the context of our reference

game setting. The analysis demonstrates that the vanilla-LLM generally behaves as

a pragmatic speaker, as evidenced by the positive correlations observed between its

scoring and that of the two constructed RSA models, particularly when a rule-based

meaning function is employed for the RSA model.

5.1 Findings

A notable finding is that the vanilla-LLM aligns more closely with the RSA model

that uses a rule-based meaning function than with the one that uses a prompt-based

meaning function. In our reference game setting, the rule-based meaning function

outperforms the prompt-based approach in factual judgement tasks. This stronger

alignment indicates that the vanilla-LLM is particularly effective at making factual

judgements in natural language sequences, where structured reasoning is crucial.

Moreover, the correlation between the LLM and the RSA models is more pro-

nounced when evaluating logic-constructed utterances compared to top-k generated

utterances. The higher predictability and structured nature of logic-constructed se-

quences likely contribute to this stronger correlation. In contrast, top-k generated

sequences, which are prone to hallucinations, exhibit more variability and unpredictabil-

ity, leading to weaker correlations. This variability underscores the challenges LLMs

face in maintaining coherence and accuracy in less structured, more generative tasks.

While the overall findings support the LLM’s pragmatic abilities within the restricted

reference game setting, the generalisability of these results to more natural, everyday
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language use remains uncertain. The structured nature of the reference games and

the specific construction of the utterance and meaning spaces may not fully capture

the complexities of real-world communication, where the utterance space is vast and

less constrained. However, this research provides a general framework for evaluating

LLMs’ pragmatic abilities, offering a foundation for extending these assessments to

more natural and varied language use.

5.2 Limitations and Future Work

There are several limitations to the current study that warrant further investigation.

Firstly, the RSA framework requires an exhaustive list of meanings and utterances,

which is intractable in most real-world scenarios, particularly in complex and long-

sequence tasks such as essay writing or dynamic conversational exchanges. This

limitation points to the need for more scalable approaches to constructing meaning and

utterance spaces in pragmatic reasoning tasks.

Apart from that, the text-based referring expression task is not an ideal task for

evaluating the pragmatic reasoning ability of language models. We, and the RSA

modelling community in general [12, 13, 3], use it as a benchmark as it allows us to

fulfil two key requirements for using the RSA model: that the meaning function be

computable, or at least reasonably approximable, and that the utterance and meaning

spaces be small enough that applying that function to every utterance-meaning pair

does not consume an impractical amount of resources.

However, in many reference games, and other referring expression tasks, a reason-

able solution may be found by surface-level meaning and unambiguous descriptions,

without needing to use scalar implicatures or other pragmatic reasoning methods. Thus,

using the reference game task does not always apply the nuanced pragmatic reasoning

ability of the LLM.

Future work should explore different datasets that reflect a broader range of com-

munication settings and natural language use cases. Additionally, testing on other

LLMs, particularly those with more advanced pragmatic reasoning capabilities like

GPT models that are trained on a bigger dataset, would provide a more comprehensive

understanding of how different LLMs handle pragmatic tasks. We could also explore

how the alignment of the LLM compares to that of the RSA model when the RSA

model is iterated multiple times, rather than just a single back-and-forth interaction as

currently implemented.
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In summary, while the findings provide valuable insights into the LLM’s pragmatic

abilities within a controlled setting, expanding the scope of evaluation to more diverse

datasets and models is essential for advancing our understanding of LLMs in natural

language communication.
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Conclusions

We present an evaluation of the communicative effectiveness of a large language model

(a variant of Llama3-8B-Instruct) within the framework of the Rational Speech Act

(RSA) model. Our approach quantifies this effectiveness by comparing the probabilities

assigned by the LLM to certain utterances against those assigned by an RSA model.

To achieve this, we first establish a reference game task as the communication envi-

ronment. We then develop a pipeline based on RSA principles to guide the comparison.

The pipeline begins with constructing the utterance and meaning spaces, integrating

world information. For constructing the utterance space, we propose two methods: sam-

pling top-k sequences via beam search from the LLM and generating sequences based

on logical rules derived from the world context. The next step involves scoring each

utterance-meaning pair. For the LLM, scores are obtained by evaluating the probability

of the LLM generating the utterance when prompted with the target referent. For the

RSA model, we develop two variants based on different meaning functions: one that

leverages the LLM’s generative capabilities to assess whether an utterance conveys a

particular meaning, and another that uses a rule-based meaning function specifically

tailored to the reference game task. Finally, we compare the scores across reference

games using Pearson and Spearman correlation coefficients.

Our results show a positive correlation between the LLM’s scoring and that of

the two RSA models, with a stronger alignment to the RSA model using a rule-based

meaning function. We also examine how different types of utterances impact this

correlation, finding that the models are more closely aligned when scoring utterances

constructed by logical rules. While we acknowledge that these results may not be fully

generalisable due to the limitations of the reference game task and the RSA framework,

this project nonetheless contributes valuable insights. It offers a practical template for
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evaluating LLMs’ pragmatic abilities, which can be further refined and expanded in

future research. This framework could serve as a foundation for more comprehensive

assessments of LLMs’ communicative effectiveness, ultimately contributing to the

understanding of the internal “reasoning” of LLMs, and the development of more

sophisticated and human-like AI systems.
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Appendix A

Synonym mapping for the features in

the dataset

Features Corresponding synonyms

desk table

front forward, forwards, facing upwards

back backward, backwards, opposite direction, facing the wall, away

large big

small tiny, little

grey gray

Table A.1: Corresponding synonyms for features of the selected furniture domain of

the TUNA dataset, the synonyms are picked by manual checking the generated top-k

sequences.
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Appendix B

6-shot prompt for prompt-based

meaning function

Figure B.1: 6-shot implementation for the prompt-based meaning function.
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Appendix C

Additional Graphs

Figure C.1: Visualisations of probability correlation of each utterance for every reference

game on the vanilla-LLM and the two RSA models using a prompt-based meaning

functions. The meaning function scoring is further mapped to a boolean value using a

threshold of 0.5.

46


	Introduction
	Background: Pragmatic reasoning in human communication
	Motivation: Are LLMs pragmatic speakers?
	Research question
	Contributions

	Related Work
	Large Language Models (LLMs)
	What are they
	In-context learning ability of LLMs
	Prompt engineering
	Pragmatic reasoning ability of LLMs
	Research in the field about LLM's pragmatic reasoning ability

	Measurement of pragmatics
	Linguistic approach
	Statistical approach

	RSA-based models in the field
	Applying RSA to LLMs
	Summary of related work and research gap

	Methodology
	Task specification
	Dataset for the referring expression task
	Construction of the meaning space
	Construction of the utterance space
	Sampling top-k utterances from LLM
	Logic-based utterances construction from the world

	Scoring the probability table
	The vanilla LLM
	The RSA model

	Technical details

	Evaluation and Results
	Data overview
	Evaluation intuition and selected metrics
	Evaluation between each reference game
	Performance on PCC
	Performance on SRCC
	Results overview on evaluation between each reference game

	Evaluation across all reference games

	Discussion
	Findings
	Limitations and Future Work

	Conclusions
	Bibliography
	Synonym mapping for the features in the dataset
	6-shot prompt for prompt-based meaning function
	Additional Graphs

