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Abstract

This research explores the application of large language models (LLMs) for sequential

recommendation tasks. We propose a novel approach that reformulates sequential

recommendation as a sentence retrieval problem, leveraging the Sentence-T5 (ST5)

model, an LLM specifically pretrained to generate high-quality sentence embeddings

for various sentence-level tasks. Through extensive experimentation, we developed

an effective method for converting user sequence histories and item descriptions into

sentences, which are then encoded into sentence embeddings using our enhanced ST5

model fine-tuned for this task.

In our study, we identify two key challenges in utilizing the pretrained ST5 model:

the semantic gap and limited sequence awareness. To address these issues, we developed

a novel two-phase pretraining approach. First, we employ Item-Description contrastive

learning to bridge the semantic gap. Second, we implement Sequence-Sequence con-

trastive learning to enhance sequence awareness. Following these pretraining phases,

we fine-tune the model using Sequence-Item contrastive learning. This comprehensive

approach results in our enhanced ST5-Final model, which demonstrates significant

improvements over strong baselines such as SASRec and UniSRec (BLaIR) across nine

diverse product categories from the Amazon Reviews’23 dataset.

Our ST5-Final model not only performs well on trained categories but also on unseen

product categories and non-e-commerce platforms. By demonstrating our model’s

effectiveness in rating prediction, we prove its ability to generate universal item and user

representations applicable to various recommendation tasks. This universality across

domains, platforms, and recommendation tasks suggests that our work may contribute

towards the development of a foundation model for recommendation systems.
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Chapter 1

Introduction

1.1 Motivation

In modern times, recommendation systems have become a crucial part of our online ex-

periences. These systems guide users through a vast amount of options, from suggesting

products on e-commerce platforms [16] to recommending content on streaming services

[38]. As users engage with digital platforms over time, their preferences evolve, which

creates a need for more sophisticated recommendation approaches that can capture

these dynamic patterns[3].

To address the evolving nature of user preferences, sequential recommendation has

emerged as a promising approach. In contrast to traditional recommendation methods

that treat user preferences as static, sequential recommendation models approach the task

from a dynamic perspective [51]. The primary objective of sequential recommendation

is to predict the next item a user is likely to interact with, based on their historical

sequence of item interactions.

The domain of sequential recommendation has experienced significant growth in

recent years, mirroring the progress in the natural language processing (NLP) field

[53]. This parallel evolution is not surprising, as sequential recommendation can also

be viewed as an NLP task, with items similar to words and user sequences comparable

to sentences. Early methods utilized Recurrent Neural Networks (RNNs) to model

sequential data, as demonstrated by Hidasi et al.[15] with their GRU4Rec model. The

introduction of Transformer architectures [49] marked a significant leap forward, with

models such as SASRec [22], BERT4Rec [43], S3-Rec [67], and CL4SRec [55] enabling

more effective modeling of long-range dependencies in user behavior sequences.

Inspired by the powerful performance of LLMs [4] across numerous domains [36],

1



Chapter 1. Introduction 2

researchers have begun exploring their potential for sequential recommendation systems

[66]. This exploration involves converting the sequential recommendation problem into

a textual format, offering advantages such as leveraging pre-trained knowledge and

addressing limitations of ID-based methods [30].

To effectively utilize LLMs for sequential recommendation tasks, several challenges

need to be addressed. It remains unclear how to formulate the sequential recommenda-

tion problem as a textual task. Additionally, the mismatch between LLMs’ objective to

solve natural language understanding tasks and the goals of recommendation systems

creates a semantic gap [30, 35, 17]. Furthermore, LLMs exhibit poor user sequence mod-

eling capabilities in recommendation settings [18], a crucial limitation for effectively

leveraging long user histories in sequential recommendation tasks.

Moreover, there is a need to develop universal representations for users and items

since they can facilitate cross-domain and cross-platform recommendations without

frequent retraining [17]. Such representations can also support various recommendation

tasks beyond sequential recommendation, such as rating prediction.

1.2 Our Approach and Contributions

Our approach reformulates sequential recommendation as a sentence retrieval task,

leveraging LLMs. We convert user sequences and item descriptions into sentences, then

utilize the Sentence-T5 base model (ST5) [32] to encode them into sentence embeddings.

We then match user sequence embeddings to the item corpus to retrieve recommended

items. ST5 is specifically designed for encoding sentences into high-quality embed-

dings suitable for various sentence-level tasks, including retrieval. Through careful

experimentation, we first develop an effective method to convert user sequences and

items into textual descriptions. We then identify and address two primary limitations

of using ST5 for sequential recommendation: the semantic gap and limited sequence

awareness.

To overcome these challenges, we develop a novel two-phase pretraining approach.

First, we pretrain our model on an Item-Description contrastive learning, which utilizes

item descriptions to address the semantic gap between sentence retrieval for natural

language understanding tasks and item retrieval in sequential recommendation settings.

We then conduct pretraining on a Sequence-to-Sequence contrastive learning, inspired

by CL4SRec [55], to enhance the model’s sequence awareness—crucial for capturing

temporal dynamics in user interactions. After pretraining, we fine-tune on a Sequence-
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Item contrastive learning objective for our core task of sequential recommendation,

training the model to retrieve top items for a user.

To ensure our model generates universal item and user representations, we train it

simultaneously on diverse product catalogs from nine different domains in the Amazon

Reviews’23 dataset [16]. We demonstrate the model’s cross-domain capabilities on

three unseen product categories and validate its cross-platform applicability on the Yelp

(2018) dataset [60]. Additionally, we apply our model to rating prediction to prove its

universality for recommendation tasks beyond sequential recommendation.

Our key contributions can be summarized as follows:

1. We develop an effective method for converting sequential recommendation task

into a text-based format.

2. We identify the limitations of the ST5 model for this task.

3. We enhance the ST5 model for sequential recommendation task by addressing its

inherent limitations through tailored pretraining and fine-tuning strategies.

4. We demonstrate that our proposed and trained ST5 model is capable of generating

universal user and item representations with strong generalization capabilities

across diverse domains, platforms, and other recommendation tasks.

1.3 Structure

This research provides a comprehensive exploration of our novel approach to sequential

recommendation. We begin with background on sequential recommendation and the

Sentence-T5 (ST5) model in Chapter 2, followed by our methodology in Chapter 3.

Chapter 4 forms the core of our work, discussing the conversion of the sequential

recommendation problem into a sentence retrieval task, analyzing the ST5’s zero-shot

performance, and detailing our training process. Chapter 5 explores various experiments,

focusing on cross-domain applicability and effectiveness in different tasks. We conclude

in Chapter 6 with a discussion of our model’s limitations, future work, and final remarks.



Chapter 2

Background

In this chapter, we explore the fundamentals of sequential recommendation systems and

their types. We examine related research to position our work within the field. We then

introduce the Sentence-T5 (ST5) model, our chosen sentence encoder, and explain why

it was an ideal choice for our project.

2.1 Sequential Recommendation

Recommendation systems have become integral to digital experiences, enhancing both

business operations and user experiences. They help businesses drive engagement and

sales while providing users with personalized suggestions [3]. Traditional approaches

to recommendation systems fall into two main categories. Collaborative filtering [42]

analyzes patterns of user behavior across a large user base to make recommendations

based on similar preferences. Content-based recommendation [46] creates profiles for

users and items, recommending items similar to those a user has liked in the past.

Unlike traditional methods which treat user preferences as static, sequential rec-

ommendation systems capture the dynamic nature of user interests and item spaces

by analyzing the user’s interactions with different items under varying contexts [51].

These systems aim to capture temporal dependencies in user interaction patterns, under-

standing both short-term and long-term evolving implicit preferences. This not only

improves the user experience by offering more personalized recommendations but also

benefits businesses by increasing engagement and potentially driving sales through

more targeted suggestions [3].

Sequential recommendation systems can be categorized based on the types of

behavior sequences they analyze as explained by Fang et al.[8]. Experience-based

4
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sequences capture multiple interactions with the same item through different behaviors

such as clicking, purchasing, or sharing. Transaction-based sequences concentrate on

interactions involving a single type of behavior, most commonly purchases. Interaction-

based sequences combine aspects of both experience-based and transaction-based

sequences. Our research will concentrate on transaction-based behavior sequences,

which align well with popular datasets like Amazon Reviews’23 [16].

2.2 Type of Sequential Recommendation

Sequential recommendation systems can be broadly categorized into mainly two types,

ID-based and textual-based approaches. ID-based sequential recommendation systems

have been the mainstream approach for a long time, relying on unique identifiers

for users and items to generate personalized recommendations. This approach has

evolved from the traditional methods such as Markov chain-based methods [40] to more

advanced techniques using transformer architectures [22]. However, this approach faces

limitations such as dependency on sufficient user-item interaction data, difficulty in

capturing attribute-level correlations that reflect real user preferences, and challenges in

cross-domain capabilities [30]. In contrast, textual-based approaches have emerged as a

promising alternative, leveraging rich textual information to represent items and/or users

without explicitly involving IDs [25, 35]. In the following sections, we will explore

these two approaches in greater detail:

2.2.1 ID-Based Sequential Recommendation Models

Traditional methods laid the foundation of the ID-based systems, with Markov chain-

based approaches [68] and matrix factorization techniques [23] being among the first

to capture temporal aspects of user behavior. Major advancement came with Rendle

et al.’s [40] Factorized Personalized Markov Chains (FPMC) model, which combined

the Markov chain models with matrix factorization to do next-basket recommendations

in an e-commerce setting. However, this approach faced several limitations, such as

struggles with long-term dependencies and complex patterns [51].

Recurrent Neural Networks (RNNs) emerged as a promising solution, with models

such as GRU4Rec [15] that effectively captured longer sequences and more complex

sequence dynamics. The use of Convolutional Neural Networks (CNNs) [24] and Graph

Neural Networks (GNNs) [41] followed next in the field, with models like Caser [44]
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and SR-GNN [54], which offered a more flexible framework and improved capability

in capturing local patterns for modeling user behavior.

The introduction of transformer-based models [49] marked a revolution in the field

of sequential recommendation. These models had the combined ability to capture long-

range dependencies and more efficient parallel processing, overcoming the limitations

of the previous approaches. SASRec [22] adapted the Transformer architecture for se-

quential recommendation, using a two-layer Transformer and self-attention mechanism

to better model the user sequences. BERT4Rec [43] further advanced this approach

by introducing bidirectional self-attention, allowing the model to consider both past

and future interactions. The bidirectional architecture coupled with a masked item

prediction objective allowed the model to generate more context-aware representa-

tions of the user behaviors. Self-supervised approaches led the next step by using

self-supervision signals to generate better data representations and address data sparsity

issues. S3-Rec [67] introduced a self-supervised learning framework that pre-trains the

model on large-scale unlabeled sequences, incorporating item, attribute, and position in-

formation. Meanwhile, CL4SRec [55] used contrastive learning techniques to improve

the robustness of user sequence representations by generating augmented versions of

user sequences through operations like item crop, item mask, and item shuffle. These

techniques further improved the transformer-based models and represent the current

state-of-the-art in ID-based sequential recommendation systems.

2.2.2 Text Based Sequential Recommendation Models

Text-based sequential recommendation models represent a paradigm shift in the field.

Leveraging rich textual information to represent items and user interactions, these

models improve handling of cold-start scenarios, enhance cross-domain capabilities, and

show promise for more explainable recommendations [10]. Researchers are exploring

various ways to use Large Language Models (LLMs) [4] in recommendation systems,

given their significant success across numerous natural language processing tasks [36].

One approach uses in-context learning and prompt engineering, which involves

crafting specific prompts to guide LLMs in solving recommendation tasks without fine-

tuning. Gao et al. introduced Chat-REC [9], an LLM-augmented recommender system

that uses in-context learning to enhance recommendation reasoning. Wang and Lim

[50] proposed a Zero-Shot Next-Item Recommendation (NIR) prompting strategy for

next-item predictions. Hou et al. [18] reformulated sequential recommendation as a con-
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ditional ranking task, demonstrating the potential of LLMs as zero-shot rankers. While

promising, these approaches often struggle with perceiving user sequence interaction

order and can have a popularity bias in recommending items.

Another line of research leverages LLMs by framing recommendation as an instruction-

tuning problem. This approach aims to train LLMs as one-model-fits-all solutions by

unifying various recommendation tasks under a single model. The M6 model [5] in-

troduced this concept for open-ended domains and tasks in industrial recommender

systems. The P5 model [10] developed prompt templates for various recommendation

tasks and fine-tuned the T5 model. VIP5 [11] built on P5 by incorporating images

alongside text. InstrucRec [61] formulated user preferences as natural language in-

structions, treating recommendation as an instruction-following task for LLMs. Our

research specializes in sequential recommendation rather than attempting to cover all

recommendation tasks.

2.3 Relevant Work

Our research aligns with the text-based sequential recommendation approach, specif-

ically focusing on using LLMs as powerful text encoders to generate user and item

representations [63]. Several recent works have explored similar directions. IDA-SR

(Item Description-based Sequential Recommendation) [30] used a BERT model [7] to

generate item representations from textual descriptions. It then applies multi-head atten-

tion to a sequence of these items from user interaction histories to create user sequence

representations. UniSRec [17] introduced the concept of universal item and sequence

representations to further improve cross-domain capabilities and reduce ID dependence.

The BLaIR (Bridging Language and Items for Retrieval and Recommendation) model

[16] further refines item representations by introducing Item-Review contrastive learn-

ing, aiming to bridge the semantic gap between natural text and item text, and then uses

UniSRec as a backbone for sequential recommendation. Our approach diverges from

these methods by converting both item descriptions and user sequences into textual

format to fully leverage the LLMs. We address the semantic gap through pretraining

objectives for both sequence and item representations in a single model, introducing

Item-Description pretraining instead of BLaIR’s Item-Review contrastive learning.

The Unified Pre-trained Language Model Enhanced Sequential Recommendation

(UPSR) [35] uses a T5 encoder-decoder [37] model as its backbone, converting user

sequences into text and framing sequential recommendation as an item generation task.
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Recformer [25] implements an approach similar to ours, using sentence retrieval for

sequential recommendation. It employs a Longformer-like model [2] as its backbone

and obtains both user and item representations from the same model. Our approach

differs from Recformer in two key aspects. First, we utilize the Sentence-T5 (ST5)

model [32], which is specifically trained for sentence retrieval tasks, thus providing

a more suitable foundation for recommendation tasks. Second, our structured input

method clearly differentiates between sequence and item representations, explicitly

instructing the model when to produce each type. Liu et al. [27] also formulate sequen-

tial recommendation as a sentence retrieval task using a T5 model as the backbone.

However, our model goes further by addressing the inherent weaknesses of using an

LLM like ST5 for recommendation task. Furthermore, our approach focuses on creating

universal representations for both items and users, which not only enhances performance

across diverse domains but also enables the application of our representations to other

downstream recommendation tasks, such as rating prediction.

2.4 Sentence-T5 (ST5) Model

In our research, the selection of an appropriate sentence encoder is crucial for effectively

transforming our sequential recommendation task into a sentence retrieval problem.

After careful consideration and preliminary experiments, we chose the Sentence-T5

(ST5) [32] model as our primary sentence encoder, driven by several key factors aligning

with our task requirements and broader research goals.

The ST5 model, which utilises T5’s encoder architecture as its backbone [37], excels

in generating high-quality sentence embeddings suitable for various sentence-level tasks,

including sentence retrieval tasks. In the context of recommendation systems, which

operate on large datasets of users and items, efficiency is crucial. Using a standard

T5 model for sentence retrieval tasks would have involved computationally expensive

cross-attention on each query-candidate pair. Instead, leveraging sentence embeddings

proves to be a more efficient approach [12, 39, 59].

ST5’s promising results, even without task-specific fine-tuning, provide an excellent

starting point for our sequential recommendation task. This aligns well with our research

goals of developing universal item and user representations that can generalise across

domains and platforms. The ST5’s strong foundation in sentence retrieval and semantic

search and the flexibility for further fine-tuning to our specific task make it an ideal

choice for our research.



Chapter 3

Methodology

Chapter 3 outlines our research methodology. We define our approach to sequential

recommendation, evaluation metrics,datasets and preprocessing steps, and provide an

overview of the baseline models used for comparison in our study.

3.1 Task Formulation

The sequential recommendation task aims to predict a user’s next item of interest based

on their historical behavior. Given a set of items I and a list of user sequences U ,

where each user sequence s ∈U comprises a list of items it ∈ I that the user interacted

with at time t, such that s = (i1, i2, i3, . . . , it), our objective is to predict the item at it+1.

Specifically, we aim to retrieve the top K items that users are most likely to interact with

at timestamp it+1, where K is the number of recommended items. For our research, we

select K to be 10 and 50. The choice of K = 10 helps us simulate common real-world

scenarios with limited recommendation space, while K = 50 allows us to evaluate the

model’s performance over a broader range of recommendations and assess the model’s

ability to capture diverse user interests.

We reformulate this challenge as a sentence retrieval task, converting each item and

user sequence into a sentence with an appropriate structure as detailed in Section 4.1.

To encode these sentences into high-dimensional sentence embeddings, we leverage

the Sentence-T5 base (ST5) [67] as our backbone LLM. Let the sentence encoder be

denoted by the function f (). We obtain embeddings for items and sequences as follows:

Embi = f (senti) ∈ Rd; Embs = f (sents) ∈ Rd (3.1)

where d is the embedding dimension which for ST5 is 768, and senti and sents

9
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represent the textual sentences for items and sequences respectively. We calculate the

similarity between a user sequence and all items using cosine similarity:

sim(Embs,Embi) =
Embs ·Embi

|Embs||Embi|
(3.2)

To improve efficiency and scalability, we adopt an approach similar to [58]. We

calculate and store the item corpus representation matrix in advance, while computing

user sequence representations in real-time as needed.

The transformation of this task into a sentence retrieval problem offers several

advantages. Firstly, it removes the dependency on item IDs, a limitation faced by many

existing models [40]. Secondly, the text-based approach allows for better bridging of

cross-domain and cold-start scenarios [17]. Furthermore, by utilizing LLMs, we can

leverage their expressive power, pre-trained knowledge, and semantic capabilities to

provide more personalized, context-aware recommendations [35].

Our methodology involves designing pretraining tasks aligned to address the current

limitations of ST5. The fine-tuning process is then tailored to optimize performance

for the sequential recommendation task. This two-step approach leverages the broad

knowledge in pretrained ST5 while adapting it to generate universal item and user

representations applicable across domains, platforms, and other recommendation tasks.

These training steps are later described in Chapter 4.

3.2 Evaluation Metrics

To assess the performance of our model, we employ two widely used metrics in recom-

mendation systems: Hit Ratio (HR@K) [6] and Normalized Discounted Cumulative

Gain (NDCG@K) [20]. These metrics provide insights into the effectiveness of our

recommendation model.

The Hit Ratio (HR@K) measures the proportion of cases where the ground truth

item is present in the top K recommended items. Let N be the total number of users,

K the number of top items to consider, Topn
k the set of top k predicted items for user

n, and GTn the ground truth item for user n. δ(GTn ∈ Topn
k) be an indicator function

which equals to 1 if GTn ∈ Topn
k , and 0 otherwise. Then HR@K is calculated as:

HR@K =
1
N

N

∑
n=1

δ(GTn ∈ Topn
k) (3.3)

While HR@K is valuable, it doesn’t account for the position of the ground truth item

within the top K recommendations. To address this, we also use the NDCG@K, which
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considers both the presence and the ranking of the ground truth item.The NDCG@K

is calculated in several steps. First, we compute the Discounted Cumulative Gain

(DCG@K) for each user n:

DCG@Kn =
K

∑
i=1

δ(GTn = itemi)

log2(i+1)
(3.4)

Here, δ(GTn = itemi) is 1 if the item at position i is the correct next item, and 0

otherwise. The logarithmic discount factor penalizes correct items appearing lower in

the recommendation list.

Next, we calculate the Ideal DCG (IDCG@K), which represents the best possible

ranking where the correct item appears at the top. In our case, IDCG@Kn = 1 for all

users, as the correct next item would ideally be at the top of the list. Finally, we average

the NDCG@K across all users:

NDCG@K =
1
N

N

∑
n=1

K

∑
i=1

δ(GTn = itemi)

log2(i+1)
(3.5)

This metric not only considers whether the ground truth item is in the top K recom-

mendations but also rewards higher placements within that list. NDCG is particularly

relevant for e-commerce platforms, where the order of recommendations can signifi-

cantly impact user engagement and sales.

3.3 Dataset

For training and evaluating our model, we utilize the Amazon Reviews’23 dataset,

provided by McAuley Lab [16]. This comprehensive dataset, derived from Amazon [1],

an e-commerce website, encompasses user-item interactions and detailed item metadata

from 33 diverse product categories. It offers crucial information such as user IDs, item

IDs, timestamps, ratings, and rich item metadata.

We selected nine diverse product categories: All Beauty, Beauty and Personal Care,

Cell Phones and Accessories, Electronics, Health and Household, Movies and TV, Toys

and Games, Video Games, and Baby Products. This wide-ranging selection enhances our

model’s ability to generalize across different domains and aids in developing universal

representations. To rigorously evaluate cross-domain performance, we selected three

distinct categories: Books, Digital Music, and Amazon Fashion. These categories

present unique characteristics and challenges, testing our model’s ability to transfer

knowledge and make meaningful recommendations in diverse product spaces.
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A primary motivation for selecting this dataset is its recency, covering user inter-

actions from October 2018 to September 2023. This temporal range aligns with the

knowledge cutoff of most LLMs, ensuring consistency between the training data and

our backbone LLM model’s knowledge. The enhanced item metadata provided in

this dataset is another compelling factor. Rich textual item titles, descriptions, and

features offer our model a deeper understanding of the items being recommended. This

comprehensive textual information is particularly beneficial for our approach, as we rely

on text to create item and user representations. The detailed item descriptions directly

contribute to the effectiveness of our item and description pretraining objectives, as

detailed in Section 5.2.1.

3.4 Dataset Preprocessing

Our data preprocessing for the Amazon Reviews’23 dataset involved several key steps

to prepare the data for our sequential recommendation model. We adopted the Absolute-

Timestamp Splitting strategy as specified by the dataset creators [16], dividing user

interaction sequences based on specific timestamps: interactions before t1 for training,

between t1 and t2 for validation, and after t2 for testing. This approach mirrors real-

world scenarios where recommender systems can only utilize historical interactions up

to a certain point in time.

We cleaned the item metadata, focussing on item titles and descriptions, by convert-

ing HTML entities, removing HTML tags and non-ASCII characters, and normalising

whitespace. The dataset offers k-core filtering options, where k-core retains only users

and items with at least k interactions. We opted for 0-core filtering, which keeps all

users and items regardless of interaction frequency. This approach helps maintain

comprehensive data, maximize diversity, and preserve cold-start scenarios. To manage

computational constraints, we selected subsets from each product category using a 7:2:1

ratio for training, validation, and testing. Data statistics are given in Appendix C.

Throughout the preprocessing, we removed items without metadata from the user-

item interaction data and retained only histories with at least one item. A key challenge

was accommodating the ST5 model’s input length limitation of 255 tokens. For user

interaction histories, we prioritized recent interactions by removing items from the

beginning of the sequence until the token limit was met. For item titles, we truncated

from the end while meticulously preserving all necessary tags, maintaining the integrity

of both item and sequence representations. Finally, we created data maps for users,
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items, titles, and descriptions, facilitating efficient data retrieval and model processing.

This indexing step is crucial for managing the large-scale dataset and enabling quick

lookups during model training and evaluation.

3.5 Baseline Models

To rigorously evaluate the effectiveness of our proposed model, we compare it against

three well-established baseline models. Each of these baselines represents a differ-

ent approach to the recommendation task, providing a comprehensive framework for

assessing the strengths and weaknesses of our model in various scenarios.

3.5.1 Popularity-based Model (Pop)

This baseline identifies the most frequently interacted items in the training data, ranks

them by popularity, and recommends this fixed ranking to all users in the test set.

Despite its simplicity, it can be surprisingly effective, particularly in entertainment

categories like Video Games, Movies and TV, or Toys and Games, where trending items

often drive consumer behavior. It’s also potentially strong in domains like Cell Phones

and Accessories or Electronics, where consumers often gravitate towards the most

popular models. By comparing our ST5-based model against this method, we can assess

its ability to capture personalized preferences beyond general popularity trends.

3.5.2 Self-Attentive Sequential Recommendation (SASRec)

SASRec (Self-Attentive Sequential Recommendation) is a state-of-the-art model for

sequential recommendation tasks [22]. We choose SASRec as a baseline due to its

strong performance in capturing complex user behavior patterns through self-attention

mechanisms. In SASRec, a user’s sequence s ∈U is converted into embeddings using

an item embedding matrix M ∈ RI×d , where I is the total number of items and d is

the embedding dimension. The input embedding matrix E ∈ Rn×d is constructed by

mapping each item it at time step t to its corresponding embedding Et = Mst , where n

is the sequence length.

The model then applies self-attention blocks to these embeddings to capture de-

pendencies between items. The self-attention mechanism [49] computes the attention
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weights and the context-aware representations using the formula:

Attention(Q,K,V ) = softmax
(

QKT
√

d

)
V (3.6)

where Q = EW Q, K = EW K , and V = EWV are the query, key, and value matrices

derived from the item embeddings E, and W Q, W K , and WV are learnable parameter

matrices. These attention weights determine the relevance of each item in the sequence

and generate context-aware item representations. For the final prediction, these context-

aware representations are passed through feed-forward layers. The model predicts the

next item by computing a relevance score for each potential item using:

ri,t = Ft ·MT
i (3.7)

where Ft is the final sequence representation after the self-attention blocks, and Mi is

the embedding of item i. The item with the highest score is predicted as the next item.

SASRec is an ID-based method that relies on learned item embeddings. In contrast,

our method uses the ST5 encoder to create text-based representations of items and user

sequences. By comparing SASRec with our approach, we aim to evaluate the trade-offs

between ID-based and text-based sequential recommendation approaches, particularly

in terms of performance across different domains and cold-start performance.

3.5.3 Universal Sequence Representation Learning (UniSRec(BLaIR))

In our study, we use UniSRec(BLaIR) as a strong comparative baseline. This model

combines the Universal Sequence Representation Learning (UniSRec) framework [17]

with item representations derived from the BLaIR model [16].This combination lever-

ages UniSRec’s ability to perform cross-domain sequential recommendations while

harnessing BLaIR’s sophisticated item embeddings.

UniSRec aims to generate universal item and sequence representations capable

of generalizing across various domains. It takes a user’s interaction sequence as

input, converting each item in the sequence to its textual description. To create item

representations, the text of each item is processed through a pre-trained BERT model [7]

to obtain initial sentence embeddings. These embeddings are then processed through a

parametric whitening step and a Mixture-of-Experts (MoE) enhanced adaptor to create

universal item representations vi. This step ensures that the embeddings are evenly

distributed across the latent space and adaptable across domains, improving the model’s

ability to generalize.
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The sequence of universal item representations vi is then encoded using a Transformer-

based architecture. The input to this encoder is : f 0
j = vi + p j, where p j are positional

embeddings. The Transformer applies multiple layers of self-attention and feed-forward

networks:

F(l+1) = FFN(MHAttn(F l)) (3.8)

where F l is the output of the l-th layer, MHAttn denotes multi-head self-attention, and

FFN represents a point-wise feed-forward network. After L layers, the final hidden

state f L
n corresponding to the n-th (last) position is used as the sequence representation.

For next item prediction, the model’s final output is a probability distribution over the

entire item catalog, predicting the next item a user is likely to interact with. UniSRec

computes this probability for each candidate item j as:

P( j|s) = Softmax( f L
n · v j) (3.9)

where v j is the universal representation of item j.

BLaIR is a language model designed to create universal item representations. It

employs an Item-Review contrastive learning objective to bridge the semantic gap

between natural language and item representations for retrieval and recommendation

tasks. The resulting item embeddings are then utilized in UniSRec, leveraging these

rich, contextually aware representations for more effective recommendations.

We selected UniSRec(BLaIR) as a baseline due to its strong performance in cross-

domain recommendation tasks. While UniSRec(BLaIR) uses text-based representations

similar to our approach, we further innovate by representing both items and user

behaviors as text and utilizing Item-Description contrastive learning instead of Item-

Review contrastive learning (explained in Section 4.4.1.1). This comparison will

offer valuable insights into the effectiveness of our approach in creating universal

representations for both users and items in recommendation tasks.

3.6 Implementation Details

This project was conducted on the Eddie cluster, utilizing A100 GPUs [45]. We

implemented SASRec and UniSrec(BLaIR) baselines using the RecBole library [65,

56, 64]. Our ST5 model and its variants were developed and trained using the sentence-

transformers library [39]. Detailed model configurations are explained in Appendix

B.
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ST5 Model Development

This chapter outlines the development of our sequential recommendation model from

initial text representation experiments to the final optimized Sentence-T5 (ST5) model

[32]. We begin by exploring strategies to effectively transform the sequential recommen-

dation task into a sentence retrieval problem, followed by an analysis of ST5 zero-shot

performance, which we referred to as “ST5-Only.” After identifying key weaknesses,

we detail the development of our enhanced model, “ST5-Final,” which incorporates

specialized pretraining and fine-tuning phases.

4.1 Text Representation Experiment

In our research on sequential recommendation, a critical aspect was determining the

most effective strategy for transforming item information and user sequences into a

textual format suitable for sentence retrieval tasks. This transformation process is

crucial as it directly impacts the quality of sentence embeddings and, consequently,

the performance of our sequential recommendation system. To identify the optimal

approach, we conducted a series of experiments focusing on different text representation

strategies.

4.1.1 User Sequence Text Representation

Our initial experiment focused on evaluating various methods for modeling user se-

quence into sentences , exploring four distinct approaches: Structured, Unstructured,

Structured with Instruction, and Unstructured with Instruction.

The Structured Approach encapsulated item information within specific tags, using

16
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Figure 4.1: Comparison of User Sequence Text Representation. The top two charts show

NDCG@10 and NDCG@50 scores, while the bottom two show HR@10 and HR@50

scores. The bars are normalized to show the proportion of each strategy’s contribution

within each category.

only the item title as the item text. The entire user sequence was bounded by start and

end tags. We utilized T5 additional tokens to represent these special markers as follows:

<SEQ START> as <extra id 0>, <ITEM START> as <extra id 1>, <ITEM END>

as <extra id 2>, and <SEQ END> as <extra id 3>. This format was designed to

help the model distinguish between individual items and potentially capture long-term

dependencies in user behavior. Additionally, these tags assist the model in differentiating

when to create sequence embeddings and when to generate item embeddings. In contrast,

the Unstructured Approach represented items simply as their text, with the sequence

being a comma-separated list of items.

The Structured with Instruction and Unstructured with Instruction approaches com-

bined their respective formats with an introductory instruction:

A user has purchased a sequence of items ordered in chronological order. Each item

in the sequence is represented as “Title: <item title>”. The following sentence

represents the user history:

This instruction was followed by either the structured or unstructured sequence
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representation.

Our results, as presented in Figure 4.1 (Table in Appendix A.3), demonstrated a

clear hierarchy of effectiveness. The structured approach consistently outperformed the

others, followed by the unstructured approach. The addition of instructions generally re-

duced performance, likely due to the introduction of noise in the sentence representation

process. However, when instructions were used, the structured format still outperformed

its unstructured counterpart. These findings suggest that providing clear item boundaries

and sequence structure helps the model better understand the relationships between

items and the overall user behavior pattern. The superior performance of the structured

approach without instructions indicates that the model can effectively leverage the

inherent structure without additional explanatory text.

4.1.2 Item Text Representation

Figure 4.2: Comparison of Item Text Representation. The top two charts show

NDCG@10 and NDCG@50 scores, while the bottom two show HR@10 and HR@50

scores.The bars are normalized to show the proportion of each strategy’s contribution

within each category.

Our second experiment delved into the finding out the an effective way to represent

item text. We explored two distinct strategies: using only the item title, and combining

the title with its description. For the title-only approach, we formatted the data as:
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<ITEM START>TITLE: <ITEM TITLE><ITEM END>

In contrast, the combined method used the following format:

<ITEM START>TITLE: <ITEM TITLE>DESCRIPTION: <ITEM DESCRIP-

TION><ITEM END>

If an item lacked a description, we used the placeholder “description not avail-

able.” Surprisingly, our results, as illustrated in Figure 4.2 (Table in Appendix A.4),

revealed that using the title alone yielded superior outcomes compared to including

the description. This counterintuitive outcome can be attributed to several key factors.

Primarily, item titles, especially in e-commerce contexts, usually pack a lot of important

details about the product, such as brand, shape, features, colour, etc. This concentrated

information allows for a comprehensive representation of the item. Additionally, by

focusing solely on the title, we potentially mitigate the noise inherent in product de-

scriptions, which often contain marketing language or redundant information that may

not significantly contribute to the item’s core representation. Furthermore, the concise

and targeted nature of titles may result in more distinct and easily distinguishable

embeddings in the vector space. This could potentially enhance the model’s capacity to

differentiate between items.

4.2 ST5-Only Model Performance Analysis

As observed in Figure 4.3 (Table in Appendix A.1), our evaluation of the ST5-Only

model against baselines reveals a consistent performance ranking across product cate-

gories: UniSREC (BLaIR) generally leads, followed by ST5-Only, then SASRec, and

finally the Popularity (Pop) base method. Notably, in the All Beauty category, ST5-Only

even surpasses UniSRec (BLaIR). These results highlight our ST5’s zero-shot potential,

offering strong competition to sophisticated, domain-adapted models.

Our sentence retrieval approach demonstrates significant potential, often outper-

forming SASRec across various categories. Unlike ID-based methods, our approach’s

reliance on textual representations offers inherent cross-domain capabilities. However,

the ST5-Only model’s performance is not uniform across all categories. We observe

certain challenges in domains such as Cell Phones and Accessories and Electronics.

This variability likely stems from a semantic gap between the textual representation of
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items and the specific requirements of recommendation tasks in these categories. The

technical nature of these products may not align as closely with the language model’s

pretraining, which focuses on general semantics of the natural language understand-

ing task. Conversely, the strong performance of ST5-Only in categories like Movies

and TV can be attributed to the model’s extensive world knowledge, acquired through

pretraining on vast amounts of diverse textual data.

UniSRec (BLaIR) shows consistently strong performance across all metrics. This

is due to its use of an LLM that was further trained with an item-review contrastive

objective. This approach helps UniSRec bridge the semantic gap that the ST5-Only

model struggles to overcome. Addressing this semantic gap could further enhance

ST5’s effectiveness across a broader spectrum of domains.

4.3 Weakness of ST5-Only Model

Following our analysis of the ST5-Only model’s performance, it is crucial to address

the limitations that have become apparent through our study. These weaknesses not

only provide insight into the model’s current capabilities but also highlight areas for

future improvement.

1. Semantic Gap in Recommendation Tasks: As discussed in Section 4.2, a

significant semantic gap exists between the ST5 model’s pre-training for retrieving

sentences based on natural language understanding and its application to retrieve

items relevant to user sequences in a sequential recommendation context. This gap

is particularly noticeable in the model’s struggle to capture item-specific attributes

and relationships essential for effective item retrieval. While models such as

BLaIR [16] bridge this gap through targeted training on Item-Review contrastive

objective, the zero-shot ST5 model lacks the specialized understanding of item

semantics in the context of recommendations. Furthermore, this gap is evident in

the model’s uneven world knowledge across different product categories, with

the model excelling in domains like Movies and TV and Beauty products but

struggling in more technical categories such as Electronics.

2. Limited Sequence Awareness: Analysis of ST5-Only’s performance with in-

creasing user interaction history (Section 5.2.6) reveals a critical limitation in the

model’s ability to leverage sequential information effectively. The model’s per-

formance consistently declines as the number of interacted items in user history



Chapter 4. ST5 Model Development 21

increases, with optimal results observed for single-item sequences. This pattern

suggests that the ST5-Only model primarily engages in sentence matching rather

than demonstrating an understanding of user sequential patterns in a sequential

recommendation context.

4.4 ST5-Final Model Development

Building upon the insights gained from our analysis of ST5-Only, we developed ST5-

Final model to address the identified limitations and enhance the model’s performance

in sequential recommendation tasks. ST5-Final incorporates two key pretraining phases

designed to bridge the semantic gap and improve sequence awareness, followed by a

task-specific fine-tuning phase.

4.4.1 Pretraining

4.4.1.1 Item-Description Contrastive Pretraining

To address the semantic gap weakness identified earlier, we developed a novel pretrain-

ing approach that contrasts items with their corresponding descriptions. To the best of

our knowledge, we are the first to apply this specific pretraining method in this context.

This method trains the model to focus on relevant linguistic features when creating item

representations, bridging the gap between natural language text for sentence retrieval

and item text for retrieving relevant items for a user with a given user sequence. This

approach is particularly beneficial for domains such as Movies and TV and Video Games,

where item titles often consist of just the movie or game name, and descriptions provide

crucial context. For example, consider an item title and its description from the Movies

and TV category of the Amazon Reviews ’23 dataset [16]:

<ITEM START>TITLE: Big Hero 6 (Blu-ray+DVD+Digital HD) <ITEM END>

<ITEM START>DESCRIPTION: With all the heart and humor audiences expect

from Walt Disney Animation Studios, BIG HERO 6 is an action-packed comedy

adventure that introduces Baymax, a lovable, personal companion robot, who forms

a special bond with robotics prodigy Hiro Hamada.Bring home Disney’s BIG HERO

6, featuring comic-book-style action and hilarious, unforgettable characters – it’s

fun for the whole family!. <ITEM END>
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The model learns to associate key elements from the description with the item

representation, enhancing its understanding of the item’s characteristics beyond just the

title. For instance, it can link concepts like “Walt Disney”, “action-packed”, “hilarious”,

and “whole family” to the movie title, providing a richer context for recommendations.

Unlike previous approaches [17] that use item reviews for item representation

learning, our method utilizes item descriptions. This choice is motivated by the fact

that product descriptions often provide more concise and relevant information about

the item’s features and intended use [29] whereas product reviews can be subjective

and may contain irrelevant personal anecdotes [52]. We employ the Multiple Negative

Ranking Symmetric Loss function [14] for this pretraining phase, as detailed in Section

4.4.3. This loss function serves two purposes: it brings the item representation closer to

its description in the embedding space while simultaneously aligning the description

representation with the item. This bidirectional optimization contributes to the model’s

ability to generalize and create universal representations, understanding what aspects of

natural text to focus on when generating item representations.

4.4.1.2 Sequence-Sequence Contrastive Pretraining

To address the limited sequence awareness identified as a key weakness of the ST5

model, we implement a Sequence-Sequence contrastive learning phase inspired by the

CL4SRec model’s pretraining objective [55]. This pretraining step aims to provide

our model with a robust sense of sequence, which is essential for effective sequential

recommendation. Our approach enhances the model’s ability to handle variations and

inconsistencies in user interaction data while maintaining adaptability in sequence

interpretation. To achieve this, we employ a series of carefully crafted sequence

augmentations: item crop (scrop), item reorder (sreorder), and item drop (sdrop).

Let s = (i1, i2, . . . , in) represent an original user sequence, where ik denotes the k-th

item in the sequence, and n is the length of the sequence. To encourage the model

to capture overall patterns rather than relying strictly on exact order, accommodating

scenarios where users might interact with variants of the same item in flexible order,

we implement the item reorder augmentation. Item reorder is expressed as sreorder =

(i1, . . . , i j,π(i j+1, . . . , i j+m), i j+m+1, . . . , in), where π represents a random permutation

and m≤ β×n, introducing local shuffling within a sequence. β determines the maximum

proportion of the sequence to reorder, and m is the length of the reordered subsequence.

The item crop augmentation simulates incomplete user histories by cropping a

continuous portion of the sequence. It can be defined as scrop = (i j, i j+1, . . . , i j+m),
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where 1 ≤ j ≤ n and m ≤ η×n. η controls the maximum proportion of the sequence to

crop, and m is the length of the cropped subsequence. This helps the model learn from

partial sequences, improving its ability to make recommendations even with limited

historical data.

To enhance the model’s robustness to incomplete data and ensure that it can infer

user preferences from partial information, we implement the item drop augmentation. In

this technique, we randomly remove a subset of items (ik1 , ik2, . . . , ikm) from the sequence

s, resulting in sdrop = s\ (ik1 , ik2, . . . , ikm), where m ≤ δ×n and m is the number of items

dropped from the sequence. δ controls the maximum proportion of items to drop.

Formally, let f (·) denote our encoder function. We aim to minimize the distance

between f (s) and f (saug), where saug is randomly chosen from {scrop,sreorder,sdrop}. In

our setup, (s,saug) forms the positive pair, while negative pairs are randomly sampled

from other sequences within the batch using the Multiple Negative Symmetric Loss

function [14], as detailed in Section 4.4.3.

A key distinction of our approach from the CL4SRec [55] lies in our contrastive

learning setup. While CL4SRec contrasts between two augmented views of a sequence,

we use the original sequence as an anchor and contrast it with its augmented version.

This strategy serves a dual purpose: it teaches the model to maintain a consistent

understanding of user preferences despite perturbations, while also preserving the

essence of the original sequence. By contrasting with the original sequence, we ensure

that the model learns transformations that are semantically meaningful and relevant to

the task of sequential recommendation.

Through this carefully designed Sequence-Sequence contrastive learning phase, we

equip our model with a nuanced understanding of user sequences. The model becomes

adept at handling noisy, incomplete, or slightly reordered interaction data, making it

more robust and flexible in real-world recommendation scenarios where user behavior

can be inherently variable and unpredictable.

4.4.2 Fine tuning (Sequence-Item Contrastive Learning)

The final phase of our model development directly addresses the core objective of our

reformulated sequential recommendation task: optimizing the alignment between user

sequences and candidate items within a sentence retrieval framework. This final training

stage builds on what the model learned earlier, combining its understanding of how

users behave with its knowledge of item features.
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The primary goal of fine-tuning is to teach the model how users interact with items,

creating a unified understanding that bridges user behavior and item attributes. This

is achieved through contrastive learning, where we pair user sequences s with their

corresponding ground truth items igt to form positive pairs (s, igt), with negative pairs

randomly sampled from the batch. Continuing our approach from the pretraining phases,

we employ the Multiple Negative Ranking Symmetric Loss function [14], which is

discussed in 4.4.3.

This loss function is particularly well-suited for our task as it optimizes bidirectional

relationships, encouraging both the retrieval of relevant items given a user sequence

and the identification of similar users given an item query. This symmetric approach

ensures that the model learns to generate versatile representations effective for both

user-to-item and item-to-user retrieval tasks. Optimizing the embedding space with

this objective, aligns with our goal of developing universal representations, potentially

enhancing the model’s applicability to diverse recommendation tasks and scenarios

beyond just sequential recommendation.

4.4.3 Loss Function

For all our training procedures, we utilize the Multiple Negative Ranking Symmetric

Loss function [14]. This loss function is designed to bring similar sentence embeddings

closer together while pushing dissimilar ones apart, thereby creating an effective repre-

sentational space for our recommendation task. It operates on a batch of N sentence pairs

(Sai,Spi)
N
i=1, where Sa represents the anchor sentences and Sp represents the positive

sentences we want to bring closer to the anchor. The function leverages in-batch nega-

tives for efficient and effective contrastive learning. Let f (·) be our ST5 model function

that generates embeddings for input sentences. For a given sentence pair (Sa,Sp), we

have: f (Sa) = emba and f (Sp) = embp. The similarity between two embeddings

is measured using cosine similarity. We compute the similarity scores between each

anchor and every positive sentence, storing these scores in a matrix S ∈ RN×N , where

each entry Si j represents the similarity between the i-th anchor sentence Sai and the j-th

positive sentence Sp j , scaled by a factor τ:

Si j = τ · sim(embai,embp j) (4.1)

The loss function for a given batch is defined in two parts: forward loss and backward

loss. The forward loss Lforward focuses on the similarity between the anchor embedding
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emba and the positive embeddings embp in the batch, computed using the cross-entropy

loss function:

Lforward =− 1
N

N

∑
i=1

log

(
exp(Sii)

∑
N
j=1 exp(Si j)

)
(4.2)

The backward loss Lbackward reverses the roles of anchor and positive sentences, fo-

cusing on the similarity between each positive embedding embp and the anchor emba,

computed as:

Lbackward =− 1
N

N

∑
j=1

log
(

exp(S j j)

∑
N
i=1 exp(S ji)

)
(4.3)

where S ji represents the similarity score between positive Spi and anchor Sa j .

The total symmetric loss combines the forward and backward losses by taking their

average, ensuring that both anchor-to-positive and positive-to-anchor directions are

optimized. This leads to robust and versatile embeddings that can capture complex

relationships from both item-to-user and user-to-item perspectives, creating a universal

representation space for recommendation tasks.

4.5 ST5-Final Model Performance Analysis

Looking at Figure 4.3 (Table in Appendix A.1), we observe several compelling insights

that demonstrate the significant improvements achieved by our ST5-Final model over

its predecessors and competitors. The most striking observation is the consistent

superiority of ST5-Final across almost all categories and metrics. Our new model not

only surpasses its zero-shot counterpart, ST5-Only, but also outperforms the previously

leading UniSRec(BLaIR) model by substantial margins, despite UniSRec(BLaIR)’s

strong performance in initial experiments.

The magnitude of these improvements is remarkable. In some instances, such as the

Baby Products category, we see an astounding 121% increase in NDCG@10 (Table in

Appendix A.1) over the second-best model. Moreover, an interesting pattern emerges

when comparing the improvements in HR and NDCG metrics. Consistently, we observe

larger percentage increases in NDCG compared to HR. This suggests that beyond just

recommending relevant items, our new model has become significantly better at ranking

these items in a way that aligns with user preferences, which is crucial for enhancing

the user experience.

The strong performance of ST5-Final across diverse categories provides compelling

evidence for the effectiveness of our text-based retrieval approach to recommendation
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Figure 4.3: Comparison of Model Performance by Category. This figure displays four bar

charts, each representing a metric.The bars are normalized to show the proportion of

each model’s contribution within each category

tasks. For instance, the ST5-Final model showed a significant improvement in Electron-

ics and Cell Phones and Accessories categories where ST5-Only previously struggled.

This indicates that our training process has successfully addressed the limitations we

identified in the ST5-Only model.

By converting the recommendation problem into a sentence retrieval task, we created

a more flexible and powerful model that can adapt to various product domains more

effectively than traditional ID-based methods. In the following chapter, we will conduct

experiments not only to analyze the effect of our pretraining in addressing the limitations

of ST5-Only but also to prove the universality of our model-generated user sequence

and item representation for cross-domain, cross-platform, and tasks beyond sequential

recommendation, such as rating prediction.
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Experiment and Results

To thoroughly evaluate the effectiveness of our proposed ST5 model, we designed

a comprehensive set of experiments addressing specific research questions. Each

experiment aims to assess different aspects of the model’s performance, from the impact

of pretraining to its cross-domain capabilities and potential for diverse recommendation

tasks. In this chapter, we describe these experiments and analyze their results.

5.1 Experiments Overview

5.1.1 Impact of Pretraining on Model Performance

Our first experiment aims to understand how different pretraining strategies affect the

model’s performance in sequential recommendation tasks. We compared three variants

of our model across nine diverse datasets representing different product categories. The

first variant, ST5-FineTune, undergoes only fine-tuning (Sequence-Item contrastive)

without any pretraining and serves as our baseline to understand the impact of pre-

training. The second variant, ST5-ItemPre, incorporates Item-Description contrastive

pretraining and fine-tuning. The third variant, ST5-Final, is our proposed model, which

undergoes both Item-Description and Sequence-Sequence contrastive pretraining and

fine-tuning. This variant allows us to assess the cumulative effect of both pretraining

phases.

By comparing these three variants, we aim to quantify the contribution of each

pretraining phase to the model’s overall performance. We hypothesize that ST5-Final

will consistently outperform the other variants, validating our assumption that both

pretraining phases are crucial for generating robust and versatile representations for

27
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sequential recommendation tasks.

5.1.2 Quality of Learned Representations

We conducted a t-SNE (t-Distributed Stochastic Neighbor Embedding) [48] analysis on

both item and user representations. This visualization technique allows us to project

high-dimensional embeddings into a 2D space while preserving local relationships. We

sampled items and users from all nine domains included in the dataset, which allowed

us to observe both within-domain and cross-domain relationships.

We examined the UniSRec (BLaIR), ST5-Only, and ST5-Final models for item

representation. We compared the item representation from UniSRec (BLaIR) to assess

how our pretraining method, which uses item descriptions, performs against their

pretraining method based on item reviews. The ST5-Only model provided a baseline by

showing the initial representational space prior to training, while the ST5-Final model

demonstrated the changes in this space after the complete training process.

User representations were analyzed by comparing visualizations from the ST5-Only

model and ST5-Final model. This comparison illustrates how the training process

affects the model’s understanding of user behaviors and preferences.

This visual analysis complements our quantitative experiments by providing intuitive

insights into how our model understands the relationships between items and users.

Meaningful clustering in the ST5-Final visualizations would suggest that our model

not only successfully learned to capture important semantic information, but also that

the representations of items and users can be effectively used for tasks such as user

segmentation and item categorization.

5.1.3 Cross-Domain Generalization Capabilities

To evaluate the cross-domain capabilities of our model, we test its performance on

three new categories that were not included in the training data: Books, Digital Music,

and Amazon Fashion. These categories were chosen for their distinct characteristics,

presenting unique challenges to our model’s generalization abilities.

The Books category represents a domain with rich textual information and diverse

subgenres, requiring the model to understand complex semantic relationships within

textual descriptions. Digital Music, while also content-driven, presents different user

consumption and user engagement patterns, testing the model’s ability to adapt to varied

interaction behaviors. Amazon Fashion introduces a heavily visual and trend-dependent
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domain, with unique seasonal patterns and style preferences, challenging the model’s

capacity to infer relevant features from item descriptions that may emphasize visual

attributes.

By testing our model across these varied domains, we aim to rigorously assess its

ability to transfer knowledge and make meaningful recommendations in diverse product

spaces. This experiment will reveal whether our pretraining strategies have indeed

created a model with robust cross-domain capabilities.

5.1.4 Cross-Platform Generalization Capabilities

To assess our model’s versatility and universal representation capabilities beyond e-

commerce, we evaluated its performance on the Yelp (2018) dataset [60]. This dataset,

containing over 5 million reviews, business data, ratings, and check-in information,

presents unique challenges with its diverse content types and complex user interaction

patterns.

Unlike e-commerce datasets where user interactions primarily involve purchases

or product views, the Yelp dataset focuses on service-based recommendations. We

leveraged business descriptions and addresses as item features, while user review

histories served as interaction sequences. This cross-domain evaluation is crucial for

determining whether our model, initially trained on e-commerce data, can generate

effective recommendations in a significantly different context. Strong performance

on the Yelp dataset would indicate that our pretraining strategies have successfully

captured fundamental aspects of user preferences and item characteristics, needed for

the recommendation task.

5.1.5 Effectiveness in Rating Prediction Task

To check the universality of the representations given by our model, we applied them

to a rating prediction task. This experiment aims to demonstrate that our learned

representations are effective in various downstream recommendation tasks, beyond just

next-item prediction.

We use the user’s interaction history to predict their rating for a new item on a

scale of 1 to 5. Two variants of our model, ST5-Only and ST5-Final, are compared

against established baselines: Mean Rating and Probabilistic Matrix Factorization

(PMF) [28]. The Mean Rating baseline simply predicts the average rating for each

item across all users, providing a lower bound for performance. PMF factorizes the
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user-item interaction matrix into lower-dimensional user and item latent factors, known

for handling sparse data and providing personalized predictions.

For our ST5 models, we generate user and item sentence embeddings from inter-

action history text and item descriptions, respectively. These embeddings are then

concatenated and fed into a dense neural network, which performs regression to predict

ratings. Performance is evaluated using Root Mean Square Error (RMSE) and Mean

Absolute Error (MAE). Strong performance in this task, particularly from the ST5-Final

model, would indicate that our pretraining strategies have indeed created universal

representations that capture user preferences and item characteristics, making them

valuable for a variety of recommendation tasks.

5.1.6 Performance Variation with User History Length

To better understand how ST5-Only and ST5-Final models handle different lengths of

user interaction histories, we conducted an in-depth analysis of our models’ performance

as a function of interaction history length. This experiment assesses how effectively

our pretraining strategies, particularly the Sequence-Sequence contrastive pretraining,

address the sequence modeling limitations inherent in the ST5-Only architecture.

In this experiment, we examined how our models perform with different numbers

of items in a user’s interaction sequence. We created subsets of users by filtering them

based on the length of their interaction history, allowing us to analyze performance

across various history lengths. To capture the effect of different user behaviors across

various domains, we selected three distinct product categories: All Beauty, Video Games,

and Baby Products. These categories were chosen to represent diverse user interaction

patterns and preferences, allowing us to assess the effect of different user behaviors in

different domains. We also conduct a comparative analysis, contrasting our model’s

performance against baselines for different history lengths.

5.2 Result Analysis

5.2.1 Impact of Pretraining on Model Performance

Our comprehensive analysis of the performance improvements across model iterations

ST5-Only, ST5-NoPre, ST5-ItemPre, and ST5-Final, reveals compelling evidence of

the effectiveness of our pretraining strategies in enhancing sequential recommenda-

tion tasks. As illustrated in Figure 5.1, the results demonstrate a clear progression
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Figure 5.1: Performance improvements from ST5-Only to ST5-NoPre, ST5-ItemPre, and

ST5-Final models for NDCG and HR metrics across product categories.

in model performance, with each iteration addressing specific limitations identified

earlier. The most significant improvement was observed in the transition from ST5-Only

to ST5-NoPre, yielding a remarkable 77.87% mean improvement across all metrics

and categories (Table in Appendix A.2). This substantial gain directly addresses the

weakness of the ST5 model discussed in Section 4.3, thus highlighting the importance

of domain-adapting the ST5 model for sequential recommendation tasks.

Subsequent pretraining phases further refined the model’s capabilities. The tran-

sition to ST5-ItemPre resulted in a 3.70% mean improvement, validating our Item-

Description contrastive pretraining approach. The final iteration to ST5-Final, incorpo-

rating Sequence-Sequence contrastive pretraining, achieved an additional 1.88% mean

improvement, effectively addressing the limitation of ST5’s limited sequence awareness.

Additionally, improvements in NDCG scores were more prominent than HR scores,

suggesting that our pretraining phases enhanced not only overall performance but also

the quality of recommendation rankings.

These results demonstrates the success of our two-phase pretraining approach in

transforming a general-purpose language model into a powerful, task-specific recom-

mendation engine. By systematically addressing key limitations, we have significantly
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advanced the capabilities of our model in sequential recommendation tasks.

5.2.2 Quality of Learned Representations

Our analysis of item and user representations across three models—ST5-Only, UniSRec

(BLaIR), and ST5-Final—reveals significant improvements in semantic understanding

and domain separation achieved by our proposed approach, as illustrated in Figures 5.2

and 5.3.

5.2.2.1 Item Representations

Figure 5.2: Item Representation for ST5-Only, UniSRec (BLaIR), and ST5-Final in order

The ST5-Only model, while showing some semantic understanding, exhibits consid-

erable overlap between different product categories, supporting our earlier hypothesis

regarding the semantic gap between general language understanding and specific rec-

ommendation tasks. In contrast, ST5-Final demonstrates remarkably clear clustering

and boundaries between different product domains, showcasing its ability to capture

nuanced product characteristics. For instance, the model effectively distinguishes be-

tween closely related categories like Electronics and Cell Phones and Accessories while

recognizing their technical similarities.

Compared to the UniSRec (BLaIR) baseline, our ST5-Final model shows superior

performance in creating distinct and meaningful item representations. While UniSRec

(BLaIR) exhibits good clustering, it lacks the clear separation and nuanced relationships

evident in our approach. The ST5-Final model’s visualization reveals more compact

clusters with sharper boundaries between dissimilar categories, while still maintaining

logical proximity between related domains. This improved separation and grouping

suggest that our Item-Description contrastive pretraining method has indeed been more
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effective in bridging the semantic gap, supporting our hypothesis about the advantages

of using item descriptions in recommendation tasks.

5.2.2.2 User Representations

Figure 5.3: User Representation for ST5-Only and ST5-Final model in order.

The analysis of user representations reveals a stark contrast between the ST5-Only

and ST5-Final models. While ST5-Only shows limited ability to differentiate between

diverse user behaviors, ST5-Final exhibits well-defined boundaries between different

domain clusters, with minimal outliers and more compact groupings. This improvement

provides strong evidence that our pretraining strategy has significantly enhanced the

model’s capacity to distinguish and categorize diverse user behaviors.

ST5-Final captures semantic relationships in user behavior with remarkable intuition

and nuance. For example, users interested in beauty-related categories form closely

related clusters, while entertainment-related domains such as Video Games and Toys

and Games form a loosely connected cluster. These intuitive groupings suggest that the

model has developed a sophisticated understanding of complex user behaviors across

various domains.

5.2.2.3 Comprehensive Analysis of the Representations

When we compare item and user representations across models, we notice several key

improvements in the ST5-Final model. The ST5-Final model demonstrates consistent

semantic relationships in both item and user representations, indicating the model

captures semantics of how product categories and user behaviors interconnect. Our

model also creates denser, more distinct clusters for both items and users, achieving

clearer separation between unrelated categories while maintaining smoother transitions
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between related ones. Additionally, we observe a substantial reduction in outliers for

both item and user representations, suggesting more robust and reliable representations.

These improvements collectively demonstrate that our pretraining strategies have ef-

fectively addressed the key weaknesses identified in the ST5-Only model and that our

model can be used for tasks such as item and user segmentation.

The consistency and quality of representations across diverse product categories

suggest that our model has developed a more universal understanding of both items and

users. This universality holds significant promise for cross-domain and cross-platform

recommendation capabilities, as well as for other recommendation tasks such as rating

predictions. These capabilities are demonstrated in the following sections.

5.2.3 Cross-Domain Generalization Capabilities

Domain Metrics Pop SASRec UniSRec (BLaIR) ST5-Only ST5-Final

Amazon Fashion

NDCG@10 0.35 0.42 1.07 1.64 2.32
NDCG@50 0.55 0.69 1.32 1.92 2.59

HR@10 0.57 0.87 1.94 2.69 3.34
HR@50 1.54 2.23 3.09 3.92 4.47

Digital Music

NDCG@10 0.14 0.61 0.84 4.04 4.90
NDCG@50 0.22 0.91 1.54 4.95 5.73

HR@10 0.32 0.84 1.81 5.66 6.49
HR@50 0.65 2.27 5.12 9.25 9.76

Books

NDCG@10 0.04 0.56 1.44 1.12 1.38

NDCG@50 0.08 0.60 1.94 1.51 1.82

HR@10 0.11 0.79 2.87 2.25 2.66

HR@50 0.26 1.01 5.17 3.96 4.60

Table 5.1: Cross-Domain Performance Comparison using various models. NDCG and

HR scores are in percentage.

The results from our cross-domain experiment on Books, Digital Music, and Amazon

Fashion categories provide compelling evidence of ST5-Final’s robust generalization

capabilities. As shown in Table 5.1, ST5-Final consistently outperforms ST5-Only

across all three domains, demonstrating the effectiveness of our pretraining strategies

in enhancing the model’s ability to transfer knowledge to previously unseen product

categories.

ST5-Final’s performance is particularly impressive in the Digital Music category,

where it significantly outperforms all other models. This suggests that our model has
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successfully captured the nuances of content-driven recommendations and adapted well

to the unique consumption patterns of this domain. Similarly, in the visually-oriented

and trend-dependent Amazon Fashion category, ST5-Final shows strong performance,

indicating its ability to infer relevant features from textual item descriptions even for

products where visual attributes are crucial. The Books category presents a more

challenging scenario for our model. While ST5-Final still shows improvement over

ST5-Only, its performance is slightly behind UniSRec in this domain. This could be

attributed to the large item corpus typical of book datasets, which may strain the model’s

capacity to distinguish between numerous similar items. Additionally, the limited input

of book titles alone may not provide sufficient semantic context to capture the complex

patterns of user preferences in the literature domain.

ST5-Final consistently improved both NDCG and HR metrics across all three new

domains, demonstrating its ability to rank items more accurately and retrieve a broader

range of relevant items. This performance, achieved without domain-specific training,

showcases strong cross-domain capabilities. The text-based approach of ST5-Final

appears to be particularly advantageous for cross-domain generalization, as textual

representations can capture abstract concepts and features that are applicable across

various product categories. This adaptability indicates strong potential for practical

applications where the model must handle unfamiliar product categories and rapidly

adjust to varied domains.

5.2.4 Cross-Platform Generalization Capabilities

Domain Metrics Pop SASRec UniSRec (BLaIR) ST5-Only ST5-Final

Yelp

NDCG@10 0.22 1.01 0.99 0.62 1.37
NDCG@50 0.46 1.65 1.78 1.03 1.67

HR@10 0.46 1.95 1.96 1.01 1.57

HR@50 1.57 4.90 5.65 2.74 2.82

Table 5.2: Performance comparison for the Yelp Dataset using various models. NDCG

and HR scores are in percentage.

The results from the Cross-Platform experiment demonstrate ST5-Final’s strong

performance on non-e-commerce recommendation tasks as well. As observed in

Table 5.2, ST5-Final achieved the highest NDCG@10 score among all models tested,

including domain-specific models like SASRec and UniSRec (BLaIR).
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The substantial improvement from ST5-Only to ST5-Final across all metrics in-

dicates the effectiveness of our pretraining strategies in bridging the semantic gap

between general language understanding and specific recommendation tasks. By utiliz-

ing only textual data, ST5-Final exhibited robust cross-platform capabilities, performing

competitively against models specifically trained for this task.

While UniSRec (BLaIR) shows better performance in metrics such as NDCG@50,

HR@10, and HR@50, it is important to note that ST5-Final was not trained on Yelp

dataset, yet its performance closely approaches that of UniSRec (BLaIR), which is

particularly impressive. This suggests that our model has successfully captured fun-

damental aspects of user preferences and item characteristics that generalize beyond

e-commerce, demonstrating its potential for use across various real-world platform

recommendations.

5.2.5 Effectiveness in Rating Prediction Task

Model RMSE MAE

Mean 1.460 1.113

PMF 1.394 1.072

ST5-Only 1.387 1.091

ST5-Final 1.385 1.061

Table 5.3: Comparison of RMSE and MAE across different models.

The results from our rating prediction experiment provide compelling evidence for

the universality and effectiveness of our ST5 model’s representations. Both ST5-Only

and ST5-Final outperform traditional baselines (Mean and PMF) in terms of RMSE,

demonstrating that our text-based approach captures more nuanced user preferences

and item characteristics than conventional methods, even in a task it wasn’t explicitly

trained for.

The strong performance of ST5-Only in a zero-shot setting is particularly noteworthy.

Its ability to outperform PMF in RMSE without any task-specific fine-tuning demon-

strates the effectiveness of converting recommendation problems into textual tasks,

suggesting potential applicability across a wide range of recommendation scenarios.

ST5-Final’s superior performance across both RMSE and MAE metrics further

validates our pretraining strategies. Perhaps most significantly, the model’s strong
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performance in this explicit feedback task (rating prediction), despite being primarily

trained on implicit feedback (next-item prediction), underscores the universality of the

learned representations. This generalization across feedback types strongly supports

our hypothesis that the representations learned by our ST5 model are indeed universal

and valuable for recommendation scenarios beyond just sequential recommendation.

5.2.6 Performance Variation with User History Length

Figure 5.4: Performance Variation of Various Models with User Interaction History

Length.

The findings of our experiment evaluating the performance of various recommenda-

tion models across different user interaction history lengths reveal intriguing patterns

that highlight the effectiveness of our proposed ST5-Final model, as illustrated in figure

5.4.

Our analysis demonstrates that the ST5-Final model consistently outperforms all

other models across various product categories and history lengths. This superior

performance is particularly evident as the number of interacted items in user history

increases. For instance, in the Baby Products category, ST5-Final shows a marked
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improvement in NDCG scores as history length grows, with a notable peak at a history

length of 4. Similar trends are observed in the All Beauty and Video Games categories.

A particularly noteworthy aspect of ST5-Final’s performance is its effectiveness in

cold-start scenarios for users with 1-2 interacted items, where ST5-Final consistently

achieves the highest performance. This indicates that our task-based formulation and

model architecture have successfully addressed one of the most challenging aspects of

recommendation systems.

A compelling finding emerges when comparing ST5-Final to the ST5-Only model.

While both models exhibit similar performance for single-interaction histories, their

trajectories diverge significantly as the number of interacted items increases. ST5-Final

demonstrates a rapid performance improvement, whereas ST5-Only’s performance

tends to decline. This divergence suggests that ST5-Only primarily relies on similarity-

based recommendations derived from single interactions, essentially reducing the task

to a sentence similarity problem. In contrast, ST5-Final, enhanced with Sequence-

Sequence contrastive learning, overcomes this limitation. This validates our hypothesis

that our pretraining strategies effectively capture temporal patterns in user behavior.

Interestingly, we observed varying performance trends across different domains,

which aligns with findings in previous research [35]. For instance, in the Baby Products

category, we noticed a general trend of all models decreasing in performance up to 3-4

interacted items, then increasing at 4-5 items, before decreasing again. In All Beauty

and Video Games, SASRec’s performance increases up to a certain point and then

decreases, possibly due to longer histories introducing confusion. Despite these varia-

tions, SASRec tends to perform better than ST5-Only for longer histories, highlighting

the importance of sequence modeling in recommendation tasks. In contrast, UniSRec

(BLaIR) maintains relatively consistent performance across increasing numbers of

items in history, likely due to its ability to generate universal user representations. This

stability sets UniSRec (BLaIR) apart from the more variable performance of SASRec

and ST5-Only.

The ST5-Final model’s ability to maintain and even improve performance with

increasing history length demonstrates its robustness and versatility across various

recommendation scenarios, from cold-start to long-term user interactions. These re-

sults collectively underscore the success of our approach in leveraging extended user

interactions and capturing complex temporal patterns in user behavior.
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Conclusion

In this chapter, we summarise our project’s limitations, propose future research direc-

tions, outline key implications, and provide an overall summary of our findings.

6.1 Limitations and Future Work

Although our research has shown promising results, several limitations present oppor-

tunities for future work. A significant constraint is the ST5’s current input limit of

255 tokens, restricting its ability to process longer user histories that could improve

recommendations [33]. Future work could explore expanding the model’s context size

by implementing chunking strategies [21] or adopting approaches such as long text

encoding with attention sparsity, as presented by Liu et al. [27]

Our current implementation utilizes the ST5’s base variant, but the authors of ST5

have demonstrated a scaling effect with increased parameters. Fine-tuning larger models

could potentially enhance performance significantly. However, this approach raises

concerns about inference time. Moreover, Qu et. al [34] suggest that many encoder

layers may be redundant for sequential recommendation tasks when using an LLM.

To address these issues, future work could investigate training the model with 2D

Matryoshka embedding loss [26], which has shown potential to train an encoder model

in a way that can result in comparable performance even with fewer encoder layers and

smaller embedding sizes. Alternatively, exploring the effects of embedding quantization

[57] could help reduce the model’s memory footprint without sacrificing performance.

Additionally, future research could explore parameter-efficient techniques like LoRA

[19] to reduce training time and lower computational resources required.

While our model has shown promising results for non-e-commerce datasets, there’s

39
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still room for improvement in this area. In the future, we could train on a more diverse

range of platforms beyond e-commerce, including datasets from platforms like Steam

[22], Netflix [31], Twitch [38], and MyAnimeList [47], to make our recommendations

more universally applicable. Additionally, incorporating a broader spectrum of user

interactions beyond transactional data, could help our model develop a more com-

prehensive understanding of user behavior [13]. Another potential avenue for future

work is to incorporate multidomain data [11], such as images, especially for improving

recommendations in visually driven domains like Clothing, Shoes, and Jewelry.

Lastly, a crucial area for future development lies in explainable recommendations

[62]. Enhancing our model to provide clear rationales for its suggestions would not

only improve user trust and satisfaction but also offer valuable insights into the recom-

mendation process. This direction aligns with the growing demand for transparency and

ethical AI systems.

6.2 Final Remarks

In conclusion, our research presents a promising direction in sequential recommendation

by reformulating it as a sentence retrieval task using the Sentence-T5 model. This

approach has demonstrated significant improvements over strong baseline models like

SASRec and UniSRec(BLaIR) across diverse product categories. The ST5-Final model,

developed through our two-phase pretraining strategy, effectively bridges the semantic

gap between natural language understanding and recommendation tasks while capturing

complex sequential patterns in user behavior. The model’s strong performance on unseen

product categories and non-e-commerce datasets showcases its broad applicability

across recommendation domains. This adaptability could reduce the need for frequent

model retraining in new domains, potentially leading to more sustainable AI systems.

The text-based nature of our approach opens up new possibilities for creating more

inclusive and interpretable recommendation systems, which can cater to a wider range

of user needs and preferences, thus delivering more personalized recommendations.

Moreover, our model’s strong performance in cold-start scenarios can be particularly

valuable during user onboarding processes, enabling more engaging and personalized

experiences for new users. Furthermore, our model’s ability to generate universal user

and item representations that are effective even for other recommendation tasks like

rating prediction suggests our work could contribute towards developing a foundation

model for recommendation, a long-standing goal in the field.
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Category Metric Pop SASRec UniSRec(BLaIR) ST5-Only ST5-Final Improvement%

All Beauty

H@10 0.38 1.08 2.55 4.59 7.08 54.27

H@50 0.98 2.90 4.14 7.25 9.40 29.60

N@10 0.18 0.64 1.42 2.89 5.79 100.52

N@50 0.31 1.02 1.75 3.51 6.35 80.78

Baby Products

H@10 0.50 0.72 1.06 0.80 1.52 89.86

H@50 2.09 2.53 3.81 1.80 2.87 60.02

N@10 0.20 0.36 0.52 0.45 1.15 153.88

N@50 0.53 0.74 1.10 0.68 1.46 114.90

Video Games

H@10 0.50 0.95 2.19 1.47 2.37 61.06

H@50 1.73 2.80 5.24 3.23 5.29 63.81

N@10 0.29 0.49 1.19 0.78 1.58 101.15

N@50 0.55 0.89 1.85 1.19 2.24 88.37

Movies and TV

H@10 0.05 0.12 3.00 1.87 3.34 78.75

H@50 0.23 0.35 5.18 3.55 5.52 55.38

N@10 0.04 0.08 1.51 1.01 1.86 84.79

N@50 0.07 0.12 1.99 1.40 2.36 68.52

Toys and Games

H@10 0.14 0.12 1.20 1.08 1.87 72.85

H@50 0.44 0.28 3.08 2.53 4.18 65.14

N@10 0.06 0.07 0.57 0.54 1.01 88.45

N@50 0.13 0.10 0.98 0.86 1.52 77.62

Beauty and Personal Care

H@10 0.49 0.68 0.86 0.63 1.40 121.20

H@50 1.14 1.46 2.33 1.44 2.82 95.96

N@10 0.25 0.40 0.47 0.31 0.70 124.92

N@50 0.39 0.56 0.78 0.49 1.01 106.14

Health and Household

H@10 0.48 0.56 0.92 0.63 1.06 67.46

H@50 1.87 2.04 2.55 1.46 2.27 55.31

N@10 0.20 0.24 0.47 0.32 0.57 78.09

N@50 0.49 0.56 0.82 0.50 0.84 67.47

Cell Phones and Accessories

H@10 0.33 0.75 0.77 0.52 1.15 121.97

H@50 1.14 1.45 2.10 1.50 2.80 86.36

N@10 0.16 0.32 0.43 0.25 0.60 137.33

N@50 0.33 0.48 0.72 0.46 0.96 106.91

Electronics

H@10 0.29 0.33 0.75 0.45 0.88 96.19

H@50 1.19 1.47 2.16 1.04 2.07 98.66

N@10 0.10 0.12 0.37 0.22 0.45 107.41

N@50 0.28 0.37 0.67 0.34 0.71 106.11

Table A.1: Performance comparison using various models. The scores are expressed as

percentages. ”H” stands for Hit Rate (HR), and ”N” stands for Normalized Discounted

Cumulative Gain (NDCG). ”Improvement %” is the improvement of ST5-Final over its

zero-shot counterpart ST5-Only Model. The best model is marked in bold and the

second-best model is underlined.
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Category Metric ST5-Only ST5-NoPre ST5-ItemPre ST5-Final Item2Desc Improv.% Seq2Seq Improv.%

All Beauty

H@10 4.59 7.07 7.06 7.07 -0.13 0.26

H@50 7.25 9.20 9.38 9.39 1.95 0.11

N@10 2.89 5.68 5.80 5.79 2.08 -0.05

N@50 3.51 6.19 6.33 6.35 2.41 0.19

Baby Products

H@10 0.80 1.39 1.42 1.52 2.18 6.61

H@50 1.80 2.62 2.79 2.87 6.19 3.14

N@10 0.45 1.00 1.05 1.15 4.79 9.26

N@50 0.68 1.29 1.36 1.46 5.66 6.97

Video Games

H@10 1.47 2.28 2.37 2.37 3.75 0.35

H@50 3.23 5.09 5.25 5.29 3.16 0.80

N@10 0.78 1.49 1.55 1.58 4.00 1.44

N@50 1.19 2.13 2.21 2.24 3.37 1.38

Movies and TV

H@10 1.87 3.26 3.23 3.34 -0.81 3.40

H@50 3.55 5.57 5.53 5.52 -0.79 -0.22

N@10 1.01 1.85 1.81 1.86 -1.97 2.49

N@50 1.40 2.39 2.35 2.36 -1.91 0.56

Toys and Games

H@10 1.08 1.79 1.81 1.87 0.85 3.64

H@50 2.53 3.95 4.14 4.18 4.68 1.03

N@10 0.54 0.94 0.97 1.01 3.58 4.01

N@50 0.86 1.41 1.49 1.52 5.15 2.46

Beauty and Personal Care

H@10 0.63 1.34 1.41 1.40 4.81 -0.55

H@50 1.44 2.60 2.77 2.82 6.59 1.65

N@10 0.31 0.67 0.71 0.69 6.33 -2.39

ND@50 0.49 0.95 1.01 1.01 7.07 -0.43

Cell Phones and Accessories

H@10 0.52 1.03 1.13 1.15 10.58 1.28

H@50 1.50 2.64 2.80 2.80 6.19 -0.08

N@10 0.25 0.54 0.59 0.60 9.08 3.11

N@50 0.46 0.89 0.95 0.96 6.76 1.63

Electronics

H@10 0.45 0.86 0.84 0.88 -2.62 3.92

H@50 1.04 2.03 2.10 2.07 3.13 -1.43

N@10 0.22 0.45 0.44 0.45 -1.79 2.39

N@50 0.34 0.70 0.71 0.71 1.40 -0.40

Health and Household

H@10 0.63 0.96 1.04 1.06 8.14 1.27

H@50 1.46 2.08 2.20 2.27 5.60 2.95

N@10 0.32 0.52 0.55 0.57 7.06 3.56

N@50 0.50 0.76 0.81 0.84 6.60 3.31

Mean Improvement - - - - - 3.70 1.88

Table A.2: Performance Comparison of Different Variants of ST5. These are results

for the experiment explained in Section 5.1.1. ”Item2Desc Improv. %” describes the

improvement of ST5-ItemPre over ST5-NoPre. ”Seq2Seq Improv. %” describes the

improvement of ST5-Final over ST5-ItemPre. The scores are expressed as percentages.

”H” stands for Hit Rate (HR), and ”N” stands for Normalized Discounted Cumulative Gain

(NDCG).
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Category Metric Struct Unstruc Inst.+Struct. Inst+UnStruct.

All Beauty

N@10 2.85 2.71 1.82 1.74

N@50 3.47 3.31 2.26 2.14

H@10 4.57 4.46 3.16 3.03

H@50 7.22 7.00 5.07 4.76

Baby Products

N@10 0.46 0.46 0.29 0.28

N@50 0.70 0.67 0.48 0.44

H@10 0.81 0.81 0.56 0.55

H@50 1.89 1.76 1.39 1.25

Beauty and Personal Care

N@10 0.33 0.31 0.18 0.16

N@50 0.52 0.48 0.31 0.30

H@10 0.69 0.65 0.37 0.33

H@50 1.55 1.41 0.94 0.93

Cell Phones and Accessories

N@10 0.27 0.23 0.12 0.11

N@50 0.45 0.42 0.23 0.23

H@10 0.55 0.50 0.29 0.24

H@50 1.39 1.40 0.81 0.80

Electronics

N@10 0.22 0.21 0.14 0.13

N@50 0.36 0.33 0.24 0.23

H@10 0.46 0.45 0.30 0.27

H@50 1.08 1.04 0.76 0.72

Health and Household

N@10 0.33 0.31 0.23 0.22

N@50 0.50 0.47 0.36 0.36

H@10 0.65 0.63 0.46 0.42

H@50 1.42 1.36 1.08 1.03

Movies and TV

N@10 1.05 1.05 0.63 0.52

N@50 1.45 1.47 0.93 0.78

H@10 2.01 1.98 1.05 0.95

H@50 3.77 3.78 2.37 2.06

Toys and Games

N@10 0.54 0.53 0.36 0.32

N@50 0.85 0.84 0.63 0.58

H@10 1.09 1.05 0.73 0.64

H@50 2.50 2.46 1.96 1.79

Video Games

N@10 0.81 0.78 0.43 0.42

N@50 1.24 1.21 0.78 0.74

H@10 1.50 1.48 0.86 0.87

H@50 3.39 3.34 2.38 2.25

Table A.3: Comparison of User Sequence Text Representation Methods. This table

presents the results for different approaches to representing user sequences. ”Struct”

refers to Structured, ”Unstruc” to Unstructured, ”Inst.+Struct.” to Instruction + Structured,

and ”Inst+UnStruct.” to Instruction + Unstructured. ”N” stands for Normalized Discounted

Cumulative Gain (NDCG), and ”H” stands for Hit Rate (HR).
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Category Item Text N@10 N@50 H@10 H@50

All Beauty
Text 2.91 3.53 4.59 7.21

Text+Desc. 2.12 2.64 3.58 5.88

Baby Products
Text 0.47 0.69 0.83 1.81

Text+Desc. 0.25 0.38 0.45 1.08

Beauty and Personal Care
Text 0.31 0.49 0.63 1.46

Text+Desc. 0.21 0.33 0.43 0.98

Cell Phones and Accessories
Text 0.24 0.44 0.50 1.41

Text+Desc. 0.19 0.33 0.37 1.01

Electronics
Text 0.21 0.34 0.44 1.04

Text+Desc. 0.13 0.23 0.27 0.69

Health and Household
Text 0.32 0.49 0.63 1.42

Text+Desc. 0.18 0.31 0.36 0.93

Movies and TV
Text 1.04 1.43 1.95 3.63

Text+Desc. 0.57 0.88 1.04 2.37

Toys and Games
Text 0.53 0.85 1.07 2.54

Text+Desc. 0.42 0.67 0.84 1.94

Video Games
Text 0.77 1.21 1.44 3.35

Text+Desc. 0.47 0.79 0.92 2.36

Table A.4: Comparison of Item Text Representation Methods. This table presents the

results for different approaches to representing item text. ”Desc.” means Description.

The scores are presented for various metrics across different categories. ”N” stands for

Normalized Discounted Cumulative Gain (NDCG), and ”H” stands for Hit Rate (HR).



Appendix B

Model Configuration

B.1 SASRec

The Self-Attentive Sequential Recommendation (SASRec) [22] model was implemented

and trained using the RecBole library [65, 56, 64]. It was trained for 300 epochs with a

batch size of 2048, using the Adam optimizer with a learning rate of 0.001. The model

architecture consists of 2 layers with 2 attention heads, a hidden size of 64, and an inner

size of 256. To prevent overfitting, we applied dropout with a probability of 0.5 for both

hidden and attention layers.

B.2 UniSRec(BLaIR)

We implemented UniSRec(BLaIR) using the original code provided by Hou et.al [16].

The model was configured with 2 layers and 2 attention heads, using a hidden size of

300 and inner size of 256. We set the learning rate to 0.001 and used a batch size of

2048 for both training and evaluation. Dropout probabilities of 0.5 were applied to

hidden and attention layers.

B.3 Sentence-T5 (ST5)

We implemented the Sentence-T5 (ST5) models using the Sentence Transformers library

[39]. The configuration includes a batch size of 64 and 10 epochs for both pretraining

and fine-tuning phases. The learning rate was set to 2e-5 with a warmup ratio of 0.1.To

optimize training, we employed gradient accumulation over 4 steps and enabled gradient

checkpointing.
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Appendix C

Data Statistics

Category #Users #Items #Interactions

All Beauty 28,570 34,547 64,557

Baby Products 156,361 90,313 258,620

Video Games 137,613 69,548 238,548

Beauty and Personal Care 204,413 265,390 300,133

Cell Phones and Accessories 183,207 228,215 275,462

Electronics 239,942 333,540 329,314

Health and Household 202,770 215,453 295,409

Movies and TV 85,832 159,537 136,205

Toys and Games 193,150 269,961 289,319

Books 233,260 824,855 342,060

Digital Music 11,968 30,425 39,767

Amazon Fashion 68,001 139,506 127,749

Yelp (2018) 231,024 143,643 503,564

Table C.1: Summary of dataset statistics across various domains

55


