
Becoming a Bug Bounty Hunter

Aditya Kore
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2024

Abstract

The process of identifying and reporting security vulnerabilities in a web application or

software in return for monetary rewards is known as Bug Bounty Hunting. This paper

presents an overview of the experiences of a bug bounty hunter (BBH), underlining the

challenges faced, tools used, and methods employed to find the vulnerabilities in web

applications. By showcasing the real-world experiences and the lessons learned, this

study contributes by bringing practical insights for individuals interested in BBH as a

career option and for people just getting started. This research will mainly focus on

presenting the various types of vulnerabilities/bugs discovered in the process, ranging

from Cross-Site Scripting (XSS) to HTTP request smuggling. Each discovery is

explained in such a way that readers can understand and replicate the same using the

tools and techniques employed to discover them. To simplify the process, this paper

aims to develop a custom tool to streamline the enumeration part of bug hunting.

Furthermore, the paper discusses the strategies for choosing bug-bounty programs,

the advantages of sticking to specific types of attack methods, and when to switch the

attack method. By sharing valuable tips, techniques, and personal experiences, this

paper aims to guide and encourage upcoming Bug Bounty Hunters, providing them

with an approach to success in this dynamic yet fruitful realm.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy.

It did not involve any aspects that required approval from the Informatics Research

Ethics Committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Aditya Kore)

ii

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. David Aspinall,

for his invaluable guidance, support, and encouragement throughout this journey. His

mentorship helped me push the boundaries of my research. Through this project, I

gained a great amount of knowledge in a surprisingly short period of time, which will

undoubtedly benefit me in the future as well.

I am also profoundly thankful to my family and friends for their unwavering support,

patience, and belief in me, which made this work possible.

iii

Table of Contents

1 Introduction 1
1.1 Motivation: . 1

1.2 Research Objectives: . 2

1.3 Structure of this Dissertation: . 2

2 Background 3
2.1 Bug Bounty Programs . 3

2.2 Vulnerabilities Encountered: . 3

2.3 Essential Tools for Bug Hunting: . 6

3 Methodology 7
3.1 Tool Selection . 7

3.2 Creating a Custom Tool: DomainMiner 8

3.3 Bug Bounty Hunting Process . 8

3.3.1 Program Selection Criteria 8

3.3.2 Vulnerability Discovery Process 9

3.4 Learnings, and Risks involved . 10

4 Experimentation 11
4.1 WPScan: . 11

4.2 FFUF: . 12

4.3 Nmap: . 13

4.4 BurpSuite: . 14

4.4.1 Proxy: . 14

4.4.2 Repeater: . 15

4.4.3 Intruder: . 15

4.4.4 Decoder: . 16

4.4.5 Burp Extensions: . 18

iv

4.5 403 Bypasser: . 19

4.6 Browser and Extensions: . 20

5 Results 21
5.1 Cross-Site Scripting (XSS) . 21

5.2 File upload to XSS . 23

5.3 Cross-Site Tracing (XST) . 25

5.4 WordPress . 27

5.4.1 DoS Attack . 27

5.4.2 Information Disclosure . 29

5.5 Security Misconfiguration . 31

5.6 HTTP Smuggling . 33

6 DomainMiner 36

7 Evaluation & Discussion 38
7.1 Evaluations in the Project . 38

7.2 Evaluation of the overall Project . 39

8 Conclusions 40
8.1 Future Directions: . 40

Bibliography 41

A DomainMiner Tool Results 49
A.1 Results Table . 49

B Tools and Summary 51
B.1 Tool Info . 51

B.2 Summary of Bug Reports . 52

v

Chapter 1

Introduction

In today’s world where technology is constantly evolving, cybersecurity has become

a critical concern for companies all over the world. As the traditional old security

measures struggle to keep pace with current new sophisticated cyber threats, bug bounty

programs have evolved to be an innovative approach for identifying and mitigating

vulnerabilities that go unnoticed by the developers. This dissertation explores the world

of Bug Bounty Hunting (BBH) from our perspective as a beginner bug researcher.

This dissertation aims to provide a unique perspective on bug bounty hunting from a

beginner researcher’s viewpoint, offering valuable insights for other beginner hunters

entering this field. The development and analysis of a custom tool (DomainMiner)

contribute to the growing toolkit available to security researchers. By documenting both

successes and failures in the bug-hunting process, this study offers a realistic view of

the challenges and opportunities hunters face in this field.

1.1 Motivation:

Bug bounty programs represent a model where organizations collaborate with ethical

hackers & security researchers to find and report vulnerabilities/bugs present in their

systems, websites, or applications. In return for finding these bugs, organizations

reward these hunters with a monetary reward “bounty” or hall of fame inclusion. This

creates a mutually beneficial ecosystem that enhances the security of the systems while

offering rewards to the hunters for their efforts. They provide continuous testing, and

diverse perspectives, and often uncover vulnerabilities that might have been missed

by conventional methods. This research aims to explore the methodologies, tools,

challenges, and impacts of bug bounty hunting, contributing to the ongoing conversation

1

Chapter 1. Introduction 2

on effective cybersecurity strategies in an increasingly complex digital landscape.

1.2 Research Objectives:

This study aims to provide an exploration of bug bounty hunting from the perspective

of a novice researcher. By combining practical experience with analytical research, this

dissertation aims to bridge the gap between the initial knowledge of aspiring bug bounty

hunters and the complex, multifaceted nature of real-world vulnerability discovery. The

research aims to fulfill the following primary objectives:

• To explore the process of bug bounty hunting from a beginner’s perspective,

documenting the learning curve, challenges faced, and bugs encountered.

• To evaluate the effectiveness of various tools and methodologies in identifying

vulnerabilities within the context of bug bounty programs.

• To develop and assess a custom tool designed to enhance the efficiency of the

bug-hunting process.

• To contribute practical insights and strategies that can benefit both aspiring bug

hunters and organizations looking to implement or improve their bug bounty

programs.

1.3 Structure of this Dissertation:

This dissertation is arranged correspondingly, chapter 2 provides a background on bug

bounty programs, and common vulnerabilities, acting as a base for the findings in

the following sections. Chapter 3 gives the methodology employed in this research,

including tool selection, custom tool development, and the overall bug-hunting process

which aims to answer the “What” and “Why” aspects of the research. Chapter 4

presents the experimentation phase, outlining the specific tests conducted, and how the

tools were utilized to obtain the results, demonstrating the “How” part of the research.

Chapter 5 discusses the results of the research, including successful bug discoveries and

lessons learned from unsuccessful attempts. Chapter 6 presents our tool DomainMiner,

and how successful it is by comparing the results obtained with other tools. Chapter 7

provides an evaluation of our research followed by chapter 8 to conclude the research.

Chapter 2

Background

This chapter provides a brief overview of the key concepts, vulnerabilities, and context

necessary to understand before indulging in the field of bug bounty hunting.

2.1 Bug Bounty Programs

Bug bounty programs are a place where organizations invite ethical hackers to discover

and report bugs on their websites in return for rewards. The bug bounty cycle includes

various stakeholders including organizations running bug bounty programs, Bug bounty

platforms like HackerOne [26], Bugcrowd [4], individual bug hunters, and security

researchers. These programs have gained popularity as a cost-effective method to

enhance cybersecurity, complementing traditional security measures. We found this

paper [45] to provide a good idea for the bug submission quality for both hunters and

companies, which we have applied in our project. This paper identifies best practices

and areas for improvement, focusing on five key aspects: scoping, timing of crowd

engagement, submission quality, firm-researcher communication, and managing hacker

motivation which we feel is important in this domain. The paper [82] highlights the

value of bug bounty programs as a complementary approach to traditional security

practices and provides a basis for further studies into optimizing reward structures and

understanding hacker motivations.

2.2 Vulnerabilities Encountered:

Before presenting our bug findings, we will first provide a brief overview of the vul-

nerabilities we discovered and discuss their impact to highlight the significance of

3

Chapter 2. Background 4

our results. We have used various HTTP status codes in our dissertation to provide

credibility for our findings, the below figure 2.1 shows what each code is.

Figure 2.1: Different HTTP status codes [76]

Cross-Site Scripting (XSS) is a very common vulnerability allowing attackers to

inject malicious scripts into websites viewed by other users. Leading to data stealing,

session hijacking, and unauthorized actions on behalf of users. These are significant

due to their potential to compromise user data and the integrity of web applications,

making them critical in security assessments [24].

For File Upload bugs, we referred this study [63] which reveals that file upload vulner-

abilities are a significant risk to web application security. These vulnerabilities arise

from inadequate validation of user-uploaded files, potentially allowing attackers to

upload and execute malicious code on the server. This can be fixed by including proper

sanitizations and safety checks

Cross-Site Tracing (XST) bug exploits the HTTP TRACE method, where an HTTP

request is reflected back to the user without sanitizations, which can be used to bypass

security controls such as the same-origin policy. In brief, HTTP methods have different

functionalities, GET retrieves data, POST sends data to create/update, and TRACE

reflects the request for debugging. By leveraging XST [23], attackers can potentially

access sensitive information, such as cookies and authentication tokens, leading to

unauthorized access and data breaches [23].

WordPress is a content management system (CMS) [39] that powers more than 40%

of all websites [9]. We discovered 2 types of bugs involving this CMS [39], one was

Denial-of-Service (DOS) which impacts the availability of the resource, by exploiting

wp-cron.php that is a WordPress feature that simulates a system cron job, allowing task

scheduling & running at specific intervals, such as checking for updates. However,

Chapter 2. Background 5

it can be exploited by sending excessive requests to the wp-cron.php file, leading to

Denial of Service (DoS) [8] attacks by overloading the server with unnecessary tasks,

potentially causing performance degradation or downtime which causes loss of revenue,

damage to reputation, and potential liabilities for failing to provide expected services

[44].

Security Misconfigurations occur when security settings are incorrectly configured

or left at default values, making systems vulnerable to attacks. This can have many

implications, in our case we used the null byte to show improper sanitizations and

bypassing input validation to cause server errors, implying buffer overflow errors which

can mean the execution of arbitrary code, overwriting other storage space to view

unauthorized data [10, 1].

HTTP Smuggling is a complex attack that exploits inconsistencies in the way front-end

and back-end servers handle HTTP requests through various HTTP headers. HTTP

headers are key-value pairs in a request/response that give metadata, such as content

type, encoding, and authentication, influencing how data is processed and displayed. By

manipulating HTTP headers, attackers can inject malicious requests that bypass security

controls, leading to unauthorized data access or server compromise. The impact of

HTTP Smuggling is severe, as it can lead to data breaches, session hijacking, and other

critical security incidents [32]. There are various methods to smuggle requests, the main

types include the CL.TE (Content-Length Transfer-Encoding) where, the front-end

server interprets the HTTP request using the “Content-Length” header to determine

the message body size, while the back-end server uses the “Transfer-Encoding” header.

This discrepancy can be exploited to smuggle an additional request by manipulating the

request body length [65]. TE.CL (Transfer-Encoding Content-Length), the front-end

server uses the “Transfer-Encoding” header to determine the message body, while the

back-end server uses the “Content-Length” header [65]. TE.TE (Transfer-Encoding
Transfer-Encoding) is exploited by both the front-end and back-end servers use the

“Transfer-Encoding header”, but one of the servers can be tricked into ignoring it through

obfuscation. This can lead to a situation where the servers disagree on the boundary

of HTTP requests, allowing for request smuggling [65]. Lastly, the CL.0 smuggling
(Content-Length only) was used by us to find the bug, it involves sending a request

with a “Content-Length: 0” header, leading the front-end server to think there’s no body

while the back-end misinterprets the following data as a new request. This desynchro-

nization allows attackers to inject malicious requests, potentially bypassing security

controls or accessing unauthorized resources.

Chapter 2. Background 6

2.3 Essential Tools for Bug Hunting:

Tools play a crucial role in the bug bounty hunting process, serving as the primary

way by which hunters discover, analyze, and exploit vulnerabilities. The toolkit of a

bug bounty hunter typically includes a diverse array of software designed for different

aspects of security testing. Web application scanners like Burp Suite are essential for

analyzing HTTP traffic and detecting common web vulnerabilities. Network mapping

tools such as Nmap allow hunters to discover open ports and services on target systems.

Additionally, specialized tools exist for specific types of vulnerabilities or technologies –

for instance, SQLmap for SQL injection or WPScan for WordPress vulnerabilities. This

paper [3] provides a good comparison of various vulnerability discovery techniques

and the use of automated tools for discovery was advised by the authors, making it

imperative to select good automated tools.

As the field evolves, so do the tools, with new ones constantly emerging to address novel

attack vectors or improve existing techniques. Proficiency in selecting and utilizing the

appropriate tools for each scenario is a key skill that distinguishes effective bug bounty

hunters, allowing them to efficiently identify vulnerabilities that might be overlooked by

automated scans or less experienced researchers which we have covered in our research.

Chapter 3

Methodology

This chapter details the methodology I employed in my bug bounty hunting research,

emphasizing a beginner’s learning journey. It covers tool selection, custom tool de-

velopment, and the process of vulnerability hunting, laying the groundwork for the

experimentation and results chapters. The progression in skill development is reflected

in the results chapter, demonstrated by the increasing severity and complexity of the

bugs found.

3.1 Tool Selection

Selecting the right tools was crucial for effective vulnerability assessment. As a beginner,

we prioritized tools that balanced power with ease of use, enabling efficient learning

and application of new techniques. Two books [40, 42] were particularly helpful in

guiding us through the process. We evaluated tools based on beginner-friendliness,

effectiveness in identifying vulnerabilities, community support, documentation, and

cost. For each of these use cases, we used this tools, in the case for Content Discovery
we search for hidden pages and directories on websites, for this, we used FFUF [20], a

fast and efficient tool that helps us uncover potential entry points that aren’t immediately

visible. We typically run FFUF with custom wordlists against target URLs, analyzing

the responses to identify valid endpoints. For Network Scanning, which involves

mapping out the structure of a target’s network, identifying active hosts, open ports, and

running services, we relied on Nmap [54] for this task due to its versatility and powerful

scanning capabilities. Our process includes running various Nmap scans [54], from

quick ping sweeps to more comprehensive port and service scans. In Web Application
Testing We analyze how web applications handle user inputs and manage data. Burp

7

Chapter 3. Methodology 8

Suite [43] is our go-to tool, allowing us to intercept, inspect, and modify web traffic

to identify potential vulnerabilities. We use Burp’s proxy [43] to capture traffic, then

use its various modules to test for other vulnerabilities. Lastly, for Technology Stack
Identification Wappalyzer [83] helps us quickly identify the tech stack before diving

deep into the website, allowing us to tailor our testing approach accordingly. We simply

browse the target website with Wappalyzer [83] enabled, which automatically detects

and lists the technologies in use.

3.2 Creating a Custom Tool: DomainMiner

Recognizing the limitations of existing tools, for the crucial enumeration phase, we

developed a custom tool called DomainMiner because existing subdomain enumeration

tools provided varied outputs, and we wanted to simplify the merging process, gather

more data, bypass usage limits, and use it as a learning exercise. DomainMiner is

a shell script that runs multiple tools, merges their outputs, removes duplicates, get

the IP addresses of the domain, checks HTTP status codes [51] for it, and filter out

non-working subdomains, thereby streamlining the enumeration process. It is free, has

no usage limits, and rivals paid tools in effectiveness. Users simply input a domain and

receive a list of working subdomains with their corresponding IP addresses and HTTP

codes [51].

3.3 Bug Bounty Hunting Process

This section outlines our structured approach to bug bounty hunting, detailing the

methods and strategies we used to enhance my learning and effectiveness.

3.3.1 Program Selection Criteria

Selecting a bounty program was crucial, here are a few things we looked for, firstly,

the Program Scope, we prioritized programs with broader scopes, as these offered a

wider range of vulnerabilities to discover, providing more opportunities. We looked

at Statistical data like last submission made, number of bugs reported, number of

reports resolved and duplicates, most reported domain, and announcements to see if

the program had enough opportunities to conduct bug hunting. We also looked at

Program Responsiveness due to our limited research time, we chose programs for

Chapter 3. Methodology 9

their responsiveness to submitted reports, as quick feedback was vital for improving

our understanding and refining our techniques.

Figure 3.1: Bug Bounty Lifecycle [70]

3.3.2 Vulnerability Discovery Process

While reconnaissance, enumeration, and vulnerability scanning are the backbone, our

bug-hunting process as beginners was more iterative and adaptive. This section outlines

the realistic, often non-linear journey we experienced. Target Assessment and Scope
Definition: Before analysis and vulnerability testing, we thoroughly assessed the target

and understood boundaries. This involved studying the program’s scope, clarifying

ambiguous points with program managers to avoid out-of-scope testing and ethical

violations, and expanding our target using techniques like Google Dorking and tools

like Assetfinder [79], built around this paper [16]. Previously disclosed vulnerabilities

helped gain insights into potential weaknesses. Next, we employed Iterative Testing
and Learning Loops which featured continuous testing, learning, and refinement loops.

We started with basic vulnerabilities like XSS [41], using simple tools and manual

testing to gain confidence. As we grew more familiar with the target, we gradually

incorporated advanced techniques and tools. Analyzing failed attempts led to valuable

insights into the target’s security. We frequently pivoted our attack vectors based on

findings, such as shifting focus to API endpoints when the front end was well-secured.

We also performed Documentation and Reflection where we maintained a detailed

hunting journal to document findings and thought processes, including dead ends and

false positives, which refined our intuition over time. After each session, we conducted

retrospectives to analyze successes and failures, accelerating our learning curve. We also

created a personal ledger to document techniques, tools, commands, and target-specific

Chapter 3. Methodology 10

notes, which became a valuable resource for future hunts.

3.4 Learnings, and Risks involved

Continuous learning and skill development were central to our approach. We regularly

studied new and significant security vulnerabilities, such as HTTP smuggling, cache

poisoning, and the OWASP Top Ten, which, when combined with analyzing public bug

bounty reports, provided valuable insights and helped us discover new attack vectors.

A key aspect of our strategy was strict adherence to scope considerations. We made

it a priority to follow each program’s standard guidelines, ensuring we stayed within the

defined scope, used non-intrusive methods, and provided detailed reports. Whenever

we needed to test something out-of-scope, such as Denial of Service attacks, we always

sought permission first to maintain ethical and legal integrity.

However, our journey was not without risks. Legal risks were a significant con-

cern, as unauthorized testing or exceeding program boundaries could lead to serious

consequences. We also faced technical risks, where our methods might unintentionally

harm systems, potentially causing downtime or data loss. Managing these risks required

careful consideration and strategic decision-making, adding a layer of complexity to

our learning and bug-hunting activities.

Chapter 4

Experimentation

This chapter applies the methodology from the previous chapter, offering a step-by-step

guide on our bug bounty hunting process. This chapter forms a bridge between our

Methodology and Results chapter by answering “How” we performed bug bounty

hunting. We’ll cover tool configurations, effective usage, and practical implementation,

providing use cases to illustrate how we found bugs. This section also aims to guide

beginners through tool setup and usage, helping them replicate the results discussed in

Chapter 5.

4.1 WPScan:

WPScan was used on websites using WordPress, on some instances where the Wappa-

lyzer extension [83] couldn’t guess if the website was using WordPress or not, WPScan

[86] consistently gave us the correct information, along with the WordPress version

number. We were particularly interested in the WordPress version number, as the

vulnerabilities that even WPScan [86] might have missed could be discovered by doing

a simple Google search. Mainly using the user enumeration function of this tool, as it

can even identify users that aren’t mentioned in the \wp-json\v2\users endpoint (for

example: https://abc.com/wp-json/v2/users), we found an Information Disclosure bug

using this successfully and listed users who weren’t mentioned in this endpoint. The

most used WPScan [86] command was this:

wpscan --url http://website.com/ --enumerate u,p,t --random-user-agent, de-

pending on the use we changed the arguments to --enumerate vp,vt, this only enumer-

ates vulnerable themes and plugins and requires “sudo” command to be enabled. This

argument gives a clean output, making it easy to distinguish between unwanted plugins

11

Chapter 4. Experimentation 12

and vulnerable ones when a website uses multiple plugins.

Figure 4.1: WPScan [86] detecting vulnerabilities on a website

Above figure 4.1 displays the WPScan interface and the vulnerabilities it discovered.

WPScan was instrumental in identifying files like xmlrpc.php and wp-cron.php, which

we used to submit a DoS (Denial of Service) bug. Additionally, as described in [74],

we used it to brute-force WordPress admin credentials. For WordPress vulnerabilities,

WPScan combined with Nikto/Nmap [54] is unmatched.

4.2 FFUF:

Every bug bounty hunter needs an automatic fuzzing tool in their kit. Tools like

GoBuster [36], dirbuster [35], dirb [34], wfuzz [37], and FFUF [20] are tool directory

fuzzing, filename, extensions, and sub-domains. Among these, we found wfuzz [37]

and FFUF [20] to be the fastest, but we chose FFUF for its simple interface and easy-

to-read output, despite wfuzz being slightly faster. To maximize FFUF’s potential, we

used SecLists, a comprehensive collection of data sets including usernames, passwords,

URLs, filenames, sub-domains, and fuzzing payloads. SecLists proved crucial in

identifying vulnerabilities, especially when compared to the smaller wordlist provided

by ”dirb” [34] in Kali OS, which missed several important endpoints detected by FFUF

[20] and SecLists [47].

In the below figure 4.2, we see that FFUF tool combined with the SecLists wordlist,

Chapter 4. Experimentation 13

Figure 4.2: FFUF finding interesting files on a website

found some interesting endpoints such as the .htaccess, .htpasswd, robots.txt

which we can try accessing by using other tools like 403 bypasser [88]. The most useful

feature of this tool is that, in its output, for each file/endpoint it discovered, the tool

gives us HTTP status, size of response, length of response, and response duration, just

like the results section in BurpSuite Intruder [43] which is very helpful in the long run

and saved a lot of time.

4.3 Nmap:

Network Mapper or Nmap [54] is a flexible tool for network discovery and port scanning,

providing detailed insights into network structures, open ports, and running services,

making it crucial in early vulnerability assessments. We relied on these books [58, 6] to

learn and apply effective Nmap methodologies. We primarily used the following Nmap

commands, especially for server information where Wappalyzer [83] fell short. Nmap’s

key uses include network sweeps to identify live hosts, comprehensive port scans,

service and version detection, targeted script scanning, and OS profiling to streamline

attacks [54].

Our first command nmap -A -v example.com, is our go-to for initial reconnaissance

and ran on every website. We used the -A flag which enables aggressive scan op-

tions. This is similar to combining -O (OS detection), -sV (version scanning),

-sC (default script scanning) flags. When we don’t find the information we need,

or if the scan fails, we try these below two commands,

nmap -A -v example.com --script=vuln -p 80,443 was used to perform a vul-

Chapter 4. Experimentation 14

nerability scan on specific ports we identified previously. These scripts are part of the

Nmap Scripting Engine (NSE) [54] and are used to detect known vulnerabilities on

the target. Sometimes the target responds with all the ports being open, this is done to

obscure the port scanners. To combat this, we run the below:

The last command sudo nmap -F example.com -v -sV -f -Pn --bad-sum was used

for a less aggressive, silent scan to identify open ports. The -F flag performs a fast

scan of the 100 most common ports, while -f fragments packets to potentially bypass

simple firewalls. The -Pn flag disables host discovery, useful when pings are blocked.

--bad-sum sends packets with incorrect checksums to test how the target handles bad

packets, aiding in evading detection or triggering specific responses. Below figure 4.3

shows Nmap being useful for finding bugs.

Figure 4.3: Nmap tool output finding open ports on a website

4.4 BurpSuite:

BurpSuite was used on almost all websites, a toolset for web-application security testing

[43]. While researching the best settings and tools to use inside BurpSuite, we found

these two books [84, 68] to offer a comprehensive guide on how to set up and use

BurpSuite, building on these two books, through testing and research, we found the

below approaches to its tools, fit the best for our project:

4.4.1 Proxy:

Our browser’s proxy was connected to BurpSuite at all times as BurpSuite’s inbuilt

vulnerability scanner continuously scans visited websites in the background, providing

Chapter 4. Experimentation 15

valuable insights. We frequently used the proxy to intercept requests, particularly during

user authentication, file uploads, and API calls. Additionally, BurpSuite’s [43] feature to

intercept server responses (right click on Intercept > Do Intercept > Response

to this request) was invaluable for examining server response formats and HTTP

status codes. In some cases, we bypassed restricted or redirected pages (e.g., 403,

301/302) by modifying the status code to 200 OK in the intercepted response.

4.4.2 Repeater:

Repeater tool in BurpSuite [43] allows manual manipulation and sending of individual

requests, particularly when interception isn’t sufficient. Repeater was our most used

tool due to its versatility to modify requests and analyze server responses, especially

for login pages using HTTP POST with JSON bodies, as detailed in [46]. By injecting

SQL commands into headers via Repeater, we could determine if further vulnerability

exploration was needed. Articles [30, 62] were helpful for manipulating password

reset requests, allowing us to send OTP codes to multiple accounts, repeater also aided

in detecting HTTP smuggling vulnerabilities by grouping requests and using “send

group in sequence” to observe desync attacks. We recommend trying methods like

sending POST request JSON bodies in URLs or different formats as shown in fig 4.4.

Figure 4.4: Comparison of different body JSON request methods

4.4.3 Intruder:

Intruder’s functionality to send multiple requests in a short span of time was very useful

to brute-force admin panel usernames and passwords, we also used a directory wordlist

to brute-force different endpoints and files in a website. Intruder’s Sniper function

was useful for sending multiple injection queries, which we could then observe in the

Chapter 4. Experimentation 16

results tab. This article [72] summarizes all the different functions of the BurpSuite

intruder. For example, in the below fig 4.5, we can see the results page of the BurpSuite

intruder, where all the different request payloads are listed with columns response,

response length, response received time, making it easier to find the outlier when

brute-forcing data. Brute-forcing is sometimes mentioned in the Out-of-scope section

in some of the bounty programs, so it’s advisable to check the program description

before proceeding with any attacks, as sending these many requests in a short time, may

be harmful, as the server might block our requests, specifically throttle our requests.

Figure 4.5: BurpSuite Intruder results tab.
The above figure 4.5 shows my attempt to brute-force a login page of a website using a

username wordlist, in the figure you observe that the highlighted request with “admin”
is different from other requests, while the status code, response length being almost

similar, but the response received is significantly different, this implies that the database

is running additional checks if the username is found, the database looks if the password

is also similar, this causes delay to receive the response, we advise to look for such

inconsistencies in your findings to find new vulnerabilities or hints on how to approach

a particular bug.

4.4.4 Decoder:

Another tool that we used apart from the above was the decoder tool. BurpSuite’s

decoder allows us to decode or encode any data into Plain Text, URL, HTML, Base64,

ASCII Hex, Hex, Octal, Binary, and Gzip [43]. Decoder is useful in scenarios where

we want to URL encode certain characters or HTML encodes them to bypass certain

Chapter 4. Experimentation 17

firewalls or sanitization. XSS bugs [41] found by us were possible only because we

could URL encode the payloads in the intruder, this also is possible in the intercept

request part of BurpSuite, where if we select the text we want to encode/decode and

right click text > Convert select> URL/HTML/Base64 > decode/encode this sim-

plicity helps us to URL encode characters on the go in the URL, thereby simplifying

our hunting. We can see in the below figure 4.6, we URL encoded our XSS payload.

Figure 4.6: BurpSuite Decoder
Decoder tool can be used to double encode characters to perform path traversal exploits

[2]. Path traversal attacks occur when we traverse out of the current directory of the web

server, for example, there is a server that has the “index.php” in the base directory using

a Linux file system. To find Javascript files or any other pages, the document makes a call

to the server from URL, like https://example.com/pages?url=/images/apple.png, so

now to perform a directory traversal, we just edit this URL as

https://example.com/pages?url=/../../etc/passwd, giving us passwd file on the

server, which is critical. But, nowadays servers are up-to-date & have URL sanitization

[19] in place to remove “../” characters from URL, so we use the Decoder tool here to

modify the payload and only encode part of the payload such as - %2e%2e/%2e%2e/etc/passwd,

..%2f..%2fetc/passwd or

%2e%2e%2f../%2e%2e%2f../etc/passwd. We encourage hunters to try different pay-

loads for directory traversal, here is an example of an attack vector:

Figure 4.7: Normal Directory Traversal

Figure 4.8: Directory Traversal through nextjs [80] server

Chapter 4. Experimentation 18

Here in the above two figures 4.7 & 4.8 we observe that performing directory traversal

directly on the base URL will give us a 404 not found error, as the server firewall

sanitized URL and removed the ../../ from the URL as it occurs after the domain.

However, if we try doing the Directory Traversal through the nextjs [80] image?url=

functionality, we can see that the server doesn’t remove ../../ in this case and we

can traverse out of the base directory, this is supported by the fact that we receive 403
Forbidden error and get a text that the firewall blocking us is the “Microsoft Azure

Application Gateway” Web Application Firewall (WAF) [18]. This finding tells us that

we know there is a folder etc on the server, but we can’t access it due to the WAF [18],

now to bypass the WAF [18] and the 403 error, we can use different encoded payloads

in the URL, such as encoding the ../../ through BurpSuite Decoder, or use a specific

tool for this, which we will see in further sections.

4.4.5 Burp Extensions:

BurpSuite offers various extensions in its BApp Store [43], enhancing its functionality.

We primarily used the “HTTP Smuggler” [64] and “Software Vulnerability Scanner”
extensions. These can be installed directly from the BApp Store or via external links [64].

Author Peter De Witte of this article [85] provides guidance on using the HTTP Request

Smuggler extension for automating HTTP smuggling exploits. While we explored

several methods of HTTP smuggling through this extension and found some interesting

results, we still preferred the manual approach of editing the Content-Length and

Transfer-Encoding headers. Authors huang et al. of this paper [29] offers insights into

different types of HTTP smuggling (CL.TE, TE.CL, CL.CL, and TE.TE) and explains

how servers interpret smuggled requests. The Vulnerability Scanner extension is

another valuable tool, especially for beginners. It automatically analyzes responses

within the target scope, identifies specific software versions, and cross-references them

with the Vulners database to detect associated vulnerabilities, including CVEs and

relevant advisories. This extension can serve as a secondary passive vulnerability

scanner, saving time and enhancing the effectiveness of vulnerability detection. Users

can download this extension through the BApp Store or from this Github repository

[66].

Chapter 4. Experimentation 19

4.5 403 Bypasser:

During our experimentation, we regularly encountered the HTTP 403 Forbidden error,

which means that the Web-Application-Firewall (WAF) was blocking our access to a

particular resource. To circumvent this, we used various tools to bypass 403 errors.

This particular method is described by authors Sharma et al. of this paper [75], authors

of this paper provide us with several 403 bypass methods including HTTP Method

Manipulation, Request Header injection/manipulation, Path injection, and brute-force

directories. These methods are implemented in tools such as the one we used [88]. This

tool was used by us on pages where we encountered the 403 status error. Readers can

find various tools with similar names on GitHub, but most of the tools perform just the

same. This tool sends multiple requests with different payloads such as using different

HTTP methods, adding special characters in the URL, and using different Host headers

like X-Forwared-Host, X-Host, Client-IP, etc.

Figure 4.9: 403bypasser tool output.

We suggest users use this tool, and other techniques mentioned in the paper [75]

in their bug bounty hunting if they encounter any 403 errors. Getting 403 errors does

not mean the path is closed, 403 errors give us a lot of information, first, it’s a clear

indication that the file is present on the server and we can connect to it. Second, some

WAF [18] also give us the server version on the 403 page which can be searched to find

different access techniques.

Chapter 4. Experimentation 20

4.6 Browser and Extensions:

Selecting a browser is not a significant task as most modern browsers offer the ba-

sic functionalities required for bug bounty hunting. We chose the Firefox Developer

browser for our hunting because it performed better than Google Chrome [56], used

fewer system resources, and offered useful features like Firefox containers. Contain-

ers act like separate browser instances within the same window, with no data shared

between them, similar to sandboxing [7]. We configured the Burp proxy(target domain)

in one container while using normal tabs for other purposes, which helped us keep the

Burp scope focused and avoid unnecessary data collection.

We tested various extensions to aid our process, allowing us to run enumeration tools

in the background while conducting manual website inspections. Extensions provided

instant information without the need to open command prompts or wait for tool outputs.

We extensively used three extensions: Wappalyzer [83], Cookie-Editor [50], and Mod-

Header [49]. Some bug bounty programs require hunters to include specific headers

in their HTTP requests, such as X-Intigriti-username, X-Bug-Bounty, to distinguish

bounty hunters from actual attackers. We used the ModHeader extension [49] to modify

all requests made from the browser, which also applied to BurpSuite Proxy. Although

BurpSuite can handle custom headers, editing them repeatedly was time-consuming,

and the extension significantly improved our efficiency.

The Cookie-Editor extension [50] was used to view and edit cookies, making it easier

to inspect data transferred through cookies and perform attacks like cookie hijacking,

poisoning, and injection which are mentioned by authors Zheng et al. in the paper [89].

The Wappalyzer extension [83] was indispensable in our research. It allowed us to

quickly identify the technology stack used on any website, including database types,

content management systems, web servers, frameworks, analytics tools, authentication

methods, and firewalls. This insight was crucial in bug bounty hunting, as understand-

ing the underlying technologies helped us identify potential vulnerabilities and attack

vectors. By integrating Wappalyzer [83] into our workflow, we could focus on specific

technologies with known security issues, improving the efficiency and effectiveness of

our assessments and increasing our chances of finding exploitable vulnerabilities.

Chapter 5

Results

In this section, we will look at the results obtained after following the methodology

and performing experimentation in sections 3 and 4. Below are the vulnerabilities

we encountered during our bug-hunting process, after implementing the techniques

discussed. The vulnerability types found were XSS [41], File upload, WordPress, and

HTTP Smuggling, we will also show the results obtained by our tool DomainMiner.

5.1 Cross-Site Scripting (XSS)

Description:

The first type of bug we found during our testing was a Cross-Site Scripting vulnerability,

which was found on two websites, one on an image hosting website (bug-1) and another

on an Indian Government website (bug-2). These bugs are a type of XSS called a

Reflected XSS attack [41] where an attacker crafts a malicious URL of a website, where

if a user clicks on the link the malicious script gets executed in the user’s browser. These

types of attacks are the most common attacks [60] performed by bounty hunters.

Severity:

Our XSS bug on an image hosting website and a government website mirrors CVE-2023-

39575 [15]. This finding highlights how XSS vulnerabilities persist across various web

applications, from specialized software to public-facing government sites, emphasizing

the ongoing challenge of input validation and the importance of robust security measures

in diverse web environments.XSS bugs like these have a severity rating of around 6.0 to

7.0 in the CVSS 3.x metric system [52] which has the severity of medium. Reflected

21

Chapter 5. Results 22

XSS is considered a serious vulnerability in websites where user logins and session

cookies are implemented, as an attacker can craft a malicious script that sends the

victim’s credentials to the attacker’s server or hijack sessions as mentioned in this paper

[71] without the knowledge of the victim. For other websites, phishing attacks can be

caused using this attack vector.

Steps to Reproduce:

For bug-1, on the search part of the website, we observed that the words entered in the

search bar were getting displayed on the webpage inside a HTML tag, and

we could escape sanitizations through this particular HTML tag <a href>, we tried a

wordlist with all the HTML tags in BurpSuite Intruder [43], and checked the response

length for all request to see which tag gave us an alert box in the HTML page. Now,

to trigger XSS from the <a> tag, we used the onmouseover function to trigger an alert

box, based on this paper [33]. HTML event attributes [81] are used to record events and

execute javascript code in webpages, taking advantage of this, we crafted this payload:

XSS Here

that closed the strong tag and inserted the a href tag with the onmouseover attribute to

trigger the XSS when a user hovers over the text. For bug-2, we checked the HTML

code to find out that the search terms were reflected inside the search bar on the HTML

page without any HTML sanitization [19], now to execute a script here, we used this

code: "><script>alert(’XSS’)</script>"

This closed the HTML event attribute value="" so we can escape it. We used different

quotation marks, so that our script doesn’t break the HTML code.

Figure 5.1: Alert Box triggered by XSS on an image hosting website

Above figure 5.1 shows the alert popup box triggered due to our malicious script.

Chapter 5. Results 23

We can also see the script reflected on some parts of the page as the sanitization [19] is

being performed in some areas of the website but not all.

Figure 5.2: Alert Box triggered by XSS on a government website

Outcome:

We reported this bug to the openbugbounty [57] website, and got a reply as “Not

Applicable” as the bug couldn’t be reproduced by the website owners, we checked

on Google for any other solutions to this and found out that many BBH had the same

issue with the website where their bug was being disclosed as Not Applicable or

Informative because the website owners didn’t want to disclose that their website has

any vulnerabilities.

5.2 File upload to XSS

Description:

This bug was found on a university website, where an attacker can change the filename

of any PDF, JPG, or PNG files to include the JavaScript code in the filename which gets

executed when the file is uploaded. A type of XSS called a Self-XSS attack [41] where

an attacker makes the victim execute commands or perform actions on behalf of the

attacker through social engineering.

Chapter 5. Results 24

Severity:

Our bug of XSS through file upload is very similar to CVE-2023-28158 [14]. We

found that changing filenames to include JavaScript code could lead to XSS execution

upon upload, similar to the privilege escalation vulnerability described in the CVE,

demonstrating how simple features like file uploads can become attack vectors when

input validation is inadequate, highlighting the importance of thorough security checks

at all potential entry points, even in educational institution environments. XSS bugs

like these have a severity rating of around 4.0 to 6.0 in the CVSS 3.x metric system

[52] which has a severity of low or even medium in some cases. These bugs can pose

harm to the website as attackers can execute SQL commands in the backend servers,

due to no sanitization [19]. These SQL commands provided by user input are one of

the common ways attackers are using to compromise the systems [28].

Steps to Reproduce:

This bug was found on the Contact-Us page of this website where people send university

admission queries, this form had many text fields that were sanitized except the filename

of the uploaded file, that was getting reflected on the website, so on Kali OS, we

changed the filename of a pdf file to <script>alert(document.cookie)</script>.pdf

to display the session cookie in the alert box. We used Linux OS for this as Windows

doesn’t support special characters in the filename of any files. To exploit further, we are

trying to execute SQL commands through this way.

Figure 5.3: Alert Box triggered by XSS [41]

Chapter 5. Results 25

Above figure 5.3 shows the session cookies of the browser displayed in an alert box.

Outcome:

We reported this vulnerability to Bugcrowd [4] and got a reply as “Duplicate” as

another researcher submitted the same vulnerability, and our submission was closed.

If this happens, bounty hunters don’t receive any rewards for it, we get points for the

submission if the original reports progresses. Points determine the ranking of a hunter

on the platform which may or may not be useful.

5.3 Cross-Site Tracing (XST)

Description:

This bug was discovered on a top university’s website, where the developers had left the

TRACE method enabled which led to Cross-Site Tracing(XST) [48]. This method can

execute large lines of javascript code on the victim’s browser. This attack was prevalent

in the 2000s but is not used nowadays as most browsers block the use of the TRACE

method [23]. We can increase severity by finding another XSS bug in the website and

inject our script into it to send the data of the TRACE method over to our computers

to hijack the session. There are methods to take advantage of this vulnerability such

as using xhttp [87] request or using flash plugins [22], but most programs don’t accept

them.

Severity:

Our discovery of the Cross-Site Tracing (XST) vulnerability here mirrors CVE-2018-

11039 [11], where the TRACE method was enabled, potentially allowing attackers to

escalate existing XSS vulnerabilities to more severe XST attacks. XST [48] bugs like

these have a severity rating of around 0.1 to 4.0 in the CVSS 3.x [52] metric system

depending on the different attacks being chained with it. It has a severity of low. While

looking for another attack to chain with the TRACE method to exploit the XST bug for

higher severity, we stumbled upon another method named HTTP Smuggling which was

used in conjunction with the TRACE method for performing Client-Desync attack as

mentioned in this report [69], which we will talk in further sections.

Chapter 5. Results 26

Steps to Reproduce:

We ran Nmap [54] and Nikto [78] tools on this website and we found that some

endpoints had TRACE method enabled. We tried sent a TRACE request and found

that our entire request was being reflected by the server including internal IPs and

other server information which are useful info. We sent a TRACE request via both the

BurpSuite Repeater and curl command on Windows with the XSS script [41] inserted

in an HTTP header, in both methods we can confirm our script being reflected back.

Figure 5.4: XSS script being reflected via TRACE method

Below figure 5.4 shows how the servers reflect back our XSS script as it is along

with some server information.

Outcome:

We reported this vulnerability to HackerOne [26] and got a reply as “Informative” from

the HackerOne team, as they wanted a working Proof of Concept that involved no victim

interaction, this can be done using HTTP Smuggling [64], but we found that the website

was not susceptible to HTTP Smuggling. We found some interesting information like

internal IP address and server configuration information.

Chapter 5. Results 27

5.4 WordPress

We found three WordPress vulnerabilities on websites using this, one of them was a

Denial of Service (DoS) [8] attack on a European website for Human resources, and

another was an information disclosure vulnerability on a university website.

5.4.1 DoS Attack

The vulnerability stemmed from the misuse or misconfiguration of wp-cron.php, which

could be triggered externally by unauthorized users due to its accessibility via a simple

URL request. This exposure allows attackers to manipulate the scheduler to execute

tasks at unscheduled times, potentially causing denial of service (DoS) [8] attacks by

overloading the system with frequent, unnecessary jobs. Additionally, if combined

with other vulnerabilities, this could lead to more severe exploits such as unauthorized

data access or code execution. This discovery emphasizes the importance of securing

scheduled task configurations and restricting access to critical system files to prevent

potential abuse.

Description:

We found a DoS [8] vulnerability on a German software company website where any

attacker can execute this DoS attack by sending multiple requests to this wp-cron.php

WordPress file which saturates the server, ultimately slowing it down or completely

shutting it down. Wp-cron is used by WordPress to handle and schedule tasks such

as core updates, running backups, and other scheduled tasks [9, 77]. This is all that

its supposed to do, the problem comes when a visitor requests this file, WordPress

will create an extra request from its server to the wp-cron.php file which is fine for a

small server with few visitors, for larger servers or with multiple visits, the server gets

overwhelmed with scheduling each request which leads to DoS [8]. This particular

feature of WordPress is what we tried to exploit.

Severity:

Our discovery of the wp-cron.php vulnerability aligns with CVE-2023-22622 [13],

demonstrating a critical WordPress security issue. We found that default configuration

could allow attackers to overwhelm servers and delay crucial updates, especially on

less-visited sites. however, most of the bug bounty programs put the DoS vulnerability

Chapter 5. Results 28

in “Out of Scope”, the reasoning behind this is that some researchers while trying to

prove a DoS vulnerability may cause a disruption in the live server [73]. But in reports

where it is considered, its rating can range from 6.0 to 7.0 with medium severity or in

some cases even have a rating of 9.0 to 10 with critical severity such as in this report

[25].

Steps to Reproduce:

We used the Wappalyzer [83] extension to find out that the target website was using

WordPress, so by scanning it with WPScan [86] we found some interesting endpoints

and files such as xmlrpc.php which is also another attack vector, but we couldn’t access

the file so we started looking for something else, we didn’t find the DoS causing file

wp-cron.php appear on our WPScan tool, so we decided to use a wordlist [47] which

had all the WordPress file endpoints which where critical, and we loaded it into our

FFuf fuzzing tool and we found out that the wp-cron.php was enabled and we also

confirmed that we could send both GET and POST requests from BurpSuite Repeater.

Now the bug was found, but we wanted to verify if it is possible to perform a DoS [8]

attack by running a script, this is not advisable as this is a legitimate attempt to disrupt

services, so instead we did multiple page reloads accessing the file, and to our surprise,

we found the request getting delayed and ultimately we received a 502 server error, and

further requests weren’t getting through, confirming the bug.

If a hunter wants to confirm this bug, they can download this tool [67] from GitHub and

run this command

./doser -t 999 -g ’https://target-website.com/wp-cron.php’

to send multiple requests to the server in a short time, after they will find a 502 server

error on the website confirming the bug, this is extremely severe and shouldn’t be tested

in a live environment.

Above figure 5.5 shows how the server has enabled wp-cron.php file and can be

accessed by the POST request method.

Outcome:

We reported the first vulnerability to Intigriti [31] and got a reply as “Out-of-Scope” from

the Intigriti team, and another to HackerOne [26] and got a reply as “Not-Applicable”,

even if it was a valid vulnerability if the team doesn’t acknowledge it, we won’t get a

reward for it. Thus if it is mentioned in the scope that a DoS bug won’t be considered,

Chapter 5. Results 29

Figure 5.5: wp-cron.php file being enabled

then it will be wise to stay clear of it, some programs may recognize it and reward it,

but it’s better to look for something else.

5.4.2 Information Disclosure

Description:

We found two WordPress-enabled domains of a university, where a user can visit the

path: "/wp-json/wp/v2/users" which is a JSON file containing information on all the

users and authors of this website. Information Disclosure can range from personal data

to private, financial, or intellectual property, in our case we were able to view the user’s

email ID, username, and profile picture.

Severity:

Our discovery of information disclosure in WordPress is similar to CVE-2020-26876

[53], where, the wp-courses plugin unintentionally exposed course content via the

REST API, similar to how user data was exposed through the /wp-json/wp/v2/users

endpoint in our case. Our finding demonstrates how default WordPress configurations

Chapter 5. Results 30

can inadvertently reveal sensitive information. The severity of Information Disclosure

depends on the type of data being disclosed and can range from 4.0-6.0 low severity to

6.0-7.0 with medium severity. It can even be critical if information like .htaccess or

.htpasswd files are being exposed which contain server configuration and username &

passwords respectively.

Steps to Reproduce:

To be able to look for bugs similar to this, we need to know that the /wp-json endpoint is

used by WordPress REST API to allow developers access to WordPress functionality like

editing posts, comments, etc. We could see the REST API when we visit the endpoint

https://yourwebsite.com/wp-json on this website, and the user’s endpoint too. Addi-

tionally, we used this WPScan [86] command: wpscan --url http://website.com/

--enumerate u,p,t --random-user-agent --api-token yourtoken which gave us an

in-depth enumeration of users, plugins, and themes, and also gave us some author names

and email-ids which were not visible in the "/wp-json/wp/v2/users" endpoint. We

used the random-user-agent argument to make the tool use random user agents for each

request to bypass some firewalls, and we used the API-token which is needed to scan

for vulnerabilities.

Figure 5.6: usernames visible in wp-json endpoint

Above figure 5.6 shows how the usernames and profile pictures can be viewed

Chapter 5. Results 31

through the /wp-json endpoint.

Outcome:

We reported both of these bugs to HackerOne [26] and got a reply as “Informative”

from the team, as they feel this was not sensitive information. This depends a lot on the

program too, some programs reward generously for this type of vulnerability, as the

usernames can be used to bruteforce passwords for account takeovers, and there is a lot

of trial and error involved to get the reward from the program.

5.5 Security Misconfiguration

Description:

We found a Security Misconfiguration [10] error on a shareholding and investing website.

This bug was found in the password reset section of this website. The email id that we

entered in the password reset dialog box was being sent to the server as a JSON body

request, this meant that the website was making an API call to the backend to fetch

the account from the email ID. We tried SQL injection and other attacks that could be

performed, but we couldn’t get anything due to the firewall and sanitization. So we

referred to this report [10] and found this site to have the same behavior.

Severity:

Severity is subjective here, in our case the website was treating this overflow as a status

500 internal server error, this can mean a lot of things running from buffer overflow

to improper sanitization [19]. We reported this bug with a 0.1 to 4.0 rating and low

severity, if we had more proof that this bug was interfering with other resources, our

severity would also be higher, for example, this bounty report [10] earned $40,000 for

the same vulnerability. Improper null-byte sanitization causes this vulnerability.

Steps to Reproduce:

While using BurpSuite to intercept the password reset request, we saw that when

the email ID passed through the JSON body is in the format abc%00@gmail.com or

abc@%00%00%00@gmail.com the email id appearing in the response is abc@gmail.com.

Chapter 5. Results 32

This behavior can be explained with an example, let’s assume abc%00 is passed, the

front end treats %00 as a null byte and assigns a storage byte for it, 4 bytes in this case,

the backend, however, removes the null byte %00 due to sanitization being implemented,

the storage is still 4bytes, but the data being filled i.e abc is 3 bytes, the extra 1-byte

storage space is empty when sending multiple null-bytes in a series of request, this

creates large undefined storage spaces in the server which causes a buffer overflow in

some cases. In our, when sending a few null byte characters we found the endpoint was

still working, but when we sent 100s of null bytes, the server gave us a 500 error, this

was not the same case when we sent a similar amount of alphabets, this proves that the

server is behaving differently towards null byte. We have enough proof to say buffer

overflow has happened in the server, but as the response being sent is sent as a JSON

body inside a pre-defined message, we can’t confirm the vulnerability as the server

treats this as a 500 status error, which should not occur in the first place.

Figure 5.7: server error due to excessive null bytes

Above figure 5.7 shows how the server throws 500 internal server errors when an

excessive amount of null bytes are sent.

Outcome:

We reported this vulnerability to Intigriti [31] and got a reply as “Not-Applicable”

from the Intigriti team as they needed more concrete evidence that a system resource

was being modified or any sensitivity was gained. If we could have shown that buffer

overflow was visible to use in the response, then they would have accepted the bug.

Chapter 5. Results 33

5.6 HTTP Smuggling

Description:

We found an HTTP Request Smuggling vulnerability, specifically CL.0 (Content-

Length: 0), where we trick the server into misinterpreting our single request as 2

different requests. This is slightly different from HTTP pipelining [21] where by using

HTTP/1.1 protocol we send multiple HTTP requests through the same connection,

and the server responds to these requests through the same connection. This is the

functionality of HTTP/1.1 protocol which was designed to work in this manner and

has no inherent vulnerabilities, we tried different attack strategies like CL.TE, TE.TE,

TE.CL, and found that the server was vulnerable to CL.0 attack. We referred to this

publication [38] by a James Kettle, which helped us come up with this approach for

finding HTTP smuggling vulnerabilities.

Severity:

Our bug specifically the CL.0 variant, is similar to the CVE-2022-26377 [12]. We found

that we could trick the server into misinterpreting a single request as two separate ones,

similar to the vulnerability in Apache HTTP Server’s mod proxy ajp [12]. Its rating

can range from 7.0 to 9.0 with High severity and even critical in some cases. This bug

has severe impacts, potentially letting attackers to circumvent security controls, gain

unauthorized access to sensitive data, compromise the integrity of the web application,

poison other users’ requests, and even credential stealing and session hijacking.

Steps to Reproduce:

There are some conditions we researched that must be met for this bug, firstly, “find an

endpoint that accepts POST requests”, secondly, “the endpoint must be able to accept

HTTP/1.1 request”, and lastly, “the server ignores the content-length(CL) header (For

CL.0 attack)” or “the server accepts both CL and Transfer-Encoding header (For CL.TE

and TE.CL attack)”

Next, when we have the conditions met, we send a POST request with another

HTTP request as our POST body, this should normally not work on HTTP/2.0 requests,

so we perform a downgrade attack by editing the protocol manually from 2.0 to 1.1,

this gives a 400 error if a server is properly configured, for us this worked so we moved

Chapter 5. Results 34

on to the next step. In BurpSuite Repeater we sent two requests as a group, one the

poisoned request(main request + payload request as body) and another a normal request

to demonstrate smuggling. In the poisoned request, we kept the Content-Length of the

first request to end before the payload request in the body, as shown in the figures 5.8 &

5.9, then when the request is sent as a group, we could see that we can poison our other

normal request on the same connection, this confirms our Client-Desync attack. Now,

to poison other users, for confirming request smuggling, we had to somehow keep the

response of the payload request alive, and let the server think of it as a second request

with no body, this will make the server wait for another request(victim’s request) and

attach that request as a body for our poisoned request. To do this, we made the second

request be POST request and made the Content-Length header for the poisoned request

have a value of around 200-500 (this will vary on the request length), so that we can

accommodate the entire victim’s request along with their session credentials. We tested

this on our browsers and we could see that our other request received the response for

our poisoned request.

Figure 5.8: Typical CL.0 smuggling attack

We can see in the above figure 5.9 the CL.0 Client Desync attack.

Outcome:

We reported this vulnerability to Intigriti [31] and got a reply as “Duplicate” from the

Intigriti team, as another researcher had already submitted this vulnerability, if we

had submitted this earlier, maybe we could have gotten a monetary reward. These

vulnerabilities normally pay quite a lot as it is on the easier side to execute and can

cause severe damage to the company. We also used this automated tool [17] to search

for these vulnerabilities on websites, although we recommend a manual way to check

for them and also to cross-verify any false positives.

Chapter 5. Results 35

Figure 5.9: CL.0 attack

Summary:

Sr Vulnerability CVSS Severity Platform Outcome

1 Cross-Site Scripting 6.0 to 7.0 medium openbugbounty Not Applicable

2 Cross-Site Scripting 6.0 to 7.0 medium cyber helpline Informative

3 File Upload 4.0 to 6.0 low BugCrowd Duplicate

4 Cross-Site Tracing 0.1 to 4.0 low HackerOne Informative

5 Denial of Service 6.0 to 7.0 medium HackerOne Not Applicable

6 Denial of Service 9.0 to 10.0 critical Intigriti Out-of-Scope

7 Information Disclosure 4.0 to 6.0 medium HackerOne Informative

8 Information Disclosure 4.0 to 6.0 medium HackerOne Informative

9 Security Misconfig. 0.1 to 4.0 low Intigriti Not Applicable

10 HTTP Smuggling 7.0 to 9.0 high Intigriti Duplicate

Table 5.1: Vulnerability Report Summary

Above table 5.1 summarizes all the vulnerabilities we encountered during our

testing.

Chapter 6

DomainMiner

DomainMiner, a bash script tool we developed, which combines the output of 10 other

tools to streamline the subdomain enumeration phase of bug bounty hunting, making

the recon process of BBH more efficient and time-saving. It simplifies finding all

subdomains of a target website, combining results with IP addresses and HTTP status

codes, and filtering out non-functioning domains. This tool significantly reduces the

workload for bug bounty hunters by automating much of the initial discovery process,

providing outputs in text or JSON formats with just a domain name input.

Figure 6.1: DomainMiner Tool

This tool consists of 3 bash script files: install.sh which handles the installation of all

necessary tools and their dependencies required for DomainMiner to function. It installs

an additional 10 tools for subdomain enumeration. The main script DomainMiner.sh
runs all the tools and combines their output to a text file all_tools_output.txt. re-
solver.sh is a helper script that handles the cleaning of the tool’s output, removing

duplicates, resolving domain names to IP addresses & its HTTP status codes. To use

DomainMiner, users need to make these scripts executable using the command chmod

+X scriptname.sh for all of the scripts, and then run the ./DomainMiner.sh command

36

Chapter 6. DomainMiner 37

to execute the tool. The output is saved as resolved_domains.txt, users can use -j or

--json for JSON output which may be useful as an input for other tools.

Figure 6.2: Tool output in text for-

mat.

Figure 6.3: Tool output in JSON for-

mat

Advantages over other tools; It’s cost-effective, being completely free to use

without any restrictions or daily limits. The tool provides detailed output, including

HTTP status codes and IP addresses, with customizable options for more aggressive or

passive results. Multiple tools are combined within DomainMiner, effectively running

and merging outputs from 10 different subdomain enumeration tools. Additionally, it

features bad domain filtration, automatically filtering out non-functioning domains,

saving users time on manual verification.

Analysis of Results; Based on the results presented in Table A.1, where we compare

DomainMiner with other online tools like Hackertarget [27], Subdomain Finder [5],

nmmapper [55], pentest-tools [61], and osint.sh [59], we can observe several interesting

patterns in the performance of different subdomain enumeration tools across various

domains. DomainMiner, consistently outperforms other tools in terms of the number

of subdomains found for most domains. This is particularly evident for domains like

“quora.com”, where DomainMiner discovered 10,921 subdomains, significantly more

than any other tool. For domains like “medium.com” and “github.com”, DomainMiner

also found the highest number of subdomains (944 and 830 respectively). However,

it’s worth noting that for some domains like “duolingo.com”, other tools like “osint.sh”

performed better, finding 421 subdomains compared to DomainMiner’s 430. The table

also shows that the effectiveness of these tools can vary depending on the target domain,

suggesting that using a combination of tools, as DomainMiner does, can lead to more

comprehensive results in subdomain enumeration efforts.

Chapter 7

Evaluation & Discussion

7.1 Evaluations in the Project

Throughout this dissertation, we evaluated our bug bounty hunting approach through

various aspects, the methodologies applied includes our approach of using a combi-

nation of manual and automated testing proved to be beneficial in discovering various

bugs as we encountered bugs by using both methods. By following our approach which

combined the tools, structured hunting process, and our custom tool, we found that our

efficiency increased as we refined our approach and learned more.

For tool selection, tools selected such as BurpSuite [43], FFUF [20] were instru-

mental in our hunting, each tool has served its purpose and complemented our manual

testing. For vulnerability discovery, We successfully identified a range of vulnera-

bilities, ranging from less complex Cross-Site Scripting (XSS) [41], WordPress issues

to more complex issues like Security Misconfigurations [10], and HTTP Smuggling

[64]. This diverse set of findings demonstrates the breadth of our approach. As for

bug reporting, our experience with reporting bugs to various platforms like Bugcrowd

[4], Hackerone [26], Intigriti [31], and OpenBugBounty [57] provided insights into

how different organizations handle vulnerability reports. While some reports were

marked as duplicates or out of scope, this feedback helped us refine our bug hunting

and reporting strategies. Lastly, DomainMiner was found reasonably good against the

current offerings, performing very well. There are a few things we hope to address in

future, which include its Linux-only nature due to being developed in a bash script,

time-consuming due to running multiple tools, and having a noisy operation due to

high network traffic which may trigger firewalls. Despite these, its capabilities and

functionalities make it a successful project.

38

Chapter 7. Evaluation & Discussion 39

7.2 Evaluation of the overall Project

The overall project is evaluated on these key outcomes, such as the learning curve
proved to be steep, in understanding various web vulnerabilities, exploit techniques,

and the workings of bug bounty programs. We learned quite a lot during a short

span of time, this knowledge acquisition is valuable for anyone pursuing a career in

cybersecurity. We gained hands-on experience by actively participating in bug bounty

programs, and testing websites for vulnerabilities. This practical exposure is invaluable

and difficult to replicate in controlled environments. The creation of DomainMiner

as a tool development, demonstrated our ability to identify gaps in existing tools and

develop custom solutions to address specific needs in the bug-hunting process. For our

contribution to security, although not all reported vulnerabilities were accepted or

rewarded, our efforts contributed to improving the security posture of various websites

by bringing potential issues to their attention and also provided the readers with a

realistic view of the challenges we faced as a bounty hunter.

Based on these factors, we would say that our project was successful, this experience

was very fruitful and made us refine our approach. In retrospect, if we started from

scratch there would be a few things that we would have done differently, like adding

more tools to our toolset, increasing our knowledge base on vulnerability types, and

many more, which we would hope the readers research on.

Chapter 8

Conclusions

This project has provided valuable insights into the world of bug bounty hunting and

web application security. Through our approach and hands-on experience, we’ve gained

a deeper understanding of various vulnerability types, their potential impact, and the

processes involved in identifying and reporting them.

Our attempt to bug bounty hunting, combining manual testing with automated tools,

proved successful in uncovering a diverse range of vulnerabilities, underscoring the

critical value of a good approach. Mastery of essential tools was crucial, and the ability

to develop custom tools like DomainMiner significantly enhanced our productivity.

Given the constantly evolving landscape, continuous learning is essential to stay updated

with the latest vulnerability types, attack vectors, and defensive measures. Persistence

and patience were also vital, as not all discovered vulnerabilities were accepted or

rewarded; refining techniques and coping with duplicate or out-of-scope submissions

required perseverance. Despite these challenges, our efforts made a tangible impact

on the security of various web applications, highlighting the real-world benefits of bug

bounty programs in enhancing overall internet security.

8.1 Future Directions:

Future work could focus on specializing in specific types of vulnerabilities or tech-

nologies to develop deeper expertise. We are also keen on exploring more complex

vulnerability chains and their potential impacts that could lead to higher-value discov-

eries. Automated testing is what we to explore further, in combination with this, the

development of custom tools for automated vulnerability analysis could enhance the

efficiency of the bug-hunting process.

40

Bibliography

[1] 0xold. Null byte on steroids. https://medium.com/@0xold/null-byte-on-steroids-

23f8104a25ec, 2024. Accessed: 2024-08-20.

[2] Akpar Asadov. Directory traversal attack. In 1st INTERNATIONAL CONFER-

ENCE ON THE 4th INDUSTRIAL REVOLUTION AND INFORMATION TECH-

NOLOGY, volume 1, pages 174–177. Azrbaycan Dövlt Neft v Snaye Universiteti,

2023.

[3] Andrew Austin and Laurie Williams. One technique is not enough: A compari-

son of vulnerability discovery techniques. In 2011 International Symposium on

Empirical Software Engineering and Measurement, pages 97–106. IEEE, 2011.

[4] Bugcrowd. Crowdsourced cybersecurity platform. https://www.bugcrowd.com,

2024.

[5] C99. Subdomain finder. Available at: https://subdomainfinder.c99.nl, 2024.

Accessed: 2024-08-24.

[6] Paulino Calderon. Nmap Network Exploration and Security Auditing Cookbook:

Network discovery and security scanning at your fingertips. Packt Publishing Ltd,

2021.

[7] Check Point Software Technologies. What is sandboxing? Available

at: https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-sandboxing/,

2024. Accessed: 2024-08-24.

[8] Cloudflare. What is a denial-of-service (dos) attack?, 2024. Accessed 22 August

2024.

[9] WordPress Contributors. Cron plugin handbook.

https://developer.wordpress.org/plugins/cron/, 2024.

41

Bibliography 42

[10] Sam Curry. Filling in the blanks: Exploiting null byte buffer overflow for a

$40,000 bounty. https://samcurry.net/filling-in-the-blanks-exploiting-null-byte-

buffer-overflow-for-a-40000-bounty. Accessed: 2024-08-15.

[11] CVE-2018-11039. https://nvd.nist.gov/vuln/detail/CVE-2018-11039.

[12] CVE-2022-26377. https://nvd.nist.gov/vuln/detail/CVE-2022-26377.

[13] CVE-2023-22622. https://nvd.nist.gov/vuln/detail/CVE-2023-22622.

[14] CVE-2023-28158. https://nvd.nist.gov/vuln/detail/CVE-2023-28158.

[15] CVE-2023-39575. https://nvd.nist.gov/vuln/detail/CVE-2023-39575.

[16] Pedro Daniel Carvalho de Sousa Rodrigues. An osint approach to automated asset

discovery and monitoring. 2019.

[17] defparam. smuggler. https://github.com/defparam/smuggler, n.d. Automated Tool

for checking HTTP request smuggling.

[18] F5 Networks. What is a web application firewall (waf)? Available at:

https://www.f5.com/glossary/web-application-firewall-waf, 2024. Accessed:

2024-08-24.

[19] Faun. Url sanitization: The why and how. Available at: https://faun.pub/url-

sanitization-the-why-and-how-9f14e1547151, 2024. Accessed: 2024-08-24.

[20] ffuf. ffuf - fuzz faster u fool. https://github.com/ffuf/ffuf, 2024. Accessed 22 Aug

2024.

[21] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul

Leach, and Tim Berners-Lee. Hypertext transfer protocol–http/1.1. Technical

report, 1999.

[22] GNOME Project. Install adobe flash. Available at:

https://help.gnome.org/users/gnome-help/stable/net-install-flash, 2024. Accessed:

2024-08-24.

[23] Jeremiah Grossman. Cross site tracing (xst). WhiteHat Security White Paper,

2003.

Bibliography 43

[24] Shashank Gupta and Brij Bhooshan Gupta. Cross-site scripting (xss) attacks and

defense mechanisms: classification and state-of-the-art. International Journal of

System Assurance Engineering and Management, 8:512–530, 2017.

[25] HackerOne. Hackerone report #1888723. https://hackerone.com/reports/1888723,

2024. Wordpress DoS bug reported.

[26] HackerOne. No 1 trusted security platform and hacker program.

https://hackerone.com, 2024.

[27] HackerTarget. Find dns host records. Available at: https://hackertarget.com/find-

dns-host-records/, 2024. Accessed: 2024-08-24.

[28] William GJ Halfond, Jeremy Viegas, Alessandro Orso, et al. A classification of

sql injection attacks and countermeasures. In ISSSE, 2006.

[29] Qi-Xian Huang, Min-Yi Chiu, Ying-Feng Chen, and Hung-Min Sun. Attacking

websites: Detecting and preventing http request smuggling attacks. Security and

Communication Networks, 2022(1):3121177, 2022.

[30] Tommaso Innocenti, Seyed Ali Mirheidari, Amin Kharraz, Bruno Crispo, and

Engin Kirda. You’ve got (a reset) mail: A security analysis of email-based pass-

word reset procedures. In Detection of Intrusions and Malware, and Vulnerability

Assessment: 18th International Conference, DIMVA 2021, Virtual Event, July

14–16, 2021, Proceedings 18, pages 1–20. Springer, 2021.

[31] Intigriti. Bug bounty agile pentesting platform. https://www.intigriti.com, 2024.

[32] Bahruz Jabiyev, Steven Sprecher, Kaan Onarlioglu, and Engin Kirda. T-reqs:

Http request smuggling with differential fuzzing. In Proceedings of the 2021

ACM SIGSAC Conference on Computer and Communications Security, pages

1805–1820, 2021.

[33] Ashar Javed and Jörg Schwenk. Systematically breaking online wysiwyg editors.

In Information Security Applications: 15th International Workshop, WISA 2014,

Jeju Island, Korea, August 25-27, 2014. Revised Selected Papers 15, pages 122–

133. Springer, 2015.

[34] Kali Linux. Dirb package description. Available at:

https://www.kali.org/tools/dirb/, 2024. Accessed: 2024-08-24.

Bibliography 44

[35] Kali Linux. Dirbuster package description. Available at:

https://www.kali.org/tools/dirbuster/, 2024. Accessed: 2024-08-24.

[36] Kali Linux. Gobuster package description. Available at:

https://www.kali.org/tools/gobuster/, 2024. Accessed: 2024-08-24.

[37] Kali Linux. Wfuzz package description. Available at:

https://www.kali.org/tools/wfuzz/, 2024. Accessed: 2024-08-24.

[38] James Kettle. Browser-powered desync attacks: A new frontier in http request

smuggling. https://portswigger.net/research/browser-powered-desync-attacks,

2022.

[39] Kinsta. What is a content management system (cms)?, 2024. Accessed: 2024-08-

23.

[40] Vickie Li. Bug Bounty Bootcamp: The Guide to Finding and Reporting Web

Vulnerabilities. No Starch Press, 2021.

[41] Miao Liu, Boyu Zhang, Wenbin Chen, and Xunlai Zhang. A survey of exploitation

and detection methods of xss vulnerabilities. IEEE Access, 7:182004–182016,

2019.

[42] Carlos A Lozano and Shahmeer Amir. Bug Bounty Hunting Essentials: Quick-

paced guide to help white-hat hackers get through bug bounty programs. Packt

Publishing Ltd, 2018.

[43] PortSwigger Ltd. Burp suite. https://portswigger.net/burp, 2024. Accessed:

2024-08-17.

[44] Sefat Mahjabin. Implementation of dos and ddos attacks on cloud servers. Period-

icals of Engineering and Natural Sciences, 6(2):148–158, 2018.

[45] Suresh S. Malladi and Hemang C. Subramanian. Bug bounty programs for

cybersecurity: Practices, issues, and recommendations. IEEE Software, 37(1):31–

39, 2020.

[46] Tom Marrs. JSON at work: practical data integration for the web. ” O’Reilly

Media, Inc.”, 2017.

Bibliography 45

[47] Daniel Miessler. Seclists. Available at: https://github.com/danielmiessler/SecLists,

2024. GitHub repository.

[48] MITRE Corporation. Cross site tracing (xst).

https://capec.mitre.org/data/definitions/107.html, 2024.

[49] ModHeader. Modheader: Modify http headers. https://modheader.com, 2024.

Accessed: 2024-08-18.

[50] Moustachauve. Cookie-editor. https://cookie-editor.com, 2024. Accessed: 2024-

08-18.

[51] Mozilla Developer Network. Http response status codes, 2024. Accessed: 2024-

08-23.

[52] National Institute of Standards and Technology (NIST). Vulnerability metrics.

https://nvd.nist.gov/vuln-metrics/cvss, 2024.

[53] National Vulnerability Database. Cve-2020-26876, 2024.

[54] Nmap Project. Nmap: Discover your network. https://nmap.org/, 2024. Accessed

22 August 2024.

[55] NMMapper. Subdomain finder. Available at:

https://www.nmmapper.com/sys/tools/subdomainfinder/, 2024. Accessed:

2024-08-24.

[56] NordVPN. Firefox vs. chrome: Which browser is better? Available at:

https://nordvpn.com/blog/firefox-vs-chrome/, 2024. Accessed: 2024-08-24.

[57] Open Bug Bounty. Free bug bounty program and coordinated vulnerability

disclosure. https://www.openbugbounty.org, 2024.

[58] Angela Orebaugh and Becky Pinkard. Nmap in the enterprise: your guide to

network scanning. Elsevier, 2011.

[59] OSINT.SH. Subdomain finder. Available at: https://osint.sh/subdomain/, 2024.

Accessed: 2024-08-24.

[60] OWASP Foundation. About owasp. https://www.owasp.org, 2013.

Bibliography 46

[61] Pentest-Tools.com. Find subdomains of domain. Available at: https://pentest-

tools.com/information-gathering/find-subdomains-of-domain, 2024. Accessed:

2024-08-24.

[62] Carlos Polop. Reset/forgotten password bypass.

https://book.hacktricks.xyz/pentesting-web/reset-password, 2024. Accessed:

2024-08-17.

[63] Karishma Pooj and Sonali Patil. Understanding file upload security for web appli-

cations. International Journal of Engineering Trends and Technology, 42(7):342–

347, 2016.

[64] PortSwigger. Http request smuggler. https://github.com/PortSwigger/http-request-

smuggler, 2024. Accessed: 2024-08-18.

[65] PortSwigger. Http request smuggling. https://portswigger.net/web-

security/request-smuggling, 2024. Accessed: 2024-08-20.

[66] PortSwigger. Software vulnerability scanner.

https://github.com/portswigger/software-vulnerability-scanner, 2024. Ac-

cessed: 2024-08-18.

[67] Quitten. doser.go: Dos tool for http requests. https://github.com/Quitten/doser.go,

2024.

[68] Sagar Rahalkar. A Complete Guide to Burp Suite: Learn to Detect Application

Vulnerabilities. Apress, Berkeley, CA, 1 edition, November 2020. Copyright

Sagar Rahalkar 2021.

[69] PortSwigger Research. Making desync attacks easy with trace.

https://portswigger.net/research/trace-desync-attack, March 2024.

[70] ResearchGate. An overview of bug bounty hunting life cycle.

https://www.researchgate.net/figure/An-overview-of-bug-bounty-hunting-

life-cycle f ig2382126794,2024.Accessed22Aug2024.

[71] Germán E. Rodrı́guez, Jenny G. Torres, Pamela Flores, and Diego E. Benavides.

Cross-site scripting (xss) attacks and mitigation: A survey. Computer Networks,

166:106960, 2020.

Bibliography 47

[72] ShadowGirlInCyberLand. Tryhackme — burp suite: Intruder.

https://medium.com/@shadowgirlincyberland/tryhackme-burp-suite-intruder-

e73f000eb2d8, 2024. Accessed: 2024-08-18.

[73] Saman Shafigh, Boualem Benatallah, Carlos Rodrı́guez, and Mortada Al-Banna.

Why some bug-bounty vulnerability reports are invalid? study of bug-bounty

reports and developing an out-of-scope taxonomy model. In Proceedings of the

15th ACM / IEEE International Symposium on Empirical Software Engineering

and Measurement (ESEM), ESEM ’21, New York, NY, USA, 2021. Association

for Computing Machinery.

[74] Pritam Gajkumar Shah and John Ayoade. An empricial study of brute force attack

on wordpress website. In 2023 5th International Conference on Smart Systems

and Inventive Technology (ICSSIT), pages 659–662. IEEE, 2023.

[75] Ashish Sharma, Aniket Tyagi, Prakrati Khatri, and Rinku Garg. Enhanced 403

bypass mechanism for web security. In 2024 4th International Conference on

Advance Computing and Innovative Technologies in Engineering (ICACITE),

pages 1858–1862, 2024.

[76] Carlos Silva. Http status codes: What they are and how to fix errors.

https://www.semrush.com/blog/http-status-codes/, 2024. Accessed: 2024-08-20.

[77] Georgi Stoyanov, Adelina Aleksieva-Petrova, and Milen Petrov. Analysis of

modern security plugins for wordpress. In AIP Conference Proceedings, volume

3084. AIP Publishing, 2024.

[78] Chris Sullo. Nikto. Available at: https://github.com/sullo/nikto, 2024. GitHub

repository.

[79] TomNomNom. assetfinder, 2024. Accessed: 2024-08-24.

[80] Vercel. Next.js by vercel - the react framework. Available at: https://nextjs.org/,

2024. Accessed: 2024-08-24.

[81] W3Schools. Html event attributes. https://www.w3schools.com/tags/ref eventattributes.asp,

2024.

[82] Thomas Walshe and Andrew Simpson. An empirical study of bug bounty programs.

In 2020 IEEE 2nd international workshop on intelligent bug fixing (IBF), pages

35–44. IEEE, 2020.

Bibliography 48

[83] Wappalyzer. Wappalyzer: Identify technologies on websites.

https://www.wappalyzer.com, 2024. Accessed: 2024-08-18.

[84] Sunny Wear. Burp Suite Cookbook: Practical recipes to help you master web

penetration testing with Burp Suite. Packt Publishing Ltd, 2018.

[85] Peter De Witte. How to use the http request smuggler extension to perform an

attack. https://peter-de-witte.medium.com/how-to-use-the-http-request-smuggler-

extension-to-perform-an-attack-8a09c1a6801b, 2024. Accessed: 2024-08-18.

[86] WPScan. Wpscan: Wordpress security scanner. https://wpscan.com, 2024. Ac-

cessed: 2024-08-18.

[87] xhttp.org. xhttp - http/2 downgrade attack tool. Available at: https://xhttp.org/,

2024. Accessed: 2024-08-24.

[88] yunemse48. 403bypasser. https://github.com/yunemse48/403bypasser, 2024.

Accessed: 2024-08-18.

[89] Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Haixin Duan, Shuo Chen, Tao Wan,

and Nicholas Weaver. Cookies lack integrity:{Real-World} implications. In 24th

USENIX Security Symposium (USENIX Security 15), pages 707–721, 2015.

Appendix A

DomainMiner Tool Results

A.1 Results Table

Here are the different website URLs for each tool:

1. https://hackertarget.com/find-dns-host-records/

2. https://subdomainfinder.c99.nl

3. https://www.nmmapper.com/sys/tools/subdomainfinder/

4. https://pentest-tools.com/information-gathering/find-subdomains-of-domain

5. https://osint.sh/subdomain/

49

Appendix A. DomainMiner Tool Results 50

Domain Tool Name Subdomains
Found

duolingo.com

hackertarget.com 221

Subdomain Finder 50

nmmapper.com 15

pentest-tools 152

osint.sh 421

DomainMiner 430

github.com

hackertarget.com 189

Subdomain Finder 86

nmmapper.com 15

pentest-tools 288

osint.sh 7

DomainMiner 830

medium.com

hackertarget.com 500

Subdomain Finder 13

nmmapper.com 15

pentest-tools 23

osint.sh 529

DomainMiner 944

mirror.co.uk

hackertarget.com 50

Subdomain Finder 52

nmmapper.com 15

pentest-tools 89

osint.sh 18

DomainMiner 365

owasp.org

hackertarget.com 22

Subdomain Finder 30

nmmapper.com 15

pentest-tools 27

osint.sh 24

DomainMiner 38

quora.com

hackertarget.com 67

Subdomain Finder 1875

nmmapper.com 15

pentest-tools 5

osint.sh 339

DomainMiner 10921

Table A.1: Subdomains found by different tools for each domain

Appendix B

Tools and Summary

B.1 Tool Info

Below figure B.1 shows us the tool layout and how the data is presented, we can also

identify the version number of some of the technologies used.

Figure B.1: wappalyzer tool output.

Below figure B.2 shows us the tool layout and how the data is presented, we can

also edit some of the cookies.

In the below figure B.3 shown are the different 403 and 404 error pages we encoun-

tered in our tests which disclose the server type and version.

51

Appendix B. Tools and Summary 52

Figure B.2: cookie editor tool.

Figure B.3: 403 & 404 error pages

B.2 Summary of Bug Reports

Below figure B.4 shows the different outcomes of all the bug reports submitted over

the period, and the figure B.5 shows the breakdown of different types of vulnerabilities

found over our bug bounty hunting period.

Appendix B. Tools and Summary 53

Figure B.4: Different outcomes of bug reports.

Figure B.5: Vulnerability types found.

