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Abstract

Neural seq2seq semantic parsers are known to struggle with compositional generali-

sation - that is, parsing familiar elements recombined in novel ways, unseen during

training. We propose a simple method of addressing the issue by providing the model

with supertags produced by Combinatory Categorial Grammar parser, interleaved with

natural language tokens. We train 3 models based on CodeT5 to evaluate the method:

baseline, trained on natural language only, supertagged, trained with our method and,

as a control condition, padded, where utterances are interleaved with meaningless

tags. We show our method produces a significant improvement over other conditions if
the embeddings for the supertags are pre-trained. We also conduct an error analysis,

showing that most significant improvement happens in cases of verb ambiguity, which

CCG supertagging is effective at resolving.
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Chapter 1

Introduction

One of the key subfields in Natural Language Processing is semantic parsing, defined

broadly as mapping natural language (NL) utterances to semantic machine-readable

representations. Such representations can be executable (e.g. database queries) or

non-executable (e.g. lambda calculus, First Order Logic (FOL), graphs). An accurate

and reliable system of domain-independent semantic parsing would be of tremendous

value. The field of machine translation could make use of reliable semantic information

to improve translations, new opportunities would emerge for large-scale knowledge

base building, and some subfields of NLP, such as argument mining (Lawrence and

Reed, 2019), would be solved.

Neural sequence-to-sequence models have been applied to the task of semantic pars-

ing to good results, outperforming the previous generation of statistical, grammar-based

semantic parsers. However, the relaxation of constraints introduced with the neural

architectures brings several new issues. One of such issues is lack of consistent ability

of the model to combine previously seen components in novel ways (compositional
generalisation, CG). For example, successfully parsing “I swam in the sea” and “river”

does not guarantee a correct parse for “I swam in the river”. Compositional general-

isation is trivial for humans and is critical to our ability to learn language and to the

expressive power of language, but remains out of reach for neural semantic parsers.

Current approaches to tackling issues with compositional generalisation employ

complex specialised architectures (Lindemann et al., 2023) or ensembling (Shaw et al.,

2021, Qiu et al., 2022). Taking inspiration from earlier grammar-based semantic parsers

(Zettlemoyer and Collins, 2012, Kwiatkowksi et al., 2010) and recent exploration into

providing neural models with Combinatory Categorial Grammar (CCG) (Steedman and

Nivre, 2000) information (Nadejde et al., 2017, Arehalli and Linzen, 2024), we propose

1



Chapter 1. Introduction 2

and evaluate a simple approach to improving compositional generalisation performance

by fine-tuning a pre-trained LLM learner on a semantic parsing task where the NL

utterances are interleaved with CCG tags.

We show (1) the model is unable to simultaneously learn useful embeddings for

CCG tag tokens during fine-tuning on a semantic parsing task but (2) providing pre-
trained embeddings for the CCG tags before fine-tuning results in the model noticably

improving. We also provide an error analysis, highlightling in what cases our method

works best.



Chapter 2

Background

This work combines developments from to branches of investigation, which we describe

in turn below.

2.1 Combinatory Categorial Grammars

Combinatory Categorial Grammar (CCG) (Steedman and Nivre, 2000) is a grammar

formalism used to model language. As part of parsing an utterance with CCG, words

and utterance fragments get assigned a a category which describes them as functions,

specifying the input argument and output. Word-level categories are referred to as

supertags.

For example, in a sentence

Pavels befriended Eriks

the word ”befriended” is assigned category (S[dcl]\NP)/NP, meaning this verb outputs

a declarative sentence upon taking a a noun phrase to its right followed by a noun phrase

to its left. The word-level assigned CCG categories are referred to as supertags.

Efficient and accurate CCG parsers (e.g. Stanojević and Steedman (2019)) make

it possible to employ the information contained in supertags in a wide variety of

downstream NLP tasks.

3



Chapter 2. Background 4

2.2 Semantic parsing

2.2.1 History

A broad definition of the task of semantic parsing is translating natural language

utterances into meaning representations, which can be divided into executable repre-

sentations (e.g. SQL queries) and non-executable representations, such as first order

logic or graphs. Semantic parsing is different from other sequence-to-sequence tasks

in a sense that the desired output is structured (Kamath and Das, 2018), yielding both

unique challenges and opportunities.

Very early semantic parsing systems were rule-based. An early example is SAVVY,

described in Johnson (1984), using a pattern recognition engine to map utterances to

query for a database. An example of a grammar-based approach is EUFID (Templeton

and Burger, 1983), employing a hand-crafted ”semantic grammar” and a multi-step pro-

cess of converting an NL utterance to a parse tree with CYK algorithm, and eventually a

database query. Being rule-based, such systems inherently provide good compositional

generalisation abilities, but are limited in general usability.

Hand-crafted systems were outperformed by statistical semantic parsers (see Zelle

and Mooney (1996) for an early example), even with training sets as small as 250

examples. CCG formalism was often employed in statistical semantic parsers, e.g.

Zettlemoyer and Collins (2012) and Kwiatkowksi et al. (2010), where a Probabilistic

CCG was learned from data.

Further improvements came with neural semantic parsing, framed as a sequence-

to-sequence task, forgoing hand-crafted features and grammars. Most works employ

LSTMs in encoder-decoder formation (Dong and Lapata, 2016) however later works

use transformers.

Neural semantic parsers are inherently less constrained than previous approaches,

displaying non-negligible amount of ungrammatical parses. Different ways of address-

ing this have been investigated; in Dong and Lapata (2016) the decoder is augmented to

build tree structures hierarchically, level by level, employing additional connections to

the parent node of the generated tree (”parent feeding”). Wang et al. (2019) and Yin

and Neubig (2017) use rule based decoding, where instead of sequences the decoder

outputs production rules.

Another major issue facing neural semantic parsers is lack of compositional gener-

alisation (Lake and Baroni, 2017), which is described in detail in the next section.
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2.2.2 Compositional Generalisation

Broadly, compositional generalisation refers to producing novel combinations out of

known components (Lake and Baroni, 2017). This is something humans do effortlessly -

knowing separately the utterance ”I swam in the sea” and the noun ”river”, it is trivial for

us to understand the utterance ”I swam in the river”. Seq2seq neural models, however,

struggle with this task (Lake and Baroni, 2017).

Several approaches to improving the situation have so far been attempted.

Ensembling. One intuitive idea is to ensemble a constrained grammar-based model

with a neural model. Shaw et al. (2021) separately induce a QCFG (Quasi-synchronous

CFG) for a grammar-powered neural parser and fine-tune T5. The two models are then

put into an ensemble using a sort of fallback mechanism - when grammar-based model

fails to produce an output, the ensemble returns the output of T5.

Data augmentation. Qiu et al. (2022) first train a QCFG-powered generative model

on original training data to generate recombinations of atoms from the training data,

then fine-tune T5 on a union of original and generated utterances. This ”distills” (Qiu

et al., 2022) the knowledge of compositional structures from the generative model into

T5, thus allowing it better compositionally generalise. This outperforms the ensemble

of Shaw et al. (2021).

Trees. A range of approaches make the underlying tree structure of the logical

form more explicit. Herzig and Berant (2021a) train a classifier to classify spans of NL

utterances with categories, which are then built into a tree with CYK. Their approach,

however, requires setting up ”domain constants” which are used as part of the possible

categories during prediction, which reduces the flexibility of their model.

Multi-layer models. Lindemann et al. (2023) utilize the concept of fertility of

a word in translation contexts (Brown et al., 1990) and produce a novel multi-level

architecture with several predictions and a reordering step. The model suffers from high

computational costs of the reordering layer for longer output sequences.

2.3 Related work outside semantic parsing

To our knowledge, no attempts in employing CCG supertags in neural semantic parsing

have been made yet.

However, although not numerous, some work in combining neural models with CCG

supertags has been conducted. Nadejde et al. (2017) supertag the target sequence in a
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machine translation task. This forces the model to ”think about” the syntactic structures

explicitly, improving the translation quality. They experiment with both interleaving
the supertags and having the supertag sequence as a secondary prediction task, showing

that only interleaving produces improvements. They additionally experiment with

providing CCG supertags in the input sequence, yielding a strong improvement too (e.g.

0.9 BLEU for English->German).
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Methods

3.1 Model

We employ CodeT5 (Wang et al., 2021) as our starting model. CodeT5 builds up on T5

pre-trained model (Raffel et al., 2019) by fine-tuning it on code generation tasks. The

selection of CodeT5 as a launch point is motivated by the intuition of relative similarity

of semantic parsing to code generation, as both necessitate some level of semantic

processing. We thus hope CodeT5 serves as a better foundation than an average model

at the task of semantic parsing.

In particular, we run all the experiments on codeT5-small for reasons of limited

computational and time resources available for the project. codeT5-small has 60,492,288

parameters and a vocabulary of 32100, such that the last 100 entries are mask tokens.

codeT5-small tokenizer splits out-of-vocabulary (OOV) tokens into subword units, i.e.

the number of words in a sentence does not always match the length of the output vector

of the tokenizer.

3.2 Data

3.2.1 Dataset

COGS (Kim and Linzen, 2020) is a semantic parsing dataset specifically engineered

for experiments on the ability of neural semantic parsing models to compositionally

generalise. COGS contains a collection of pairings between natural language utterances

(NL) and a logical formalism (LF) based on lambda calculus. More specifically, the

lambda calculus variation used is UDepLambda (Reddy et al., 2017), a lambda calculus-

7
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Partition # examples Notes

train 24154

dev 3000

test 3000

gen 21000

val_gen 250 Created by the authors

Table 3.1: Summarisation of COGS dataset (Kim and Linzen, 2020).

like language expressing Universal Dependencies v1 (Nivre et al., 2016).

For example, the train partition of COGS contains a pair

A rose was helped by a dog.

rose ( x_1 ) AND help . theme ( x_3 , x_1 ) AND
help . agent ( x_3 , x_6 ) AND dog ( x_6 )

In addition to the standard train/dev/test split, a forth subset is provided as gen, such

that every sentence in gen requires compositional generalisation to be parsed correctly.

Sentences in gen set are marked with one of 21 types, signifying the type compo-

sitional generalisation required for them to be parsed correctly. The 21 types can be

grouped into 5 categories.

Novel Combination of Familiar Primitives and Grammatical Roles (FPGR)
refers to sentences where a word seen in the training set needs to processed in a different

role, e.g. ”shark” is only ever a subject in the training set but an object in gen set.

Sentences in Novel Combination Modified Phrases and Grammatical Roles
(MPGR) category require the model to parse a familiar modified word in a new role,

e.g. ”a grey shark”.

Deeper Recursion (DEEP) category contains sentences with recursion deeper than

seen in the training set, where recursion means additional ”that”-like phrases. For

example, if ”A knew that B knew that X” is the longest sentence in the training set,

sentences of the form ”A knew that B knew that C knew that X” and longer would be

contained in the gen set.

Verb Argument Structure Alternation (VASA) category sentences modify the

verbs seen in training set in novel ways. For example, the verb ”blessed” is only ever

used in an active sense in the train set, but is employed as a passive verb in the gen set,

and vice versa.
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Dataset Example NL sentence

COGS A rose was helped by a dog .

Supertagged COGS A ccg_NP/N rose ccg_N was [...]

Padded COGS A DU/D rose DU/D was [...]

Table 3.2: Excerpts from COGS and two datasets derived from it. Each NL utterance is

paired with its semantic form, which remains unchanged between datasets.

Final category is Verb class (VCLASS) contains sentences with previously unseen

verb ”classes”, such that the gen set introduces a semantic role previously unseen seman-

tic role for a previously seen verb. For example, the utterances The hippo decomposed.

and The hippo painted. are syntactically similar, but imply a different level of

agency from the hippo.

From gen partition we take the first 250 examples as our validation set, the val_gen

partition. This is necessary as the validation set provided with COGS only contains

in-distribution sentences, and thus can not be used for measuring compositional gen-

eralisation performance. val_gen is used for in-training evaluation to produce EM

accuracy curves. Table 3.1 summarises the 5 partitions. A more detailed description of

the 21 subtypes and 5 categories is provided in Kim and Linzen (2020).

3.2.2 Preprocessing

In addition to standard COGS, we produced two derivative datasets - a supertagged

COGS and a padded COGS.

Supertagged COGS is a copy of COGS with every word in the sentences followed

a CCG supertag, carrying information of that word’s syntactic properties. We used

ccg-tools package by Miloš Stanojević1 to produce the CCG supertags for each token.

Padded COGS replaces the CCG supertags with dummy tags of the form ”DU/D”,

intended as a control condition to measure how explicitly delimiting words in a sentence

with special tokens affects semantic parsing performance without the tokens carrying

any meaning.

Since codeT5 tokenizer processes OOV tokens by breaking them down into sub-

words, there exists an overlap between simpler CCG supertags such as N or NP and

subword tokens which are already in codeT5 vocabulary. To mitigate this overlap, all

1https://github.com/stanojevic/ccgtools

https://github.com/stanojevic/ccgtools
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Model Name Trained on Pre-trained embeddings

codeT5-NL-only COGS n/a

codeT5-padded Padded COGS n/a

codeT5-ccg-naive Supertagged COGS No

codeT5-ccg-pretrained Supertagged COGS Yes

Table 3.3: List of all the models we train for this project, indicating their main differences.

supertags are preceded by ccg_ prefix. Table 3.2 shows examples of one sentence

excerpt per dataset, some sentences cropped to fit.

3.3 Training procedure

3.3.1 Tokenizer preparation

For both supertagged and padded datasets, we alter the tokenizer to process the new

tokens (CCG supertags and dummy tags) as special tokens, i.e. not decompose them

into subword units. This operation expands the model vocabulary and initialises the

embeddings of the new tokens with random vectors.

We conduct experiments with both randomly initialised embeddings for CCG

supertags (naive condition) and with pre-trained embeddings (pre-trained condition).
To obtrain the pre-trained embeddings for the supertags, we fine-tune a separate

instance of codeT5-small on a masked supertag prediction task. A model is given a

sentence from Supertagged COGS training set with one of the supertags masked:

The ccg_NP/N captain ccg_N ate [MASK] . ccg_.

and is expected to return the missing supertag:

ccg_S[dcl]\NP

We fine-tuned the model for 5 epochs with learning rate of 5e-5, yielding a 0.995

accuracy on the validation set. We then extract the embeddings for CCG supertags only
and transplant them into another instance of codeT5-small, which we then fine-tune on

the semantic parsing task. The process is described in 3.4.
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Step Action

1 Set up a new instance of codeT5-small (codeT5-A)

2 Extend the vocabulary of codeT5-A with special symbols for CCG supertags

3 Fine-tune codeT5-A on masked supertag prediction task.

4 Extract only the embeddings for the supertags from codeT5-A into a matrix M

5 Set up a new instance of codeT5-small (codeT5-B)

6 Extend the vocabulary of codeT5-B with special symbols for CCG supertags

7 Replace the randomly initialised embeddings with the supertags from M

8 Train codeT5-B on the semantic parsing task.

Table 3.4: Steps involved in obtaining the pre-trained embeddings for CCG supertags

and training the semantic parser with them. No unfair advantage is provided to the

semantic parser model as, with the exception of the CCG supertag embeddings, it is a

fresh codeT5 which has not seen any part of the dataset.

3.4 Fine-tuning

We fine-tune codeT5-small separately on the training partition of each of our 3 datasets

(24155 NL-LF pairs), using a batch size of 12 for training. Supertagged COGS was

fine-tuned for twice, once in naive supertags condition and once with pre-trained

embeddings transplanted. For the sake of brevity, we refer to the fine-tuned models

with a codeT5-* convention, e.g. a model fine-tuned on the Supertagged COGS with

pre-trained embeddings we refer to as codeT5-ccg-pretrained. Our 4 models are

summarised in Table 3.3.

For most experiments we employed a learning rate of 5e-6, however we experi-

mented with a higher learning rate of 1e-5 for codeT5-ccg-pretrained.

All training is conducted on the University of Edinburgh teaching cluster, using

HuggingFace transformers library (Wolf et al., 2020). We employ AdamW (Loshchilov

and Hutter, 2017) optimizer with a linear learning rate scheduler (without warmup).

3.5 Evaluation

Following other work on COGS (Lindemann et al. 2023) and generally compositional

generalisation (Oren et al. 2020, Herzig and Berant 2021b) we employ exact match

(EM) accuracy as our evaluation metric.
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Results

4.1 Naive supertags

Naively employed supertags fail to outperform padded condition, but outperform unal-

tered natural language on validation set. Figure 4.1 provides validation loss curves and

EM accuracy on validation set over training.
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Figure 4.1: Validation loss and EM accuracy loss curves for our 3 semantic parsers. Blue

denotes the parser training on natural language only source utterances, green denotes

parser training on NL source utterances interleaved with padding tags and red denotes

the model training on CCG supertagged NL source utterances. Training for 5 epochs

with lr of 5e-6.

While codeT5-padded performing best may seem unintuitive at first, note that

OOV tokens are broken up into subword units in codeT5. The padding tokens (DU/D)

negate that effect by demarcating words in a simple way, giving the model a kind of

demarcation of logical entities. codeT5-NL-only does not enjoy this additional benefit.

12
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codeT5-ccg-pretrained likely underperforms since the model fails to learn useful

embeddings for the supertags, while supertags themselves due to their diversity do not

accomplish the word demarcation role as well as the DU/D tags.

4.2 Pre-trained supertags

To even the playing field, we rid the model of the need to simultaneously learn embed-

dings for the supertags and learn semantic parsing. We provide the model pre-trained

embeddings for each CCG tag.

Pre-trained supertag condition (codeT5-ccg-pretrained) outperforms all other

conditions by a large margin, as presented in Figure 4.2.
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Figure 4.2: Figure 4.1 augmented with the metrics for the fourth model - semantic parser

training on CCG supertagged NL utterances with pre-trained embeddings provided for

supertag tokens (black).

4.3 Longer training

Having established a strong effect from providing a semantic parser with CCG supertags

(with pre-trained embeddings), we ran an experiment with a higher learning rate (1e-5)

for longer (10 epochs) to see whether the effect scales.

The results are curious - codeT5-NL-only eventually catches up and outperforms

codeT5-padded and gets closer to codeT5-ccg-pretrainedn.
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Figure 4.3: Validation loss and EM accuracy loss curves for 3 semantic parsers. Blue

denotes the parser training on natural language only source utterances, green denotes

parser training on NL source utterances interleaved with padding tags and black de-

notes the model training on CCG supertagged NL source utterances with pre-trained

embeddings for the supertag tokens. Training for 10 epochs with lr of 1e-5.

Figure 4.3 provides the validation loss curves and EM accuracy curves for the three

models. Despite the improved performance of codeT5-NL-only, the provision of CCG

supertags still clearly outperforms all other conditions.

Model Accuracy (EM)

Total FPGR MPGR DEEP VASA VCLASS

codeT5-NL-only 0.579 0.892 0.0 0.002 0.228 0.918

codeT5-padded 0.534 0.871 0.0 >0.001 0.220 0.681

codeT5-CCG-pretrained 0.609 0.896 0.0 0.007 0.306 0.954

Table 4.1: Comparison of EM accuracy between the 3 models on gen set of COGS,

presented as total (unweighted) accuracy and by CG category.

Table 4.1 presents the gen set results for all four models trained, reported in total

and for each of the five generalisation categories. VASA and VCLASS categories see

the greatest improvement, which we discuss in more detail in Section 4.4, along with a

theory for why codeT5-NL-only sees an improvement of performance.

4.4 Error analysis

We provide examples of frequent errors the models make. We look at two cases : (1)

where codeT5-ccg-pretrained is the only model producing a correct parse (except
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naive supertags, which we do not consider here) and (2) where all other conditions pro-

duce a correct parse except codeT5-ccg-pretrained. The error analysis is performed

on errors made by models train as described in Section 4.3.

We provide examples of errors from each of our categories except MPGR and DEEP.

We do not provide any examples from the class DEEP as they are lengthy and would not

provide new error kinds, as the errors happening within the DEEP subcategory are also

occurring in other classes. For MPGR there is nothing to report at all, as all models fail to

produce a correct parse.

4.4.1 Case 1

Original utterance: The student thought that a cockroach planned to sketch .

Supertagged utterance: The ccg_NP/N student ccg_N thought

ccg_(S[dcl]\NP)/S[em] that ccg_S[em]/S[dcl]

a ccg_NP/N cockroach ccg_N planned

ccg_(S[dcl]\NP)/(S[to]\NP) to

ccg_(S[to]\NP)/(S[b]\NP) sketch ccg_S[b]\NP

. ccg_.

CG class FPGR

CCG-assisted output * student ( x _ 1 ) ; think . agent ( x _ 2 , x _ 1 ) AND think .

ccomp ( x _ 2 , x _ 6 ) AND cockroach ( x _ 5 ) AND plan

. agent ( x _ 6 , x _ 5 ) AND plan . xcomp ( x _ 6 , x _ 8 )

AND sketch . agent ( x _ 8 , x _ 5 )

Baseline output * student ( x _ 1 ) ; think . agent ( x _ 2 , x _ 1 ) AND think .

ccomp ( x _ 2 , x _ 6 ) AND cockroach ( x _ 5 ) AND plan

. agent ( x _ 6 , x _ 5 ) AND plan . xcomp ( x _ 6 , x _ 8 )

AND sketch . agent ( x _ 8 , x _ 10 )

Table 4.2: Error example 1. Non-CCG models frequently make variable alignment

errors, in other words the ”mix up” indices. CCG-assisted model correctly identifies the

cockroach as the entity potentially about to sketch, whereas non-CCG models fail to do

so.

Most frequent error the models that do not employ CCG tags make is variable alignment

errors, i.e. mixing up indices. We provide a full example in Table 4.2 (note in this
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subsection, ”CCG-assisted output” always exactly matches the gold standard parse);

it occurs in about 33% of cases where codeT5-ccg-pretrained is the only model

making a correct prediction. Estimating the exact rate at which it causes the error is

difficult as it often co-occurs with other types, but it is a frequent error non-CCG models

make.

A more interesting error is theme/agent error non-CCG models make, illustrated

in Table 4.3. Here we see that the CCG supertags aid the model in distinguishing

between semantic roles - whether the verb refers to its subject as an agent or not. In 4.5

illustrates this - the verb ”examined” here is intransitive, rather than passive (meaning

the shark did the examining instead of being a patient), which the supertagger correctly

picks up. This allows our model to assign the shark the role of an agent, whereas the

non-CCG models fail to correctly deduce whether the verb is employed passively or as

an intransitive.

Original utterance: A shark examined .

Supertagged utterance: A ccg_NP/N shark ccg_N examined ccg_S[dcl]\NP

. ccg_.

CG class FPGR

CCG-assisted output shark ( x _ 1 ) AND examine . agent ( x _ 2 , x _ 1 )

Baseline output shark ( x _ 1 ) AND examine . theme ( x _ 2 , x _ 1 )

Table 4.3: Error example 2. The model utilising CCG tags exhibits an ability to distinguish

between ”examined” as an intransitive verb or a passive verb. ”examined” here is

intransitive, and the parser correctly identifies the shark as the agent. CCG-assisted

output exactly matches gold standard.

Similarly, the presence of CCG supertags allows the model to infer relations with

higher granularity, as seen in Table 4.4. We observe that codeT5-ccg-pretrained

was able to explicitly highlight Olivia as a recipient of the action ”ship” and the box

(i.e. the thing being shipped) as the theme, whereas non-CCG models consider Olivia a

theme of the action and do make the box explicitly related to the act of shipping. This is

because the word ”ship” is supertagged as ditransitive, meaning it expects one subject

and two objects, one of which the model can infer as the recipient.

An interesting and unexpected error non-CCG models make is spelling and tense

errors, e.g. using baked . agent instead of the correct bake . agent , or

cob ( x _ 1 ) instead of cobra ( x _ 1 ) . We suspect both codeT5-NL-only
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and codeT5-padded are able to learn to do this correctly eventually and produce correct

parses, but it is of interest that providing CCG supertags aids faster learning in this

seemingly unrelated way. These errors likely account of the narrowing of the gap

between codeT5-ccg-pretrained and other models with higher learning rate and

longer training.

Original utterance: The boy respected that Samuel shipped Olivia the box in the

room .

Supertagged utterance: The ccg_NP/N boy ccg_N respected

ccg_(S[dcl]\NP)/S[em] that ccg_S[em]/S[dcl]

Samuel ccg_N shipped ccg_((S[dcl]\NP)/NP)/NP

Olivia ccg_N the ccg_NP/N box ccg_N in

ccg_((S\NP)\(S\NP))/NP the ccg_NP/N room

ccg_N . ccg_.

CG class VASA

CCG-assisted output boy ( x _ 1 ) ; * box ( x _ 8 ) ; * room ( x _ 11 ) ; respect .

agent ( x _ 2 , x _ 1 ) AND respect . ccomp ( x _ 2 , x _ 5 )

AND ship . agent ( x _ 5 , Samuel ) AND ship . recipient ( x

_ 5 , Olivia ) AND ship . theme ( x _ 5 , x _ 8 ) AND box .

nmod . in ( x _ 8 , x _ 11 )

Baseline output * boy ( x _ 1 ) ; * box ( x _ 8 ) ; * room ( x _ 11 ) ; respect .

agent ( x _ 2 , x _ 1 ) AND respect . ccomp ( x _ 2 , x _ 5 )

AND ship . agent ( x _ 5 , Samuel ) AND ship . theme ( x _

5 , Olivia ) AND box . nmod . in ( x _ 5 , x _ 8 )

Table 4.4: Error example 3. Non-CCG models are unable to process the details of a

relation to the same granularity as the model employing CCG supertags. The verb ”ship”

is supertagged as ditransitive, allowing the model to infer that it expects two objects, one

of which (Olivia) is the recepient. CCG-assisted output exactly matches gold standard.

4.4.2 Case 2

On the flip side, there are errors that only codeT5-ccg-pretrained makes, and these

are of three types. The first type, again, is variable alignment errors (same type as

example in Table 4.2). These are, however, much rarer in this case, making only 11.5%

of total errors. The other two types are presented below. In this section, the NL only
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parses serve a role of the gold standard.

In cases of error of the supertagger, the error propagates to our model as well.

Example in Table 4.5 shows a sentence where two distinct individuals (Ava and Paula)

are interpreted by the supertagger to be one entity (in the same sense as in phrase ”dog

bone”), and the verb ”sent” is supertagged as transitive (where it should be ditransitive).

Original utterance: Sophia sent Ava Paula .

Supertagged utterance: Sophia ccg_N sent ccg_(S[dcl]\NP)/NP Ava ccg_N/N

Paula ccg_N . ccg_.

CG class FPGR

CCG-assisted output send . agent ( x _ 1 , Sophia ) AND send . theme ( x _1 ,

Ava ) AND send . recipient ( x _ 1 , Paula )

Baseline output send . agent ( x _ 1 , Sophia ) AND send . recipient ( x _ 1 ,

Ava ) AND send . theme ( x _ 1 , Paula )

Table 4.5: Error example 3. Errors in the supertagger output propagate to the semantic

parser output. Here two distinct entities were supertagged to be one (”Ava Paula” being

one entity in the same way a ”dog bone” is one entity), leading to an incorrect output.

Original utterance: The professor confessed that a hippo ate .

Supertagged utterance: The ccg_NP/N professor ccg_N confessed

ccg_(S[dcl]\NP)/S[em] that ccg_S[em]/S[dcl]

a ccg_NP/N hippo ccg_N ate ccg_S[dcl]\NP . ccg_.

CG class VCLASS

CCG-assisted output * professor ( x _ 1 ) ; confessor ( x _ 2 ) ; confessor . agent (

x _ 2 , x _ 1 ) AND confessor . ccomp ( x _ 2 , x _ 6 ) AND

hippo ( x _ 5 ) AND eat . agent ( x _ 6 , x _ 5 )

Baseline output * professor ( x _ 1 ) ; confess . agent ( x _ 2 , x _ 1 ) AND

confess . ccomp ( x _ 2 , x _ 6 ) AND hippo ( x _ 5 ) AND

eat . agent ( x _ 6 , x _ 5 )

Table 4.6: Error example 4. Semantic parser employing CCG supertags in rare cases

may hallucinate new entities, which we think is a sequence-to-sequence noise artifact

appearing due to the task of processing a supertagged sequence being more complex.

The second type of error (which is not very frequent but interesting) is ”hallucination”
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of new entities by the LLM learner, as displayed in Table 4.6. codeT5-ccg-pretrained

introduces a new entity, ”the confessor”, which does the actions that the professor is

supposed to do. The parsing of a supertagged sentence is inherently a harder problem

(due, at least, to increased length), thus the LLM learner sometimes might get confused.



Chapter 5

Discussion

5.1 Limitations

The most prominent limitation of this work is that, due to time and computational

constraints, we did not set out to measure our effect on any SOTA-level models. We

did not perform a comprehensive parameter search to achieve best possible accuracy

for any of the conditions, and we did not run any experiments on large models (e.g.

codeT5-large). This also prevents us from comparing our results with published work

on COGS (e.g. Lindemann et al., 2023), as published works use at least base size

models.

COGS is also artificially constructed, meaning it does not contain some phenomena

observed in natural language. In fact, Supertagged COGS only contains 27 unique CCG

supertags, implying a low variety in syntactic structures. Compositional generalisation

performance may be drastically different on a dataset of organic utterances, although

a dataset that is both organic and allows for CG testing (to our knowledge) does not

yet exist. Organically gathered sentences could also give an unfair advantage to LLMs

as those sentences may have been obvserved during pre-training, which is part of the

reason for making COGS artificially constructed (Kim and Linzen, 2020).

An extension of COGS, SLOG (Li et al., 2023) adds 17 new types of structural

generalisation, where a model has to process unfamiliar syntactic structures (e.g. deeper

recursion). We were not able to conduct any tests on SLOG as the available CCG parsers

struggle to parse some of the sentences in SLOG, running out of memory. More efficient

parsers running on beam search instead of A* do exist (e.g. Stanojević and Steedman,

2019) but are older and currently unmaintained, thus are hard to get operational due to

out-of-date and unavailable software dependencies.

20
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5.2 Further work

Most urgent work to carry out is test the effect of CCG supertags on bigger models with

optimal hyperparameters. LLMs have exhibited acquiring new abilities with scale (Wei

et al., 2022) so the impact of providing CCG supertags is not wholly predictable.

SLOG is also a promising direction, as we suspect CCG supertags will be even more

helpful for models in a task which emphasises structural generalisation more, however

producing CCG supertags for SLOG is non-trivial and might require augmenting the

codebase for existent parsers and/or reducing the scope of the search and settling for a

lower-quality parse.



Chapter 6

Conclusions

We set out to test the hypothesis that providing a neural semantic parser with CCG

supertags would benefit the performance, in particular in cases where compositional

generalisation is required for a successful parse.

We trained 3 models by fine-tuning codeT5-small on 3 datasets, COGS (Kim

and Linzen, 2020) and two datasets derived from it - Supertagged COGS, which

interleaved words with their supertags, and Padded COGS, which interleaved words

with meaningless tags (”DU/D”).

Our results show a significant improvement of the model utilising the supertags over

the baseline model (and the model trained on padded utterances), most explicitly on

utterances in VASA and VCLASS subcategories. These require the model to interpret a

verb in a previously unseen way, e.g. as a passive verb where it was previously only

seen as active, or in a new semantic role (e.g. intransitive vs passive). Strong effect

shown on this subset of the problem is consistent with the hypothesis, and the effect

way in which supertags improve the parses can be seen in our error analysis.

While supertagging is not flawless, we demonstrate that it improves the model

performance overall, meaning the rare instances of a flawed supertag influencing the

parse negatively is a good trade-off for reducing the occurrence of compositional

generalisation related errors.

22
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