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Abstract

Quantum Transfer Learning, a variation of transfer learning in which a variational

quantum circuit is used to to process the output of a pretained classical model, has

received significant interest in recent years. To achieve QTL, Mari et al. 2020 proposed

the Dressed Quantum Circuit architecture, including classical layers learning input and

output strategies, to allow for simple connection between large classical circuits and

small quantum circuits. Dressed Circuits have been demonstrated to allow quantum

machine learning on a variety of problems, but most authors have made use of the same

architecture proposed by Mari. The present paper investigates alternative implementa-

tions of the Dressed Quantum circuit, including alternate ansatz and embeddings. The

circuits assessed include the previously known DQC, a circuit with the addition of RZ

gates, variants making use of amplitude encoding and a variant with only encoding

and measurement and no quantum gates. It concludes that the classical layers currently

dominant performance of the Dressed Circuits, and suggests the use of encoding only

circuits as benchmark.
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Chapter 1

Introduction

Quantum Machine Learning is an area of great interest in recent years, offering both

theoretical speedups over classical machine [1] and greater expressive power than com-

parable classical networks [2]. Of particular interest, Variational Quantum Algorithms

(VQA), in which the quantum circuits are controlled by trainable classical parameters,

may be practically implemented on current Noisy Intermediate Scale Quantum systems

(NISQ). Though lacking theoretical proofs of supremacy, VQAs have already been

shown to allow for effective quantum processing [3]. However, current quantum cir-

cuits are strictly limited in size, due to noise and limited coherence times, and so are

impractical for processing large data.

Quantum Transfer Learning (QTL), proposed by Mari et al. [4, 5], aims to resolve

this issue by adapting the technique of transfer learning; a classical technique allowing

efficient fine-tuning of large pretrained networks for narrow tasks. Conventionally, most

layers of a model are frozen, with only a small number of output layers being trained

for a particular task. QTL utilises the frozen classical network to extract a small set of

features from large input data to produce, before processing using a VQA.

To this end, [5] suggests a Dressed Quantum Circuit, in which the quantum circuit

is trained at the same time as small classical networks for encoding to, and reading

from, the quantum circuit. This allows for small smaller quantum networks to be easily

connected to large classical networks, with the input network acting to reduce the

number of input features while also learning an optimal encoding strategy.

QTL has proved popular, being applied to task ranging from medical diagnosis [6,

7, 8, 9, 10], Wi-Fi sensing [11] and optical character recognition [12]. The majority of

the preceding work has applied QTL for a variation of image classification, as was the

original work by Mari et. [5]. Less work has been conducted on applying QTL to the

1



Chapter 1. Introduction 2

the field of Natural Language Processing [13, 14].

While several papers have reported successful applications of QTL, there has been

no investigation of how performance varies according to quantum circuit design; such

as the impact of circuit width or qubit number, alternative ansatz or encoding. Addi-

tionally, there is little consideration of ascribing credit; determining whether training

performance is due to the dressing layers or quantum circuit itself. While the originators

of the Dressed Quantum Circuit claimed the quantum circuit carries out the essential

processing, the impact of the classical layers has not previously assessed.

The following project first adapts the Dressed Quantum Circuit of Mari 2020 to

fine tune a variant of BERT for equivalence recognition using the Microsoft Research

Paraphrase Corpus (MRPC). We evaluate the training performance dependant on quan-

tum circuit width, and aim to extrapolate performance to currently impractical, large

circuits. We further evaluate performance of the circuit with alternative ansatz and

methods of encoding. Finally, we propose a novel method of benchmarking quantum

transfer learning by applying a quantum circuit with no active gates to ascertain the

impact of classical layers alone. We re-evaluate the classifier of Mari 2020 accordingly.

Overall, we aim to determine if quantum transfer learning has viable applications in the

near term on requires significant development to have utility.

The present project aims to investigate the impact of quantum circuit design on the

performance of QTL, and does not aim to produce an improved classifier. Similarly,

no new quantum circuit designs or methods of encoding are suggested. The novel

contribution of this project lies in evaluation of quantum transfer learning for numerous

circuit architectures, and the provision of methods of benchmarking future projects.

In the following chapters: chapter 2 sets out background information; chapter 3 sets

out the details of the hybrid classical to quantum classifier and training process; chapter

4 contains and discusses results from the training process; and chapter 5 provides

interpretation and broader discussion of results. Finally, chapter 6 summarises results,

considers the limitations of the present process and suggests future work.



Chapter 2

Background

2.1 Transfer Learning

Transfer Learning, TL, is a technique allowing for efficient reuse of pretrained networks

for specific tasks. Cutting edge networks are often trained for general performance

on large datasets, requiring long and expensive training to be applied to a new task.

Alternatively, training a network from scratch on a narrow task is often impractical due

to the limited amount of relevant data. TL aims to resolve both issues by fine-tuning

only portion of a model on a specific task. As summarised by [5]:

1. Start with network A trained on dataset DA for task TA

2. Remove at least one layer of A to give reduced network A’.

3. Replace the removed layers with a new network B

4. While keeping weights in A’ frozen, train B on a new dataset DB for new task TB

The truncated network A’ acts may be viewed as a feature extractor, converting inputs

into relevant features but not yet processing them. TL allows for high performance on

specific tasks with low training times with lower computational demands.

2.2 Classical to Quantum Transfer Learning

The present paper is an investigation of techniques first introduced in Mari et al. ”Trans-

fer learning in hybrid classical-quantum neural networks” (2020) [5]. The paper

considers several versions of quantum transfer learning (QTL), of which Classical to

Quantum (C2Q) TL shows the most promise in the near term. C2Q-TL allows the use of

3



Chapter 2. Background 4

Figure 2.1: Operation of the hybrid classical to quantum circuit of Mari 2020. High

resolution images are processed by ResNet18, giving 512 features. A linear layer

reduces the features to four, which are processed on a VQC to give a binary prediction.

Taken from Figure 4 of Mari 2020 [5]

successful classical models to produce a small number of information rich features for

processing in small quantum circuits, potentially benefiting from the greater expressive

power of quantum circuits [2]. For image process this can reduce the scale of the inputs

from thousands or millions of bytes to hundreds.

Mari provided a hybrid classifier for binary image classification (ants/bees, dogs/cats,

planes/cars). Images were processed by pretrained model ResNet18 to give a 512 feature

”embedding” which were then input into a Dressed Quantum Circuit. The DQC reduced

512 input features to four, executed a four qubit quantum circuit and further reduced the

four outputs to two class scores for a final prediction. Mari found a maximum accuracy

of 96.7% using a simulated quantum circuit, with 95%

80% on the ibmqx4

Aspen-4-4Q-A quantum processors respectively.

2.2.1 Dressed Quantum Circuits

Introduced to allow for simple connection of quantum circuits with classical networks

of arbitrary size, a Dressed Quantum Circuit surrounds a Variational Quantum Circuit

(VQC) with two classical layers: an input layer for reducing the scale of inputs; and an

output layer for converting measurements to a final output.

QD = LNin→Nq ◦Q◦LNq→2 (2.1)

where Q is a VQC, Nin is number of input features, Nq is the number of qubits.

The authors of [5] propose that during training the VQC learns to conduct the

relevant processing while the classical layers learn optimal embeddings and readouts. It

is a primary objective of the the present paper to investigate these claims.
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2.3 Technical Background

Here we briefly establish the technical background of our methodology. As the tech-

niques discussed are well known in the art, we will be not explain each in detail.

2.3.1 Variational Quantum Circuits

Variational Quantum Circuits (VQC) consist of a series of parameterised quantum

operations (”gates”) for applying a learned unitary operation. VQC are initialised with a

chosen basic structure, referred to as an ”ansatz” (by analogy to trial solutions). Control

parameters are then trained using conventional optimisation [15].

At present, many VQA are constructed using ”hardware-efficient ansatz”, designed

for practical implementation on real quantum hardware. Efficient ansatz are repeated

layers of single qubit rotation gates followed by two qubit entangling operations [16].

The entangling operation is commonly a set of Controlled X gates, either applied

between every pair of qubits (each-to-each) or between neighbouring pairs only (nearest

neighbours)1 [3]. The specific choice of circuit structure has significant impact on the

performance of the variational circuit. More complex ansatz, such as multiple rotations

per layer or longer range entanglement, allow for greater expressive power, but also

increase noise and runtime of the circuit.[17, 18].

Classical information is embedded, or encoded, into VQC in a number of ways, dis-

cussed in section 3.3. Results are extracted from a quantum circuit through measurement

of an observable, most often the expectation value of a Pauli operator.

”Quantum Neural Networks”, deep variational circuits, have been applied to simple

classification tasks, achieving worse performance than a comparable classical circuits

but suggesting the possibility of future improvements [19]. Abbas 2021 argues that

QNN have theoretical benefits over classical networks, due to less flat loss landscapes

(shown by less concentrated Fischer Information Spectra) [2].

2.4 BERT

BERT (Bidirectional Encoder Representations from Transformers) is currently a one

of the dominant models in Natural Language Processing. BERT is a high performing

architecture based on deep pre-training of transformers, in which tokens are interpreted

1While each-to-each provides the maximum entanglement, nearest neighbour is often more practical
on current hardware.
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with both left and right contexts. Pre-training is carried out using a Masked Language

Model (MLM), the network is trained to reconstruct sentences with words randomly

removed/masked; and Next Sentence Prediction (NSP). Models are trained on large

unsupervised datasets, followed by task specific supervised fine-tuning. BERT was

initially trained using the Google bookcorpus and Wikipedia.

BERT was designed to allow for classification using a single output layer, with

no need for complicated task specific architecture. Additionally, bidirectional self-

attention allows for multiple inputs to be encoded into a single set of tokens, simplifying

fine tuning on comparison tasks. When first published, BERT showed record beating

performance on all GLUE tasks (discussed below).

The base BERT model comprises 12 hidden layers of 768 nodes and 12 attention

heads, for a total of 110 Million parameters. Conventionally, all layers of the network

are fine tuned for a particular task.

The transformer architecture is based on self-attention, a weighting for each token

in the sentence. Inputs are first tokenized into numerical strings. Transformers are able

to use multiple attention heads in parallel, allowing for parallelisation of the models

and significant speed-ups, particularly when used with GPUs. For details see [20].

2.4.1 TinyBERT

A reduced size version of BERT-base generated using a Knowledge Distillation KD

method to reduce the number of layers and parameters. KD perform distillation during

both pretraining and fine tuning to maintain generalist performance. TinyBERT consists

of two layers, each of 128 nodes with two attention heads, giving 4.4 million parameters

compared to BERT-base with 110.1 million. For certain tasks, TinyBERT can run 65

times faster while retaining 91% of the performance of BERT-base [21].

2.4.2 Optimisers

As VQC are controlled by classical parameters, and as the unitary operations they

implement are differentiable, they may be trained using classical gradient descent.

2.4.2.0.1 Adam A currently ubiquitous optimiser, Adam is a variation of stochastic

gradient descent (SGD) that performs learning rate adaptation for each parameter using

from estimates of the first and second moments of the gradient [22]. Adam shows good

performance with high dimensional data, or features with sparse gradients. Additionally,
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Adam is simple to implement and memory efficient, scaling linearly with the number

of parameters (rather than quadratically as is generally required to implement Natural

Gradient Descent). The currently most common version of Adam includes includes

weight decay, a widely used version of regularization, which has been shown to improve

generalisation [23].

Adam is effective for both for classical and quantum training and is provided in

both PyTorch or Pennylane.

Hwang 2024 [24] has recently considered the connection between Adam and Natural

Gradient Descent (NGD), which adjusts learning rates based on the curvature of the

loss landscape calculated using the Fischer Information Matrix. Hwang sets out that

Adam is an approximation of NGD, and proposes several improvements accordingly 2.

2.4.2.0.2 Rotosolve We briefly note that there exist specialised optimisers for quan-

tum circuits. Rotosolve operates by individually changing the angle, and optionally

basis, for each gate.

While this shows good performance for small networks, Adam shows better per-

formance for larger number of parameters and is able to train classical and quantum

networks equivalently 3.

2.4.3 GLUE

General Language Understanding Evaluation (GLUE) consists of a series of nine bench-

mark tests provided for a complete evaluation of natural language models, associated

datasets for each, and a public leaderboard of performance. For full evaluation, a model

is finetuned for each GLUE task, evaluated on the test set and the individual results

combined to give an overall score [25]. 4

The present paper only trains for MRPC, with CoLA and SST2 used for early

investigations.

2.4.3.0.1 MRPC The Microsoft Research Paraphrase Corpus, MRPC, contains 5801

sentences pairs extracted from online news, manually labelled with whether or not they

have equivalent semantic meanings. The dataset is split into 4076 training pairs (further

divided into 3668 training pairs and 408 validation pairs), and 1725 testing pairs. [27]
2Available from https://github.com/lessw2020/FAdam PyTorch/tree/main
3https://pennylane.ai/blog/2022/06/how-to-choose-your-optimizer/
4Due to the recent rapid development of Natural Language Processing, a new set of more difficult

baselines have been proposed under the name of SuperGLUE [26]
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2.4.3.0.2 CoLA A set of 10657 sentences drawn from linguistics publications, la-

belled for grammatical acceptability (whether the sentence is grammatically correct) by

expert authors. [28]

2.4.3.0.3 SST-2 A set of 11855 sentences extracted from film reviews, annotated

with sentiment by human judges. SST-2 (SST binary) is annotated as positive or

negative[29].

2.4.4 Related Literature

QTL has been applied to tasks ranging from medical diagnosis [6, 7, 8, 9, 10], Wi-Fi

sensing [11], optical character recognition [12], and identifying recyclables [30]. The

majority of the preceding work adapted QTL for a version of image classification,

continuing the original work by Mari et al [5].

Recently several authors have applied QTL with Natural Language Processing. Most

relevant for the present work are Buonaiuto et al. 2024, [13] who investigated quantum

transfer learning to determine if inputs are viable Italian. They found the quantum

transfer learning paradigm to be competitive with classical training methods, and

qualitatively argued that the quantum methods could classify more complex sentences.

The paper considered dressed quantum circuits used applied as the classification head

of BERT and ELECTRA, both current high performing transformer networks. Unlike

Mari, Buonaituo encoded input features into the quantum variational circuit using

amplitude encoding. Implementations using BERT and ELECTRA were found to

have performance competitive with classical models, with BERT-Quantum performing

slightly worse than BERT-Classical and ELECTRA-Quantum performing worse on

some metrics and better on another.

Also relevant is Ardeshir-Larijani & Fatmehsari 2024, [14] in which the authors ap-

ply quantum transfer learning for Natural Language Processing for spam identification,

which made use of BERT-Large, and a five qubits VQC. The network was trained on a

dataset of text messages labelled as spam or not spam, finding comparable performance

to classical classifiers.

Note that while previous papers have focused on the performance of the classifiers

resulting from the transfer learning process, the present paper aims to investigate the

impact of variants of the quantum circuit itself.



Chapter 3

Methodology

Here we describe the relevant training problem, the classifiers to be assessed, and other

aspects of experimental design.

3.1 MRPC

To allow for simple evaluation and comparison, this project is trained on an NLP

industry standard benchmark. As the present project aims to investigate a number of

circuits with differing qubits numbers, the dataset and problem were selected to allow

for practically short training times. Of particular importance was the size of the training

set, as large quantum circuits require significant running times for each datapoint.

To this end, the classifier was trained on the Microsoft Research Paraphase Corpus

(MRPC), provided as part of GLUE (For details, see 2.4.3.0.1). MRPC comprises 5801

sentences pairs, labeled as ”equivalent” or ”not equivalent”. When used as part of GLUE

the dataset is divided into 3668 training pairs, 408 validation pairs and 1725 testing

pairs. Results on MRPC are reported as Loss, Accuracy and F1, the harmonic mean of

precision and recall. When training a bidirectional model such as BERT, both sentences

are tokenised into a single input containing a special ”separator” token, allowing for

use of a conventional classifier architecture.

MRPC was chosen due to the small training set and the ability to use smaller

versions of BERT show reasonable performance on the task. TinyBERT1 [21] allows

up to Accuracy 71.1% F1 81.1% on MRPC, in comparison to BERT-base which allows

for 85.1%/89.3%.
1https://huggingface.co/google/bertuncasedL −2H −128A −2

9
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TinyBERT L128→Nq

Variational

Quantum Circuit

|ψ1⟩=U(θ)|ψ0⟩
LNq→2

MRPC
sentence(1);

sentence(2)

”Equivalent”

”Not Equiv.”

Figure 3.1: Operation of the hybrid classical to quantum classifier. MRPC sentence

pairs are tokenized, processed by TinyBert to produce a 128 feature embedding, down-

projected to reduce from 128 qubits to the number of qubits (Nq). The reduced features

are embedded in a VQC which applies a learned unitary operation. Outputs are down-

projected to give an output prediction. During training, all parameters in the TinyBERT

network are frozen.

3.1.1 Balancing Dataset

The MRPC dataset is unbalanced, with 68% positive labels. During initial testing,

it was observed that all training runs resulted in similar performance, with accuracy

converging to near to the positive label percentage. To clearly accentuate differences in

training performance, we created a balanced version of MRPC. The balanced training

set contains 2392 sentence pairs with equal proportion positive and negative. Balanced

versions of the validation set and test set were also constructed.

While this allows for clearer assessment of training performance, it prevents com-

parison to state of the art models or the GLUE leaderboard.

3.1.2 Other datasets considered

Early investigations were conducted on the CoLA dataset. However, due to the difficulty

of the problem training could not be accomplished using smaller versions of BERT. In

additional, the large size of the training set made gathering significant volumes of data

impractical.

Further testing considered SST2. While it allows for a smaller classical model, the

large training set resulted in long training for high qubit circuits.

3.2 Classifier Structure and Operation

Here we describe the complete classical to quantum transfer learning pipeline.
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3.2.1 Classical Processing

3.2.1.1 Data Pre-processing

The MRPC dataset is loaded and normalised. For each datapoint, sentences are concate-

nated and tokenised into a vector of integers.

3.2.1.2 Classical Model: TinyBERT

As this project is concerned with the performance of the final classifier head, most

training will use the smallest model practical for the task. For comparison, small batches

of training are carried out using a larger model.

Datapoints are processed by a pretrained TinyBERT model (see section 2.4.1, which

outputs an embedding, x, comprising 128 real numbers. During training, the weights of

the BERT network are not updated.

3.2.2 Dressed Quantum Network

Embeddings are input into a Dressed Quantum Circuit, consisting of a classical input

layer, a variational quantum circuit and a classical output layer.

3.2.2.1 Input Layer

The input layer is a classical linear layer which acts to reduce the dimensionality of

the input to one appropriate for encoding into the VQC. The output is passed into a

hyperbolic tangent activation to ensure valuables are angles in the range [−π

2 ,
π

2 ]:

L128→N f : x → y =
π

2
tanh(Wix+bi) (3.1)

where Wi is a matrix of edge weights, bi is a vector of biases and N f is the number of

features accepted by the following circuit.

During training, the input layer learns both the optimal encoding both for dimen-

sionality reduction and embedding into the quantum circuit. The input layer is included

in all embodiments save for 3.4.3.2.

3.2.2.2 Embedding

The reduced size output are then be used to generate a valid quantum state:

E : y → |ψy⟩ (3.2)
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Multiple methods of encoding are used in the art, of which this paper considers two:

Angle encoding and Amplitude Encoding. For full discussion see section 3.3.

Angle encoding embeds each feature as the angle of a single qubit Pauli rotation

gate, requiring a qubit for each input feature: Nq = N f , where Nq is qubit number.

Amplitude encoding embeds features as the amplitudes of multi-qubit states. As the

number of multi-qubit states scales exponentially with the number of qubits, amplitude

encoding requires Nq = log2(N f ).

3.2.2.3 Variational Quantum Circuit

The VQC applies six layers of operations, each layer consisting of parameterised, single

qubit Pauli rotation gates and an entanglement operation consisting of nearest neighbour

controlled X gates. Nearest neighbour entanglement was chosen for simplicity of

implementation on actual hardware.

In this paper we consider three ansatz: RY & Controlled X gates only; RY, RZ &

Controlled X gates; and encoding only (encoding immediately followed by measure-

ment), discussed below. Training updates the relevant angle parameters, but does not

otherwise change the ansatz.

Data is extracted from the quantum circuit by measuring the expectation of the Pauli

Z operator for each qubit:

zi = ⟨ψ|Zi|ψ⟩ (3.3)

where z is a vector of real numbers in the range [-1,1], and Zi is Pauli Z acting on qubit

i. The number of output features is equal to the number of qubits, regardless of the

encoding or ansatz.

3.2.2.4 Output Layer

The output layer is a classical linear reduction to two classes:

LNq→2 : z → s = Wox+bo (3.4)

where s is a two feature vector containing a score for each class, Wo & bo are output

weights and biases. Finally, the output layer is used to generate a prediction by selecting

the class with the highest score: pred = argmaxi(si)
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3.2.3 Model Training and Evaluation

The hybrid classifier is trained using the labelled MRPC dataset, classifying datapoints

according to whether the two sentences are equivalent. The model is trained to minimise

Cross Entropy Loss between the output scores and data labels, updating the parameters

of the DQC while keeping parameters of BERT frozen. Each epoch the model is

also evaluated on a validation set. When training is completed, the model with best

performance on the validation set is selected and evaluated on a held out training set,

computing Loss, Accuracy and F1 scores.

3.3 Quantum Encoding

There are multiple methods of encoding classical data into a quantum circuit. In

current NISQ devices encoding methods need to compromise between representing

data accurately and reducing the number of gates and qubits needed to encode the data.

Two methods will be assessed in the present work.

3.3.1 Angle Encoding

Angle encoding represents each feature as the rotation of a separate qubit about the

Bloch Sphere. Input data is normalised to a valid angle, and applied as such by a Pauli

rotation gate. For example, when encoding using rotations about the Pauli Y axis, qubits

are initialised as |0⟩, converted to |+⟩ by a first layer of Hadamard gates, after which

each qubit is rotated by a single qubit Ry gate according to an input feature:

E (x) =
Nq⊗

k=1

(
Ry

(
xk

π

2

)
H |0⟩

)
The resulting state is not entangled; as such angle encoding is also known as product

encoding [31]. Additional entangling operations are required following embedding to

enable general quantum states. Angle encoding is commonly used due to the high speed

and efficiency, requiring only two gates for each input feature. For full encoding one

qubit is needed per input feature (Nq = N f ). Pennylane provides an embedding function

for each Pauli axis.

This method is used by Mari 2020 and the majority of later work on quantum

transfer learning. On current systems the number of qubits is much smaller than the

output of even small networks, and so input features must be down-projected prior
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to encoding. It was this requirement that motivated the development of the Dressed

Quantum Circuit introduced by Mari [5].

3.3.2 Amplitude Encoding

Amplitude encoding makes use of quantum superposition to allow for an exponentially

large amounts of data to be input into a circuit. Input features are encoded as amplitudes

of multi-qubit quantum states in a superposition of states: [31]

E(x) = |ψx⟩=
N

∑
i=1

xi|i⟩,

As the number of possible states scales exponentially with the number of qubits, Amp.

Enc. requires Nq = log2(N f ) for an accurate encoding. This provides the benefit of

exponential storage of the input features, allowing for processing of large classical

feature-sets in practical scale quantum devices. For example, the output of BERTbase

can be encoded into 10 qubits, while TinyBert can be encoded into 7. This also results

in exponentially reduced training times for the same number of features. Notably for

our purposes, ammplitude encoding allows for the removal of the down-projection layer

of the DQC, discussed below.

However, amplitude encoding is implementationally and computationally complex,

in general requiring 2N f rotation and CNOT gates to accomplish. [32, 33] In current

noisy quantum circuits, this is likely to remove any advantage the method may have

provided. Amplitude encoding also requires normalisation of the input feature vector.

Preliminary testing was conducted using amplitude embedding, finding extremely

long runtimes for moderate qubit numbers. In addition, the method showed extreme

numerical unstability for high qubit number, requiring small batch size and low learning

rates to avoid diverging gradients in the classical layers of the dressed circuit.

3.3.2.1 Pennylane Simulated Amplitude Encoding

The Pennylane simulator provides for simulated amplitude encoding, by directly ini-

tialising the simulator in the required state2,3. This allows for testing of the impact of

amp. encoding with vastly reduced runtimes. The simulated amp. encoding was used to

investigate additional implementations of DQC. 4

2see documentation https://github.com/PennyLaneAI/pennylane/
blob/master/pennylane/templates/embeddings/amplitude.py

3When running on hardware, the method instead implements Möttönen state preparation.[32]
4Note that while provided by Pennylane, this method is non-differentiable, see

https://docs.pennylane.ai/en/stable/code/api/pennylane.AmplitudeEmbedding.html.
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Name Type Gates Encoding Input Layer Parameters

Classical Classical - - Yes 130Nq

RY Only Quantum RY + CNOT Angle (RY) Yes 136Nq

RY+RZ Quantum RY + RZ + CNOT Angle (RY+RZ) Yes 270Nq

Amp.Enc (Dressed) Quantum RY + CNOT Amplitude Yes 128(2Nq)+8Nq

Amp.Enc (Undressed) Quantum RY + CNOT Amplitude No 8Nq

Encoding only Quantum - Angle (RY) Yes 130Nq

Table 3.1: Summary of assessed circuits, showing combinations of types, gates used,

encoding and presence of down-projection input layers. Name is how the circuit will be

referenced in the following sections

Amplitude encoding has previously been used with QTL by Buonaiuto (2024) [13]

3.4 Circuit Variants

We now establish the variant circuits to be assessed:

3.4.1 RY only

The most simple circuit considered here; features {xi} are entered into the circuit via

angle embedding (see 3.3). Processing is performed by 6 layers of parameterized RY,

with entangling via nearest neighbour CNOT.

|ψl⟩=U(w)|ψl−1⟩ = K

( Nq⊗
k=1

RY (wk)

)
|ψl−1⟩ (3.5)

where ψl is the state after layer l, RY (θ) is a rotation about the Pauli Y axis by θ radians,

K is a nearest neighbour entangling operation, and w is a vector of classical parameters.

Classical data is extracted by measuring Pauli Z for each qubit. Only w is updated

during training.

This circuit was previously utilised by Mari 2020 [5] and much of the work devel-

oping on such [8, 9, 11], While known to be functional, the simple nature of the gates

results in comparatively low hypothesis space explored by the circuit, making it likely

to lack the benefits potentially offered by quantum machine learning [15].
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Figure 3.2: Schematic of a six layer, four qubit circuit using only RY and CNOT gates.

Initial layer of RY gates is used for angle embedding. Later layer angles are trained

variational parameters. Outputs are Pauli Z measurements.

3.4.2 RY + RZ

The second circuit is a variant of the circuit above with increased complexity, replacing

all RY gates with RY followed by RZ, a rotation around the Pauli Z axis. Features are

embedded using modified angle encoding, making use of both RY and RZ. Note that

RX gates are not used as they commute with the entangling operation. Again, data is

extracted by measuring Z for each qubit.

The use of two different rotation bases significantly increases the expressiveness of

the variational circuit [18], potentially allowing for greater training performance over

the RY only circuit above.

3.4.3 Amplitude Encoding

A variant of the above RY circuit; features are input via amplitude embedding and

processed by six layers of single qubit RY and two qubit CNOT. While the processing

layers of the variational circuit are equivalent to circuit 3.4.1, amplitude embedding

allows for exponentially more data to be input. With 128 input features, seven qubits

allows for embedding of all features into the circuit, only requiring normalisation.
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Figure 3.3: Schematic of a six layer, four qubit circuit using RY, RZ and CNOT gates.

Initial layer of RY and RZ gates are used for angle embedding. Later layer angles

are trained variational parameters. RX gates are not used due to commuting with the

entangling operations (CX). Outputs are Pauli Z measurements.

Regardless of encoding, each qubit only results in a single output feature, and so the

circuit necessarily acts to reduce the dimensionality of data.

Two versions of the amplitude encoding circuit are provided:

3.4.3.1 Amplitude encoding with input layer (Dressed)

The first implementation maintains all features of the Dressed Quantum Circuit previ-

ously described, comprising an input layer that projects from 128 features to 2Nq . This

allows for the simple use of the quantum circuit with any number of qubits. For fewer

than seven qubits, the classical circuits acts to down-project the inputs, while for more

than seven the input circuit is over-parameterised.

3.4.3.2 Amplitude encoding without input layer (Undressed)

As amplitude encoding allows for full encoding of information with a practically

small number of qubits, the DQC can be implemented without using a classical down-

projection layer. Output embeddings from BERT are normalised and encoded directly

into the quantum circuit. This method requires at least log2(N f ). Of particular impor-

tance, this circuit allows investigation of the expressive power of the input layer.
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3.4.4 Encoding Only / ”No Gates”

In previous analyses of Dressed Quantum Circuits, the input and output classical layers

have been treated as efficient means for connecting a quantum circuit to classical

inputs and outputs; assuming the input layer learns an optimal embedding, the quantum

circuit performing the relevant processing and the output layer learns post-processing

[5]. However, it can be observed that the input and output layers alone provide for a

viable classification head, the training of which may be providing the dominant effect.

Notably, for a 128 feature input, the input layer will contain 128Nq parameters, while

the quantum circuit itself will be controlled by 6Nq.

To investigate this possibility, we will be assessing a quantum circuit with no active

quantum layers. All RY gates are set to zero (or ”frozen”) and no entangling layer was

applied. Features were encoded into the quantum network using RY angle encoding,

then immediately measured with no processing. The only training is performed on the

input and output classical layers.

Figure 3.4: Schematic of a four qubit circuit

with angle encoding only. Input features are

embedded as angles of RY gates. Outputs

are Pauli Z measurements.

This circuit is mathematically equiva-

lent to applying z =−sin
((

π

2

)
tanh(x)

)5.

However, it is unlikely to be computation-

ally equivalent, and so experiments will

implement the encoding only circuit as a

quantum node.

3.4.5 Classical

Evaluated to provide a point of compar-

ison, the classical network connects the

input and output layers of the dressed cir-

cuit directly, resulting in a two layer neu-

ral network with Nq hidden nodes. The

network applies a ReLU(x) = max(x,0)

activation. Note that for simplicity of re-

porting data, we will be referring to the

number of intermediate nodes as ”number

of qubits” Nq in future tables.

5See appendix D
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3.5 Qubit Numbers

The present paper intends to investigate how performance of QTL scales with changes

in qubit number. While early studies demonstrated the viability of small dressed circuits,

higher qubit numbers will both allow for more expressive circuits, for information to be

embedded with lesser reduction of dimensionality.

3.6 Training and Evaluation Details

The model was trained according to the process described in 3.2.3. Each model was

trained at least six times for 30 epochs for each qubit number in the range 1-16, with the

exception of circuit 3.4.3.2, which can only be trained for qubit numbers greater than

7. Additionally, RY only, Classical and Encoding only are evaluated for 17-18 qubits,

due to their simplicity allowing for practical training times. All training was carried out

using the Pennylane simulator6

3.7 Re-evaluation of Mari 2020

During the project, it became apparent there is limited, if any benefit, from applying a

Variational Quantum Circuit with BERT for training on MRPC. However, this opens

the question of whether QTL is of limited use for this specific architecture and problem,

or if the results can be generalised. To this end, we investigate the performance of the

our alternative circuits on the the image classification problem presented by Mari et

al [5]. The classifier of Mari was adapted to use the alternative Variational Circuits

introduced above. Of particular interest, the classification of ants bees was evaluated

using a quantum network with no processing gates.

This re-evaluation provides the benefits of investigating a problem that is known

to be solvable by a simple Dressed Quantum Circuit, allowing us to determine if QTL

performance is being limited by other factors.

All experiments were repeated once, using the default parameters set out by Mari

2020 [5] (learning rate 4e-4, batch size 4, 30 epochs).

6https://docs.pennylane.ai/en/stable/code/api/pennylane.device.html
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3.8 Finetuned BERTbase

To determined if the observed effects were a result of an inappropriately chosen base

network, small scale comparison experiments were performed using a fine tuned version

of BERT-base. While this does not explore the feasibility of transfer learning, it does

address concerns over the use of an inappropriately weak classical network.

3.9 Choice of Hyperparameters

Brief initial experiments were conducted to determine the highest performing hyperpa-

rameters. No formal hyperparameter search was conducted.

• Optimiser: Adam with Weight decay, with default parameters.

• Learning Rate: 0.001. Higher rates were consistently found to offer give lower

final loss.

• Scheduler: Learning rate reduced by factor of 0.1 every 10 epochs

• Batch size: 4

• Circuit Depth: 6 layers were chosen as a compromise between processing ability

and training times.

• Epochs: Early data was gathered for 20 training epochs, as training was observed

to plateu for longer training times. For full investigation, experiments were

repeated training for 30 epochs.

Training was conducted on two devices: the Eddie CPU cluster, running on the

Processor Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz, 16GB virtual memory7;

Laptop containing 12th Gen Intel(R) Core(TM) i7-1255U @ 3.2GHz, 64GB RAM.

3.10 Program Details

The transfer learning system was programmed in Python, adapted from the iPython

notebook and tutorial provided by the authors of Mari 2020 [5, 4] 8. The core training

loop was left unchanged, as were the RY only DQC and quantum circuit functions.

7GPU clustering was not used to high levels of congestion on GPU nodes
8accessible from https://github.com/XanaduAI/quantum-transfer-learning
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Alternative variants of the DQC were newly implemented for this paper. GLUE dataset

loading and tokenization adapted from Notebook provided by github user ”sikfeng” 9

3.10.1 Relevant Packages

3.10.1.0.1 PyTorch Package providing neural network functionality with autodif-

ferentiation. PyTorch maintains a record of the relevant gradient associated with each

function during calculation, allowing easy backpropagation. For the present paper,

pytorch provided the core neural network and training functionality.

3.10.1.0.2 HuggingFaces Huggingfaces packages provide for download, use and

evaluation of transformer based models and benchmark datasets. The Huggingfaces

website provides a repository for pretrained models, including commonly used models

such as BERT.

3.10.1.0.3 Pennylane Pennylane10 provides differentiable quantum programming

and simulation, allowing integration of quantum circuits into general machine learning

pipelines such as PyTorch[34].

9https://github.com/sikfeng/quantum-transfer-learning-with-bert/blob/main/
Quantum Transfer Learning with BERT.ipynb

10a product of Xanadu. NB: Mari 2020 [5] was conducted by researchers at Xanadu
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Results

4.1 Training & Validation Performance

Training and validation performance for each circuit type is presented in figure 4.1,

which aggregates results over all different qubit numbers. An equivalent set of graphs

for accuracy is presented in 4.3.

We note first that the sharp drop in validation loss after 10 epochs is a consequence

of the scheduler reducing the learning rate1. Other than the drop due to rate adaption,

training and validation curves are closely aligned, suggesting the hybrid classifier is

able to generalise to unknown data.

Undressed Amplitude Encoding circuit shows significant the worst performance,

converging to a higher loss and lower accuracy for both training and validation. Un-

dressed Amp. plateus at a minimum training loss of 0.652 and validation loss of 0.657.

In general terms this behaviour is expected; the classifier of Undressed Amp. has fewer

processing layers and far fewer trainable parameters than all other circuits.

All DQC show improved training performance to the purely classical model. While

the classical model plateaus at 0.642 training loss, quantum models train to below

0.64. RY only and Encoding only reach 0.639, while RY+RZ and Dressed Amplitude

encoding reaching 0.637 and 0.635 respectively. The improved training loss is not

matched with reduced validation loss however, with all models stabilising at validation

loss of 0.643.

It was expected that quantum circuits would allow for lower training loss, as the

quantum circuit extends the expressive ability of the network. However, it is notable

1NB: using a lower learning rate by default does not result lower validation error from the start of
training; the drop is a result of the reduction of rates, not of low rates

22
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the circuit with no active rotation gates shows lower training loss, suggesting at least

some of the improved performance is due to the normalisation and use of tanh rather

than ReLU. I note BERT incorporates a tahn activation for the output layer2. The lower

training loss for RZ+RY and Dressed Amp. may be due to greater power of the the

quantum circuits, or due to the use of larger classical input layers.

Addressing training accuracy briefly, the quantum circuits show improved gener-

alisation, having no gap between training and validation accuracy. This behavior is

also shown by the inactive quantum circuit, but is not shown by the undressed quantum

circuit. This suggests the behaviour is a consequence of a classical network learning to

encode into a quantum circuit, rather than quantum processing itself.

Figure 4.3 considers training behaviour for circuits with differing numbers of qubits.

As expected, wider circuits show lower loss after training. However, as this effect is also

observed on purely classical circuits, it is unlikley to be an effect of greater quantum

circuit expressivity.

4.2 Test Set Performance

We now consider the performance of the trained hybrid quantum classifier on the MRPC

test set. A summary of test performance for each circuit is provided in tables 4.1 and

4.2. For conciseness, data is only provided for even qubit numbers; full results are

provided in appendix B.

Considering first table 4.1 which compares the performance of circuits making

use of angle encoding, we first note there are no consistent or significant differences

between performance for the different ansatz. Additionally, to three significant figures

there is no observable trend in loss with increase in qubit number. Loss remains within

the range 0.655 ± 0.002 for every combination of circuit variant and qubit number,

with differences in loss between circuits lying within the standard error in the mean.

Accuracy and F1 vary more significantly but again show no consistent upward trend.

Notably, quantum circuits show slightly improved test accuracy compared to the purely

classical classifier.

Table 4.2 compares the performance of a circuit making use of Angle Encoding and

RY gates, with a circuit making use of Amplitude Encoding and RY gates, dressed with a

classical input layer or undressed. Again, no clear continuous trend of improvement with

qubit number is observed. The dressed amplitude encoding circuit shows comparable

2https://docs.allennlp.org/v2.10.1/api/modules/seq2vecencoders/bertpooler/
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Figure 4.1: Figures showing mean training and validation loss for each circuit type, with

results aggregated across all qubit numbers. Amp. (Dressed) comprises a classical input

layer to map input features for amplitude encoding, while Amp. (Undressed) performs

amplitude encoding directly.
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Figure 4.2: Figures showing mean training and validation accuracy for each circuit type,

with results aggregated across all qubit numbers.
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Type Qubits Loss Accuracy (%) F1 Time (m)

Classical 2 0.657 ± 0.002 0.618 ± 0.002 0.687 ± 0.001 1.7

No Gates 2 0.655 ± 0.001 0.617 ± 0.002 0.683 ± 0.002 5

RY 2 0.655 ± 0.001 0.619 ± 0.002 0.688 ± 0.001 10

RY + RZ 2 0.656 ± 0.003 0.617 ± 0.003 0.683 ± 0.003 14

Classical 4 0.654 ± 0.001 0.618 ± 0.002 0.686 ± 0.001 1.6

No Gates 4 0.656 ± 0.001 0.62 ± 0.001 0.683 ± 0.002 5.5

RY 4 0.654 ± 0.0 0.621 ± 0.001 0.683 ± 0.001 15.8

RY + RZ 4 0.656 ± 0.001 0.619 ± 0.003 0.68 ± 0.003 23.4

Classical 6 0.656 ± 0.001 0.619 ± 0.001 0.685 ± 0.001 1.7

No Gates 6 0.654 ± 0.001 0.62 ± 0.001 0.684 ± 0.002 9.1

RY 6 0.654 ± 0.001 0.622 ± 0.001 0.682 ± 0.002 28.7

RY + RZ 6 0.657 ± 0.002 0.619 ± 0.003 0.674 ± 0.004 49.7

Classical 8 0.655 ± 0.001 0.617 ± 0.001 0.685 ± 0.001 1.6

No Gates 8 0.654 ± 0.001 0.622 ± 0.001 0.684 ± 0.001 11.9

RY 8 0.655 ± 0.001 0.62 ± 0.002 0.683 ± 0.002 43.4

RY + RZ 8 0.653 ± 0.001 0.618 ± 0.003 0.68 ± 0.001 71.9

Classical 10 0.655 ± 0.001 0.617 ± 0.002 0.683 ± 0.001 1.6

No Gates 10 0.656 ± 0.001 0.619 ± 0.001 0.683 ± 0.002 16.1

RY 10 0.654 ± 0.001 0.624 ± 0.002 0.682 ± 0.002 58.6

RY + RZ 10 0.654 ± 0.001 0.622 ± 0.003 0.684 ± 0.002 119.6

Classical 12 0.655 ± 0.001 0.619 ± 0.002 0.685 ± 0.001 1.6

No Gates 12 0.655 ± 0.001 0.622 ± 0.001 0.684 ± 0.001 17.7

RY 12 0.656 ± 0.001 0.618 ± 0.002 0.678 ± 0.001 80.9

RY + RZ 12 0.654 ± 0.001 0.621 ± 0.002 0.674 ± 0.001 163.6

Classical 14 0.655 ± 0.001 0.617 ± 0.001 0.685 ± 0.001 1.6

No Gates 14 0.654 ± 0.001 0.618 ± 0.002 0.681 ± 0.002 25.9

RY 14 0.655 ± 0.001 0.619 ± 0.003 0.68 ± 0.002 118

RY + RZ 14 0.654 ± 0.001 0.62 ± 0.002 0.684 ± 0.002 179.9

Classical 16 0.655 ± 0.001 0.618 ± 0.002 0.683 ± 0.001 1.6

No Gates 16 0.654 ± 0.0 0.62 ± 0.002 0.682 ± 0.003 49.4

RY 16 0.654 ± 0.001 0.624 ± 0.001 0.681 ± 0.002 291.1

RY + RZ 16 0.656 ± 0.001 0.62 ± 0.003 0.679 ± 0.002 352.8

Classical 18 0.654 ± 0.001 0.618 ± 0.001 0.682 ± 0.001 1.8

No Gates 18 0.655 ± 0.001 0.617 ± 0.002 0.683 ± 0.003 112.8

RY 18 0.655 ± 0.0 0.621 ± 0.002 0.68 ± 0.005 1122.9

Table 4.1: Table of test loss, accuracy, F1 and training times for classical, encoding only,

RY only and RY+RZ circuits. Reported with standard error.
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Type Qubits Loss Accuracy (%) f1

Amp Enc. (Dressed) 2 0.655 ± 0.001 0.623 ± 0.002 0.682 ± 0.002

RY 2 0.655 ± 0.001 0.619 ± 0.002 0.688 ± 0.001

Amp Enc. (Dressed) 4 0.654 ± 0.0 0.619 ± 0.002 0.68 ± 0.001

RY 4 0.654 ± 0.0 0.621 ± 0.001 0.683 ± 0.001

Amp Enc. (Dressed) 6 0.653 ± 0.0 0.624 ± 0.002 0.683 ± 0.001

RY 6 0.654 ± 0.001 0.622 ± 0.001 0.682 ± 0.002

Amp Enc. (Dressed) 8 0.653 ± 0.001 0.62 ± 0.002 0.682 ± 0.002

Amp Enc. (Undressed) 8 0.663 ± 0.002 0.596 ± 0.003 0.677 ± 0.002

RY 8 0.655 ± 0.001 0.62 ± 0.002 0.683 ± 0.002

Amp Enc. (Dressed) 10 0.654 ± 0.0 0.62 ± 0.001 0.678 ± 0.003

Amp Enc. (Undressed) 10 0.662 ± 0.001 0.601 ± 0.004 0.681 ± 0.002

RY 10 0.654 ± 0.001 0.624 ± 0.002 0.682 ± 0.002

Amp Enc. (Dressed) 12 0.652 ± 0.001 0.626 ± 0.004 0.68 ± 0.002

Amp Enc. (Undressed) 12 0.663 ± 0.0 0.602 ± 0.002 0.678 ± 0.002

RY 12 0.656 ± 0.001 0.618 ± 0.002 0.678 ± 0.001

Amp Enc. (Dressed) 14 0.654 ± 0.001 0.621 ± 0.002 0.679 ± 0.002

Amp Enc. (Undressed) 14 0.668 ± 0.002 0.598 ± 0.003 0.685 ± 0.002

RY 14 0.655 ± 0.001 0.619 ± 0.003 0.68 ± 0.002

Amp Enc. (Dressed) 16 0.653 ± 0.001 0.622 ± 0.002 0.681 ± 0.0

Amp Enc. (Undressed) 16 0.664 ± 0.002 0.597 ± 0.004 0.679 ± 0.003

RY 16 0.654 ± 0.001 0.624 ± 0.001 0.681 ± 0.002

Table 4.2: Table showing example test performance for circuits using amplitude encoding,

with or without a classical input layer, compared to Angle Encoding with an input layer

(referred to as RY). Undressed encoding is only possible for ≥ 7 qubits
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Figure 4.3: Figures showing training performance.

Circuit Loss Accuracy (%) F1

RY 0.6547 ± 0.0006 0.6207 ± 0.0018 0.6819 ± 0.0020

RY+RZ 0.6550 ± 0.0011 0.6195 ± 0.0026 0.6798 ± 0.0022

No gates 0.6548 ± 0.0007 0.6195 ± 0.0015 0.6830 ± 0.0019

Amp. enc. (Dressed) 0.6536 ± 0.0005 0.6218 ± 0.0021 0.6806 ± 0.0017

Amp. enc. (Undressed) 0.6639 ± 0.0014 0.5988 ± 0.0031 0.6800 ± 0.0022

Classical 0.6550 ± 0.0009 0.6180 ± 0.0015 0.6843 ± 0.0011

Table 4.3: Loss, Accuracy and F1 for each circuit, aggregated across all circuit widths

performance to the dressed angle encoding circuit, showing equal or marginally lower

loss for every tabulated qubit number and comparable prediction accuracy 3. The

undressed amp. encoding circuit shows significantly worse performance, with higher

loss and lower accuracy for all qubit numbers.

Table 4.3 shows relevant metrics for each circuit when aggregating all runs, re-

gardless of qubit number. It can be seen that, again, metrics for all circuits other than

Undressed Amplitude Encoding are within standard error, and so are statistically indis-

tinguishable. Dressed Amplitude Encoding shows lower loss and higher accuracy than

other circuit designs, while Undressed Amplitude Encoding showing significantly worse

performance. It is noted that Classical shows the highest F1 despite lower accuracy than

all DQC, suggesting higher precision or recall.

3Training times are not reported, as amplitude encoding is accomplished using a simulator rather than
apply sequential gates.
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Figure 4.4: Graphs of Test Loss against Qubit number for Angle Encoding Circuits (RY

ansatz, RY+RZ ansatz, No gates ansatz) and classical for comparison. Each graph

displays a first order trendline. See appendix B.1 for full loss and accuracy graphs.

4.2.1 Loss & Accuracy trends

We now aim to determine how circuit performance scales with qubit number. Figure

4.4 shows test loss against qubit number for four circuits, with corresponding trendlines.

See appendix B.1 for full graphs for all circuit types. For each circuit trend equations

were determined by least squares fit for a first order polynomial.

We note first that the gradient for the RY circuit using angle encoding is positive,

suggesting test performance degrades with qubit number. However, we also note the

gradient is on the order of 10−7, well below uncertainty of the data. To first order, the

number of intermediate qubits are insignificant on the loss.

Other circuit architectures show more significant trends in loss with qubit number.

Purely classical circuits show a slow reduction of loss with intermediate node numbers,

possibly due to lower information loss during dimensionality reduction. Circuits making

use of RY and RZ gates show higher rates of reduction; extrapolating the trendlines
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Circuit Type Loss Trend Accuracy Trend

RY only 1.280e-07Nq+ 0.6546 2.552e-04Nq + 0.6177

RY + RZ -8.995e-05Nq+ 0.6556 9.976e-05Nq + 0.6190

No Gates -9.290e-05Nq+ 0.6558 -2.258e-05Nq + 0.6199

Classical -4.610e-05Nq+ 0.6553 1.911e-04Nq + 0.6198

Amp. (Dressed) -8.371e-05Nq+ 0.6546 -5.030e-04Nq + 0.6080

Amp. (Undressed) 2.707e-04Nq+ 0.6605 -1.631e-05Nq + 0.6178

Table 4.4: Extrapolated Loss and Accuracy trends for each circuit type.

predicts that RY+RZ circuits will outperform classical circuits for any width ≥ 6 qubits.

Dressed Amplitude Encoding is predicted to have the lowest loss for all qubit numbers.

However, it is noted that the quantum circuit with no quantum processing shows

the greatest rate of change with qubit number. With no obvious reason the ”no gates”

circuit should scale faster than classical or RY only, it appears likely that all trends are

dominated by noise.

Additionally, observing figure 4.4, one can see that the RY+RZ and Classical plots

include several datapoints with losses significantly above the trendline. The observed

downwards trend is likely caused by occasional training failures for low qubit numbers.

Considering instead trends in prediction accuracy; classical, RY and RY+RZ circuits

show increasing accuracy for wider circuits, while other circuits were determined to

show decreasing performance. Only RY was determined to scale faster than Classical.

If linear trends continue, RY only quantum circuits will outperform classical circuits

for greater than 33 qubit circuits.

4.3 Reassessment of Mari 2020

As set out in 3.7, the results set out above suggest there is limited, if any, benefit from

the use of QTL for MRPC. Of particular note, many features believed to result from the

use a quantum processor are replicated by a circuit with no active gates.

However, it is possible this limited performance is due to specifics of the present

problem, such as the limitations of tinyBERT or the difficulty of MRPC. To this end,

we briefly evaluate the identified circuits on the ant/bee classification of Mari [5]

Note that Mari does not provide a test set, instead reporting the best performance

on the validation set. As such, reported performance will likely be better than actual
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performance on unknown data. Additionally, as only small scale experiments are being

conducted, we cannot determine uncertainty in the results.

Type Loss Accuracy (%)

Classical 0.1822 0.9635

Embedding Only 0.1569 0.9822

Amp Emb. (Undressed) 0.6776 0.5552

RY only 0.1913 0.9757

RY+RY 0.1742 0.9795

Amp. Emb (Dressed) 0.2838 0.9841

Table 4.5: Performance for each type of circuit on

ants/bees classification using transfer learning with

ResNet18, when aggregated over all qubit numbers

When averaged over all tri-

aled circuit, we observe that,

again, the undressed circuit

shows significantly the worst

performance for both loss and

accuracy. Both angle encod-

ing circuits (RY or RY+RZ)

show marginally improved ac-

curacy over a classical output

layer. RY+RZ shows both im-

proved loss and accuracy. No-

tably, Dressed Amplitude Em-

bedding shows high loss but

also high accuracy, suggesting either low scores for accurate classes or occasional

confident wrong predictions.

However, the best performing option by loss, and second best for accuracy, is

Embedding Only, the circuit with no active quantum gates. This suggests that the

perceived benefits of the DQC are not due to processing carried out by the VQA.

We note finally that while operation with tinyBERT showed very small changes of

loss with qubit number, Mari shows more significant effects:

• RY only: Loss ≈−0.01022602Nq + 0.34484898

• RY + RZ: Loss ≈−0.00494201Nq +0.26479966

• Classical: Loss ≈−0.00465374Nq + 0.23161293

By which the RY only method will out perform a classical circuit for any circuit wider

than 18 qubits, while RY+RZ requires 110.

4.4 Reassessment with Finetuned BERTbase

The above data suggests minimal functional differences between quantum transfer

learning and training a classical classification head, regardless of circuit width. However,

it is possible the stagnant performance is due to a poor choice of classical model; the

Dressed Quantum circuits may be limited by the low quality outputs of tinyBERT.
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Type Loss Accuracy (%) f1

Amp Enc. (Dressed) 0.548853 0.790247 0.808576

Amp Enc. (Undressed) 0.655343 0.771114 0.783729

Classical 0.691958 0.782032 0.806784

Encoding Only 0.587022 0.786950 0.809294

RY 0.602461 0.789411 0.808872

RY + RZ 0.578994 0.787253 0.808259

Table 4.7: Summary of performance of Quantum Transfer Learning on MRPC, with the

classical input network being BERTbase finetuned on MRPC.

Type Qubits Loss Acc

Amp Enc. (Dressed) 4 0.3895 0.9505

Classical 4 0.1999 0.9584

RY 4 0.3183 0.9307

RY + RZ 4 0.2579 0.9464

Amp Enc. (Dressed) 8 0.3244 0.9732

Classical 8 0.2010 0.9534

RY 8 0.2696 0.9383

RY + RZ 8 0.2171 0.9542

Amp Enc. (Dressed) 12 0.2691 0.9693

Amp Enc. (Undressed) 12 0.6816 0.5348

Classical 12 0.1583 0.9689

RY 12 0.2386 0.9367

RY + RZ 12 0.1988 0.9556

Amp Enc. (Dressed) 16 0.4360 0.9602

Amp Enc. (Undressed) 16 0.6908 0.5000

Classical 16 0.1599 0.9686

RY 16 0.1826 0.9543

RY + RZ 16 0.1922 0.9529

Table 4.6: Performance on ants/bees

classification using transfer learning with

ResNet18, by qubit numbers and circuit

To determine if this is the case, previous

experiments were rerun, with BERTbase

(12 layers of 756 nodes, with 12 attention

heads) finetuned on MRPC 4, trained for

15 epochs rather than 30. For conciseness,

relevant data is included in the appendix,

and briefly summarised in table 4.6.

Notably, Dressed Amplitude encoding,

No Gates and RY+RZ show the lowest

loss and highest accuracy. It should be

noted that dressed amplitude encoding and

RY+RZ also contain large input classical

circuits, but the performance of No Gates

is more notable. We also note, Undressed

Amplitude encoding shows lower loss than

Classical, but also lower accuracy. The

high loss but high accuracy of classical

may be due to occasional highly confidently

wrong predictions. The performance of

79% accuracy, 81% F1 is worse than the models reported performance (86/90 acc./F1),

which is to be expected when using a smaller normalised set of MRPC data.

4provided by https://huggingface.co/Intel/bert-base-uncased-mrpc
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Discussion

In the preceding section we have demonstrated the utility of Quantum Transfer Learning

with a reduced size model of BERT, finding performance comparable with simple

classical models. We have implemented novel variations of Dressed Quantum Circuits,

including different ansatz and embeddings (see 4.3). In particular, we have aimed to

determine the impact of the classical dressing layers.

Firstly, we observed that all variations of the Dressed Quantum Circuit (DQC)

showed similar test performance after training on MRPC. All minor variations fell

within the standard error of the results. In addition, we aimed to determine the impact

of changes to circuit width (qubit number) to ascertain if quantum advantage is readily

realisable or requires significant improvement in the scale of quantum devices. Unfortu-

nately, for the classical network and problem chosen, loss and accuracy gradients were

found to be small or positive (implying worsening performance with quantum size),

dominated by the randomness of the training process.

Stronger effects were observed during the training process. Dressed circuits showed

faster training than comparable classical networks. In particular, two circuits showed

notably low training loss: an ansatz combining Pauli Y and Pauli Z rotations with angle

embedding; and a ansatz making use of only Pauli Y rotations but utilising amplitude

embedding to encode far more features. These two circuits showed consistent, if minor,

improvements over classical models and previously used RY only DQC. We do note

however that these two circuits made use of the largest classical input layers, and so

performance may not be due to quantum expressive power.

However, many of the seemingly advantageous features of QTL over classical

output circuit, such as the slight reduction in training loss and slight increase in training

accuracy are replicated by quantum circuits with no active rotation gates, as described in

33
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3.4.4. These circuits, referred to herein as ”No Gates” or ”Encoding Only” are variants

of DQC that make use of angle encoding to embed input features then immediately

measure the outputs. The performance of these circuits is comparable to other assessed

ansatz, despite the quantum circuit only acting as an unconventional activation function

for a classical network.

Moreover, we have investigated the performance of undressed Variational Quantum

Circuits (VQC), making use of amplitude encoding to avoid the need for an input

classical layer. Said circuits show consistently low performance, during both training

and testing. While amp. encoding allow for exponentially more features to be encoded

into the circuit, this encoding is not trained for a specific purpose. Classical encoders,

in contrast, are able to reduce dimensionality while also performing useful processing.

The high performance of a DQC without a quantum core and the low performance

of a quantum circuit without dressing, taken together, strongly suggest that the classical

layers of the DQC are not acting as means to connect to a powerful VQC. Instead, the

classical layers are performing the relevant processing themselves, with the quantum

circuit applying an activation that is convenient for classification. Notably, the circuit

applies a hyperbolic tangent function, which is commonly used in classifiers due to

centering inputs and providing for positive or negative values, unlike ReLU.

To explore the possibility that the problem chosen was simply inappropriate for

QTL, we have applied the same techniques to re-evaluate the classifiers of Mari 2020.

We observed lower loss and higher accuracy for classification using ResNet18, but

equivalent results in terms of which circuits gave the best accuracy and loss.

While we have not observed a clear quantum advantage arising from QTL, or

determined a circuit width likely to show such), the method of DQC allows for simple

connection of arbitrary quantum circuit to arbitrary classical inputs. The techniques here

can be readily applied to deep quantum networks with alternative ansatz or methods of

encoding.

5.1 Limitations and Future Work

There remains open the possibility that none of the circuits considered allow for mean-

ingful quantum computation. It must be noted that the preceding experiments did not

consider the effect of changing quantum circuit depth, using a circuit of six layers for all

experiments. This depth was selected to allow easy comparison to previous work in the

field (see [5, 13] for example), and to avoid multiplying the number of experiments that
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needed to be undertaken. However, it is likely that the benefits of variational quantum

circuits emerge from deep layered circuits [2, 19].

Additionally, while some hyperparameters (learning rate, batch size, epochs) were

chosen to give the best training performance on classical and quantum using y gates,

no additional tuning. This could be conducted in the future. In particular, the quantum

circuits were initialised with small Gaussian values ( 0.01), which likely results in the

initial quantum circuit having very weak effects; the trace distance between RY (0.01)

and the identity is 0.005. As such it is possible the quantum network initialises in

portion of loss space in which the quantum weights have low contribution and the

classical weights large contributions, and subsequently learns to keep quantum weights

low. Briefly, the quantum parameters of a random sample of trained models were

viewed, finding post training angles remaining on the order of 0.01 or less. Using a

large initial spread of quantum values may allow for better investigation of the impact

of the quantum circuit.

5.2 Encoding Only Circuit Benchmark

Finally, we propose the use of an encoding only Dressed Quantum Circuit as a bench-

mark for future work in quantum transfer learning. As noted above, despite lacking the

active elements of a VQA, it shows similar performance. Use as a benchmark removes

the impact of, for example, different normalisations. As the frozen quantum circuit can

be represented as as simple equation (see D for details), future work could investigate

replacing the frozen quantum circuit with a modified activation function.

5.2.1 Relevant Literature

Re-evaluating the most immediately relevant work, Buonaiuto et al. 2024, [13] have

previously considered both amplitude encoding and quantum transfer learning with

BERT, training for Italian CoLA. They observed comparable performance to purely

classical output layers. This is a notable contradiction to the present work, which found

significantly worse performance with the undressed amplitude circuits. Buonaito uses

six layers of conventional single rotation + CNOT ansatz. It is possible Buonaito deter-

mined functioning hyperparmeters allowing for functional training, that the technique

makes use of an unstated input layer, or that the problem is better suited to the technique.

Buonaito performs a qualitative analysis of the performance of their hybrid quantum
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classical classifier, noting that the encoding provides benefits for problems requiring

longer more structured inputs but worse performance for short and simple inputs,

which they ascribe to the nature of amplitude encoding; while it allows for exponential

encoding, it also requires an exponential number of queries to extract said information

[35]. They argue this reduces the importance of each individual token but allows for

investigation of structure. We note that MRPC, relating to paraphrase identification,

contains mostly short inputs and relies on the meaning of individual words.
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Conclusion

In the preceding section we have demonstrated the utility of Quantum Transfer Learning

with a reduced size model of BERT, finding performance comparable with simple

classical models. We have implemented novel variations of Dressed Quantum Circuits,

including different ansatz and embeddings. When evaluated on MRPC all variations and

qubit numbers showed indistinguishable performance, suggesting that, for the selected

problem at least, the quantum processing has minimal effect.

Quantum circuits were observed to provide minor training improvements over purely

classical outputs, with better training loss for more complex ansatz and larger qubit

number. However, this performance did not generalise to validation or test sets. The

more complex ansatz considered, making use of two rotations about different axes

rather than one, showed marginally reduced minimum training loss but no improvement

on the test set. We also note that the more complex ansatz included larger classical

input layers, and so it is difficult to ascribe credit for the performance.

It is possible these limited effects are due to the nature of the BERT classifier,

intended for all processing to be performed in the deep network, with the output

intended to be processed by a single classical output layer. It is also possible the

problem selected was too simple to benefit from the expressively of quantum circuits.

Furthermore, it is possible the initialisation is not efficient for the chosen structure.

To investigate these effects we reassessed the work of Mari 2020 [5], which origi-

nally motivated the use of Dressed Quantum Circuits, similarly finding no performance

improvement with use of quantum networks. For the reassessment of Mari, how-

ever, there was a clearly observable trend in improvement with larger qubit numbers,

suggesting future large circuits may provide a benefit.

Notably, we observed that several ”benefits of quantum circuits” are realised even

37
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with no active quantum gates. This suggests the Dressed Quantum Circuit is not acting

a quantum processor, but as a small classical network. We suggest said Encoding Only

Circuits can be used as a benchmark for future work in the field.

Similarly, we made use of amplitude encoding to remove one of the classical layers,

observing significantly reduced performance. This, combined with the performance of

the circuits with no active gates again hints that the much of the processing power of a

DQC originates from the classical input and output layers.

Finally, we repeat that we have not provided an improved classifier, not have we

sought to. Experimentation has aimed only to investigate potential improvements and

benchmarking methods for the quantum components of Quantum Transfer Learning.

Overall, we have not been able to observe quantum supremacy or a likely path using

Quantum Transfer Learning. However, dressed quantum circuits did prove to be flexible

and simple means for connecting classical and quantum systems. The present work has

relied on the ability to flexibly change quantum circuits without adapting the classical

or vice versa.

6.0.1 Future Work

We recommend that future work investigate deeper quantum circuits. The shallow

circuits in use presently do not appear to offer significant quantum advantages when

used with quantum transfer learning. We also suggest that future work investigates hy-

perparameter tuning for quantum circuit parameters, in particular considering methods

of initialisation.

As well as deeper circuits, future work could aim to quantise the entire pipeline, or

refine the network specifically for quantum outputs. For example [36] proposes a fully

quantum transformer architecture. [37] develops on previous discussions, proposing

novel methods of deep training BERT models to be more appropriate for use with

a quantum classifier head, such as requiring normalisation at all hidden layers, and

adjusting next sentence prediction to replicate variational measurement. The authors

observed overall performance comparable to classical BERT, with significant throughput

increase for quantum models.
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Figure A.1: Figures showing training performance for each circuit for selected qubit

numbers



Appendix B

Full Test Data

The below table includes data for each circuit evaluated on the test set for each qubit

number. Classical zero qubits indicates no intermediate layer.

Type Qubits Loss Accuracy (%) f1 Time (m)

Classical 0 0.655 ± 0.001 0.619 ± 0.001 0.682 ± 0.002 2.1

Amp Enc. (Dressed) 1 0.656 ± 0.001 0.614 ± 0.003 0.681 ± 0.002 6.9

Classical 1 0.656 ± 0.001 0.616 ± 0.002 0.682 ± 0.002 1.6

No Gates 1 0.657 ± 0.001 0.619 ± 0.001 0.68 ± 0.003 3.6

RY 1 0.655 ± 0.001 0.618 ± 0.001 0.685 ± 0.002 6.5

RY + RZ 1 0.657 ± 0.002 0.616 ± 0.002 0.68 ± 0.008 8.1

Amp Enc. (Dressed) 2 0.655 ± 0.001 0.623 ± 0.002 0.682 ± 0.002 15.3

Classical 2 0.657 ± 0.002 0.618 ± 0.002 0.687 ± 0.001 1.7

No Gates 2 0.655 ± 0.001 0.617 ± 0.002 0.683 ± 0.002 5

RY 2 0.655 ± 0.001 0.619 ± 0.002 0.688 ± 0.001 10

RY + RZ 2 0.656 ± 0.003 0.617 ± 0.003 0.683 ± 0.003 14

Amp Enc. (Dressed) 3 0.655 ± 0.001 0.622 ± 0.001 0.684 ± 0.003 16.4

Classical 3 0.655 ± 0.001 0.616 ± 0.002 0.684 ± 0.001 1.6

No Gates 3 0.656 ± 0.001 0.616 ± 0.003 0.685 ± 0.001 6.1

RY 3 0.654 ± 0.001 0.617 ± 0.001 0.683 ± 0.002 12.7

RY + RZ 3 0.654 ± 0.001 0.623 ± 0.003 0.685 ± 0.001 22.8

Amp Enc. (Dressed) 4 0.654 ± 0.0 0.619 ± 0.002 0.68 ± 0.001 17.4

Classical 4 0.654 ± 0.001 0.618 ± 0.002 0.686 ± 0.001 1.6

No Gates 4 0.656 ± 0.001 0.62 ± 0.001 0.683 ± 0.002 5.5

RY 4 0.654 ± 0.0 0.621 ± 0.001 0.683 ± 0.001 15.8

RY + RZ 4 0.656 ± 0.001 0.619 ± 0.003 0.68 ± 0.003 23.4
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Amp Enc. (Dressed) 5 0.654 ± 0.001 0.62 ± 0.002 0.683 ± 0.001 22.6

Classical 5 0.654 ± 0.001 0.617 ± 0.001 0.684 ± 0.002 1.8

No Gates 5 0.654 ± 0.001 0.625 ± 0.001 0.685 ± 0.002 8.2

RY 5 0.656 ± 0.0 0.618 ± 0.003 0.687 ± 0.002 20.3

RY + RZ 5 0.654 ± 0.001 0.62 ± 0.003 0.679 ± 0.003 38.6

Amp Enc. (Dressed) 6 0.653 ± 0.0 0.624 ± 0.002 0.683 ± 0.001 28

Classical 6 0.656 ± 0.001 0.619 ± 0.001 0.685 ± 0.001 1.7

No Gates 6 0.654 ± 0.001 0.62 ± 0.001 0.684 ± 0.002 9.1

RY 6 0.654 ± 0.001 0.622 ± 0.001 0.682 ± 0.002 28.7

RY + RZ 6 0.657 ± 0.002 0.619 ± 0.003 0.674 ± 0.004 49.7

Amp Enc. (Dressed) 7 0.652 ± 0.001 0.626 ± 0.001 0.679 ± 0.001 33.5

Amp Enc. (Undressed) 7 0.662 ± 0.002 0.607 ± 0.002 0.683 ± 0.002 37.5

Classical 7 0.653 ± 0.001 0.621 ± 0.001 0.683 ± 0.001 1.6

No Gates 7 0.655 ± 0.001 0.621 ± 0.002 0.682 ± 0.001 9.8

RY 7 0.654 ± 0.001 0.62 ± 0.001 0.684 ± 0.001 36.7

RY + RZ 7 0.655 ± 0.001 0.622 ± 0.002 0.685 ± 0.003 69.8

Amp Enc. (Dressed) 8 0.653 ± 0.001 0.62 ± 0.002 0.682 ± 0.002 42

Amp Enc. (Undressed) 8 0.663 ± 0.002 0.596 ± 0.003 0.677 ± 0.002 56.5

Classical 8 0.655 ± 0.001 0.617 ± 0.001 0.685 ± 0.001 1.6

No Gates 8 0.654 ± 0.0 0.622 ± 0.001 0.684 ± 0.001 11.9

RY 8 0.655 ± 0.001 0.62 ± 0.002 0.683 ± 0.002 43.4

RY + RZ 8 0.653 ± 0.001 0.618 ± 0.003 0.68 ± 0.001 71.9

Amp Enc. (Dressed) 9 0.654 ± 0.001 0.623 ± 0.002 0.681 ± 0.001 48.7

Amp Enc. (Undressed) 9 0.663 ± 0.0 0.607 ± 0.002 0.683 ± 0.002 57.6

Classical 9 0.654 ± 0.001 0.619 ± 0.001 0.684 ± 0.002 1.8

No Gates 9 0.656 ± 0.001 0.62 ± 0.001 0.684 ± 0.002 13

RY 9 0.655 ± 0.001 0.618 ± 0.002 0.681 ± 0.001 43.5

RY + RZ 9 0.655 ± 0.001 0.619 ± 0.003 0.679 ± 0.001 100.4

Amp Enc. (Dressed) 10 0.654 ± 0.0 0.62 ± 0.001 0.678 ± 0.003 58.5

Amp Enc. (Undressed) 10 0.662 ± 0.001 0.601 ± 0.004 0.681 ± 0.002 74.7

Classical 10 0.655 ± 0.001 0.617 ± 0.002 0.683 ± 0.001 1.6

No Gates 10 0.656 ± 0.001 0.619 ± 0.001 0.683 ± 0.002 16.1

RY 10 0.654 ± 0.001 0.624 ± 0.002 0.682 ± 0.002 58.6

RY + RZ 10 0.654 ± 0.0 0.622 ± 0.003 0.684 ± 0.002 119.6

Amp Enc. (Dressed) 11 0.654 ± 0.001 0.62 ± 0.001 0.681 ± 0.001 71.9
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Amp Enc. (Undressed) 11 0.665 ± 0.001 0.604 ± 0.004 0.681 ± 0.004 100.5

Classical 11 0.656 ± 0.001 0.617 ± 0.002 0.682 ± 0.002 1.8

No Gates 11 0.656 ± 0.001 0.616 ± 0.002 0.677 ± 0.002 16.3

RY 11 0.655 ± 0.001 0.616 ± 0.003 0.68 ± 0.002 57.1

RY + RZ 11 0.654 ± 0.001 0.621 ± 0.003 0.678 ± 0.004 133.8

Amp Enc. (Dressed) 12 0.652 ± 0.001 0.626 ± 0.004 0.68 ± 0.002 85

Amp Enc. (Undressed) 12 0.663 ± 0.0 0.602 ± 0.002 0.678 ± 0.002 115.8

Classical 12 0.655 ± 0.001 0.619 ± 0.002 0.685 ± 0.001 1.6

No Gates 12 0.655 ± 0.001 0.622 ± 0.001 0.684 ± 0.001 17.7

RY 12 0.656 ± 0.001 0.618 ± 0.002 0.678 ± 0.001 80.9

RY + RZ 12 0.654 ± 0.001 0.621 ± 0.002 0.674 ± 0.001 163.6

Amp Enc. (Dressed) 13 0.653 ± 0.001 0.627 ± 0.001 0.684 ± 0.001 136.1

Amp Enc. (Undressed) 13 0.662 ± 0.001 0.607 ± 0.004 0.683 ± 0.002 123.1

Classical 13 0.655 ± 0.001 0.614 ± 0.001 0.682 ± 0.001 1.8

No Gates 13 0.654 ± 0.001 0.618 ± 0.002 0.681 ± 0.001 16.8

RY 13 0.654 ± 0.001 0.623 ± 0.002 0.682 ± 0.001 76.1

RY + RZ 13 0.654 ± 0.001 0.621 ± 0.002 0.677 ± 0.003 199.8

Amp Enc. (Dressed) 14 0.654 ± 0.001 0.621 ± 0.002 0.679 ± 0.002 156

Amp Enc. (Undressed) 14 0.668 ± 0.002 0.598 ± 0.003 0.685 ± 0.002 143.2

Classical 14 0.655 ± 0.001 0.617 ± 0.001 0.685 ± 0.001 1.6

No Gates 14 0.654 ± 0.001 0.618 ± 0.002 0.681 ± 0.002 25.9

RY 14 0.655 ± 0.001 0.619 ± 0.003 0.68 ± 0.002 118

RY + RZ 14 0.654 ± 0.001 0.62 ± 0.002 0.684 ± 0.002 179.9

Amp Enc. (Dressed) 15 0.655 ± 0.001 0.618 ± 0.002 0.678 ± 0.002 210.3

Amp Enc. (Undressed) 15 0.665 ± 0.002 0.603 ± 0.002 0.68 ± 0.001 204.9

Classical 15 0.654 ± 0.001 0.62 ± 0.002 0.682 ± 0.001 1.8

No Gates 15 0.654 ± 0.001 0.622 ± 0.001 0.683 ± 0.001 33.8

RY 15 0.654 ± 0.001 0.621 ± 0.004 0.682 ± 0.002 246.2

RY + RZ 15 0.654 ± 0.001 0.618 ± 0.002 0.679 ± 0.002 288.2

Amp Enc. (Dressed) 16 0.653 ± 0.001 0.622 ± 0.002 0.681 ± 0.0 330.6

Amp Enc. (Undressed) 16 0.664 ± 0.002 0.597 ± 0.004 0.679 ± 0.003 299.8

Classical 16 0.655 ± 0.001 0.618 ± 0.002 0.683 ± 0.001 1.6

No Gates 16 0.654 ± 0.0 0.62 ± 0.002 0.682 ± 0.003 49.4

RY 16 0.654 ± 0.001 0.624 ± 0.001 0.681 ± 0.002 291.1

RY + RZ 16 0.656 ± 0.001 0.62 ± 0.003 0.679 ± 0.002 352.8
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Classical 17 0.656 ± 0.001 0.616 ± 0.002 0.682 ± 0.001 1.9

No Gates 17 0.654 ± 0.0 0.618 ± 0.002 0.68 ± 0.002 63.5

RY 17 0.654 ± 0.001 0.625 ± 0.002 0.683 ± 0.001 597.7

Classical 18 0.654 ± 0.001 0.618 ± 0.001 0.682 ± 0.001 1.8

No Gates 18 0.655 ± 0.001 0.617 ± 0.002 0.683 ± 0.003 112.8

RY 18 0.655 ± 0.0 0.621 ± 0.002 0.68 ± 0.005 1122.9

B.1 Full Test Graphs
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Figure B.1: Test Loss plotted against Qubit Number for all considered circuit designs.

Each plot shows datapoints, means and trendline
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Figure B.2: Test Accuracy plotted against Qubit Number for all considered circuit designs.

Each plot shows datapoints, means and trendline



Appendix C

Finetuned BERTbase Performance

Here is included test data for performance of the various circuits when the classical cir-

cuit is a finetuned version of BERTbase, provided by Intel (https://huggingface.co/Intel/bert-base-uncased-mrpc)
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Type Qubits Loss Acc f1

1 Amp Enc. (Dressed) 1 0.5144 0.7924 0.8130

2 Classical 1 0.7534 0.7811 0.8070

3 No Gates 1 0.5401 0.7907 0.8112

4 RY 1 0.6115 0.7863 0.8104

5 RY + RZ 1 0.5526 0.7794 0.8048

6 Amp Enc. (Dressed) 2 0.4978 0.7924 0.8104

7 Classical 2 0.6779 0.7816 0.8073

8 No Gates 2 0.5149 0.7863 0.8101

9 RY 2 0.5947 0.7937 0.8096

10 RY + RZ 2 0.5456 0.7876 0.8108

11 Amp Enc. (Dressed) 3 0.5915 0.7941 0.8019

12 Classical 3 0.6735 0.7760 0.8039

13 No Gates 3 0.5271 0.7889 0.8099

14 RY 3 0.5143 0.7863 0.8092

15 RY + RZ 3 0.4983 0.7855 0.8095

16 Amp Enc. (Dressed) 4 0.4964 0.7846 0.8065

17 Classical 4 0.6401 0.7833 0.8078

18 No Gates 4 0.5341 0.7846 0.8080

19 RY 4 0.5963 0.7910 0.8098

20 RY + RZ 4 0.5088 0.7872 0.8100

21 Amp Enc. (Dressed) 5 0.5491 0.7924 0.8076

22 Classical 5 0.7063 0.7811 0.8073

23 No Gates 5 0.4997 0.7803 0.8061

24 RY 5 0.5301 0.7876 0.8090

25 RY + RZ 5 0.5222 0.7889 0.8099

26 Amp Enc. (Dressed) 6 0.5508 0.7855 0.8059

27 Classical 6 0.6907 0.7833 0.8058

28 No Gates 6 0.5504 0.7889 0.8120

29 RY 6 0.5807 0.7860 0.8075

30 RY + RZ 6 0.5431 0.7898 0.8066

31 Amp Enc. (Dressed) 7 0.5561 0.7872 0.8075

32 Classical 7 0.7286 0.7803 0.8072

33 No Gates 7 0.5802 0.7941 0.8131

34 RY 7 0.5729 0.7924 0.8107

35 RY + RZ 7 0.5864 0.7820 0.8076

36 Amp Enc. (Dressed) 8 0.4949 0.7941 0.8128

37 Classical 8 0.6753 0.7824 0.8046

38 No Gates 8 0.6227 0.7872 0.8098

39 RY 8 0.6028 0.7915 0.8111

40 RY + RZ 8 0.5449 0.7846 0.8086

41 Amp Enc. (Dressed) 9 0.6038 0.7958 0.8129

42 Classical 9 0.6674 0.7846 0.8068

43 No Gates 9 0.6393 0.7889 0.8102

44 RY 9 0.6139 0.7855 0.8047

45 RY + RZ 9 0.5552 0.7855 0.8092

46 Amp Enc. (Dressed) 10 0.5339 0.7915 0.8109

47 Amp Enc. (Undressed) 10 0.6790 0.7777 0.7759

48 Classical 10 0.6788 0.7861 0.8084

49 No Gates 10 0.5985 0.7855 0.8095

50 RY 10 0.5726 0.7843 0.8039

51 RY + RZ 10 0.6019 0.7881 0.8050

52 Amp Enc. (Dressed) 11 0.5621 0.7889 0.8078

53 Amp Enc. (Undressed) 11 0.6374 0.7517 0.7840

54 Classical 11 0.7062 0.7803 0.8069

55 No Gates 11 0.5425 0.7820 0.8073

56 RY 11 0.5916 0.7915 0.8100

57 RY + RZ 11 0.6430 0.7898 0.8063

58 Amp Enc. (Dressed) 12 0.5406 0.7924 0.8110

59 Amp Enc. (Undressed) 12 0.6263 0.7768 0.7981

60 Classical 12 0.7001 0.7842 0.8077

61 No Gates 12 0.6206 0.7941 0.8105

62 RY 12 0.6290 0.7872 0.8091

63 RY + RZ 12 0.6278 0.7894 0.8074

64 Amp Enc. (Dressed) 13 0.5743 0.7872 0.8069

65 Amp Enc. (Undressed) 13 0.6554 0.7863 0.7905

66 Classical 13 0.7027 0.7811 0.8073

67 No Gates 13 0.6677 0.7837 0.8073

68 RY 13 0.6367 0.7915 0.8082

69 RY + RZ 13 0.6233 0.7950 0.8144

70 Amp Enc. (Dressed) 14 0.5526 0.7872 0.8090

71 Amp Enc. (Undressed) 14 0.6709 0.7742 0.7646

72 Classical 14 0.7024 0.7850 0.8066

73 No Gates 14 0.5940 0.7872 0.8098

74 RY 14 0.6502 0.7937 0.8111

75 RY + RZ 14 0.6400 0.7872 0.8081

76 Amp Enc. (Dressed) 15 0.5912 0.7889 0.8060

77 Amp Enc. (Undressed) 15 0.6486 0.7517 0.7833

78 Classical 15 0.6743 0.7811 0.8067

79 No Gates 15 0.6342 0.7811 0.8067

80 RY 15 0.6514 0.7924 0.8119

81 RY + RZ 15 0.6130 0.7928 0.8094

82 Amp Enc. (Dressed) 16 0.5147 0.7863 0.8065

83 Amp Enc. (Undressed) 16 0.6698 0.7794 0.7897

84 Classical 16 0.6972 0.7863 0.8095

85 No Gates 16 0.6438 0.7855 0.8077

86 RY 16 0.6337 0.7872 0.8066

87 RY + RZ 16 0.6110 0.7842 0.8060

88 Amp Enc. (Dressed) 17 0.6063 0.7933 0.8092

89 Classical 17 0.6819 0.7785 0.8054

90 No Gates 17 0.6379 0.7820 0.8076

91 RY 17 0.6595 0.7889 0.8102

92 RY + RZ 17 0.6258 0.7863 0.8068

93 Classical 18 0.6715 0.7794 0.8054

94 No Gates 18 0.6187 0.7941 0.8105

95 RY 18 0.6024 0.7924 0.8067



Appendix D

Mathematical Form of Encoding Only

Circuit

Here is set out the brief derivation of the operation equivalent to a quantum circuit with

only angle embedding and Pauli Z measurement.
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Recalling that the input layer converts values to a valid angle by applying θ =(
π

2

)
tanh(x), the overall circuit is equivalent to

z =−sin
((

π
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)
tanh(x)

)
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FAdam

When discussing the background section that Hwang 2024 considered the connection

between the Adam optimisation and the Fischer Information Matrix, and by doing so

suggested an improved version of the optimiser [24]. We include here a comparison of

the test performance of the proposed FAdam with the state of the art AdamW provided

by Pytorch:

We conclude that, at present, FAdam shows significantly worse performance for

optimising Dressed Quantum Circuits.

Type Loss Accuracy (%) F1

RY 0.6546 0.6210 0.6822

RY (FAdam) 0.6618 0.6055 0.6856
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Type Qubits Loss Acc f1 Time

RY 2 0.656 0.619 0.688 5.8

RY (FAdam) 2 0.664 0.603 0.688 9.5

RY 3 0.654 0.617 0.683 8.9

RY (FAdam) 3 0.663 0.602 0.686 18.4

RY 4 0.654 0.621 0.683 10.3

RY (FAdam) 4 0.663 0.604 0.686 15.9

RY 5 0.656 0.620 0.689 13.4

RY (FAdam) 5 0.663 0.605 0.687 26.0

RY 6 0.653 0.624 0.682 16.4

RY (FAdam) 6 0.663 0.607 0.687 16.5

RY 7 0.653 0.620 0.683 25.6

RY 8 0.654 0.622 0.684 24.6

RY (FAdam) 8 0.664 0.602 0.687 24.4

RY 9 0.655 0.618 0.682 28.6

RY (FAdam) 9 0.662 0.604 0.687 33.0

RY 10 0.654 0.622 0.682 32.7

RY (FAdam) 10 0.664 0.601 0.686 32.8

RY 11 0.655 0.614 0.680 37.1

RY (FAdam) 11 0.662 0.606 0.688 37.5

RY 12 0.656 0.618 0.678 44.2

RY (FAdam) 12 0.661 0.607 0.686 43.4

RY 13 0.655 0.622 0.680 51.6

RY (FAdam) 13 0.660 0.606 0.681 48.6

RY 14 0.655 0.621 0.680 75.0

RY (FAdam) 14 0.660 0.612 0.683 76.0

RY 15 0.654 0.629 0.682 166.5

RY (FAdam) 15 0.658 0.611 0.684 113.8

RY 16 0.654 0.626 0.683 211.0

RY (FAdam) 16 0.659 0.606 0.683 181.0
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