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Abstract

This study introduces a two-stage pipeline for continuous head gesture recognition using

motion capture data, incorporating the HydraMultiROCKET model for both binary

gesture detection and multi-class gesture classification, followed by post-processing to

convert gesture-wise predictions into gesture segments. The main contributions include

the development of the specialized pipeline and incorporation of various methods for

post-processing for frame-wise to gesture wise prediction. The proposed approach

achieves an average weighted F1-score of 0.57 in cross-validation experiments. The

pipeline with HMM-based post-processing technique yields a Cohen’s Kappa of 0.61

and an mAP of 0.66, demonstrating its effectiveness in converting frame-wise predic-

tions to accurate gesture segments.
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Chapter 1

Introduction

1.1 Motivation

Head gestures are a fundamental component of nonverbal communication, providing

crucial cues about a person’s emotions, attitudes, and intentions. The automatic recogni-

tion of head gestures has wide-ranging applications, from enhancing human-computer

interaction and virtual reality experiences but despite the advancements in motion

capture technology and machine learning, challenges persist in developing robust and

accurate head gesture recognition systems that can handle variations in gesture execution

across individuals and distinguish between intentional and unintentional movements.

This study aims to address these challenges by proposing a two-stage pipeline that

leverages state-of-the-art deep learning architectures and data augmentation techniques

to improve the performance and generalizability of head gesture recognition using

motion capture data.

1.2 Research Questions and Objectives

Previous work by students has established a strong foundation for the development

of automatic head gesture recognition systems using motion capture data (Haag and

Shimodaira, 2015). (Yang, 2022) focused on the classification and clustering of human

head gestures, employing Long Short-Term Memory (LSTM) networks to effectively

manage the temporal nature of the data, achieving notable improvements in classification

accuracy through dataset expansion and data normalization techniques. Building on

this, (Lyu, 2023) addressed the challenge of data imbalance by implementing data

augmentation techniques, demonstrating that methods such as noise injection and

1



Chapter 1. Introduction 2

temporal warping could significantly enhance the generalization ability of head gesture

recognition models, particularly in handling underrepresented gestures. Furthermore,

(Lin, 2021) implemented a two-stage classification process that first detects potential

gesture segments and then classifies these segments into specific gesture types, which

reduced false positives and improved overall accuracy, especially in complex real-world

scenarios but despite these advancements, several limitations remain in the current

approaches. First, while data augmentation has shown promise, the testing was done

only on one model as the paper focused only on augmentation methods. Also, it was

not clear how they used augmentation to target minority classes, which can be focused

on so the model gets an idea of those classes but adding variability to those gestures

using augmentation. Second, the two-stage process, although effective in reducing false

positives, did not make use of advanced models and also does not output proper gesture

segments with start and end time of gesture as output due to lack of post-processing.

The main objectives of this study are to develop a complete head gesture recognition

system which provides start and end time of gestures present in the input data and

to investigate various aspects of the pipeline design and implementation and also

implement post-processing techniques that convert frame-wise predictions to gesture-

wise segment predictions. Specifically, we aim to address the following research

questions:

(i) What are the benefits of a two-stage pipeline, which separates gesture detection

and classification tasks, compared to one-stage end-to-end models in terms of

performance and robustness & generalizability?

(ii) What are effective post-processing techniques to convert frame-wise predictions

to gesture-wise segment predictions?

1.3 Contributions

The main contributions of this study include:

• The development of a two-stage pipeline for head gesture recognition using

motion capture data, incorporating the HydraMultiROCKET model for both

gesture detection and classification.

• A comprehensive evaluation of the proposed pipeline using various performance

metrics and cross-validation techniques, demonstrating its effectiveness and
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robustness including post-processing technique to convert frame-wise predictions

to gesture-wise segment predictions.

• Insights into the impact of data augmentation, model architecture, and post-

processing techniques on head gesture recognition performance.

1.4 Thesis Structure

The remainder of this thesis is organized as follows:

• Chapter 2 provides an overview of the background and related work in machine

learning approaches, motion capture data, and head gesture recognition.

• Chapter 3 describes the implementation of the proposed two-stage pipeline, includ-

ing data preprocessing, data augmentation, model architectures, post-processing

techniques and evaluation framework.

• Chapter 4 presents the experimental results and analysis, addressing the research

questions and objectives outlined in Section 1.2.

• Chapter 5 summaries the main findings and contributions of the study, discusses

its limitations, and proposes future research directions.



Chapter 2

Background and Related Work

2.1 Multivariate Time Series Analysis for Motion Cap-

ture Data

Time series data contain sequential order with temporal relationships that tell the

evolution (dynamics) of systems ordered by time (Liang et al., 2024). So unlike

static datasets, where observations are independent of each other and can be analysed

independent of each other, time series data have to be analysed keeping the order of

data in mind. Standard time series will data points and when each data point has

dimensionality of 1 it is called univarite time series and when it is more than 1 it is

called multivariate time series which is what we are dealing with in this project.

2.1.1 Data Representation and Preprocessing

Our motion capture data for head gestures consists of multiple time-aligned series, each

representing a different aspect of head movement. We call this spatio-temporal data

(Yang et al., 2016) as it encompasses two components, spatial component which are

three-dimensional coordinates (x, y, z) of the markers including rotation and translation,

and second component being the time series component corresponds to the sequence of

these spatial positions over time.

for example:

Xt = [Rx(t),Ry(t),Rz(t)] (2.1)

Where Rx(t), Ry(t), and Rz(t) represent rotations around the x, y, and z axes respectively

at time t. We also have translation data in addition to these rotational data. The data we

are using is explained in detail in Section 3.1.

4



Chapter 2. Background and Related Work 5

2.1.2 Data Augmentation Techniques

Data augmentation is an important method widely used in machine learning, particularly

for addressing challenges associated with limited or imbalanced datasets (Khan et al.,

2024) which we have faced doing this project. Applying data augmentation for time

series data is challenging as each data point is dependent on previous one and changing

or altering the data too much can lead to loss of nature of the original data. This

becomes more challenging when dealing with mutlivarite time series data as here each

dimension is related to each other so creating new data means we need to take into

account multiple factors unlike in computer vision problems where simple geometric

transformations random cropping and scaling be directly applied to data points (Iwana

and Uchida, 2021).

There are multiple methods developed for multivariate time series data augmentation

and our particular problem has been explored in this paper (Romain Ilbert, 2024). They

focused on impact of augmentation on 13 imbalanced multivariate time series datasets

and evaluated the impact on both traditional and deep learning models state-of-the-art

time series models. They tried simple methods like noise injection and also complex

methods like generating data suing TimeGANS (Time Generative Adversarial Networks)

and found simple techniques showed more superior performance compared to complex

methods.

2.2 Machine Learning Models for Time Series

2.2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks, originally developed for image processing, have been

successfully adapted for time series analysis(Wang et al., 2019). CNNs excel at captur-

ing local patterns and hierarchical features in time series data. A notable CNN-based

architecture for time series classification is InceptionTime (Fawaz et al., 2019).

InceptionTime is an ensemble of deep CNN models that incorporates Inception

modules, which process input data through parallel convolutional operations with

different kernel sizes, capturing patterns at various temporal scales. This multi-scale

feature extraction enhances the model’s ability to identify relevant patterns in the time

series data.

The model also employs residual connections to mitigate the vanishing gradient

problem, allowing for more effective training of deeper models (He et al., 2015).
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These connections enable the model to learn residual functions, which can be easier to

optimize compared to learning the original, unreferenced mapping. We can modify the

classification head of the InceptionTime model for binary or gesture classification by

adding a global average pooling layer and a sigmoid activation function.

2.2.2 Long Short-Term Memory (LSTM) Networks

Long Short-Term Memory networks, a type of Recurrent Neural Network (RNN), are

designed to capture long-term dependencies in sequential data (Hochreiter and Schmid-

huber, 1997) whose gating mechanism allows the network to selectively remember or

forget information over long sequences. This addresses the vanishing gradient problem

common in standard RNNs.

The LSTM architecture comprises a memory cell and three gates: input, output,

and forget, work together to regulate the flow of information through the network

enabling LSTMs to maintain relevant information over extended periods, making them

particularly effective for time series analysis. LSTMs have shown promising results in

time series classification, especially when combined with other architectures like (Karim

et al., 2018) proposed an LSTM-FCN (Fully Convolutional Network) architecture that

leverages both the LSTM’s ability to capture temporal dependencies and the FCN’s

capability to extract local features. LSTMs’ effectiveness in handling sequential data and

maintaining context over long sequences has led to their widespread use in various time

series applications beyond just classification, including prediction, anomaly detection,

and sequence generation.

2.2.3 Transformer Models

Transformer models have shown promising results in natural language processing

and they have been adapted for time series analysis. The Time Series Transformer

(TST) (Zerveas et al., 2020) applies the self-attention mechanism to capture global

dependencies in time series data. TST has demonstrated state-of-the-art performance

on various multivariate time series classification benchmarks (Zerveas et al., 2020).

The core of the TST architecture is the transformer encoder, which processes input

data through multiple self-attention layers. Each layer allows the model to capture

complex temporal dependencies and relationships between different variables in the

multivariate time series. To maintain the temporal order of the input sequence, TST

incorporates positional encodings, which are added to the input embeddings before
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passing through the transformer encoder. The final component is a classification head

that takes the output of the transformer encoder and produces class probabilities. This

typically involves global average pooling followed by a fully connected layer with

softmax activation.

The TST model incorporates several key aspects that contribute to its effectiveness

in gesture classification like the Multi-head attention allows the model to focus on

different aspects of the input sequence simultaneously, capturing complex temporal

patterns crucial for gesture recognition (Zerveas et al., 2020). Positional encoding

enables the model to understand the temporal order of the input sequence, which is

essential for distinguishing between different gestures (Vaswani et al., 2023). Unlike

RNNs, transformers can access any part of the input sequence directly, allowing for

better modeling of long-range dependencies in gestures (Zerveas et al., 2020).

2.2.4 Hybrid Models

2.2.4.1 HydraMutliRocket

Rocket (Dempster et al., 2020) introduced a novel approach to time series classification

using random convolutional kernels where it transforms input time series using a large

number of random kernels and applies global max pooling and proportion of positive

values (PPV) pooling to the convolution outputs. Rocket achieved state-of-the-art

accuracy with significantly lower computational cost than many existing methods as the

extra features it generates is then used to train a linear classifier.

MiniRocket (Dempster et al., 2021) further improved on Rocket’s efficiency by

using a fixed set of kernels and only computing PPV features. MultiRocket (Tan

et al., 2022) expanded on MiniRocket by incorporating multiple pooling operators and

transformations.

Hydra (Dempster et al., 2022) demonstrated a connection between dictionary meth-

ods and convolutional kernel approaches like Rocket.

The HydraMultiROCKET model combines two feature extraction techniques as in

this paper (Middlehurst et al., 2024), its shown best performance comes from concate-

nating features from Hydra with features from MultiROCKET forming HydraMulti-

ROCKET model.

HydraBackbone: The HydraBackbone component processes input data through

multiple groups of convolutions with various dilations and paddings. While the Mul-

tiRocketBackbone (Tan et al., 2022) component extracts features using random con-
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volutional kernels. This backbone processes both the original input and its first-order

difference, a technique that has been shown to improve performance in time series

classification tasks (Ismail Fawaz et al., 2019). The data flow of the model is shown in

Figure 2.1.

The HydraMultiROCKET model incorporates several key aspects that contribute

to its effectiveness, including multi-scale feature extraction using dilated convolutions,

random kernels for capturing diverse features without the need for training, processing

both the input sequence and its first-order difference to capture absolute and relative

temporal patterns, and the use of max and min pooling to extract robust features that

are invariant to small shifts in the input sequence.

Figure 2.1: Working of HydrMultiRocketPlus

2.2.4.2 ConvTran

Hybrid models aim to combine the strengths of different architectures to better capture

the complex nature of time series data. One such model is ConvTran (Foumani et al.,

2023), combines convolutional and transformer architectures for multivariate time series

classification. The model architecture consists of two main components: the ConvTran-

Backbone and the Classification Head. The ConvTranBackbone processes the input data

through several layers, starting with an Embedding Layer that uses 2D convolutions to

create initial embeddings from mocap data. It then applies both trigonometric absolute

position encoding (tAPE) and enhanced relative position encoding (eRPE) to capture

absolute and relative temporal information. The Attention Layer incorporates relative

position information using a learnable scalar bias matrix. Finally, the Feed-Forward

Layer processes the attention output.

The Classification Head includes Global adaptive pooling, flattening, and a linear

layer to produce the final classification output. The combination of tAPE, eRPE, and

Relative Scalar Attention in the ConvTran model provides significant advantages for

head gesture classification using multivariate time series data. This configuration allows
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for effective processing of multivariate mocap data, capturing both absolute and relative

temporal information crucial for time series classification (Foumani et al., 2023).

2.3 Two-Stage Approaches

Keyword spotting (KWS) systems in ASR (Automatic-Speech Recognition) have

evolved from single-stage models to multi-stage architectures to improve accuracy

and efficiency. Early deep learning approaches faced challenges balancing detection

accuracy and false alarm rates, especially for open-vocabulary tasks. This led to two-

stage systems (Zhang et al., 2023) called U2-KWS, using a lightweight first-stage for

detection and a more complex second-stage for verification. U2-KWS employs a unified

model for initial detection and an attention decoder branch for verification. In this

project, we try to replicate this in a basic form for our project.

2.4 Related Work on Head Gesture Recognition

Research on this dataset has been conducted by various students in recent years, and

we will discuss some of the significant work that has been done focusing on different

aspects of head gesture recognition, including data augmentation, model architecture,

and motion capture data analysis.

(Yang, 2022)’s work on the automatic classification and clustering of human head

gestures represents a significant contribution to the field. In this study, they utilized Long

Short-Term Memory (LSTM) networks to process time-series data from motion capture

systems, which captured head gestures. Thier research demonstrated that expanding the

dataset and applying normalization techniques could substantially improve the accuracy

of gesture classification models. The study achieved a notable improvement in accuracy

from 58.78% to 64.19% by increasing the dataset size and the dimensionality of the

input data .

Building on this, (Lyu, 2023) explored the use of data augmentation techniques

to address the challenge of data imbalance in head gesture recognition tasks. Their

implemented basic augmentation methods, such as noise injection and temporal warp-

ing, to artificially balance the dataset. The study showed that these techniques could

significantly enhance the generalization ability of the models, particularly in handling

underrepresented gestures. However, the augmentation techniques applied were rela-

tively simple and did not fully explore the potential of more advanced, motion-dependent
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strategies.

(Lin, 2021)’s research introduced a two-stage classification pipeline for head gesture

recognition, which first detected potential gesture segments before classifying them.

This approach was particularly effective in reducing false positives and improving

overall model accuracy, especially in real-world scenarios where gestures are more

complex and nuanced. Despite its effectiveness, the study did not employ the most

advanced models available, which could potentially limit the system’s performance and

robustness.

(Wang, 2023)’s study focused on enhancing head gesture recognition by using a

hybrid approach that combined Convolutional Neural Networks (CNNs) with LSTM

networks. Their work explored the combination of CNNs for feature extraction and

LSTMs for sequence modeling, which helped in improving recognition accuracy. The

study also delved into the effects of different data augmentation techniques, emphasizing

the importance of balancing classes through augmentation.

Another relevant study in this field,(Onuonga, 2023) explored the classification of

isolated head gestures using a more sophisticated neural network architecture. This

research highlighted the challenges of recognizing subtle and isolated gestures, which

are often more difficult to classify due to their lack of context. The study used advanced

techniques to preprocess the data and enhance the model’s ability to detect and classify

these isolated gestures accurately.

Inspired by the prior work on data augmentation and head gesture recognition, the

current study implements its own advanced data augmentation techniques, focusing

on motion-dependent strategies to improve the balance of gesture classes by focusing

on increasing minority class and enhancing model generalization. Additionally, this

research addresses the limitations of previous studies that did not utilize state-of-the-art

models by incorporating the latest advancements in neural network architectures. By

combining these advanced models with a refined classification approach, this study

aims to achieve higher f1-score and robustness in head gesture recognition and also

develop a post-processing technique to turn frame-wise prediction into gesture-wise

segment prediction.



Chapter 3

Methodology

3.1 Dataset Description and Preprocessing

3.1.1 Data Structure and Gesture Annotation Protocol

The dataset, curated by the University of Edinburgh (Haag and Shimodaira, 2015),

includes motion capture data from 13 native English speakers (7 male, 5 female) engaged

in one-to-one conversations. The speakers exhibit various behaviours (introversion,

extroversion, neutral) across multiple recordings. The motion capture system tracks 4

reflective markers on the head, recording 6 degrees of freedom: 3 rotational (Rx, Ry, Rz)

and 3 translational (Tx, Ty, Tz) vectors (Bogduk and Mercer, 2000). Data is captured

every 10ms, resulting in 6000 data points per minute of recording.

Six main categories of head gestures were annotated shown in Table 3.1. Annotations

were manually added by previous students using ELAN software, marking the start

and end times of each gesture. The annotations were evaluated for consistency using

Cohen’s kappa, with an average value of 0.541 indicating good agreement (Cohen,

1960). The raw data and annotations were converted to CSV format for processing, with

frame time omitted to prevent overfitting and enhance generalizability across datasets.

3.1.2 Exploratory Data Analysis

Distribution of Gestures: Figure 3.2 presents a stacked bar plot showing the distribu-

tion of various gesture types across different actors. The figure shows that actors such

as Adam, Beve, and Bria perform the highest number of gestures, each with approxi-

mately 400 to 500 gestures recorded. Among these, the Nodding gesture emerges as

the most frequent across all actors, consistently representing the largest segment within

11
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Type Description Most related axis

nd turning up and down Z

fu turning up Z

fd turning down Z

sh turning left and right Y

t turning left or right Y

ti tilting left or right X

Table 3.1: The details of 6 gestures used in this project

each actor’s gesture distribution. On the other hand, gestures like Turning and Tilting

appear more evenly distributed among actors, whereas Face Up and Face Down are less

common. The significant variability in the distribution of gesture types among actors

suggests that individual differences may play a considerable role in gesture preferences

or tendencies, possibly influenced by the context or personal style of each actor.

Duration Of Each Gesture: Figure 3.1 visualizes the distribution of durations (in

frames) for various gesture types, such as Nodding, Face Up, Face Down, Shaking,

Tilting, and Turning. The Nodding gesture shows a moderate duration spread, with an

Interquartile Range (IQR) of 50 to 200 frames, but has numerous outliers extending

beyond 600 frames. In contrast, Face Up has the shortest duration, typically between

50 and 150 frames, with fewer outliers, indicating more consistency. Face Down has a

wider range, with an IQR from 100 to 300 frames and some outliers exceeding 1000

frames, suggesting occasional extended durations. Shaking shows a consistent range

within 50 to 200 frames, with fewer outliers, while Tilting and Turning exhibit moderate

spreads, with IQRs from 50 to 200 frames and outliers beyond 500 frames. These

patterns indicate that while most gestures fall within typical duration ranges, there are

deviations, likely due to contextual or actor-specific factors.

Selecting the optimal duration for input windows is crucial for capturing gestures ef-

fectively while minimizing noise and maintaining system responsiveness. The analysis

suggests that a window duration between 150 to 200 frames would capture most gestures

without missing key movements. A window size of 180 frames can be concluded as

good window size, as it balances the central tendency of most gestures, minimizes the

influence of outliers, and ensures responsiveness in real-time systems. This duration

accounts for the varying lengths of different gestures, providing a balance between com-

pleteness and efficiency in gesture recognition. Also looking at the various distribution
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of gestures among each actor shows the need for data augmentation which is discussed

in the Subsection 3.2.2.

3.2 Spatio-Temporal Data Preprocessing and Normal-

ization

This section explains the data preprocessing that was done. There was no need for data

cleaning or filling missing values as seen from Subsection 3.1.2.

The position parameters from the recordings were in .rov file format and the annota-
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tions were in .eaf file format. These had to be converted into .csv file using code from

previous student (Chen, 2023) so it can be converted to NumPy(Harris et al., 2020)

format for efficient data manipulation.

3.2.1 Time Alignment and Spatial Centralization

Two main data preprocessing steps we performed are time alignment and centralization.

For time alignment, we map annotations to 6 DoF files using 10ms frames, converting

annotation time units from 1ms to 0.1ms and time lag units from 1s to 100ms for

consistency.

We apply centralization to each rotated dimension of the signal, removing constant

offsets due to varying initial positions or sensor placements, thereby enhancing the

model’s ability to capture patterns, improve robustness, and focus on relative changes

for more accurate analysis and prediction. This was performed using code from the

previous student (Chen, 2023).

3.2.2 Implementation of Motion-Dependent Data Augmentation

3.2.2.1 Need for Data Augmentation

Limited annotated recordings and significant class imbalance as seen in Subsection 3.1.2,

particularly for nodding (nd) gestures, necessitate data augmentation. This imbalance

can lead to biased learning, favouring majority classes (Blagus and Lusa, 2013).

3.2.2.2 Techniques used

This study (Romain Ilbert, 2024) addresses data augmentation for multivariate time

series data, as discussed in Section 2.1.2. Following their findings, we employed simple

methods for deep learning models, rather than advanced techniques like TimeGAN.

We utilized noise injection, rotations, value inversion, scaling, and time interpolation

(Núñez et al., 2018). Scaling (randomly between 0.25, 0.5, 1.2, and 1.5 times the

original scale) introduces spatial variability. Time interpolation enhances gesture

fluidity and temporal granularity while preserving multivariate data relationships and

feature interdependencies. To address imbalances in gesture representation (e.g., tilting

and turning), we analyzed initial trends in Ry (for turning) and Rx (for tilting) axes.

We found that these gestures when done towards one side was classified as a complete

gesture thus leading to two different types of same gesture, as illustrated in Figures
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Figure 3.3: Turning Gesture Sample 1 Figure 3.4: Turning Gesture Sample 2

3.3 and 3.4. So we classified segments based on initial increasing or decreasing values

and applied augmentation techniques to balance gesture counts in both directions.

The augmentation process was implemented per-actor for training data. We extracted

individual gestures and randomly applied augmentation techniques according to gesture

type showin in Figure 3.7. We retained the non-gesture segments that preceded each

selected gesture for augmentation, ensuring the data is consistent to original data but no

augmentation was applied to non-gesture segments. Additionally, validation and test

datasets remained un-augmented to accurately assess the model’s ability to generalise

to real-world data.

Figure 3.5: Noise Injection Example Figure 3.6: Time Scaling Example

3.2.3 Rotation Vector Normalization

We employ the rotation vector method (Diebel et al., 2006) to normalize rotational

data, offering advantages over Euler angles and quaternions. This method avoids

singularities (gimbal lock) associated with Euler angles and doesn’t require maintaining

a unit norm constraint like quaternions, simplifying computations. The normalization

process scales all rotational vectors to unit vectors, focusing on rotation direction while

eliminating magnitude variations. This ensures consistency and reliability in subsequent
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Figure 3.7: Plot showing Original and Augmented gesture for Tilting

data analysis and machine learning models. The magnitude is added an extra feature.

The process of Rotation Vector Normalization is as follows:

1. Computing Theta: The magnitude of the rotation vector, θ, is calculated using

the Euclidean norm:

θ =
√

RV 2
x +RV 2

y +RV 2
z (3.1)

2. Normalization: Each component of the rotation vector is then normalized by

dividing by θ:

RVx norm =
RVx

θ
,RVy norm =

RVy

θ
,RVz norm =

RVz

θ
(3.2)

3.2.4 Dataset Preparation for Model Training and Evaluation

After all the required preprocessing steps are performed to get the rotational data in the

form and also augmentation applied to training data, now the final dataset needs to be

made. This involves matching the rotational data files with the respective annotations

and making a combined file. The gesture labels are then one-hot encoded, Table 3.2

shows a sample of the final data format.

After three forms of the data are created.

1. Dataset-1 for Binary Classification: This form will only have ng gesture label,

where 0 means it is a gesture and 1 means it is a non-gesture. This dataset is

designed so the binary classification model can train on just identifying if input

data has gesture or not. More information about inout data format is talked about

in Subsection 3.4.1.
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frameid Rx norm Ry norm Rz norm theta ng nd fu fd sh ti t

273 -0.251 -0.134 -0.958 0.058 0 1 0 0 0 0 0

274 -0.253 -0.143 -0.956 0.057 0 1 0 0 0 0 0

Table 3.2

2. Dataset-2 for Gesture Classification: This form will have all the gestures

labels but will not contain non-gestures. This dataset is purely for the gesture

classification model’s training so it is able to classify between the 6 gestures.

There are no non gestures in this dataset as it is assumed that the input being

passed into this model in the two pass pipeline will be data segments that only

contain gestures.

3. Dataset-3 for Pipeline: This is the base form of the dataset where it contains all

the information as seen in Table 3.2.

3.2.5 Train-Test Split Strategy

For splitting the dataset into train, validation and test sets, we are following the speaker-

independent style as shown in (Ephrat et al., 2018). This approach ensures that our

model learns to generalize across different speakers rather than memorizing specific

speaker characteristics. The strategy involves ensuring that data of the same speaker do

not appear in more than one set (train, validation, or test). This prevents the model from

learning speaker-specific features that could lead to overfitting.

We allocate 4 speakers (57%) to the training set, providing substantial learning

data while reserving speakers for validation and testing (Goodfellow et al., 2016). The

validation set, comprising 1 speaker (14%), allows for model tuning and hyperparameter

optimization on unseen data, preventing overfitting (Bishop, 2006) while the test set,

with 2 speakers (29%), offers a robust evaluation of the model’s performance and

generalization capabilities (Hastie et al., 2009). This split balances the need for sufficient

training data with meaningful validation and testing, an approach supported by research

on learning from small datasets (Srivastava et al., 2014).
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3.3 Proposed Two-Stage Gesture Recognition Pipeline

with Post-processing

Our proposed idea for this project combines data augmentation with a two-stage classi-

fication pipeline. Initially, to address the challenges of limited and imbalanced datasets

we apply data augmentation techniques as suggested by (Romain Ilbert, 2024) to in-

crease the robustness and volume of our training data. Specifically targeting minority

class per each actor’s recording and creating new data containing more augmented

version of the minority gestures.

The core of our methodology is a two-stage classification pipeline inspired by

the U2-KWS framework (Zhang et al., 2023). The first stage employs a model for

gesture detection, detecting the presence or absence (binary classification) of gestures

in time windows. The second stage classifies the specific gesture types in the segments

identified by the first stage. Post-processing techniques are applied to refine the outputs

into coherent gesture segments. We evaluate different models for two tasks (gesture

detection and gesture classification), the pipeline and the post-processing techniques

using appropriate metrics. Finally, the best configuration of the pipeline is tested for

robustness to different speaker variations using group k-fold validation.

3.4 Implementation of the Gesture Recognition Pipeline

3.4.1 Sliding Window Approach for Continuous Recognition

Sliding windows enhance model efficacy and accuracy (Jaén-Vargas et al., 2022) by

capturing local temporal patterns and reducing noise in continuous motion capture data.

Based on the analysis in Subsection 3.1.2, a window length of 180 frames was chosen

to encapsulate the majority of gestures. Experiments determined that a stride of 10

with this window length provided the optimal balance between accuracy and efficiency

(Table A.1). As shown in Figure 3.8, each window is centered on a specific data point,

considering both preceding and following data points to better capture subtle temporal

patterns and transitions in head gestures.

The output label for each window corresponds to the gesture at the center data point.

After the input data is divided into windows, they are all concatenated into 3-D tensor of

the shape X ∈ R(NT F), where N is number of samples (windows), T = 180: temporal

dimension (window length) and F = 4: feature dimension.
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Figure 3.8: Sliding Window Visualisation

3.4.2 Two-Stage Pipeline Architecture

Inspired by the U2-KWS framework for keyword spotting, we propose a novel two-

stage , analogous to U2-KWS, pipeline for continuous gesture recognition. The pipeline

consists of two main stages: a gesture detection stage (similar to the CTC branch in

U2-KWS) and a gesture classification stage (analogous to the attention decoder in

U2-KWS), followed by a post-processing step for final output generation.

3.4.2.1 Stage 1: Stage 1: Binary Gesture Detection Model

The first stage is responsible for detecting potential gesture segments within a continuous

stream of motion capture data.

Input Processing: The input motion capture recording is divided into overlapping

windows of fixed duration. For each window, we store a metadata tuple:

Mi = (i, tstart , tend,Xi) (3.3)

where i is the window index, tstart and tend are the start and end times within the original

recording, and Xi is the raw motion capture data for the window.

Gesture Detection Model: The model outputs a probability pi for each window,

indicating the likelihood of it containing a gesture.

Candidate Selection: Windows with pi > τ1, where τ1 is a predetermined threshold,

are marked as potential gesture candidates. We update the metadata for these windows:

Mi = (i, tstart , tend,Xi, pi) (3.4)
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Figure 3.9: Visualisation of Frame-wise predictions to Gesture-Wise Segments

3.4.2.2 Stage 2: Gesture Classification

The second stage, analogous to the attention decoder in U2-KWS, focuses on accurate

classification of the gesture candidates identified in the first stage.

Input Refinement: For each gesture candidate, we extract an extended window of

data:

X′i = [Xi− k, ...,Xi, ...,Xi+ k] (3.5)

where k is a context parameter determining the amount of additional data included.

Gesture Classification Model: We utilize the gesture classification model, which,

like the attention decoder in U2-KWS, is designed to capture complex spatiotemporal

patterns. For each input X′
i, the model outputs a probability distribution yi over the set

of predefined gesture classes and a ”no gesture” class.

3.4.2.3 Post-processing and Final Output Generation

We require a post-processing step in our pipeline as the model outputs a gesture protec-

tion per window it takes an input. We need to post-process this output of frame-wise

predictions into gesture-wise segments, visualised in Figure 3.9. In the figure, we

can see sometimes the model can output inconsistently in the blue Gesture-A segment

with Gesture-B being predicted in between. So it comes down to the post-processing

technique to correct this and form correct gesture segments with the added benefit of

also giving output as start and end time for each gesture it encounters like in original

data annotations.

Our pipeline’s post-processing step is more complex than U2-KWS due to the

continuous nature of gesture recognition, taking into account window segments and
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finally generating output that needs to be temporally consistent. We experimented with

three methods:

1. Temporal Aggregation and Gesture Segmentation: Inspired by (Köpüklü et al.,

2019), we combine classification results of overlapping windows using a weighted

average:

ȳt =
∑i wi(t)yi

∑i wi(t)
(3.6)

where wi(t) is a weight function based on temporal distance. We identify con-

tinuous segments where argmax(ȳt) remains constant and exceeds a threshold

τ2. For each segment [ts, te], we create a gesture instance: G j = ( j, ts, te,c j,s j),

where j is the gesture index, c j = argmax(ȳts) is the gesture class, and s j =

max t ∈ [ts, te]ȳt [c j] is the confidence score.

2. Median Filtering: We apply median filtering to improve spatial-temporal consis-

tency (Pérez and Borz, 2021). The filter uses a window size of 5 and a minimum

duration of 10 frames, smoothing noisy predictions and removing short, spurious

gesture segments.

3. Hidden Markov Model (HMM): We explore HMM-based post-processing

to capture temporal dependencies between gestures (Gong et al., 2017). We

implement a 7-state HMM where each state represents a gesture class, including

a ’no gesture’ state. The HMM is trained on ground truth annotations using

the Baum-Welch algorithm (Rabiner, 1989), which learns the state transition

probabilities (A), emission probabilities (B), and initial state distribution (π). For

new data, the Viterbi algorithm finds the most likely state sequence given the

frame-wise predictions.

This sequence is then post-processed to identify continuous runs of the same

state, which form our gesture segments. This approach leverages temporal

context to smooth inconsistent predictions and produce gesture segments, with the

learned transition probabilities capturing typical gesture durations and sequences,

while emission probabilities account for uncertainty in the frame-wise classifier’s

output.

Final Output: The pipeline produces a list of recognized gestures G j, each with

start time, end time, gesture class, and confidence score. Post-processing techniques

influences spatial-temporal consistency and overall accuracy of the final output.
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3.5 Evaluation Framework

This framework assesses our head gesture recognition pipeline that combines frame-wise

classifications from both models into gesture-wise classifications.

3.5.1 Frame-wise Evaluation Metrics

Frame-wise metrics evaluate the binary and classification model performance for indi-

vidual frames (windows).

3.5.1.1 Accuracy

Accuracy =
T P+T N

T P+T N +FP+FN
(3.7)

While intuitive, accuracy may be misleading due to class imbalance in our dataset where

non-gesture frames likely outnumber gesture frames. It remains a standard metric in

gesture recognition literature (Mitra and Acharya, 2007) and serves as a baseline for

comparison.

3.5.1.2 Area Under the Receiver Operating Characteristic Curve (AUC-ROC)

AUC-ROC =
∫ 1

0
T PR(FPR−1(t))dt (3.8)

AUC-ROC is valuable for our binary classification task as it’s insensitive to class

imbalance. It provides insights into the model’s ability to discriminate between gesture

and non-gesture frames, crucial for our system (Molchanov et al., 2016).

3.5.1.3 F1-score

F1-score = 2 · Precision ·Recall
Precision+Recall

(3.9)

The F1-score balances the need to correctly identify gesture frames (precision) with

detecting a high proportion of actual gestures (recall). This balance is critical in our task

where both false positives and false negatives significantly impact system performance

(Yao and Fu, 2014). Given the class imbalance in gesture recognition, we use the macro

F1-score to ensure that the performance across all classes, including the less frequent

ones, is equally weighted and fairly evaluated (Johnson and Khoshgoftaar, 2019),
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3.5.2 Gesture-Wise Evalution

3.5.2.1 Cohen’s Kappa

κ =
po − pe

1− pe
(3.10)

Cohen’s Kappa provides a robust measure of segmentation accuracy, accounting for

chance agreement to assess overall performance of gesture segmentation in our system,

adapting techniques from related fields like dialogue act modeling (Stolcke et al., 2000).

3.5.2.2 F1-score at Intersection over Union (IoU)

IoU =
|Predicted∩GroundTruth|
|Predicted∪GroundTruth|

(3.11)

IoU serves as a critical measure of temporal accuracy in our system. It directly assesses

how well the predicted gesture segments align with the ground truth, providing insights

into our system’s ability to accurately locate gestures in time (Graves et al., 2006).

By computing F1-scores at different IoU thresholds, we can assess how our system

performs under varying strictness of temporal alignment requirements (Graves, 2012).

3.5.2.3 Mean Average Precision (mAP)

mAP =
1
|Q| ∑

q∈Q
AP(q) (3.12)

The mAP metric provides a comprehensive single-number summary of our head gesture

recognition system’s performance, encapsulating both the ability to detect gestures and

the accuracy of their temporal localization.

3.5.3 Experimental Validation Methodology

Our main experiments employ group k-fold cross-validation (Pedregosa et al., 2011),

evaluating model performance across different speaker combinations to assess generali-

sation capabilities. Each fold assigns unique speaker sets to train, validation, and test,

testing gesture recognition on unseen speakers crucial for real-world applicability. Due

to computational constraints, we apply cross-validation only in final two evaluations.



Chapter 4

Results and Discussion

4.1 Impact of Motion-Dependent Data Augmentation on

Gesture Recognition Accuracy

4.1.1 Objective

The primary purpose of this experiment is to quantitatively assess the impact of data

augmentation on the performance and generalizability of our head gesture recognition

model. By comparing model performance on augmented versus non-augmented data,

we aim to validate the findings of (Romain Ilbert, 2024) in the context of our specific

dataset derived from motion capture recordings.

Expected Outcome: We hypothesize that data augmentation techniques will enhance

model performance, particularly for underrepresented gesture classes, and improve

overall generalization to unseen data. To test this hypothesis, we employ a single-pass

classification approach using the InceptionTime architecture, as used in (Romain Ilbert,

2024) and apply group k fold validation with 3 folds (smaller fold chosen to due

computational constraints.

The train-test data split for the experiments that follow have been discussed in

Subsection 3.2.5 as here Dataset-3 is used.

4.1.2 Results

We evaluated the performance of the InceptionTime model with dropout (0.7) and

weight decay on both non-augmented and augmented datasets, training for 20 epochs.

The results are presented in Table 4.2 and 4.1 and confusion matrix of predictions are

24
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Figure 4.1: Non-Augmnted Dataset

Confusion Matrix

Figure 4.2: Augmnted Dataset Confusion

Matrix

visualised in Figures 4.1 and 4.2.

Table 4.1 shows the average precision, recall, and F1-score for the non-augmented

dataset after group k fold validation with 3 folds. The ’no gesture’ class (0) demonstrates

high performance with a precision of 0.66, recall of 0.98, and F1-score of 0.79. However,

the model struggles significantly with other gesture types. Classes 1, 2, 4, and 5

(corresponding to nodding, facing up, shaking, and tilting) show zero values across

all metrics, indicating complete failure in recognition. Class 3 (facing down) shows

moderate performance with a precision of 0.50, but low recall (0.24) resulting in an

F1-score of 0.32. Class 6 (turning) also shows limited recognition with an F1-score of

0.20.

In contrast, Table 4.2 presents the metrics for the augmented dataset, revealing

substantial improvements across all gesture types. The ’no gesture’ class (0) maintains

strong performance, albeit slightly reduced, with an F1-score of 0.69. Notably, all

previously unrecognized gestures now show measurable performance. Class 1 (nodding)

achieves an F1-score of 0.27, class 2 (facing up) reaches 0.30, and class 4 (shaking)

attains 0.29. Class 5 (tilting), while still challenging, improves to an F1-score of 0.09.

Classes 3 (facing down) and 6 (turning) show significant improvements, with F1-scores

increasing to 0.46 and 0.32 respectively.

The confusion matrices in Figures 4.2 and 4.1 provide a visual representation of

these improvements. In the non-augmented case (Figure 4.1), we observe a strong bias
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Class Precision Recall F1-Score

0 0.66 0.98 0.79

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.50 0.24 0.32

4 0.00 0.00 0.00

5 0.00 0.00 0.00

6 0.35 0.14 0.20

Table 4.1: Non-Augmented Data

Class Precision Recall F1-Score

0 0.59 0.82 0.69

1 0.32 0.23 0.27

2 0.46 0.22 0.30

3 0.43 0.51 0.46

4 0.37 0.24 0.29

5 0.17 0.06 0.09

6 0.32 0.33 0.32

Table 4.2: Augmented Data

Table 4.3: Class : 0 - no gesture (ng), 1 - nodding (nd), 2 - facing up (fu), 3 - facing down

(fd), 4 - shaking (sh), 5 - tilting (ti), and 6 - turning (t)

towards the ’no gesture’ class, with most predictions concentrated in the first row. The

augmented dataset results (Figure 4.2) show a more distributed prediction pattern, with

increased correct classifications for all gesture types, as evidenced by higher values

along the diagonal.

4.1.3 Analysis

Our experiment demonstrates the positive impact of data augmentation in enhancing

InceptionTime model performance for head gesture recognition, validating and extend-

ing the findings of (Romain Ilbert, 2024). Data augmentation significantly improved

recognition across all gesture classes, addressing the severe class imbalance. In the

non-augmented scenario, four out of seven gesture types were unrecognized (F1-score =

0.00). Post-augmentation, all gestures achieved measurable recognition rates (F1-scores:

0.09-0.46).

After augmentation, the ’no gesture’ class maintained robust performance with a

minor F1-score decrease from 0.79 to 0.69 (-12.7%). Previously unrecognized gestures

showed marked improvements: nodding, facing up, and shaking increased to F1-scores

of 0.27, 0.30, and 0.29 respectively. Tilting, while still challenging, improved to 0.09.

Facing down and turning gestures exhibited substantial gains, with F1-scores increasing

by 43.8% (0.32 to 0.46) and 60% (0.20 to 0.32) respectively. The confusion matrices

(Figures 4.1 and 4.2) visually confirm the model’s enhanced discriminative capability

post-augmentation, transitioning from a strong bias towards the ’no gesture’ class to a
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more balanced distribution of predictions.

These results support our hypothesis that data augmentation enhances model perfor-

mance, particularly for underrepresented classes, suggesting improved generalization.

Augmentation not only allowed the model to be exposed to new variations in the ges-

tures but also helped balance the under-represented classes. However, the variability in

improvement across gesture types (e.g., 43.8% increase for facing down vs. minimal

improvement for tilting) indicates that certain gestures may require more sophisticated,

tailored augmentation techniques.

4.2 Comparative Analysis of Binary Gesture Detection

Models

4.2.1 Objectives

The primary objectives of this experiment were to compare the effectiveness of four

state-of-the-art time series classification models: TST (Time Series Transformer),

InceptionTime, MultiROCKET, and HydraMultiROCKET

Expected Outcome: We hypothesise HydraMultiROCKET to perform better than

the rest of the models mainly because inceptionTime and TST are older comparatively

and HydraMultiROCKET builds on top of MultiROCKET so HydraMultiROCKET

should perform better in theory.

The train-test data split used is Dataset-1 (Subsection 3.2.5).

4.2.2 Results

The performance metrics for each model are summarized in Table 4.4.

Table 4.4 presents the performance metrics for each model. fc droput is the dropout

applied to the fully-connected layer of the model.

We can see base machine learning models like SVM and Logistic Regression

model have far lower metrics across the board and an accuracy and f1-score of 56%

indicates they are just a bit better than random guessing considering this is a binary

classification task. HydraMultiROCKET demonstrated superior performance across

all metrics, achieving the highest F1-score (0.844617), accuracy (0.842969), and ROC

AUC (0.912257). It outperformed the next best model, MultiROCKET, by margins of

2.4%, 2.5%, and 2.8% in F1-score, accuracy, and ROC AUC respectively.
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Model F1-Score Accuracy ROC AUC

SVM 0.564 0.563 0.595

Log-Reg 0.565 0.565 0.599

TST 0.718 0.723 0.797

InceptionTime 0.774 0.777 0.842

MultiROCKET 0.821 0.818 0.884

HydraMultiROCKET 0.845 0.843 0.912

Table 4.4: Performance comparison of binary classification models

InceptionTime showed moderate performance, while TST, despite its sophisticated

architecture, lagged behind in all metrics. The estimated F1-score for TST (0.718)

aligns with its lower accuracy and ROC AUC scores.

For the HydraMultiROCKET model, we conducted hyperparameter tuning focusing

on two key parameters: fc dropout and weight decay and the results are in Table A.2.

4.2.3 Analysis

HydraMultiROCKET demonstrated superior performance across all metrics, with F1-

scores 2.4%–12.7% higher than other models, indicating its suitability for capturing

complex temporal patterns in head gesture data. Despite higher computational demands

(4GB VRAM vs. 2.5GB for TST), HydraMultiROCKET was chosen for gesture

classification due to its accuracy, while a lighter model was used for binary classification.

Optimal hyperparameters yielded the highest F1-score (0.844), accuracy (0.842), and

ROC AUC (0.912). The effectiveness of higher weight decay (0.1) supports (Zhang

et al., 2018)’s research , while the combination of regularization techniques corroborates

(Kukačka et al., 2017)’s observations . HydraMultiROCKET’s stable performance

across configurations (F1-scores: 0.829–0.844) indicates its inherent suitability for

binary classification. The optimal configuration with high dropout and weight decay

suggests the task benefits from strong regularization due to the subtle nature of head

movements.
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Model F1-Score Accuracy ROC AUC

MultiRocket 0.35 0.40 0.68

TST 0.43 0.45 0.73

ConvTran 0.46 0.48 0.74

HydraMultiROCKET 0.49 0.51 0.76

Table 4.5: Performance comparison of gesture classification models

4.3 Performance Evaluation of Multi-class Gesture Clas-

sification Models

4.3.1 Objectives

The objectives of this experiment were to evaluate the performance of various state-of-

the-art models for multi-class gesture classification.

Expected Outcome: We hypothesise ConvTran to perform better but close to perfor-

mance of HydraMultiROCKET as it combines transformer architecture with CNNs so

hybrid model leverages the benefits of both the architecture

The train-test data split used is Dataset-2 (Subsection 3.2.5).

4.3.2 Results

We evaluated four different models on the gesture classification task: MultiRocket, TST

(Time Series Transformer), HydraMultiROCKET, and ConvTran. The performance

metrics for each model are summarized in Table 4.5.

Table 4.5 presents the performance metrics for the models evaluated. The F1-score

ranged from 0.350 to 0.490 across the models. HydraMultiROCKET achieved the

highest F1-score (0.490), closely followed by ConvTran (0.460). TST showed moderate

performance with an F1-score of 0.430, while MultiRocket had the lowest F1-score of

0.350.

Accuracy scores followed a similar trend, ranging from 0.400 to 0.510. HydraMulti-

ROCKET led with the highest accuracy (0.510), followed by ConvTran (0.480). TST

showed moderate accuracy (0.450), and MultiRocket had the lowest accuracy (0.400).

The Area Under the Receiver Operating Characteristic curve (ROC AUC) ranged

from 0.680 to 0.760. HydraMultiROCKET again achieved the highest ROC AUC

(0.760), indicating its superior ability to distinguish between gesture classes. ConvTran



Chapter 4. Results and Discussion 30

and TST also performed well, with ROC AUC scores of 0.740 and 0.730, respectively,

while MultiRocket had the lowest ROC AUC score of 0.680.

The hyperparameter tuning process focused on adjusting the ‘fc dropout‘ and

‘weight decay‘ parameters to optimize the performance of the HydraMultiROCKET

model. The results of this tuning are summarized in Table A.3.

4.3.3 Analysis

HydraMultiROCKET consistently outperformed other models across all metrics, demon-

strating the effectiveness of well-designed convolutional architectures for multi-class

gesture classification. ConvTran, a hybrid model combining convolutional and trans-

former elements, closely followed, indicating the potential of capturing both local and

global features in gesture data. The poor performance of ConvTran can be attributed

to its nature to perform better on larger data so if our dataset was bigger, it might have

shown better performance.

The Time Series Transformer (TST) showed moderate performance, surpassing

simpler models but not matching HydraMultiROCKET and ConvTran. This suggests

transformer-based architectures may require further adaptation for gesture classification

tasks. The better performance of HydraMultiROCKET makes it an ideal candidate for

this task

4.4 Comparative Analysis of Post-processing Methods

for Gesture Segmentation

4.4.1 Objectives

The objectives of this experiment were to Compare and Evaluate the effectiveness of

median filtering, Hidden Markov Model (HMM) based segmentation, and our Temporal

Aggregation and Gesture Segmentation post-processing method

Expected Outcome: We hypothesise our Temporal Aggregation and Gesture Seg-

mentation (TAGS) method to perform the best as it uses prediction probabilities to

create the gesture segments and for median filtering to perform the worst as it works

solely based on the values in the given window without any other information to make

an informed decision. We expect the HMM model to have close performance to the

TAGS method.
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Method Cohen’s Kappa
F1@

IoU=0.1
F1@

IoU=0.25
F1@

IoU=0.5
mAP

Median Filtering 0.57 0.63 0.58 0.53 0.60

TAGS 0.59 0.65 0.62 0.56 0.63

HMM 0.61 0.67 0.65 0.58 0.66

Table 4.6: Performance comparison of post-processing techniques in the pipeline

The train-test data split used is Dataset-3 (Subsection 3.2.5).

4.4.2 Results

The performance of our pipeline with different post-processing techniques is summa-

rized in Table 4.6. We have called ’Temporal Aggregation and Gesture Segmentation’

method as ’TAGS’ in the table. The HMM was first trained on some annotations files

which were treated as ground truth. These files were of the actors used for training the

model and the results in the table 4.6 are from testing on test set.

In our experiments, the TAGS method achieved a Kappa value of 0.59, which

decreased slightly to 0.57 with median filtering but increased to 0.61 with the HMM-

based approach. These changes in Kappa values suggest that the HMM-based method

improves the overall agreement between predictions and ground truth, while median

filtering slightly reduces it.

The results show that the F1-scores decrease as the IoU threshold increases, which

is expected since higher thresholds pose a greater challenge for accurate gesture local-

ization. However, the relative performance of the post-processing techniques remains

consistent across different thresholds. The initial method achieves F1-scores of 0.65,

0.62, and 0.56 at IoU thresholds of 0.1, 0.25, and 0.5, respectively. Median filtering

results in lower F1-scores of 0.63, 0.58, and 0.53, while the HMM-based approach

yields the highest F1-scores of 0.67, 0.65, and 0.58 at the corresponding thresholds.

These results indicate that the HMM-based method maintains its superiority in terms

of gesture recognition performance, even under more stringent evaluation criteria. The

TAGS method achieves an mAP of 0.63, which decreases to 0.60 with median filtering

but increases to 0.66 with the HMM-based approach.

Median filtering proved to be a simple yet effective technique for smoothing out

noisy predictions and improving the spatial consistency of the segmented gestures

(Pérez and Borz, 2021)
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HMM with 7 states and training it on ground truth annotations, we were able

to capture the underlying structure of gesture sequences and make more accurate

predictions (Gong et al., 2017)

4.4.3 Analysis

The HMM-based post-processing approach consistently outperformed other methods,

achieving the highest Cohen’s Kappa (0.61) compared to the TAGS method (0.59) and

median filtering (0.57). This indicates better agreement between predicted and ground

truth gesture labels. The HMM-based method maintained superior performance across

different IoU thresholds, achieving the highest F1-scores compared to the TAGS method

and median filtering. This demonstrates better spatial and temporal precision in gesture

recognition under stringent evaluation conditions. The TAGS method, incorporating

confidence scores, proved more effective than median filtering, emphasizing the impor-

tance of prediction confidence in post-processing. The HMM-based technique achieved

the highest mAP (0.66), indicating the best balance between precision and recall. These

results highlight the significance of appropriate post-processing techniques in gesture

recognition. The HMM-based approach, by modeling temporal dependencies and

leveraging confidence scores, consistently outperformed other methods across various

metrics.

4.5 Performance Comparison of Two-Stage and End-to-

End Gesture Recognition Pipelines

4.5.1 Objectives

The main objectives of this experiment were to compare and analyze the performance

of the one-stage models with a two-stage pipeline consisting of HydraMultiROCKET

models for binary and multiclass classification. The train-test data split used is Dataset-3

(Subsection 3.2.5). We used Group K-Fold (Pedregosa et al., 2011) with with 3 folds

and took average for the results discussed in the next subsection.

Expected Outcome: We hypothesise that the two-stage pipeline would outperform

the one-stage models and exhibit similar results to the multiclass model since it is the

second stage of the pipeline.
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Class 0 1 2 3 4 5 6

Pipeline

F1-Score
0.87 0.42 0.50 0.50 0.61 0.39 0.56

Model-1

F1-Score
0.86 0.40 0.49 0.46 0.57 0.35 0.51

Model-2

F1-Score
0.83 0.44 0.47 0.47 0.59 0.37 0.52

Table 4.7: F1-scores for each gesture class achieved by the two-stage pipeline and

one-stage models, where Model-1 is HydraMultiROCKET and Model-2 is ConvTran

Class 0 1 2 3 4 5 6

Pipeline

Accuracy
0.80 0.43 0.59 0.47 0.75 0.55 0.63

Model-1

Accuracy
0.76 0.41 0.55 0.46 0.71 0.53 0.59

Model-2

Accuracy
0.78 0.44 0.56 0.43 0.73 0.50 0.61

Table 4.8: Accuracy scores for each gesture class achieved by the two-stage pipeline

and one-stage models, where Model-1 is HydraMultiROCKET and Model-2 is ConvTran

4.5.2 Results

Table 4.7 presents the F1-scores for each gesture class achieved by the two-stage

pipeline, the baseline one-stage model, and a third one-stage model. The two-stage

pipeline outperforms the one-stage models in most gesture classes, with notable im-

provements in classes 2, 3, 4, 5, and 6. The third one-stage model achieves the highest

F1-score for class 1, while the baseline model performs slightly better in class 0.

Table 4.8 shows the accuracy scores for each gesture class. The two-stage pipeline

consistently achieves higher accuracy compared to the one-stage models across all

classes. The third one-stage model exhibits better accuracy than the baseline in classes

1 and 4, while the baseline model performs slightly better in class 3.

Table 4.9 summarizes the overall performance metrics, including Cohen’s Kappa,

F1-scores at different IoU thresholds, and mAP. The two-stage pipeline achieves the

highest Cohen’s Kappa (0.61), indicating better agreement between the predicted and

ground truth gesture labels. The pipeline also outperforms the one-stage models in
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Metrics Cohen’s Kappa
F1@

IoU=0.1
F1@

IoU=0.25
F1@

IoU=0.5
mAP

Pipeline 0.61 0.67 0.65 0.58 0.66

Model-1 0.58 0.65 0.62 0.56 0.65

Model-2 0.57 0.64 0.60 0.55 0.65

Table 4.9: Overall performance metrics for the two-stage pipeline and one-stage models

terms of F1-scores at all IoU thresholds, demonstrating its superior spatial and temporal

precision in gesture recognition. The mAP scores are comparable across all models,

with the two-stage pipeline achieving a slightly higher value (0.66) compared to the

one-stage models (0.65).

4.5.3 Analysis

The experimental results support our hypothesis that the two-stage pipeline outperforms

the one-stage models in gesture recognition. The pipeline’s superior performance can be

attributed to its design, which separates the binary classification task from the multiclass

classification task (Köpüklü et al., 2019), allowing the models in each stage to specialize

in their respective tasks.

The higher F1-scores, accuracy, Cohen’s Kappa, and F1-scores at different IoU

thresholds achieved by the two-stage pipeline demonstrate its ability to better distinguish

between gestures, reduce false positives and negatives, and improve spatial and temporal

localization. Although the mAP scores are comparable across all models, the slightly

higher value achieved by the two-stage pipeline indicates its overall better performance

in terms of precision and recall.

In conclusion, the two-stage pipeline approach proves to be more effective than

the one-stage models for gesture recognition. The pipeline’s design, which separates

the binary and multiclass classification tasks, allows for specialization and improved

performance in each stage, demonstrating its potential for accurate and robust gesture

recognition.
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Fold Train F1 Val F1 Test F1

1 0.69 0.58 0.61

2 0.67 0.56 0.57

3 0.68 0.59 0.60

4 0.65 0.55 0.56

5 0.63 0.53 0.54

6 0.62 0.52 0.53

7 0.64 0.54 0.55

Average 0.66 0.56 0.57

Table 4.10: Group k-fold cross-validation results with all possible speaker combinations

(weighted F1-score)

4.6 Two-Stage Pipeline Performance Evaluation and Cross-

Validation

4.6.1 Cross-Speaker Validation Design for Gesture Recognition

Models

To evaluate the pipeline’s performance under different speaker configurations, we

conducted group k-fold cross-validation (Pedregosa et al., 2011) with k=7, considering

all possible speakers come at least once in the test set. In each fold, four speakers were

used for training, one speaker for validation, and the remaining two speakers for testing.

4.6.2 Objectives

The objectives of this analysis were to perform group k-fold cross-validation to assess

the pipeline’s generalization ability across different speaker configurations.

Expected Outcome: We hypothesise the pipeline to show good generalizability

towards the different folds due to the augmentation we have performed.

The train-test data split used is Dataset-3 (Subsection 3.2.5).

4.6.3 Results

The results of the group k-fold cross-validation with all possible speaker combinations

are presented in Table 4.10.
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The group k-fold cross-validation results with all possible speaker combinations

show variations in the pipeline’s performance across different speaker configurations for

training, validation, and testing sets. The average weighted F1-score for the training set

is 0.66, indicating a reasonable performance on the speakers used for training. For the

validation set, the average weighted F1-score is 0.56, suggesting a drop in performance

when evaluating on unseen speakers. The average weighted F1-score for the testing set

is 0.57, which is lower than the initial testing configuration (F1-score: 0.65).

The highest test F1-score of 0.61 is achieved in Fold 1, while the lowest test F1-score

of 0.53 is observed in Fold 6. These variations in performance highlight the impact of

speaker characteristics and gesture variations on the pipeline’s generalization ability.

4.6.4 Analysis

The group k-fold cross-validation analysis using weighted F1-scores revealed limitations

in the pipeline’s generalization ability across different speaker configurations and gesture

classes. The lower average test F1-score compared to the initial testing configuration

indicates reduced performance when considering a wider range of speaker combinations.

The weighted F1-score provided a balanced evaluation across all classes, ensuring

minority class performance was not overshadowed. The consistently lower validation

set performance (average F1-score: 0.56) compared to the training set suggests potential

overfitting, emphasizing the need for effective regularization, data augmentation, and

careful model selection. The analysis highlights the need for a diverse and representative

dataset, effective regularization techniques, and exploration of advanced methods like

transfer learning and data augmentation.

4.7 Critical Discussion of Experimental Outcomes

Our study significantly contributes to head gesture recognition by comprehensively

analyzing a two-stage pipeline for continuous gesture recognition. In contrast to

(Yang, 2022), which focused on classification and clustering using LSTMs, our study

explores data augmentation, compares state-of-the-art architectures, and evaluates post-

processing methods. Our augmentation strategies enhance generalization, particularly

for underrepresented classes, achieving F1-scores around 0.60, indicating balanced

performance compared to the accuracy of 64.19% in (Yang, 2022).

Building upon (Lyu, 2023)’s work on data imbalance, our two-stage pipeline sepa-



Chapter 4. Results and Discussion 37

rates gesture detection and classification, similar to (Lin, 2021). However, our approach

incorporates the latest advancements in neural network architectures, demonstrating

better performance with an average F1-score of 57.00% after cross-validation, compared

to 47.13% in (Lin, 2021). Our pipeline also outperforms the hybrid approach of (Wang,

2023), achieving an average F1-score of 0.57 compared to their range of 0.52 to 0.71.

Our study introduces a post-processing technique using HMMs to convert frame-

wise predictions into gesture-wise segments, enhancing spatial-temporal consistency

and accuracy with a Cohen’s Kappa of 0.61 and mAP of 0.66. The experimental results

address our research questions:

(i) The two-stage pipeline outperforms one-stage models, suggesting that specialized

stages lead to better performance, with an average F1-score of 0.57.

(ii) HMM-based post-processing effectively converts frame-wise predictions to gesture-

wise segments, achieving a Cohen’s Kappa of 0.61 and mAP of 0.66, outperform-

ing other techniques.

The proposed approach demonstrates strengths in its two-stage design, advanced

architectures, data augmentation, and post-processing techniques. However, it faces

challenges in generalization across speakers and classes, sensitivity to gesture variations,

distinguishing between intentional and unintentional (non-gesture) movement. Future

research should focus on diverse datasets, advanced machine learning techniques, and

optimization strategies to enhance robustness and real-world applicability discussed

further in Section 5.3.



Chapter 5

Conclusion

5.1 Summary of Key Findings and Contributions

This study introduces a novel two-stage pipeline for head gesture recognition using

motion capture data, consisting of a HydraMultiROCKET model for binary gesture

detection and multi-class classification, followed by post-processing. The main con-

tributions include the development of a specialized pipeline, the investigation of data

augmentation techniques, the incorporation of HMMs as a post-processing technique,

and a comprehensive evaluation using various performance metrics and cross-validation

techniques. The experiments conducted address the two main research questions:

(i) The first question, regarding the benefits of a two-stage pipeline compared to

one-stage end-to-end models, is answered through the comparison of the pro-

posed two-stage approach with one-stage models. The results demonstrate that

the two-stage pipeline, which separates gesture detection and classification tasks,

outperforms one-stage models in terms of performance, robustness, and general-

izability. This improvement is attributed to the pipeline’s ability to optimize each

task independently, allowing for the use of specialized models for binary gesture

detection and another model for multi-class classification.

(ii) The second question, concerning effective post-processing techniques for con-

verting frame-wise predictions to gesture-wise segment predictions, is addressed

through the incorporation of HMMs in the pipeline. The HMM-based approach

proves to be a powerful tool for capturing temporal dependencies between gestures

and generating gesture segments with start and end times. This post-processing

technique significantly enhances the spatial-temporal consistency and overall

38
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accuracy of the system, addressing a key limitation in previous studies that did

not focus on producing gesture segments.

Furthermore, the study investigates advanced, motion-dependent data augmentation

techniques, such as noise injection, rotations, and time interpolation, to improve the

performance and generalization ability of head gesture recognition models. The results

demonstrate that these techniques significantly enhance model performance, particularly

for underrepresented gesture classes, by increasing the diversity of training samples and

balancing the class distribution.

5.2 Limitations of the Current Approach

This study has several limitations, like the generalization ability of the proposed pipeline

across different speaker configurations and gesture classes is limited, as evidenced by the

group k-fold cross-validation analysis, consistent with the findings of previous studies

(Yang, 2022; Lyu, 2023). The robustness of the system to variations in gesture speed,

duration, and execution across individuals requires further investigation, a limitation

shared by other studies (Lin, 2021; Wang, 2023).

The current approach does not explicitly address the distinction between inten-

tional head gestures and unintentional head movements during natural conversations,

a common limitation among existing studies (Onuonga, 2023). The computational

complexity and memory requirements of the HydraMultiROCKET model may pose

challenges for real-time deployment on resource-constrained devices. However, the

superior performance of HydraMultiROCKET justifies its use in our pipeline as our

main objective was performance and not for real-time detection.

Furthermore, our study relies on a dataset that may not fully capture the diversity of

head gestures across different cultures, ages, and conversational contexts, a limitation

shared by most previous works in the field (Wang, 2023; Onuonga, 2023). Addressing

these limitations in future research is crucial to develop more accurate, adaptable, and

practically applicable head gesture recognition systems.

5.3 Future Research Directions

Based on the findings and limitations of this study, several future research directions

are proposed:



Chapter 5. Conclusion 40

1. Explore the use of multi-modal methods like in (van Amsterdam et al., 2022)

where both kinematic and video data was used in conjunction. Since there is

access to speaker video recording, there is a possibility of improvement in perfor-

mance by allowing the model to dynamically weigh different input modalities

(e.g., visual and kinematic data), leading to more accurate and robust predictions.

2. Investigate the impact of rotation vector normalization on the accuracy of head

gesture recognition compared to other representation methods like Euler angles

or quaternions like in this paper (Hachaj and Piekarczyk, 2019).

3. Analyze the performance of the proposed pipeline across different types of conver-

sations (e.g., formal vs informal, emotional vs neutral) and speaker personalities

to assess its adaptability and robustness in various contexts.

4. Explore the potential of transfer learning by applying the trained models to other

motion capture datasets to assess their generalization ability and adaptability to

different data sources, which could potentially extend the applicability of the

proposed approach to a wider range of scenarios.

5. Expand the current dataset by annotating more recordings, which could potentially

improve the performance and robustness of the head gesture recognition system

by providing a more diverse and representative set of examples for training and

evaluation.

6. Develop techniques to distinguish between intentional head gestures and uninten-

tional head movements during natural conversations, which could enhance the

practical applicability of the system in real-world settings.

7. Explore the potential of unsupervised or self-supervised pre-training on unlabeled

motion capture data to improve the overall performance of the gesture recognition

pipeline, as this approach could leverage the abundance of unlabeled data to

learn meaningful representations and reduce the reliance on manually annotated

examples.
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Kukačka, J., Golkov, V., and Cremers, D. (2017). Regularization for deep learning: A

taxonomy.
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Appendix A

First appendix

A.1 Sliding Window Experiment Result

Stride Accuracy F1-Score Computational Time (s)

2 0.868 0.852 580

6 0.843 0.829 210

10 0.825 0.811 62

15 0.807 0.793 45

Table A.1: Performance comparison of different stride lengths

A.2 TST architecture

A.3 Hyper parameter Tuning results

47
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Figure A.1: Time Series Transformer Architecture from (Hu and Zhao, 2022)
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fc dropout Weight Decay F1-Score Accuracy ROC AUC

0.5 0.01 0.832 0.830 0.901

0.5 0.1 0.838 0.836 0.907

0.5 0.001 0.829 0.827 0.898

0.8 0.1 0.844 0.842 0.912

0.8 0.01 0.840 0.838 0.909

0.8 0.001 0.835 0.833 0.904

0.9 0.1 0.841 0.839 0.910

0.9 0.01 0.837 0.835 0.906

0.9 0.001 0.833 0.831 0.902

Table A.2: Hyperparameter tuning results for Binary Gesture Detection HydraMulti-

ROCKET

fc dropout Weight Decay F1-Score Accuracy ROC AUC

0.5 0.01 0.620 0.640 0.780

0.5 0.1 0.625 0.645 0.785

0.5 0.001 0.615 0.635 0.775

0.8 0.1 0.630 0.650 0.790

0.8 0.01 0.628 0.648 0.788

0.8 0.001 0.622 0.642 0.782

0.9 0.1 0.629 0.649 0.789

0.9 0.01 0.627 0.647 0.787

0.9 0.001 0.621 0.641 0.781

Table A.3: Hyperparameter tuning results for HydraMultiROCKET for Gesture Classifica-

tion


