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Abstract

This project explores semi-supervised learning techniques for automatic classification

of human head gestures using motion capture data. It investigates self-training, ensem-

ble methods, and mean teacher approaches to leverage unlabelled data and improve

classification performance on the University of Edinburgh Speaker Personality and

MoCap Dataset. The proposed novel ensemble self-training approach, combining

Bidirectional LSTM and 1D CNN models, achieved a test F1-score of 0.56 using only

40% labelled data, comparable to fully supervised models with a test F1-score of 0.58

trained on 100% labelled data. Speaker-independent cross-validation demonstrated

promising generalisation, with an average test accuracy of 66.4% and test F1-score of

0.53 across different speakers. In contrast, a fully supervised Bi-LSTM model trained

on the same 40% labelled data subset achieved a significantly lower test F1-score of

0.33, highlighting the effectiveness of the semi-supervised approach.

This research advances head gesture recognition by incorporating semi-supervised

techniques and demonstrating its effectiveness in reducing annotation efforts while

maintaining high accuracy. The report provides insights into the trade-offs between

labelling effort and model performance, and highlight some challenges in distinguishing

subtle gestures. These findings have important implications for developing more

efficient and accurate gesture recognition systems for human-computer interaction

applications.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Head gestures are an integral component of non-verbal communication, facilitating the

expression of acts such as agreement, disagreement, and attention. The recognition

of these gestures has emerged as a significant area of research in the field of Human-

Computer Interaction due to its potential applications across several domains, such as

assistive technologies (Jiang et al., 2013), virtual reality (Rautaray and Agrawal, 2015),

and human behaviour analysis (Kotsiantis et al., 2007). However, there are several

challenges associated with head gesture recognition that need to be addressed.

The primary difficulty lies in the subtle nature of head gestures, which are often less

pronounced than other body movements and exhibit high variability across individuals

(Murphy-Chutorian and Trivedi, 2009). This subtlety, combined with the continuous

nature of head movements, makes the task of gesture classification particularly complex.

Traditional approaches to this problem such as Hidden Markov Models (Rabiner, 1986)

and Dynamic Time Warping (Hachaj and Piekarczyk, 2019) have shown only limited

success, primarily in constrained environments. These methods rely heavily on large

annotated datasets, which are both time-consuming and expensive to create. Recent

advancements in deep learning, particularly Recurrent Neural Networks (RNNs) and

their variants like Long Short-Term Memory (LSTM) networks, have enhanced gesture

recognition capabilities by capturing temporal dependencies from the data (Neverova

et al., 2014). While deep learning models demonstrate improved performance and better

generalisation, they still face the significant bottleneck of the need for large amounts of

annotated data.

Semi-supervised learning emerges as a potential solution to these challenges (Zhu

1



Chapter 1. Introduction 2

and Goldberg, 2009). By leveraging both labelled and unlabelled data, semi-supervised

approaches offer the prospect of building more robust models without the prohibitive

costs associated with extensive data annotation. Moreover, semi-supervised methods

have the potential to continuously adapt and improve as new, unlabelled data becomes

available. However, the application of semi-supervised learning to the specific domain

of head gesture recognition remains largely unexplored. Hence, there is a clear need

to investigate how these techniques can be effectively adapted to handle the unique

challenges posed by head gesture data, such as the continuous nature of movements and

the subtle distinctions between different gesture types. This research seeks to address

this gap by investigating the effectiveness of semi-supervised learning techniques in

the context of head gesture recognition by utilising the time series data obtained from

The University of Edinburgh’s speaker personality and MoCap dataset (Haag and

Shimodaira, 2015).

1.2 Research Objectives and Hypothesis

The aim of this research is to investigate and develop semi-supervised learning tech-

niques for automatic classification of human head gestures using motion capture data.

This study seeks to address the challenges of limited labelled data in head gesture

recognition while maintaining high classification accuracy. The specific objectives of

this research are:

1. To develop and implement semi-supervised learning models, specifically Self-

Training, Mean-Teacher and a novel ensemble Self-Training approach, for contin-

uous head gesture classification using time series data obtained from the MoCap

dataset.

2. To evaluate and compare the performance of the proposed semi-supervised learn-

ing techniques against each other and with supervised learning approaches.

3. To evaluate the performance of the semi-supervised models for varied proportions

of labelled and unlabelled data.

4. To investigate the variation in model performance across different types of head

gestures and identify any gesture-specific challenges or patterns.

5. To analyse the generalisability of the model by implementing a speaker-based

cross validation strategy
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The primary hypothesis of this research is that utilising unlabelled data through the

proposed semi-supervised learning techniques will lead to better performance in head

gesture classification compared to models that use only a limited amount of labelled

data. Furthermore, it is hypothesised that the performance of semi-supervised models

will approach that of fully supervised models trained on completely labelled datasets,

while significantly reducing the required annotation effort.

1.3 Contributions

This research makes significant contributions to the field of head gesture recognition,

focusing on the application of semi-supervised learning techniques. A key contribution

is the development of semi-supervised learning pipelines specifically tailored for head

gesture classification, including a unique ensemble semi-supervised learning approach.

The research also uses a generative technique for data augmentation instead of traditional

methods like adding noise that was used in previous works. Experiments involving

different proportions of labelled data is done to provide insights related to model

performance and annotation costs. Through detailed gesture-wise performance analysis,

the study identifies and highlights gesture-specific challenges, contributing to a deeper

understanding of head gesture recognition. Collectively, these contributions offer

both theoretical insights and practical methodologies, paving the way for effective

development of gesture recognition systems in the future.

1.4 Thesis Structure

This dissertation is structured as follows. Chapter 2 reviews relevant literature related

to the research. Chapter 3 describes the MoCap dataset, including data representation,

gesture types, and annotation process. Chapter 4 details the methodology, covering

data analysis, preprocessing, augmentation techniques, baseline model development,

and proposed semi-supervised learning approaches. Chapter 5 presents and discusses

the results, comparing baseline and semi-supervised model performances, analysing

different proportions of labelled data, analysing gesture-wise outcomes, and evaluat-

ing generalisation through speaker-independent cross-validation. Finally, Chapter 6

concludes the dissertation, summarising key findings and suggesting future research

directions.



Chapter 2

Background and Related Work

2.1 Head Gestures in Human-Computer Interaction

Head gestures are a sophisticated form of non-verbal communication that convey

attention, emotions, and cognitive processes, making them valuable in HCI, especially

for users with limited mobility or in hands-free scenarios (Wagner et al., 2014). Unlike

hand and body gestures, head gestures require minimal physical effort, benefiting

individuals with severe motor impairments by enabling communication through assistive

devices, thereby enhancing their independence (Terven et al., 2014).

The applications of head gesture recognition in HCI are diverse and impactful. In

virtual and augmented reality, head gestures facilitate interaction with digital objects,

such as using a head tilt to rotate a 3D model or a nod to confirm a selection (Zhao and

Allison, 2017). In automotive safety, these systems monitor driver behaviour, detecting

fatigue or distraction through head movements to trigger alerts (Choi and Kim, 2014).

These applications show how head gesture recognition contributes to more intuitive,

safer, and engaging interactive systems across various domains.

However, implementing robust head gesture recognition systems is challenging due

to its subtle and complex nature. Moreover, there are variations in how individuals

perform gestures in terms of duration and intensity. Nevertheless, advancements in

machine learning has made the development of robust head gesture recognition systems

more viable.
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Chapter 2. Background and Related Work 5

2.2 Machine Learning Approaches for Gesture Recogni-

tion

The evolution of machine learning techniques has advanced the field of gesture recogni-

tion, providing improved performance and generalisation in comparison to traditional

methods. Early machine learning approaches often employed Hidden Markov Models

(HMMs) (Rabiner, 1986), which were well-suited to modelling temporal sequences.

However, their performance was limited by reliance on hand-crafted features and

inability to model long-range dependencies effectively.

Gesture recognition tasks that use time series data such as motion capture data

from sensors has been improved with deep learning. Recurrent Neural Networks

(RNNs), especially Long Short-Term Memory (LSTM) networks, have proven highly

effective for capturing temporal dynamics in sequential data without the need for hand-

crafted features (Hochreiter and Schmidhuber, 1997). LSTMs can learn long-range

dependencies, making them well-suited to modelling complex temporal patterns in

gesture sequences. One-dimensional Convolutional Neural Networks (1D CNNs) have

also shown promise in time series gesture recognition. Unlike their 2D counterparts

used in image recognition, 1D CNNs are designed to process sequential data directly.

They excel at extracting local patterns and features from time series data, making them

effective for gesture recognition tasks (Yang et al., 2019b).

In previous research related to gesture recognition, LSTMs have achieved an ac-

curacy of 87% on signal data (Toro-Ossaba et al., 2022). Similarly, 1D CNNs have

achieved an accuracy of 96% for hand gesture classification using EEG signals (Miah

et al., 2022). When it comes to performance for head gesture classification using the

university MoCap dataset, previous students have achieved accuracies of 52.8% and

60.4% for 1D CNN and Bi-LSTM models respectively (Chen, 2023). Despite these ad-

vancements, the need for large labelled datasets remains a bottleneck and researchers are

exploring the viability of semi-supervised learning approaches to solve this challenge.

2.3 Semi-Supervised Learning in Time Series Classifi-

cation

Semi-supervised learning (SSL) techniques that leverage unlabelled data to improve

model performance are particularly relevant for time series classification tasks where
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labelled data is scarce. Methods such as self-training, co-training, and mean-teacher

models have proven effective in several domains.

Self-training has emerged as an effective semi-supervised learning technique for

time series classification tasks like gesture recognition, where labelled data is often

limited. For a cross-user gesture recognition task based on surface electromyography

(sEMG), an iterative self-training method was used (Wang et al., 2023). This method

iteratively trains on labelled data and assigns pseudo-labels to unlabelled data based

on confidence level, updating the pseudo-labels after each iteration. To address class

imbalance, they employed oversampling of minority classes. Experiments on multiple

sEMG datasets demonstrated that self-training outperformed baseline and state-of-the-

art methods, achieving over 25% improvement versus baselines and over 5% versus

supervised domain adaptation approaches.

Co-training is another method that has shown promise for hand posture recognition

tasks with limited labelled data. This method leverages two different feature representa-

tions to train separate classifiers that improve each other iteratively using unlabelled

data (Fang et al., 2008). The method trains initial classifiers on a small labelled dataset,

then has each classifier confidently label unlabelled examples to augment the other

classifier’s training set. Experiments on the Triesch hand posture dataset demonstrated

the co-training approach improved accuracy by 5-9% for challenging postures compared

to single classifiers, while using much less labelled data than previous approaches. The

classifier achieved 90.1% average accuracy, outperforming prior methods.

Mean-teacher model is an interesting method that has shown promise for semi-

supervised learning in hand gesture recognition tasks using radar data (Shi et al., 2024).

It comprises of a student and teacher model. The student model is trained directly on

labelled data, while the teacher model is updated using an exponential moving average

(EMA) of the student model weights. This allows the teacher to produce more stable

pseudo-labels for unlabelled data. The model enforces consistency between teacher

and student predictions on augmented unlabelled samples, helping mitigate effects of

individual differences and noise. Experiments on two public datasets demonstrated

the effectiveness of this approach, achieving over 99% accuracy on both the Soli and

Air-Writing datasets. The mean-teacher model outperformed fully-supervised baselines

while leveraging unlabelled data.

The above-mentioned strategies used for gesture recognition provide a solid founda-

tion for applying semi-supervised learning techniques specifically to the unexplored

domain of head gestures that are subtle and complex in nature.



Chapter 3

Dataset

3.1 MoCap Dataset Overview

This study utilises the University of Edinburgh Speaker Personality and MoCap Dataset

(Haag and Shimodaira, 2015), a comprehensive collection of motion capture data, video

recordings, and audio files designed for research in human-computer interaction and

gesture recognition. The dataset comprises recordings from 13 native English speakers

(7 male, 6 female) engaged in conversational interactions.

A unique aspect of this dataset is its incorporation of personality variation. All 13

speakers initially scored high on extroversion in the Big Five personality tests. However,

during the recordings, each speaker was instructed to exhibit three distinct personality

types across different conversations: introverted, extroverted, and neutral. The dataset

includes a total of 130 video recordings, with each conversation lasting approximately

5 minutes. The MoCap dataset contains two primary components of Motion capture

data (ROV files) and Gesture annotations (ELAN files) essential for the research. In

addition to these primary components, the dataset includes synchronised video and

audio recordings. The video recordings are crucial for the manual annotation process,

allowing annotators to visually identify and label head gestures. The audio recordings

are useful in calculating the time lag between the videos and motion capture data by

noting the time of specific ”beep” sounds from these files.

3.2 Motion Capture Data Representation

The motion capture data is recorded using the Natural Point OptiTrack system (Natural

Point Inc., 2022), which captures head movements with high precision. This data

7



Chapter 3. Dataset 8

is stored in Rotation Vector (ROV) format, representing the head’s orientation and

movement in three-dimensional space. The ROV format encodes head motion using

six degrees of freedom (6 DoF), which represent the independent ways an object can

move in three-dimensional space. These six parameters are divided into the categories

of rotation and translation.

The rotation parameters, denoted as RVx, RVy, and RVz, represent a rotation vector

in three-dimensional Euclidean space. This rotation vector combines both the axis of

rotation and the angle of rotation into a single entity. The direction of the vector (RVx,

RVy, RVz) indicates the axis around which the rotation occurs, while the magnitude of

the vector represents the angle of rotation in radians. This representation, known as

the axis-angle representation or Euler vector, provides a concise way to describe 3D

rotations (Wikipedia, 2024). The translation parameters, denoted as Tx, Ty, and Tz,

represent movement along the x, y, and z axes respectively.

These six parameters provide a comprehensive description of head position and

orientation at each time point. The data is sampled at a rate of 100 Hz using V100:R2

cameras, resulting in 100 frames per second, with each frame captured every 10ms.

Table 3.1 shows a sample excerpt from a ROV file, which has been converted from the

original .rov format to a .csv file by previous students (Yang, 2022). It is important

to note that the rotational vector data was present in a normalised format to address

the issue of different speakers being aligned differently during the recording sessions,

enhancing the robustness and generalisability of the gesture recognition models. Fur-

thermore, the rotational vector data has been time aligned with the video annotation

data by previous students (Chen, 2023).

Frame RVx RVy RVz Tx Ty Tz

1 0.000476352 -0.000507661 0.001231 0.000685281 0.000496295 -8.88989e-05

2 0.000457434 -0.00038713 0.00128097 0.00107964 0.000750685 -0.000166619

3 0.000608655 -0.000576298 0.00230161 0.00156778 0.00102971 -0.000123638

Table 3.1: Sample Excerpt from a ROV File

3.3 Gesture Annotations Data Representation

The head gestures in the dataset are manually annotated using the ELAN (EUDICO

Linguistic Annotator) software, which is a professional tool designed for the creation

of complex annotations on video and audio resources. (Wittenburg et al., 2006). The
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ELAN files contain the annotation information done by previous students who worked

on this research (Wang, 2023). They have selected 8 out of the 12 speakers available

and annotated 3 recordings for each of them. The speakers are Adam, Brian, Beve,

Dani, Esmo, Ella, Paul, and Sophie. Table 3.2 presents a sample of the data contained

in an ELAN annotation file. The type column mentions the gesture type. The speaking

column represents whether the speaker was speaking(1) or not(0) during that period.

Start and end time represent the starting and ending period of the gesture in milliseconds

and the duration column is just the difference between the start and end times.

Type Speaking Start Time (ms) End Time (ms) Duration (ms)

nd 1 22040 23110 1070

ti 1 36040 37990 1950

nd 0 42070 43590 1520

Table 3.2: Sample Data From an ELAN Annotation File

The dataset includes annotations for seven distinct types of head gestures, each

representing a common non-verbal communication cue. Table 3.3 provides an overview

of these gesture types:

Label Gesture Type Description

nd Nod Vertical up-down movement
sh Shake Horizontal side-to-side movement
ti Tilt Inclining the head to either side
fu Face Up Upward movement of the face
fd Face Down Downward movement of the face
t Turn Rotating the head left or right

mnd Multiple Nods Series of rapid vertical movements

Table 3.3: Head Gesture Types and Their Descriptions

While the MoCap dataset provides a rich source of data for head gesture recognition,

it poses some challenges. Gestures take up only a small proportion of each of the

recordings and the addition of no gesture class to enable continuous classification will

lead to a large imbalance in the dataset. Also, there will be inter-annotator variability

present in the data as different annotators perceive gestures differently and label them

accordingly. Inter-subject variability can also be present as different subjects perform

gestures with different intensities and it can go unnoticed by the annotator. These

shortcoming have to be taken into account when developing the classification system.



Chapter 4

Methodology

4.1 Data Analysis

4.1.1 Gesture Distribution

The analysis of gesture label distribution across the annotated dataset provides insights

into the frequency and prevalence of different head gestures in natural conversations.

Figure 4.1 illustrates the frequency of each gesture type across the 24 annotated ELAN

data files.

Figure 4.1: Gesture Distributions Across All Annotated Files

The label distribution reveals several key observations. Nodding (nd) and multiple

nodding (mnd) gestures collectively represent the most frequent head movements in

the dataset, aligning with their common use as non-verbal cues for agreement or ac-

knowledgement in conversations. Head shaking (sh) also shows a substantial frequency,

indicating its importance as a communicative gesture often used for disagreement or

10
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negation. Gestures labelled as tilting (ti) and turning (t) appear with moderate frequency,

which may be attributed to natural head movements during conversations that don’t

necessarily convey specific intentions. These could represent moments when a speaker

is contemplating or briefly disengaged. Interestingly, face down (fd) and face up (fu)

gestures are the least frequent in the dataset. This low frequency might be due to

the nature of online communication, where participants tend to maintain eye contact,

limiting vertical head movements. There is also the possibility of annotators classifying

fu and fd gestures as nd as there is a significant overlap amongst these gestures.

The uneven distribution of gesture labels presents challenges for the classification

task. The significant disparity between the most common (nd, mnd) and least common

(fu, fd) gestures necessitates careful consideration in model development. To address

this imbalance, techniques such as data augmentation or sampling techniques have to be

implemented. These strategies will help prevent bias towards over-represented classes

and ensure fair learning across all gesture types.

4.1.2 Feature Correlation Analysis

A correlation analysis was conducted on the six primary motion parameters: Rx, Ry, Rz

(rotational vectors), and Tx, Ty, Tz (translational parameters). The analysis employed

the Pearson correlation coefficient (Cohen et al., 2009), which measures the linear

correlation between two variables. For variables X and Y (the features for which

correlation is computed), the Pearson correlation coefficient r is computed as:

r =
∑

n
i=1(Xi − X̄)(Yi − Ȳ )√

∑
n
i=1(Xi − X̄)2

√
∑

n
i=1(Yi − Ȳ )2

(4.1)

where X̄ and Ȳ are the means of X and Y respectively, and n is the number of observa-

tions. Figure 4.2 presents the averaged correlation matrix derived from all data files.

The analysis reveals strong correlations between rotational and translational vectors:

• Strong positive correlation (0.86) between Rz and Tx

• High positive correlation (0.78) between Rz and Ty

• Strong negative correlation (-0.77) between Rx and Tz

These findings confirm the redundancy of translational vectors as mentioned in the

previous students’ papers (Lyu, 2023). Hence, the translational data can be omitted

during model training without significant loss of information. This dimensionality
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Figure 4.2: Correlation Matrix of Motion Features

reduction can play a significant role in reducing computational requirements during

modelling.

4.1.3 Temporal Characteristic of Gestures

An analysis of the temporal characteristics of gestures reveals variations in duration

across different annotations. Table 4.1 presents the average duration in frames for each

gesture type, where each frame represents 10 milliseconds of motion capture data. The

data indicates variation in the average duration of different gesture types:

Gesture Type Average Duration (frames)

fd 197.53

fu 137.48

mnd 198.27

nd 95.62

sh 156.88

t 167.30

ti 116.94

Table 4.1: Gesture-Wise Average Duration

• Multiple nodding (mnd) and face down (fd) gestures exhibit the longest average
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durations at 198.27 and 197.53 frames respectively.

• Single nods (nd) are typically the briefest, averaging 95.62 frames.

• Head shaking (sh) and turning (t) gestures show intermediate durations of 156.88

and 167.30 frames respectively.

• Tilting (ti) and face up (fu) gestures are relatively short, averaging 116.94 and

137.48 frames.

A key insight from this analysis is that the average gesture duration across the

entire dataset is approximately 150 frames, or 1.5 seconds. This finding has important

implications for the modelling process. Using 150 frames as the input size during

modelling offers a balanced approach that can capture the majority of gesture patterns

while remaining computationally practical.

4.1.4 Gesture-Specific Motion Patterns

Analysis of the rotation vector time series data revealed distinctive patterns associated

with each gesture type, as illustrated in Figure 4.3. The flat lines present in the plots

indicate padding which will be discussed in more detail in the data preprocessing section.

Nodding and multiple nodding gestures have very similar patterns for the rotational

vectors. Face up and face down gestures also displayed significant variations in RVz,

similar to the nodding gestures. The provided plots are just one sample and several

such plots were analysed during the actual research to identify distinctive patterns. The

patterns were most prevalent for multiple nodding, nodding, face down, and no gesture

categories. The presence of distinctive patterns proved the potential for the rotational

vectors to be used as discriminative features for classification.

4.2 Data Preprocessing

4.2.1 Gesture Label Consolidation

An initial analysis of the rotational vector patterns revealed significant similarities

between the ’nodding’ and ’multiple nodding’ gestures. Moreover, these gestures

convey similar non-verbal cues. Therefore, to simplify the classification task and

improve class balance, the ’multiple nodding’ gesture was reclassified as ’nodding’.

This merging also helped to increase the total number of ’nodding’ samples, partially
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Figure 4.3: Time Series Plots of RVx, RVy, and RVz for Different Gesture Types

addressing the class imbalance issue caused by the presence of a large number of

non-gesture data.

4.2.2 Non-Gesture Annotation

The original ELAN annotation files only contained labels for observed gestures. How-

ever, for continuous classification, it is essential to identify periods of non-gesture. To

accomplish this, all time periods in the ELAN files without specific gesture annotations

were labelled as ’no’ (no gesture).

4.2.3 Data Merging and Feature Selection

The rotational vector (ROV) data from the sensor files were merged with the annotated

ELAN files based on frame numbers to create the final dataset required for classifica-

tion. During this process, certain columns were excluded to optimise the dataset for

modelling:

• The ’speaking’ column, representing whether the speaker was talking or not, was

removed due to the lack of speaking information for non-gesture data. Moreover,

it does not seem to play a role in influencing the type of gesture as each gesture

has a mix of annotations where the speaker is talking and silent.

• Translational vectors were excluded due to their high correlation with rotational

vectors as seen earlier, reducing data redundancy.
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4.2.4 Data Scaling

To ensure consistent feature ranges and improve model convergence, each data file was

scaled to a range between -1 and 1. This transformation is defined by the following

equation:

Xscaled =
X −Xmin

Xmax −Xmin
· (max−min)+min (4.2)

where:

• X is the original value

• Xmin and Xmax are the minimum and maximum values of the feature in the dataset

• min and max are the desired range of scaled values (-1 and 1 in our case)

For this project, the MinMaxScaler implementation from scikit-learn was utilized

(Pedregosa et al., 2011a), which provides an efficient and reliable scaling method.

Importantly, scaling was applied to entire CSV files rather than smaller chunks of

data that will be passed as model input. This approach was chosen to prevent the

amplification of noise values that could potentially affect classification accuracy.

4.2.5 Dataset Splitting

A speaker-independent split strategy was employed to maximize the model’s generaliz-

ability. This approach ensures that the test set contains entirely new speakers, whose

data the model has not encountered during training. This technique will help provide

insights into how capable the model is in recognising gestures even when factors such

as subject, duration and style of gestures vary. The split was as follows:

• Training set: Adam, Beve, Ella, Dani

• Validation set: Esmo, Brian

• Test set: Paul, Sophie

However, it is important to note that using only two speakers for the test set is not

very representative of overall performance, as it may not capture the full variability

across different speakers. To overcome this limitation, a cross-validation approach was

implemented for the best performing model, which will be discussed in detail in the

evaluation framework section.
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For creating the unlabelled dataset, 21 files that have been annotated by a recent

researcher who worked on the project will be used by removing the labels (Chen, 2023).

By using annotated files as the unlabelled dataset, it will be possible to compare the

performance of the semi-supervised learning approach with a fully supervised model.

4.2.6 Sliding Window Transformation

To prepare the data for sequence-based classification, a sliding window approach was

implemented, with different strategies for training and testing/validation sets. The

primary reason for splitting the data into chunks is that the context of an entire recording

is not required to identify a gesture for a specific portion of the recording. Moreover,

it would be computationally expensive to use the entire data as context each time for

frame-level classification.

The window size was set to 150 frames, which corresponds to approximately 1.5

seconds of data. This duration was chosen based on the data analysis section, which

revealed that the average duration of gestures in the dataset is around 1.5 seconds. By

using this window size, it is ensured that most gestures can be captured entirely within

a single window, allowing the model to learn complete gesture patterns.

For the training set, chunks of data belonging to the same gesture were extracted. If

the number of frames spanning a gesture exceeded 150, it was further split into multiple

chunks of size 150. Gestures with a duration less than 150 frames were padded with

zeros at the end. This approach ensures that each training sample represents a complete

gesture, improving the model’s ability to learn gesture-specific patterns.

For testing and validation sets, a direct window slicing method was used with

the chosen window size of 150 and a stride of 10. The reason for using sliding

window instead of gesture-wise chunks is that in a real-life scenario there would be

no information regarding the gestures and chunks cannot be created accordingly. A

stride of 10 was used instead of shifting the window by 1 each time to ensure that the

new dataset does not grow exponentially. This leads to the loss of only 0.1 seconds of

information and is a reasonable adjustment considering the computational requirements

of using a stride of 1. The label for each window was assigned based on the majority

label within the 150 frames.
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4.2.7 One-Hot Encoding

Deep learning models typically require numerical inputs, necessitating the conversion

of categorical labels into a numerical format. For the head gesture classification task,

one-hot encoding was employed, a common technique for representing categorical

variables. One-hot encoding creates a binary vector for each category, where the length

of the vector equals the number of unique categories (Pedregosa et al., 2011b). Each

category is represented by a vector with a ’1’ in the position corresponding to that

category and ’0’s elsewhere. This approach avoids introducing ordinal relationships

between categories that don’t inherently exist. For this dataset, labels were one-hot

encoded based on the following order:

[’no’, ’nd’, ’fu’, ’fd’, ’sh’, ’ti’, ’t’]

If the label of a data is ’nd’, it will be encoded as [0,1,0,0,0,0,0] for modelling

purposes. The main purpose of one-hot encoding the labels is to create models that can

learn and output probabilities for each gesture category independently, which can be

useful during the semi-supervised learning process for determining the confidence level

of a model prediction.

4.3 Data Augmentation

Initial data preparation, which involved chunking continuous motion capture recordings

into fixed-length segments, significantly increased the overall number of samples and

amplified the existing class imbalance issue. The majority of chunks were labelled

as ’no’ (non-gesture), creating a heavily skewed distribution that posed challenges for

model training and generalisation. Figure 4.4 illustrates the severe class imbalance in

the dataset. To address this issue, several techniques commonly used for multivariate

time-series data were initially explored. These included Gaussian noise injection (Wen

et al., 2020), which adds random noise to the original motion data; time warping (Iwana

and Uchida, 2021), which simulates variations in gesture speed; and Synthetic Minority

Over-sampling Technique (SMOTE) (Chawla et al., 2002), which creates synthetic

examples of minority classes. While these methods showed promise, a generative

augmentation technique based on a Variational Autoencoder (VAE) was finally adopted

due to its ability to generate realistic and diverse samples by learning the patterns from

the data (Iglesias et al., 2023).
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Figure 4.4: Distribution of Gesture Classes after Initial Data Preparation

4.3.1 Variational Autoencoder-Based Augmentation

Variational Autoencoders (VAEs) offer a powerful framework for data augmentation,

particularly in the context of time series data like head gestures. VAEs are generative

models that learn to encode input data into a lower-dimensional latent space and then

reconstruct the data from this latent representation (Kingma, 2013). The key innovation

of VAEs lies in their ability to learn a continuous, probabilistic latent space, which

allows for the generation of new, diverse samples.

The underlying principle of VAEs is rooted in variational inference. The encoder

network learns to map input data to a probability distribution (typically Gaussian) in the

latent space, rather than to a fixed point. This allows the model to capture uncertainty

and variability in the input data. It also enables smooth interpolation and sampling in

the latent space, leading to the generation of new, plausible data points.

For time series data like head gestures, this probabilistic approach is particularly

valuable. Head movements can vary in speed, amplitude, and duration, even for the

same gesture type. The Gaussian latent space of a VAE can capture these variations,

allowing for the generation of diverse yet realistic synthetic samples (Connor et al.,

2021).

In the context of head gesture augmentation, a VAE can learn to encode the essential

characteristics of each gesture type into the latent space. When sampling from this

space to generate new data, the decoder can produce synthetic gesture sequences that

maintain the core properties of the original gestures while introducing natural variations

in timing and amplitude.



Chapter 4. Methodology 19

To implement this approach, The ”vae conv5” model architecture from the TSGM

(Time Series Generative Models) library was used for the head gesture classification

task (Nikitin, 2022). This architecture employs convolutional layers in both the encoder

and decoder, which are particularly effective at capturing local temporal patterns in

time series data (Yao et al., 2019). Figure 4.5 shows a real data and synthetic sample

generated by VAE of the nodding gesture. It is observed that even in the synthetic

data the RVz vector is the most pronounced and it has similar patterns to that of a real

nodding gesture data.

Figure 4.5: Original and Synthetic Data of Nodding Gesture

4.3.2 Balancing Strategy

The final balancing strategy proposed for the training data involved a combination of

undersampling the majority class and oversampling the minority classes:

1. Undersampling: The ”no” gesture class was randomly undersampled to 30% of

its original size.

2. Oversampling: All gesture classes were oversampled using the VAE to match the

new size of the undersampled majority class.

This approach resulted in a completely balanced dataset, ensuring equal representation of

all classes during model training. The use of VAE-generated samples for oversampling,

as opposed to simpler techniques like adding Gaussian noise, was motivated by the

VAE’s ability to capture and generate complex temporal patterns inherent in head

gesture data (Cai et al., 2023).
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4.4 Baseline Model Development

Establishing a robust baseline model is essential for evaluating the effectiveness of

semi-supervised learning approaches in head gesture classification. This section details

the development process of the baseline models, exploring both image-based techniques

and other deep learning approaches suitable for sequential data.

4.4.1 Time Series to Image Conversion

Converting time series data to images is an interesting approach that has been adopted

recently in several domains such as Speech Recognition and it has played a role

in improving classification performance (Kaewrakmuk and Srinonchat, 2024). This

approach offers several potential advantages:

1. Variable-length inputs: Image conversion allows for flexibility in input sizes of

the time series data that will be transformed, potentially capturing the optimal

representation for each gesture type.

2. Utilisation of pre-trained models: State-of-the-art convolutional neural networks

(CNNs) pre-trained on large image datasets can be leveraged through transfer

learning.

Gramian Angular Difference Field (GADF) (Yang et al., 2019b), Recurrence Plots

(RP) (Jiang et al., 2022), and Markov Transition Field (MTF) (Yang et al., 2019a) are the

three main transformation techniques explored to convert the time series data to images.

GADF represents temporal correlations as a polar coordinate image, RP highlights

recurring patterns in the data, and MTF visualises the likelihood of transitions between

different value ranges in the time series.

For each gesture segment, these transformations are applied to the rotational vector

data (RVx, RVy, RVz), resulting in square matrices that are treated as images. The

transformations are applid to each of the features separately and the resulting images

are stacked together as different channels. These images are then resized to 224x224

pixels to match the input requirements of pre-trained CNN architectures such as ResNet

(He et al., 2015) and Vision Transformer (Dosovitskiy et al., 2021). The images after

transformation are shown in Figure 4.6 for the nodding gesture.

Transfer learning was employed by fine-tuning these pre-trained models on the

gesture dataset. Despite the success of this approach in other time series classification
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(a) GADF (b) RP (c) MTF

Figure 4.6: Transformed Images for Nodding Gesture

tasks, significant challenges were encountered in achieving satisfactory performance for

head gesture classification. The subtle nature of head movements and the complexity

of the motion capture data likely contributed to difficulties in extracting meaningful

features from the image representations. The variations amongst different images for

different gestures was not substantial and the blurriness of the images could also have

played a role in poor performance. It has also been observed in other researches that

these techniques are not universally applicable to all domains and require modifications

based on domain expertise and experimentation with different parameters (Li et al.,

2024).

4.4.2 Neural Networks for Sequential Data

Given the sequential nature of the head gesture data, neural networks capable of handling

time series data were explored as a more direct approach. Moreover, previous students

who have worked on this project have achieved their best results using LSTMs and

CNNs (Li, 2022).

4.4.2.1 1D Convolutional Neural Network (1D-CNN)

One-dimensional CNNs effectively capture local patterns and hierarchical features in

time series data (Kiranyaz et al., 2021). A 1D-CNN model was developed to process

the head gesture time series. The architecture includes: an input layer accepting 3D

rotational vector data (150, 3); four 1D convolutional layers (filter sizes: 128, 128, 64,

128; kernel size: 4; ReLU activation); max pooling layers (pool size and stride: 2); a

flatten layer; a dropout layer (rate: 0.5); and an output layer (dense, softmax activation).

This design captures temporal patterns while mitigating overfitting through dropout
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regularisation.

4.4.2.2 Bidirectional Long Short-Term Memory (Bi-LSTM)

LSTM networks excel at capturing long-term dependencies in sequential data (Hochre-

iter and Schmidhuber, 1997). A bidirectional LSTM (Bi-LSTM) was implemented to

process time series data in both directions, capturing context from past and future time

steps (Graves and Schmidhuber, 2005). The architecture consists of: an input layer for

3D rotational vector data (Rx, Ry, Rz); three stacked Bi-LSTM layers (300, 200, 100

units; recurrent dropout: 0.5); a dense layer (100 units, ReLU activation); a dropout

layer (rate: 0.5); and an output layer (dense, softmax activation).

Both models were trained using categorical cross-entropy loss and the Adam opti-

miser. These baseline models provide a foundation for comparison with semi-supervised

learning approaches explored later. The challenges in image-based approaches highlight

the task’s complexity and the importance of selecting appropriate architectures for time

series data.

4.5 Proposed Semi-Supervised Learning Approaches

In this research, three semi-supervised learning approaches for head gesture classifi-

cation are explored. These methods contribute to the utilisation of a large amount of

unlabelled head motion data to enhance the generalisation and accuracy of the deep

learning models. The reason for choosing the approaches mentioned below is the

ability to use a baseline model that works well on head gesture data instead of using

semi-supervised techniques based on architectures that might not work well with head

gestures that are subtle in nature.

4.5.1 Self-Training Pipeline

Self-training is an iterative semi-supervised learning technique that progressively labels

unlabelled data using a model’s own predictions (Amini et al., 2024). The process

begins with training a model on the available labelled data. This model is then used to

make predictions on the unlabelled data. The most confident predictions, typically those

exceeding a predefined threshold, are added to the labelled dataset as ”pseudo-labels”.

The model is then retrained on this expanded dataset, and the process repeats for several

iterations until the unlabelled dataset is exhausted or the model performance stops
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improving. The best model in terms of F1-score is then used to make predictions on the

test set.

Figure 4.7: Self-Training Pipeline for Head Gesture Classification

The self-training pipeline implemented for head gesture classification is depicted in

Figure 4.7. The Bidirectional LSTM (Bi-LSTM) and 1D CNN architectures are used as

the base model due to better performance in comparison to the other architectures that

were explored.

To thoroughly evaluate the self-training approach, several experiments have been

designed:

• Threshold Sensitivity: The confidence threshold will be varied to understand its

impact on pseudo-labelling accuracy and overall model performance. This exper-

iment aims to find the optimal balance between incorporating more unlabelled

data and maintaining high-quality pseudo-labels. It is expected that a medium

threshold value that is not too flexible or restrictive will be the best option.
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• Labelled Data Proportion: This research will investigate how the amount of

initial labelled data affects the performance of self-training. This experiment

will help understand the minimum amount of labelled data required for effective

self-training in head gesture classification. It is expected that labelling at least

half of the data and training it would give comparable performance to that of a

fully supervised model.

4.5.2 Novel Ensemble Self-Training Pipeline

To further enhance the robustness and performance of the semi-supervised learning ap-

proach, a novel ensemble self-training pipeline was developed. This method combines

the strengths of two different model architectures, a Bi-LSTM and a 1D Convolutional

Neural Network (1D-CNN), inspired by the co-training semi-supervised learning tech-

nique (Blum and Mitchell, 1998). The distinctive feature in this ensemble approach

Figure 4.8: Ensemble Self-Training Pipeline for Head Gesture Classification

is the use of consensus between models to generate more reliable pseudo-labels. The
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pipeline operates as shown in Figure 4.8. The 1D-CNN model excels at capturing local

patterns and features in the time series data (Ige and Sibiya, 2024). In contrast, Bi-

LSTMs process the entire sequence bidirectionally, capturing long-range dependencies

and maintaining temporal context. By requiring agreement between these architecturally

distinct models, the risk of propagating errors through pseudo-labelling is reduced.

For the ensemble self-training pipeline, the following experiments and analysis will

be conducted:

• Labelled Data Proportion: Similar to the self-training pipeline, the model will

be tested on different proportions of labelled data.

• Architecture Comparison: The performance of the proposed ensemble approach

will be compared against each individual model (Bi-LSTM and 1D-CNN) to

quantify the benefits of model combination in the context of semi-supervised

learning for head gesture classification. It is expected that both the models will

be distinct in terms of the type of predictions they make.

4.5.3 Mean Teacher Pipeline

The Mean Teacher method is another sophisticated approach to semi-supervised learning

(Tarvainen and Valpola, 2018). This approach uses two models, a student model and

a teacher model that are clones of each other in terms of the model architecture. It is

the student model that is trained on all the labelled and unlabelled data and the teacher

model is used for making predictions on the test set. The key idea is that the teacher

model’s weights are an exponential moving average of the student model’s weights.

This can be expressed mathematically as:

θ
′
t = αθ

′
t−1 +(1−α)θt (4.3)

where θ′t represents the teacher model’s weights at time step t, θt represents the student

model’s weights at time step t, and α is a smoothing coefficient that controls the update

rate. It has been observed in studies that using the average model weights instead of the

final weights leads to a better performing model (Polyak and Juditsky, 1992). The Mean

Teacher pipeline for head gesture classification using Bi-LSTM model architecture

is structured as shown in Figure 4.9. The student model is updated by minimising

an overall cost function that combines the classification loss on labelled data and a

consistency regularisation term. This overall cost function is defined as:

O(θ) = λC(θ)+(1−λ)J(θ) (4.4)
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Figure 4.9: Mean Teacher Pipeline for Head Gesture Classification

where O(θ) is the overall cost function, C(θ) represents the classification loss on

labelled data, J(θ) is the consistency regularisation term, and λ is a weighting parameter

that balances the two terms.

The classification loss C(θ) ensures that the model performs well on the labelled

examples, while the consistency regularisation term J(θ) encourages consistent predic-

tions on unlabelled data, leveraging the teacher model’s pseudo-labels. By minimising

the cost function, the student model learns to make accurate predictions on labelled

data while benefiting from the additional information provided by unlabelled examples,

leading to the creation of a robust model. For the Mean Teacher approach, the model

will be tested on different proportions of labelled data similar to the other pipelines.
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4.6 Evaluation Framework

4.6.1 Performance Metrics

Two main metrics will be considered to evaluate the model performance:

• Accuracy: This metric provides an overall measure of the model’s correctness

across all classes. It is calculated as:

Accuracy =
Number o f correct predictions
Total number o f predictions

(4.5)

While accuracy offers a quick overview of model performance, it can be mislead-

ing for imbalanced datasets (Powers, 2020). Therefore, it is complemented with

more nuanced metrics.

• F1-score: The F1-score provides a balanced measure of precision and recall,

making it particularly useful for multi-class classification tasks with potential

class imbalances (Sasaki et al., 2007). It is calculated as the harmonic mean of

precision and recall:

F1 = 2× Precision×Recall
Precision+Recall

(4.6)

Where:

Precision =
True Positives

True Positives+False Positives
(4.7)

Recall =
True Positives

True Positives+False Negatives
(4.8)

Macro F1-score is used to analyse the performance of the classifiers as it ensure

that all gestures are treated equally without being biased based on the number of

samples of each gesture (Opitz and Burst, 2021).

Apart from these above mentioned metrics, the best model will contain metrics such

as Cohen’s Kappa (McHugh, 2012) and Confusion Matrix (Heydarian et al., 2022) for a

more in-depth analysis of performance.
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4.6.2 Speaker-Independent Cross-Validation

To rigorously evaluate the models’ ability to generalise across different speakers, a

speaker-independent cross-validation strategy. This approach is crucial given the inher-

ent variability in head gestures across individuals. An important point to note is that

this approach is done only for the best semi-supervised model and a fully supervised

model due to the large computational requirements.

The dataset comprises of recordings from 8 distinct speakers. For each fold of the

cross-validation:

1. Data from one speaker was held out as the test set.

2. Data from the remaining 7 speakers was used for training and validation.

3. This process was repeated 8 times, with each speaker serving as the test set exactly

once.

This strategy ensures that during testing, the model encounters head gestures from a

speaker it has never seen during training, providing a stringent test of generalisation.

Finally, the average performance across all 8 folds will be reported. It is expected that

the average results will be comparable to the results observed for previous experiments.
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Results and Discussion

5.1 Baseline Model Performance

To establish a baseline for head gesture classification performance, several model

architectures were evaluated. Table 5.1 presents the test accuracy and macro F1 scores

for Bidirectional Long Short-Term Memory (Bi-LSTM), 1D Convolutional Neural

Network (1D-CNN), and three image transformation techniques: Gramian Angular

Difference Field (GADF), Markov Transition Field (MTF), and Recurrence Plot (RP),

used with a ResNet model (He et al., 2015) by applying transfer learning.

Model Accuracy (%) Macro F1 Score

Bi-LSTM 58.02 0.39

1D-CNN 65.15 0.50

GADF 53.02 0.21

MTF 39.19 0.22

RP 62.00 0.26

Table 5.1: Performance Comparison of Baseline Models on Test Set

The results indicate that the 1D-CNN model achieved the highest performance, with

an accuracy of 65.15% and a macro F1 score of 0.50 on the test set. This was followed

by the Bi-LSTM model, which demonstrated moderate performance with an accuracy

of 58.02% and a macro F1 score of 0.39. These results align with previous findings in

time series classification tasks, where convolutional and recurrent neural networks have

shown strong performance (Fawaz et al., 2019). Interestingly, while the RP technique

achieved a relatively high accuracy of 62%, its low macro F1 score of 0.26 suggests

29
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poor performance in classifying specific gestures. Upon closer examination of gesture-

wise performance, it was observed that the image transformation techniques (GADF,

MTF, and RP) primarily excelled at identifying no-gesture states and nodding gestures,

while significantly misclassifying other gesture types. This imbalance in classification

performance renders these models less suitable as robust baselines. As discussed

earlier, the poor performance of image transformation techniques can be attributed to

requirement of parameter tuning based on domain expertise and the complexities of the

different head gesture. It was observed from the transformed images that the variations

in the images for the different gestures apart from no gestures and nodding was subtle

and the classifiers were not able to differentiate properly between them.

In conclusion, the 1D-CNN and Bi-LSTM models emerge as the most promising

baselines for the head gesture classification task. These architectures demonstrate a

better balance between overall accuracy and class-specific performance, making them

more suitable for usage with semi-supervised learning techniques.

5.2 Proposed Semi-Supervised Learning Results

5.2.1 Self-Training Results

5.2.1.1 Comparison of Bi-LSTM and 1D CNN architectures

To evaluate the effectiveness of the proposed semi-supervised learning techniques for

head gesture classification, a self-training approach using both 1D CNN and Bi-LSTM

models as the base classifiers was implemented and tested. The self-training process

utilised the recently annotated data from a previous researcher as unlabelled data, with

a confidence threshold of 0.85 and a maximum of 50 iterations. Table 5.2 presents the

test set performance of both models before and after applying the self-training pipeline.

Model Initial Accuracy (%) Initial F1-Score Best Accuracy (%) Best F1-Score No. Iterations

1D CNN 65.35 0.52 66.93 0.56 14

Bi-LSTM 58.02 0.39 68.32 0.63 32

Table 5.2: Baseline and Best Performance on Test Set Using Self-Training

The results reveal several key insights. Both the 1D CNN and Bi-LSTM models

show improvements in accuracy and F1-score after applying the self-training approach.

This confirms the primary hypothesis that leveraging unlabelled data through semi-
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Figure 5.1: Pseudo-labels and Model Test Set Performance Across Different Iterations

supervised learning techniques can enhance classification performance. It also satisfies

the objective of developing and implementing semi-supervised learning models.

The Bi-LSTM model demonstrates a more substantial improvement compared to

the 1D CNN. While the 1D CNN shows a modest increase in accuracy (1.58 percentage

points) and F1-score (0.04), the Bi-LSTM exhibits a remarkable jump in both metrics

(10.3 percentage points in accuracy and 0.24 in F1-score). Interestingly, although

the Bi-LSTM model started with lower initial performance (58.02% accuracy, 0.39

F1-score) compared to the 1D CNN (65.35% accuracy, 0.52 F1-score), it ultimately

outperformed the 1D CNN after self-training. This suggests that the Bi-LSTM model

was able to leverage the unlabelled data more effectively. The Bi-LSTM model was

trained for more iterations (32) until the stopping condition was met compared to the

1D CNN (14). This indicates that the Bi-LSTM continued to learn and improve over a

longer period in a stable manner.

One of the reasons for the better performance of Bi-LSTMs overall is its ability to

adaptively learn temporal scales. Head gestures occur at varying speeds and duration

and Bi-LSTMs will be able to effectively capture both rapid movements and slower

subtle gestures using its gating mechanisms (Hochreiter and Schmidhuber, 1997). Also,

the ability of Bi-LSTMs to take both past and future context into account plays a major

role.

Figure 5.1 provides an in-depth analysis of the Bi-LSTM model’s performance on
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the test set as it progresses through different iterations of the self-training mechanism.

It shows the F1-score on the test set for different iterations as well as the number of

pseudo-labels assigned during each iteration. It is observed that the model manages

to assign several high confidence pseudo-labels in the initial iterations itself. This is

reflected in the model performance as well since there is a spike in performance during

the initial stages after which it has a gradual increasing pattern. Hence, the Bi-LSTM

model combined with self-training is well-suited for the head gesture recognition task

5.2.1.2 Effect of Confidence Threshold on Self-Training Performance

To investigate the impact of the confidence threshold on the self-training process,

experiments were conducted using the Bi-LSTM model with four different threshold

values: 0.65, 0.75, 0.85, and 0.95. The choice of these values was to explore a

range from moderately confident (0.65) to highly confident (0.95) predictions. Figure

5.2 illustrates the performance trajectories for each threshold on the test set. It is

observed that the performance trajectory becomes more stable with increasing threshold

values. For the lower values of 0.65 and 0.75, there is a lot of fluctuation and this

can be attributed to misclassified pseudo-labels. For very high threshold values, the

performance improvement is very minimal as the threshold is too restrictive. It stops in

less than 10 iterations as well since it is unable to classify any more labels with high

confidence. It is evident that a threshold of 0.85 is the optimal choice as it demonstrates

a more stable and consistent performance improvement over iterations on the test set.

Hence, 0.85 will be used as the optimal threshold values for future experiments.

(a) 0.65 (b) 0.75

(c) 0.85 (d) 0.95

Figure 5.2: Self-Training Performance Trajectories for Different Confidence Thresholds
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5.2.2 Novel Ensemble Self-Training Results

5.2.2.1 Architecture Comparison

To understand the strengths of different neural network architectures used during the

ensemble method and justify the superior performance of ensembling, their performance

during the ensemble training pipeline is evaluated individually. Figure 5.3 illustrates

the test F1 scores for each gesture type for both models. The results reveal distinct

Figure 5.3: Test F1 Score Comparison of Bi-LSTM and 1D-CNN for Different Gestures

performance patterns. Bi-LSTM excels at recognising ’no gesture’, ’nodding’, ’face

up’, and ’shaking, while 1D-CNN shows superior performance for ’face down’, ’tilting’,

and ’turning’ gestures. The complementary nature of these architectures is evident

where one model’s weakness is often the other’s strength. For instance, Bi-LSTM

struggles with ’face down’ gestures (F1 score of 0.34) while 1D-CNN excels (0.46),

and Bi-LSTM’s strong performance on ’no gesture’ (0.85) compensates for 1D-CNN’s

relative weakness (0.77). This comparison justifies the ensemble approach, which

leverages Bi-LSTM’s temporal modelling and 1D-CNN’s spatial feature detection to

mitigate individual model weaknesses.

5.2.3 Impact of Varying Labelled Data Percentages Across Models

To investigate the effectiveness of the proposed semi-supervised learning techniques

under different amounts of labelled data, experiments were conducted using varying

proportions of labelled data for all three models: Self-Training, Novel Ensemble Self-

Training, and Mean Teacher. The self-training approach uses a Bi-LSTM model with a

0.85 confidence threshold, the novel ensemble self-training approach uses a 1D-CNN

and Bi-LSTM model, and the mean teacher model used a Bi-LSTM with a smoothing
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coefficient (α) value of 0.99 and weighting parameter (λ) value of 0.6. These parameters

were chosen as they led to the best performance. The label proportions were chosen

based on previous literature related to semi-supervised learning (Xi et al., 2022). Table

5.3 summaries the results on the test set for all three models.

Model Labelled Data (%)
Initial Final

Accuracy (%) F1-Score Accuracy (%) F1-Score

Self-Training

10 50.30 0.33 58.42 0.36

20 57.03 0.28 62.97 0.44

40 58.61 0.37 67.52 0.54

Ensemble Self-Training

10 50.30 0.33 50.50 0.37

20 57.03 0.28 60.00 0.47

40 58.61 0.37 66.74 0.56

Mean Teacher

10 50.30 0.33 51.09 0.40

20 57.03 0.28 57.80 0.42

40 58.61 0.37 59.00 0.45

Fully Supervised Bi-LSTM (100%) - - 71.09 0.58

Fully Supervised 1D CNN (100%) - - 68.00 0.54

Table 5.3: Test Performance Comparison with Varying Labelled Data

The results demonstrate that all three semi-supervised learning approaches consis-

tently improve both accuracy and F1-score across different proportions of labelled data,

confirming the effectiveness of leveraging unlabelled data to enhance performance. This

addresses the project objectives of comparing semi-supervised and fully supervised

models and analysing the trade-offs between model performance and annotation efforts.

A clear trend of improved final performance with an increase in the proportion of

labelled data is observed across all models. This is expected, as more labelled data

provides a stronger foundation for learning. Notably, when using 40% labelled data, all

models show significant improvements, with the novel Ensemble Self-Training method

achieving the highest F1-score of 0.56, closely followed by Self-Training at 0.54. These

results are remarkably close to the fully supervised model’s performance (F1-score of

0.58 for Bi-LSTM and 0.54 for 1D CNN), indicating that semi-supervised techniques

can achieve comparable results with less than half of the labelled data.

The Self-Training approach demonstrates consistent improvement across all labelled

data proportions. With 40% labelled data, it achieves an F1-score of 0.54, representing

a 45.95% improvement from its initial score. This substantial gain aligns with standard

performance improvements observed in literature related to semi-supervised learning

techniques (Xi et al., 2022). The Self-Training method’s performance using just 40%
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labelled data is particularly noteworthy, as it comes very close to the fully supervised

model’s performance, with only a 0.04 difference in F1-score.

The Ensemble Self-Training method shows the most substantial gains, particularly

with limited labelled data. Even with only 10% labelled data, the method shows

improvement, increasing the F1 score from 0.33 to 0.37. The most significant gains

are observed with 20% and 40% labelled data, where F1 scores increase by 0.19 in

both cases. This indicates the method’s effectiveness when there’s a balance between

labelled and unlabelled data. Notably, with 40% labelled data, the method achieves

an F1 score of 0.56, which actually outperforms the fully supervised 1D CNN model

(0.54) and nearly matches the fully supervised Bi-LSTM model (0.58).

The Mean Teacher approach, while showing improvements, underperforms com-

pared to the other two methods. It demonstrates modest improvements in both accuracy

and F1-score across all labelled data proportions. With 10% labelled data, the model

achieves a 0.79 percentage point increase in accuracy and a 0.07 improvement in F1-

score. Similar incremental gains are observed for 20% and 40% labelled data scenarios.

However, there remains a significant gap between its performance with 40% labelled

data and the fully supervised model.

The underperformance of the Mean Teacher approach can be attributed to several

factors. One key issue is the lack of a thresholding system for assigning pseudo-

labels. The Mean Teacher model assigns pseudo labels for all unlabelled data during

each iteration, which can introduce noise during early stages of training when these

labels might be unreliable. Additionally, while the Mean Teacher model employs

consistency regularisation, the specific characteristics of head gesture data may require

more sophisticated regularisation techniques. Methods like MixMatch (Berthelot et al.,

2019) that combine multiple regularisation strategies could potentially yield better

results.

These findings clearly indicate that for scenarios where labelling data is costly or

time-consuming, it would be possible to annotate less than 50% of the data and still

achieve comparable performance using semi-supervised learning techniques, particu-

larly with the Novel Ensemble Self-Training or Self-Training methods. This insight

directly addresses the hypothesis that semi-supervised learning can reduce the reliance

on large annotated datasets while maintaining high performance.

The superior performance of Self-Training and Ensemble Self-Training methods in

comparison to the Mean Teacher model highlights the importance of method selection

in semi-supervised learning. These results underscore the need for careful consider-
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ation of the underlying data characteristics and model architectures when applying

semi-supervised techniques to specialised domains like head gesture recognition. In

conclusion, these methods not only significantly reduce the need for labelled data but

also achieve performance levels comparable to fully supervised models, thus offering a

valuable approach for scenarios where data annotation is resource-intensive.

5.3 Speaker-Independent Cross-Validation for Best Per-

forming Model and Fully Supervised Model

To evaluate the generalisation capability of the best performing model and assess

the impact of semi-supervised learning, a speaker-independent cross-validation was

conducted. The ensemble self-training method with 40% labelled data was compared

against a fully supervised Bi-LSTM model trained on the same 40% labelled data subset.

This comparison directly addresses the research objective of analysing the model’s

generalisability across different speakers and quantifies the effectiveness of leveraging

unlabelled data through semi-supervised learning.

The cross-validation was performed across 8 folds, with each fold using a different

speaker as the test set. This speaker-independent approach yielded an average test

accuracy of 66.4%, indicating the model correctly classified about two-thirds of all

gestures across different speakers. The Cohen’s Kappa value of 0.52 suggests moderate

agreement between the model’s predictions and true labels, accounting for chance

agreement. The macro F1-score of 0.53, which balances precision and recall across

all classes, indicates reasonable performance across different gesture types. These test

results are promising in comparison to the previous works that had access to nearly

50% more annotations (Chen, 2023) In contrast, the fully supervised model achieved an

accuracy of 54.77%, a Cohen’s Kappa of 0.37, and a macro F1-score of 0.33. These

results demonstrate a substantial improvement in performance when utilising semi-

supervised learning, with increases of 11.63 percentage points in accuracy, 0.15 in

Cohen’s Kappa, and 0.20 in macro F1-score.

Figure 5.4 presents the average confusion matrices across all 8 folds for both

models. The semi-supervised model demonstrates notably improved performance

across most gesture categories. It shows particular strength in identifying ’nodding’

(65.5% vs 57.87% accuracy) gesture. The performance for ’no gesture’ is very similar

for both models (89.5% vs 92.51%). The semi-supervised approach also significantly
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(a) Fully Supervised Model (b) Semi-supervised Model

Figure 5.4: Confusion Matrices for Speaker-Independent Cross-Validation on Test Set

outperforms the fully supervised model in recognising less common gestures such as

’tilting’ (39% vs 9.79% accuracy) and ’turning’ (51% vs 27.25% accuracy).

Both models struggle with distinguishing between ’face up’ (fu) and ’face down’

(fd) gestures from the ’nodding’ (nd) gesture, likely due to the overlap in motion patterns

between these gestures, highlighting the challenge of distinguishing subtle differences

in head movements. However, the semi-supervised model shows improved performance,

particularly for ’face down’ gestures (53% vs 22.79% accuracy). The semi-supervised

model struggles most with ’face up’ (fu) gestures, correctly identifying only 38% of

instances, possibly due to the relative scarcity of these gestures in the dataset, as noted

in the initial data analysis.

These results highlight several key points. The semi-supervised learning approach

significantly enhances the model’s ability to generalise across different speakers, as

evidenced by the consistent improvement across all metrics. Leveraging unlabelled data

through self-training helps the model learn more robust features, particularly benefiting

the recognition of less common gestures. While challenges remain in distinguishing

similar gestures, the semi-supervised approach shows promise in mitigating these

difficulties. The substantial performance gap between the two models showcases the

value of incorporating unlabelled data in the training process, especially in scenarios

where annotated data is limited.

Despite these improvements, both models face challenges related to gesture sim-

ilarity, data imbalance, and inter-speaker variability. However, the semi-supervised

model’s superior performance demonstrates its potential to better address these issues
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by effectively utilising the additional information present in unlabelled data.

In conclusion, this comparison provides strong evidence supporting the hypothe-

sis that semi-supervised learning can significantly enhance head gesture recognition

performance in a speaker-independent context. The achieved improvements in accu-

racy, Cohen’s Kappa, and F1-score represent a substantial step forward in the field,

highlighting the potential of semi-supervised techniques in head gesture recognition.



Chapter 6

Conclusions

6.1 Summary

This research has helped improve automatic head gesture recognition through the

application of semi-supervised learning techniques. The study addressed the challenge

of limited labelled data in head gesture classification by leveraging unlabelled data to

enhance model performance. The findings demonstrate the effectiveness of the proposed

semi-supervised learning techniques, particularly self-training and ensemble methods,

and support the primary hypothesis of the ability of semi-supervised learning to improve

performance.

A key contribution to this study is the development of a novel ensemble self-training

approach, which combines the strengths of Bi-LSTM and 1D-CNN architectures. This

approach outperformed individual models and traditional self-training, achieving a test

F1-score of 0.56 with only 40% labelled data, comparable to fully supervised models

trained on 100% labelled data that has a test F1-score of 0.58. This result provides

valuable insights into the trade-off between the amount of labelled data and model

performance, suggesting that semi-supervised models can achieve performance close to

fully supervised models with significantly reduced annotation efforts.

The research also revealed complementary strengths of Bi-LSTM and 1D-CNN

architectures in recognising different types of head gestures, justifying the ensemble

approach and providing insights for future model design in this domain. Furthermore,

speaker-independent cross-validation demonstrated the model’s ability to generalise

across different individuals, achieving an average accuracy of 66.4% and an average

F1-score of 0.53 on the test dataset. This represents a significant improvement over

the fully supervised model, which achieved an accuracy of 54.77% and an F1-score

39
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of 0.33 when trained on the same 40% labelled data subset. Moreover, the semi-

supervised learning technique outperformed the previous works in speaker-independent

head gesture recognition (Chen, 2023).

Despite these achievements, the research highlighted specific challenges in head

gesture recognition, including the difficulty in distinguishing subtle differences between

certain gestures (nodding vs. face up/down) and the impact of data imbalance on

less common gestures. These findings not only advance the understanding of semi-

supervised learning in the context of head gesture recognition but also provide practical

insights for developing more accurate gesture recognition systems. The demonstrated

ability to achieve high performance with reduced labelled data has significant impli-

cations for reducing the time and cost associated with data annotation in real-world

applications.

6.2 Future Work

While this research has made substantial progress in head gesture recognition using

semi-supervised learning, several avenues for future work have been identified. Future

research should focus on enhancing the generalisability of the system by including

samples from diverse cultural backgrounds. Head gestures can vary significantly across

cultures, and a more diverse dataset would allow for the development of more robust

and universally applicable models (Kita, 2009). Additionally, a multimodal approach

incorporating audio and transcript data alongside motion capture data, could provide

additional context related to the gestures (Baltrušaitis et al., 2019). This approach could

help differentiate between similar gestures by considering verbal cues and conversation

context.

Combining semi-supervised learning with self-supervised learning is an interesting

approach to explore as it could possibly provide better performance with an even

smaller amount of labelled data (Xi et al., 2022). Active learning strategies can also

be implemented as it would improve the quality of the pseudo-labels due to human

intervention (Settles, 2009).

These future directions aim to address the current limitations of the research and

further advance the field of head gesture recognition. By pursuing these, researchers can

work towards developing more robust, generalise, and practical head gesture recognition

systems useful for human-computer interaction.
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