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Abstract

Traditional Deep Neural Networks have been optimised to perform well in scenar-

ios where they are given a single task to complete and have access to the entirety

of the dataset describing the task. However, in continual learning scenarios, where

new tasks arrive sequentially, these models often suffer from catastrophic forgetting

(a phenomenon where models lose knowledge obtained in previous tasks as they try

to adapt to new ones). To address this issue, many strategies have been proposed in

the literature such as regularisation, rehearsal and structural adaptation of the models,

however no perfect solution has been able to solve catastrophic forgetting. The novel

neural structure of Kolmogorov Arnold Networks (KANs) recently proposed by Liu

et al. [1] has shown promising potential for avoiding catastrophic forgetting. In this

study, we provide the first complete and rigorous evaluation of KANs performance on

classic continual learning benchmarks for a range of scenarios of increasing difficulty.

We empirically show that replacing MLPs with KANs reduces the amount of param-

eters required (by a constant factor) for completing the same task and improves the

performance of the model for simple benchmarks. However the current implementation

experiences significant forgetting as the datasets become more irregular and complex,

thus requiring the assistance of rehearsal and regularisation strategies to mitigate the

issue.
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Chapter 1

Introduction

1.1 Motivation

The traditional machine learning paradigm often relies on the assumption that the data

which we attempt to model are produced by a fixed distribution. However, the majority

of real-world systems evolve over time thus causing conventionally trained models to

rapidly lose their relevance and accuracy since this evolution shifts the original data

distribution. To address this issue, a common practice is to frequently fine-tune and

re-train the models using the updated datasets, a procedure that is both time-consuming

and computationally expensive, especially when considering the size and complexity of

the deep networks architectures employed in modern systems.

A better approach that allows models to maintain high levels of autonomy and

efficiency without the need for extensive re-training is Lifelong or Continual Learning

(CL) [2]. Systems trained in a CL manner are able to take a continuous stream of

data generated by a particular distribution, extract useful information necessary for

modeling these data and still be able to model shifted distributions throughout their

lifetime. This approach is very suitable in domains characterized by non-stationary

environments, where the data distribution evolves faster than the time required to re-

train the model using the entire accumulated dataset. A great example of such domain

is the financial market where stock valuations constantly fluctuate based on a multitude

of economic, political, and other social events. Since constant refinement is necessary

for a stock prediction system to capture these evolving dynamics [3] [4], yet costly

to the organisation relying on the model’s prediction for their daily trades, models

trained in a CL manner could efficiently identify these shifts and adjust their predictions

accordingly.

1



Chapter 1. Introduction 2

Despite its potential, Continual Learning faces a major challenge known as catas-

trophic forgetting [5]. This phenomenon occurs when the model attempts to learn new

information, and in the process of improving its predictions for the current task, it loses

the previously acquired knowledge. Without the ability to retain past information, the

system is focused on improving its present state and becomes oblivious to the previous

model of the world. Therefore overcoming catastrophic forgetting is of paramount

importance if we want continual learning systems that are able of long-term adaptation.

1.2 Scope and Contributions

The aim of this study was to explore and rigorously examine the effectiveness of

Kolmogorov-Arnold Networks (KANs), a novel architecture introduced by Liu et al. [1],

for addressing the challenge of catastrophic forgetting in continual learning. Liu sug-

gested that KANs could integrate new information without erasing previously learned

knowledge because of the difference in the way the computed loss is backprobagated

through the network and the increased control this architecture provides. However

these conclusions were drawn primarily from limited experiments on simple, toy-like

datasets, leaving substantial questions about the broader applicability of KANs in more

complex scenarios. To examine the suitability of this proposal, in this study we con-

ducted a comprehensive and rigorous evaluation of KANs, comparing their performance

against state-of-the-art continual learning architectures across a range of datasets and

incremental learning tasks of increasing difficulty.

The preliminary results we obtained when testing KANs’ abilities to battle catas-

trophic forgetting on simple, and artificially generated datasets suggested that this

architecture could be a promising solution to the problem of catastrophic forgetting.

By leveraging their unique architecture which allows for localized learning through

grid-based partitioning and spline-based function approximation, KANs were able to

maintain high accuracy across sequential tasks with minimal forgetting compared to the

traditional architectures, which often exhibited significant performance degradation as

new tasks were introduced.

Despite the KANs’ ability to retain information on synthetic datasets, when tested on

larger and more complex vision benchmarks they didn’t show any significant resistance

to forgetting. To overcome this issue, we utilised the existing Convolutional Neural

Network architecture (CNN) and replaced the standard Multilayer-Perceptron (MLP)

that was respondible for the function approximation with the KAN counterpart. This
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integration produced an improved model that combines the feature extraction abilities

of CNNs with the information retention ability of KANs.

After combining the modified architecture with rehearsal and regularisation strate-

gies, and testing its performance on the Split-MNIST dataset, we observed a 14%

improvement in accuracy of the model and 33% reduction in forgetting however for

the more complex benchmark of class-inremental-CIFAR-100 there was little to no

improvement the accuracy or forgetting of the network but 3 times less parameters were

required. We attribute the limitations of this architecture to the naive integration of

the two models that is unable to efficiently remember a larger set of features of more

irregular images and conclude this study with recommendations for future directions

that may offer promising solutions to these challenges.

The remainder of this paper is organized as follows: Chapter 2 conducts a re-

view into related literature on continual learning and catastrophic forgetting, providing

background on the key concepts utilized in this research. Chapter 3 introduces the

Kolmogorov-Arnold Network in greater detail and explains the core principles underly-

ing our approach. Chapter 4 outlines the methodology we used to test and evaluate the

performance of KANs. Chapter 5 describes the experiments conducted in depth and

presents the results we obtained. Chapter 6 provides a comparative analysis between

architectures and argues about the significance of the obtained results, and Chapter 7

concludes with a discussion of our findings, along with suggestions for future research.

1.3 Terminology

The following terms are used throughout the paper:

• Task: Refers to a unique objective the model is asked to perform (e.g. distinguish

dogs from cats, recognise handwritten digits, etc).

• Batch: A collection of data given all-together to the model to handle.

• Experience: Refers to the current batch of data associated with a specific task.

Different experiences might contain data from the same or different tasks but

every experience contains data from a single unique task.

• Stream: There are three streams of data: 1) training, 2) validation, 3) testing.

Data in the training and validation sets are used to fine-tune the hyperparameters

of the model and the testing stream is used to evaluate the model.
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Background

2.1 Origins of Continual Learning

The concept of Continual Learning (CL) was firstly introduced by Grossberg [6] in an

attempt to understand how the brain learns to continuously adapt to various environments

with high efficiency and develop an understanding of the cognitive coding mechanism of

humans. In his research, Grossberg concluded that that the brain is capable of continually

rewiring its neural connections through a self-organising system that prolongs and

amplifies signals in order to ensure that critical information is retained while new

information is integrated. The main question his research was trying to answer was

”how the brain is able to form stable memories while still maintaining adaptive responses

to new tasks” which was later formalised as the stability-plasticity dilemma [7].

Following the ideas introduced by Grossberg’s study and combining it with insights

from biological reality, Feldman et al [8] expanded the idea of connectionist models -

which had previously inspired the creation of artificial neural networks - and managed to

describe the procedure of learning new tasks incrementally using a ”networks of units”.

However, as pointed out later by Ratcliff et al. [9], early connectionist models [10]

were significantly challenged by catastrophic forgetting [11] since they would rapidly

forget previously learned information and they would face difficulty in discriminating

between new and already studied items. Ratcliff’s evaluation set the standard for

testing the resilience of models to catastrophic forgetting by suggesting a systematically

variation of the complexity of tasks and the frequency of each task’s presentation. When

tested early connectionist models, this evaluation analysis highlighted their significant

limitations and prompted the development of new strategies to mitigate forgetting.

4
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2.2 Battling Catastrophic Forgetting

Since the early 1990’s many papers in the literature have been experimenting with

a range of different approaches for designing and training models that can battle

catastrophic forgetting which can be roughly categorised into three groups as follows:

1. Regularisation-based methods: Methods that penalise changes of the learnt

parameters to retain knowledge acquired previously

2. Rehearsal-based methods: Methods that use a buffer of experiences which they

use to retrain the model using examples from previous tasks

3. Architectural-based methods: Methods that dynamically alter the structure of

the model’s architecture to accommodate for different objectives

2.2.1 Regularisation-based methods

The main cause of catastrophic forgetting is the quick adjustment of a model’s parameter

(i.e. its weights) so that it performs better to new objectives. As a result, the learnt

values of the previously important parameters become obsolete and overridden by

new values. To discourage this quick adaptation, regularisation-based methods like

Elastic Weight Consolidation (EWC) [12] apply a penalisation fee to the change of the

important parameters that are considered critical for solving earlier tasks in an attempt

to reduce forgetting. Specifically, EWC uses the Fisher Information Matrix [13] for

determining the importance of each parameter on the previous task and applies a penalty

of proportional magnitude if the model decides to change that parameter. The core idea

of this method is that parameters with higher importance (as indicated by the Fisher

Information Matrix) should not change much when learning new tasks, because they

are critical for the success of that task and changing them leads to forgetting.

Another regularisation-based approach developed around the same time is Learning

Without Forgetting (LWF) [14]. This method allows the model to train on the first task

and then use the output of the learnt representations to penalise any deviations to these

distributions caused by any parameter adaptation while transitioning to new tasks. This

loss of knowledge (distillation loss) is calculated using a measure of difference between

distributions - the Kullback-Leibler (KL) divergence [15]. Then the total loss for a

parameter change is multiplied by a temperature-like factor that controls the trade-off

between the learning of the new task and the retention of knowledge from the old task
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Figure 2.1: Figure from [12] showing the shift of the parameters of a network with EWC

(red arrow) and without any regularisation (blue arrow) indicating how the intended shift

in the parameter space should lead to the intersection of parameter space that are

shared by both tasks (under the fundamental assumption that incremental tasks share

representations embedded in the parameters)

and added to the task loss to compute the final LWF-loss which eventually reduces

forgetting. However regularisation methods struggle with scalability as the number of

tasks increases and therefore these methods do not guarantee the existence of a right

regularisation balance.

2.2.2 Rehearsal-based methods

Rehearsal-based methods take a different approach than trying to preserve the stability

of critical parameters by retrain the model on a combination of new an previously learnt

data. The simplest form of rehearsal is explicit rehearsal where a dedicated buffer

space is allocated in memory to store a subset of past experiences to be used again

later to remind the model how it used to behave towards them in the past. However the

major drawback with this approach is the increasing memory requirement which makes

this method impractical for many real-life applications. A more efficient alternative

to explicit is sample-based rehearsal. Methods such as Incremental Classifier and

Representation Learning (iCaRL) [16] maintain a fixed size buffer which is constantly

updated with new representative samples from each previous task - an idea originally

proposed by the experience-replay paper [17].

Since the efficiency of rehearsal methods depends on the selection of the most

representative samples, a heavy reliance on the chosen heuristic approach (e.g. herding

[16]) is not ideal and could rather hinder the performance of the model with each replay.

A more reliable alternative is the generative replay method which includes proposals

such as deep generative replay [18] which trains a generative model to be able to
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Figure 2.2: Heuristic evaluation (herding) for sample selection proposed by [19].

(Explanation: The figure shows the pipeline for handling samples from new tasks enter-

ing the network. Steps: 1) Features extracted from the new dataset and combined with

the features saved in the episodic memory 2) The corresponding feature distributions

encoding the different classes are updated and aggregated using a selected aggrega-

tion method 3) Classifier makes the prediction 4) Loss is backprobagated through the

network.)

produce synthetic data that mimic the distribution of the original training dataset. This

method significantly reduces the memory usage however the quality of the produced

samples depends on the how well the generative has been train which is a significant

challenge for certain datasets.

2.2.3 Structural-based methods

Following Grossberg’s work [6] one of the first attempts to battle catastrophic forgetting

was a structural-based approach that was mimicking brain’s rewiring process. Gross-

berg and Carpenter collaborated in [20] and [21] and formalised Adaptive Resonance

Theory in an investigation of how structural changes detected in the brain could inspire

autonomous re-arranging of artificial neural networks’ structure to allow for task adapta-

tion. These studies primarily focused on brain’s ability to perform object identification

and recognition because of the better interpretability of visual results and this trend still

appears in most of continual learning evaluation.

In recent years, working proposals like Progressive Neural Networks (PNNs) [22]

managed to extend the network architecture by adding new sub-networks for each

task while keeping the parameters of previous sub-networks fixed and thus preserve

knowledge within them. The major drawback of this approach is the linear growth of the
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Figure 2.3: Comparison of EWC, Progressive Networks and Dynamically Expandable

Networks as presented in [23]. (Explanation: The blue and black nodes along with the

black edges represent the original network at time t −1 and the red nodes with the red

edges represents the updated network at time t)

parameters with each new task. At a later proposal, Dynamic Expansion Networks [23]

suggested selectively expanding the network by adding neurons or layers when needed

while pruning unnecessary components in order to reduce excessive memory usage.

Yet, despite the benefits of these methods, they usually require extensive computational

resources and are not practical for real-time or resource-constrained environments.

2.3 Stability-Plasticity dilemma and the solution of KAN

The main challenge faced by almost all of the above solutions is finding the right

balance of knowledge retention and adaptation to new tasks which is described as the

stability-plasticity dilemma. Kolmogorov-Arnold Networks theoretically can avoid

dealing with this dilemma because of the alternative parameter representation as a set of

continuous univariate activation functions (see B-splines 3.3). This architectural choice

removes the need of making a trade-off between stability and plasticity when choosing

which memories to store/disregard or which components to update because the grid

structure of these functions (if large enough) can be partition to physically split the

predictions in different sub-ranges. This idea is further discussed in 6.1.

Figure 2.4: Physical prediction partition for an activation function
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Kolmogorov-Arnold Networks

3.1 Kolmogorov-Arnold Theorem

The fundamental idea behind KANs is the Kolmogorov-Arnold Representation Theorem

which states:

Theorem 1. Every multivariate continuous function f : [0,1]n → R can be written as a

finite composition of continuous functions of a single variable and the binary operation

of addition. [24]

f (x) = f (x1, ...,xn) =
2n+1

∑
q=1

Φq

(
n

∑
p=1

φq,p(xp)

)
(3.1)

where φq,p : [0,1]→ R and Φq : R→ R

This theorem provides an alternative paradigm to the widely used Universal Approx-

imation Theorem used by conventional MLPs (see Appendix A.1). Instead of providing

an approximation of the function however, the above theorem provides a theoretical

guarantee that any problem that can be modeled by a continuous, multivariate function

can therefore be exactly determined by summing univariate functions. Thus the original

task of modeling the any multivariate function reduces to the problem of finding the set

of appropriate univariate functions that can be sum together to produce it.

The main issue with this theorem is that there are no guarantees that the univariate

functions are smooth everywhere in their domain, which would make automatic differ-

entiation impossible and therefore make any optimisation algorithm unable to improve

and learn such a function. However Liu et al [1] empirically showed that in practice

these functions are smooth and continuous. The breakthrough in the implementation

of KANs occurred when the architecture was expanded beyond the initial two-layered

9
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structure (used in KAN theorem 1) to arbitrary widths and depths, to produce a deeper

KAN of univariate functions connected with the addition operator as shown in figure

3.1.

Figure 3.1: Example of a trained Kolmogorov-Arnold Network of a 2-layered architecture

3.2 Comparison to MLPs

A traditional Multi-Layered Perceptron can approximate any non-linear function by

learning a set of fixed parameters (the weights of the network) that encode the im-

portance of a connection in a complex network of nodes. Mimicking the biological

neural spiking activity, each node in the network represents a neuron and performs a

few very simple operations: a) collect the signals coming into the neuron through its

connections with other neurons b) boost the signal based on the strength/importance

of the connection c) determine if the sum of the incoming signals is above a threshold

and if so inform all of the connected neurons that are connected to you. This procedure

can be simulated by an artificial neural network as follows: Each neuron collects inputs

from connected neurons, weights them, and passes the result through an activation

function to also allow for non-linear functions to be learnt. If the activation exceeds a

threshold, the neuron ”fires” and sends its output to the next layer.

A Kolmogorov-Arnold Network follows a slightly different approach by replacing

the fixed weights of traditional neural networks with learnable activation functions.

Instead of adjusting weights for determining the importance of connections between
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neurons, this architecture learns a much more complex activation function that directly

transform the inputs, allowing it to approximate complex functions without relying on

weighted connections. This idea only works because of theorem 1 where the activation

functions correspond to the univariate functions mentioned above and the connections

between the nodes of the network are used to indicate which pair of processed input is

to be summed together to obtain the output given to the next layer as input. Figure 3.2

shows a simplified version of the data propagation in each architecture.

(a) MLP Forward Pass (b) KAN Forward Pass

Figure 3.2: Shows the difference in the forward propagation of data in MLPs and KANs

After each network has finished propagating the information in the forward direction

as shown in figure 3.2, it outputs the result of the last layer as its final prediction for the

given data sample. This prediction is then compared with the actual value the network

should have produced with the help of an appropriate loss function (e.g. mean squared

error for regression tasks and categorical cross-entropy for classification tasks) and the

error of the network is computed. This error is finally fed back to the network in order

to adjust its parameters and improve its predictions. This adjustment in the case of

MLPs is done by increasing or decreasing the value of each weight in the direction that

reduces the loss (as indicated by the derivative of the loss function). On the other hand,

KANs directly adjust the equation of each activation function by changing the position

of its control points which removes the need of adjusting volatile weight values.

This difference between the two networks makes KANs an interesting architecture

to study for continual learning scenarios since there is an extra degree of freedom (i.e.

directly controlling the output of each activation function) which can be exploited if

an appropriate family of equations is chosen. The idea here is to choose a family of

equations that allows the function to be adjusted locally in the specific subdomain from

which the error has occurred and thus leaving the rest of the function unperturbed.

In fact, the original KAN paper [1] already suggests the use of B-Spline activation

functions which possesses this locality property and can reduce catastrophic forgetting.
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3.3 B-Splines

A Basis-Spline (B-Spline) function is a piecewise-defined polynomial function of

degree d that is uniquely determined by a sequence of n control points ({P0, . . . ,Pn})

and n+d +1 points called knots ({t0, . . . , tn+d+1}) that partition the domain into n+d

distinct intervals. Formally a B-Spline is defined as follows:

Definition 1. Let curve S : [a,b]→ R be defined in the closed interval [a,b] covered by

n+d ordered disjoint sub-intervals as such:

[a,b] = [t0, t1)∪ [t1, t2)∪ . . .∪ [tn+d−1, tn+d)∪ [tn+d]

a = t0 ≤ t1 ≤ . . .≤ tn+d−1 ≤ tn+d = b
(3.2)

Then the curve is a B-Spline function if it can be defined as a linear combination of n

basis functions Ni,d(t) defined ∀t ∈ [a,b], given a set of control points Pi as such:

S(t) =
n−1

∑
i=0

Ni,d(t) ·Pi (3.3)

where Ni,d(t) := polynomial of degree d defined recursively using Cox-de Boor formula:

Ni,0(t) =

1 if ti ≤ t < ti+1,

0 otherwise,

Ni,d(t) =
t − ti

ti+d − ti
Ni,d−1(t)+

ti+d+1 − t
ti+d+1 − ti+1

Ni+1,d−1(t)

(3.4)

and {P0, . . . ,Pn} the set of control points that influence the shape of the curve

(a) Basis functions Ni,1(t) (d = 1) (b) Basis functions Ni,2(t) (d = 2)

Figure 3.3: Displays the basis functions for degree d = 1 and d = 2 defined over interval

[a,b]. The knots are shown as red dots and are chosen to be equidistant
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B-Splines are continuous and differentiable everywhere in their domain [a,b] which

are the two necessary properties required for any function to serve as an activation

function. This is crucial because the backpropagation algorithm needs to be able to

compute the derivative of the activation function and make the necessary adjustments

while training the network.

In addition to these properties, B-Splines have the locality property which allows

the learning algorithm to adjust the activation only in the interval around the area of

the error. As shown in figure 3.4a the initial B-spline curve is made of 6 control points

(P0, . . . ,P5) which are linearly combined with the 6 basis functions from 3.3b. Then on

figure 3.4b, the 5-th control point (P4) is adjusted by being pulled downwards. This

change is shown to have affected the shape of the curve only within the area from knot

t2 to knot t4 (red dots) and has left the rest of the curve unperturbed.

This is the key property that has motivated this study; assuming that it is possible to

roughly guess the number of task the model will experience (say e experiences) then by

partitioning the domain of each activation function of the KAN network in at least e×d

intervals would allow the network to separate its domain to memorise its behaviour and

store it in that sub-interval (”experience dedicated grid”). Thankfully, KANs require

significantly less parameters to express a function compared to traditional MLPs and

therefore this solution will not require an excessive amount of extra memory to store the

different behaviours of the network. In this way, different behaviours remain physically

separated in different girds and the locality property of B-Splines guarantees that any

adjustments in one grid will not affect the other, thus catastrophic forgetting should be

significantly reduced.

(a) Initial B-Spline with 6 control points (b) Adjusted B-Spline

Figure 3.4: Shows the effect of adjusting the 5-th control point (black dot with the number

5) and exemplifies the locality property of B-splines
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3.4 Improved KAN implementations

The original KAN paper [1] focused on the ability of Kolmogorov-Arnold Networks to

accurate model symbolic functions (e.g. sine, cosine, exponent) and the combination of

these functions into more complex formulas (e.g.
√

1+ x2 −2xcos(x)−3e2). However

later studies attempted to test the performance of KANs on real world data. Azam et

al [25] in a proprietary study showed that KANs can achieve comparable performance to

MLPs in the vision domain with a significantly less amount of parameters required but it

was only tested on small datasets because of some notable shortcomings of the original

implementation. Since then, many improvements have been suggested which allow

for computation speedup and GPU utilisation thus enabling faster and easier scaling.

Because continual learning evaluation is customarily evaluated on vision datasets, the

emphasis of this study was to find an efficient implementation of KANs that could

handle large vision datasets.

While a few implementations have been developed that allow the architecture to

be scaled and improved, these usually attempt to replace the recursive Cox-de Boor

computation of splines (see 3.4) which removes the locality property observed in

splines. Implementations such as FastKAN [26] which utilises an approximation

theorem that enables radial basis functions to approximate any B-Spline efficiently,

allow the network to handle large datasets and therefore scale better but do not provide a

useful implementation of the architecture that can be used in continual learning settings.

To overcome this issue, we decided to use a modified PyTorch implementation of the

original paper as introduced by [27] since (after much experimentation) it demonstrated

the best performance compared to the other implementations in terms of reduced

forgetting.

Figure 3.5: Image of TorchKAN implementation performing gradient analysis on MNIST

dataset [27]



Chapter 4

Methodology

To properly assess the real advantage of KANs and measure their potential to battle

catastrophic forgetting we need to perform a series of tests against a number of different

learning scenarios and benchmarks of increasing complexity. This chapters provides

a detailed description of the scenarios used for setting up the environment of each

experiment, describes the benchmark choices and defines the metrics used to measure

the difference between the two architectures.

4.1 Incremental Learning

The main difference between traditional batch learning and continual learning is the

way data are introduced to the model. Unlike traditional batch learning where all

data are given to the model in batches, data in continual learning are provided as they

become available, requiring the model to update its parameters incrementally. There

are three ways in which data might be introduced to the model: a) when the domain

is explored incrementally (domain incremental) b) when new classes appear over time

(class incremental) c) when the task shifts and there is a new objective that the model

needs to achieve (task incremental)

1. Domain Incremental: In this training scenario there is a fixed number of tasks

and classes conceptually but the underlying distribution of the input data (the

different domains) shifts. In the example shown on figure 4.1a, the model is

originally trained to distinguish between sketches of dogs and cats then the input

domain changes to pictures of dogs and cats and finally the last domain contains

synthetic 3d models of dogs and cats. At every stage there are two classes (cats

and dogs) and the same task (distinguish between the two).

15
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(a) Domain shift example (b) Class shift example (c) Task shift example

Figure 4.1: This figure provides examples for the three different incremental learning

scenarios used for comparing the performance of KANs against MLPs

2. Class Incremental: This incremental strategy describes the scenario where new

classes are introduced over time. An example of this scenario is shown in figure

4.1b where the model is initially trained to recognise images of just cats then

images of cats and dogs and finally images of cats, dogs and birds. All images

are pictures of these animals in nature thus the domain is the same and the task

hasn’t changed (to distinguish between the different animals)

3. Task Incremental: The last scenario involves incrementally changing the ob-

jective the model needs to complete while keeping the domain and the classes

the same. A building blocks game is a great example where this scenario can be

applied: given a fixed set of blocks, at every increment the model is required to

assemble the building blocks in different shapes at every new task as shown in

figure 4.1c.

4.2 Benchmarks

There is a broad range of benchmarks used for assessing the capabilities of CL models

and therefore there is no consensus as of to which ones yield the most reliable and

realistic results. Yet, it is common practice to use computer vision datasets for bench-

marking because of the higher level of interpretability of the results without having to

sacrifice tasks complexity. This study provides a mixture of custom toy datasets used as

a proof of concept and classic vision datasets of increasing complexity and size (from

MNIST to CIFAR100).

However the above datasets still don’t provide an accurate representation of the
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true performance of the model because of the artificial and temporal evolution of the

data increments (i.e. the way in which successive data are associated) and the limited

amount of samples available per increment. These datasets - while providing a very

useful indication of the performance of the model - they still introduce abrupt changes

which are undesirable for testing the true ability of the model to battle catastrophic

forgetting in the real world. The CLEAR benchmark [28] was develop with the focus to

provide a rich, labeled, high-quality data of real-world images that allows for the most

realistic evaluation of the model while establishing a streaming protocol for deploying

any CL model.

In this study we decided to test our models only against the MNIST and CIFAR100

benchmarks which are still suitable for providing a fair comparison between the different

networks since we will be using the same environment settings for all experiments. Still,

the study was heavily influenced by the training and evaluation protocols introduced by

CLEAR and [29] which allowed for a robust and unbiased comparison to be performed.

4.3 Metrics and Evaluation

By simply comparing the accuracies of the best-performing models for each architecture

we are disregarding any other important advantages a model can offer such as reduced

parameter count and less forgetting. There is a plethora of important factors that can be

consider for a fair comparison between architectures, however in our study we decided

to focused on: a) the ability of each model to learn and adapt to new tasks and b) the

ability each model retain information from the past. To quantify the performance on

each of the above factors, we have chosen the following metrics for evaluation:

1. Average Accuracy: Measures the average accuracy on the validation data after

the model has been continually trained up to T tasks

AAT =
1
T

T

∑
i=0

aT,i (4.1)

where aT,i is the accuracy of the model after learning all tasks up to task T for the

test dataset of task i

2. Learning Accuracy: Measures the accuracy of the model’s performance on the

current task’s test dataset immediately after training on it and averaging over all
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experiences (good indication of the plasticity of the model)

LA =
1
T

T

∑
i=0

ai,i (4.2)

where ai,i is the accuracy of the model on the dataset of the current task i that it

has just been trained on.

3. Average Forgetting: Measures the extent to which the model forgets previous

tasks as it learns new ones by comparing the best performance achieved on each

task to the performance of the current task

FT =
1

T −1

T

∑
i=1

−1
(

max
t≤T−1

at,i −aT,i

)
(4.3)

These results are presented in the form of heatmaps and graphs in the experiment section

thus providing empirical quantifiable data that can be used for a fair comparison of

architectures.

4.4 Environment Setup

To conduct the experiments and evaluate the performance of the models under different

continual learning scenarios, the Avalanche library was heavily utilised [30]. This

PyTorch-based framework was designed specifically for continual learning research

and has allowed for the experimentation process to be streamlined. Figure 4.2 shows

the training and evaluation life-cycles for every experience (e1, . . . ,en) and how they

interact with the different loggers and the benchmark modules provided by the library.

Figure 4.2: Avalanche modules and pipelines [30]
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Experiments and Results

5.1 Empirical evaluation of KANs performance on ana-

lytic functions

5.1.1 Mixture of Gaussians - 1D

The original hypothesis of this study (KANs can battle catastrophic forgetting) is based

on the observation made by Liu et al [1] that when KANs are trained in a continual

learning manner on an 1-dimensional function (a mixture of 5 Gaussian distributions)

they are able to overcome catastrophic forgetting. To validate this observation, we

attempted to replicate the paper and test the validity of the claim on a slightly more

complex function. Let function f (x) : [−1,1] → R be the mixture of 5 Gaussian

distributions with equidistant centers {µ1 =−0.8, . . . ,µ5 = 0.8} and standard deviations

{σ1 = σ, . . . ,σ5 =
σ

5}, where each individual function is defined as follows:

G(x;µ,σ) = e−
(x−µ)2

2σ3 (5.1)

then by summing the contribution of each distribution together, we obtain the following

equation for the target function:

f (x) =
5

∑
i=1

exp

(
−(x−µi)

2

2 ·
(

σ

i

)2

)
(5.2)

The above equation uses index i to identify each of the five Gaussian functions and

to also control the width and minimum height of each peak in the mixture. This

modification is made to ensure that each constituent distribution differs from the rest

of the distributions in more than one ways (i.e. shifted mean and standard deviation)

resulting in the function shown in 5.1.

19
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Figure 5.1: Mixture of 5 Gaussian distributions with equidistant centers and increasing

variance as defined by equation 5.2

By partitioning the domain in 5 disjointed sub-sets and uniformly sampling from

each of them, we obtain 5 experiences which are then split into training and testing

streams with ratio 80:20. Each network accepts a single experience and attempts to learn

the distribution that produced those data in that sub-domain. Then every network is

asked to make predictions for inputs from the entire domain by sampling 1000 random

samples from equation 5.2. After producing the predictions, a new experience of data is

presented to the model and the same procedure is repeated again. The results of this

process are shown in figure 5.2.

Figure 5.2: Performance difference between MLP and KAN architectures for simple

univariate mixture of Gaussian function

Figure 1 clearly displays the difficulty experienced by MLPs to remember the

distributions of previous experiences as they attempted to adapt to new ones. On the

contrary, KANs experienced little to no forgetting for the above scenario and required a

significantly less amount of parameters to achieve this result (as shown in table 5.1).
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Model Architecture Grids/Order Parameters Optimiser Learning Rate Epochs

MLP [1,256,1] N/A 512 Adam 0.001 100

KAN [1,1] 50/2 150 LBFGS 0.001 40

Table 5.1: Parameters used for each network (1D function)

Figure 5.3 shows the trained KAN architecture and the learnt spline function that

closely follows the shape of the target function. This experiment validates the claim

of the authors of [1] however it provides an unfair advantage to KANs since it directly

exploits the locality property of the univariate spline function to model a smooth,

univariate function such as the target function. By allowing KAN’s splines to have

50 control points, and all polynomials to be of degree 3, we have essentially assigned

every 10 control points to handle one experience and fix the shape of the spline while

leaving the rest of control points unperturbed. This is the indented behaviour we wanted

to achieve however this trick might not be possible for when modeling more complex

functions that take more than one element as input.

Figure 5.3: Plot of trained KAN for 1D function - domain incremental scenario

5.1.2 Mixture of Gaussians - 2D

To debunk the representation argument proposed by critics of the KAN architecture

(i.e. that the locality of splines is benefitial only when handling univariate analytical

functions), we device a slightly more complicated experiment that involves two variables.

We follow a similar procedure as with our previous experiment but we extend the mixture

of Gaussians to a 2D grid where the center of each distribution is located along the main

diagonal of the input space (i.e. where y = x). Again we chose function f (x,y) to be

restricted in the domain [−1,1]× [−1,1] and to map the output to any real value in R
with equation:

f (x,y) =
4

∑
i=0

[
exp

(
−

(
(x−µx,i)

2

2σ2
x,i

+
(y−µy,i)

2

2σ2
y,i

))
+0.2

]
(5.3)
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where µx,i and µy,i are the centers of the i-th Gaussian distribution, σx,i and σyi are the

standard deviations, which change with each i.We have added an arbitrary 0.2 for better

visualisation (to distinguish gaps from sampling and actual zero values)

(a) Three-dimensional representation of the 2D

Mixture of Gaussians

(b) Heatmap of 2D Mixture of Gaussian

Figure 5.4: Representation of the target function f (x) as defined by equation 5.3

Figure 5.4a displays the 3D plot of the two-dimensional function f (x,y) as defined

by equation 5.3 while figure 5.4b displays the values of the target function as a heatmap.

In order to test the performance of each model in a domain incremental scenario, we

need to partition the domain into distinct experiences, each containing data from a

different subdomain of the input space. We chose to do that by splitting the input

space along the y-axis thus creating five horizontal stripes from which we uniformly

sample to create the training and testing data-streams with a ratio of 80:20 as shown

in figure 5.5. Each stripe is then presented as a new experience to both models in an

incremental manner for them to be trained on the sample data and learn the equation of

th distribution that produced them. The results of this procedure are visually displayed

in figures 5.7 and 5.6 respectively whereas the parameters of each model are shown in

table 5.2.

Figure 5.5: Samples given in incremental order for training
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Model Architecture Grids/Order Parameters Optimiser Learning Rate Epochs

MLP [64,512,32,1] N/A 49184 Adam 0.001 100

KAN [2,5,11,1] 40/2 6080 LBFGS 0.001 40

Table 5.2: Parameters used for each network (2D function)

Figure 5.6: Predictions of MLP on Incremental Dataset

Figure 5.7: Predictions of KAN on Incremental Dataset

In this experiment, again, it is evident that KANs demonstrate a much stronger

ability to retain and approximate the position and variance of each Gaussian peak

with minimal forgetting. In contrast, MLPs tend to forget the existence of a peak for

experiences before the penultimate.

It is important at this point to notice the rougher grid prediction produced by KANs

compared to the smoother predictions of the MLP architecture. While increasing the

amount of parameters in the architecture allows the network to learn more complex

latent representations and thus produces smoother predictions, attempting to do so in

the case of KANs makes them more prone to forgetting. This observation could indicate

that the KANs perform lookup operations from a partitioned grid rather than developing
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a smooth, continuous understanding of the data. This behaviour could be acceptable for

a small artificial dataset if it results in less forgetting, however it defies to purpose of a

developing a generic model, able to capture more abstract and generalizable features

that are present in larger and more complex datasets.

5.2 Robust Benchmarking on Vision Datasets

To overcome the issue of feature representation learning experienced by KANs with

small architectures, we replace the vanila KAN architecture with a mixture of Convolu-

tional Neural Networks [31] that are able to extract the features of complicated dataset

and pass them to KANs to perform the classification or regression task as depicted in

figure 5.8:

Figure 5.8: Convolutional KAN architecture (generated with alexlenail-svg)

5.2.1 MNIST Benchmark

Figure 5.9: MNIST Task-Incremental (TI) Split

The Split-MNIST task is a widely used benchmark in continual learning for evaluat-

ing a model’s ability to adapt to new tasks while retaining knowledge from previous

tasks. In this task, the MNIST dataset, which consists of grayscale images of handwrit-

ten digits, is spitted into 5 different tasks each containing images from two different
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classes as shown in figure 5.9. This setup enables us to tests the model’s capacity to

identify the features that make up the images of the digits and transfer that knowledge

to following tasks quickly (measured by the Average Accuracy metric) while resisting

to catastrophic forgetting as it encounters progressively more tasks (measured by the

Average Forgetting metric).

For this experiment, we used the original MNIST dataset which was processed as

follows:

• Training set: 60,000 images

• Test set: 10,000 images

• Tasks: 5 tasks as shown in figure 5.9

• Input size: 28x28 pixels (flattened to 784 dimensions)

Each model was trained sequentially on these 5 tasks with the assistance of the

generative replay strategy plugin - a rehearsal based method explained previously in

2.2.2 - and the performance was evaluated after each task to measure the level of

forgetting. The accuracy was recorded on both the current task and all previously

learned tasks. Table 5.3 outlines the architecture and hyperparameters used for the MLP

and KAN models.

These results highlight the effectiveness of the Convolutional-KAN architecture

in reducing catastrophic forgetting, when used along with a generative replay buffer.

The network by itself experienced significant forgetting which could be attributed to

the small grid size chosen for the architecture. This choice prevents splines from

adequately partition the grid (the domain of each activation function) from capturing

the set of features corresponding to classes from each task. We further discuss this

observation is provided later in 6.1. on It is also important to note that smaller networks

(KAN:[784,5,10] - 80K parameters - and [784,7,10] - 120K parameters) achieved

comparable results to the conventional MLP which can be useful for scenarios where

memory and time are limited thus freeing space for a larger replay buffer to be used

which would further reduce forgetting.

Model Architecture Grids/Order Parameters Optimizer Learning Rate Epochs

MLP [784,1024,512,10] N/A 160K Adam 0.001 10

KAN Conv:[784,32,64] KAN:[784,10] 10/2 150K SGD 0.001 10

Table 5.3: Parameters used for each network on MNIST Permutations task



Chapter 5. Experiments and Results 26

Figure 5.10 displays the Learning Accuracies and the Average Forgetting of both

models at every increment. By choosing the amount of parameters to be approximately

the same for both models and with the assistance of the generative replay architecture

we observe that KANs exprience significantly less forgetting (0.1359 VS 0.3529) while

achieving a significantly higher Average Accuracy (0.867 VS 0.713).

(a) Average Accuracy with Convolutional KAN

model - Generative Replay (AA =0.867)

(b) Average Forgetting with Convolutional KAN

model - Generative Replay (F =0.1359)

(c) Average Accuracy with conventional MLP -

Generative Replay (AA = 0.713)

(d) Average forgetting with conventional MLP -

Generative Replay (F = 0.3529)

Figure 5.10: Comparison of average accuracy and forgetting metrics of conventional and

KAN-modified CNN architectures on Split-CIFAR-100 dataset for 20 experiences

5.2.2 CIFAR-10/100 Class Incremental Learning

To further challenge the robustness of KANs, we extended our evaluation to the include

the CIFAR-100 dataset. Unlike the MNIST dataset, CIFAR-100 consists of colored

images of real-world objects from 100 distinc classes. These datasets are commonly

used in computer vision tasks, making them a more complex and realistic benchmark

for continual learning.
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Figure 5.11: CIFAR-10 dataset

For this experiment, we used the CIFAR-100 dataset which was processed as

follows:

• Training set: 50,000 images

• Test set: 10,000 images

• Tasks: 20 tasks, each with 5 classes

• Input size: 32x32 pixels (flattened to 3072 dimensions)

We again contacted task incremental learning to train both networks by sequentially

introducing new tasks to each of them. To do that, we divided the classes into 20 tasks,

each containing 5 classes and with the help of an episodic rehearsal strategy we obtained

the results shown in 5.12. The details of the model architectures and training parameters

are provided in Table 5.4.

Model Architecture Grids/Order Parameters Optimizer Learning Rate Epochs

MLP [3072,2048,1024,100] N/A 9M Adam 0.001 20

KAN Conv:[3072,32,16] KAN:[10,20,20,10,100] 30/3 3M SGD 0.001 20

Table 5.4: Parameters used for each network on CIFAR-100 tasks

As illustrated in Figure 5.12, both models were able to achieve almost identical

accuracies and experience the same amount of forgetting. However, Convolutional

KANs used 3 times less parameters than MLPs and yet managed to experienced slightly

less forgetting. The almost identical behaviour of these networks suggest a very strong
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(a) Average Accuracy with Convolutional-KAN

model - LAMAML Strategy (AA = 0.679)

(b) Average Forgetting with Convolutional-KAN

model - LAMAML Strategy (F =0.0619)

(c) Average Accuracy with conventional MLP -

LAMAML Strategy (AA = 0.679)

(d) Forgetting with conventional MLP -

LAMAML Strategy (F = 0.0655)

Figure 5.12: Comparison of Average Accuracy and Forgetting metrics of MLP and

Convolutional-KAN architectures on Split-CIFAR-100 dataset for 20 experiences using

Generative Replay

influence of the limited amount of training samples compared to the range unique

images presented per class. This result suggests that while KANs provide a more

memory-efficient method for continual learning, they may require further refinement

or to handle the increased complexity and diversity of data found in more challenging

vision tasks.
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Discussion

6.1 Interpretation of Results

6.1.1 Univariate Function Approximation

Our initial experiments with the mixture of Gaussians in one dimension validated

the claim by Liu et al. that KANs are effective at mitigating catastrophic forgetting.

The results demonstrated that KANs could maintain their performance across multiple

learning experiences, while MLPs showed significant performance degradation as new

tasks were introduced. This is likely due to the localized nature of KANs, which allows

them to compartmentalize the knowledge learned from each task.

6.1.2 Extension to Multivariate Functions

The extension of the Gaussian mixture to two dimensions further tested the robustness of

KANs. While MLPs struggled to retain knowledge of previous tasks, KANs continued

to show strong retention, albeit with a coarser grid that limited their ability to produce

smooth function approximations. This finding suggests that while KANs are effective

in simple scenarios, their performance might degrade as the complexity of the input

space increases, particularly when the grid size is not sufficiently fine to capture the

function’s nuances.

29
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6.1.3 Image Classification Tasks

When applied to more complex vision datasets like MNIST and CIFAR-100, KANs

continued to outperform MLPs in terms of reducing catastrophic forgetting, especially

when paired with generative replay strategies. However, the gap in performance high-

lighted a critical limitation: KANs, despite their advantages in retention, require careful

tuning of grid sizes and order to balance between memory retention and the ability to

generalize across tasks. Moreover, the relatively rough predictions observed in KANs

suggest that they may be better suited for scenarios where high precision in function

approximation is less critical, or where grid refinement can be feasibly increased.
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Conclusion & Future work

7.1 Conclusion

In this study, we have empirically shown that the original claim of the authors of

KAN paper [1] holds only on special domains, but does not apply for generic datasets.

However, the network’s ability to achieve superior performance with a significantly

less amount of parameters can be exploited by rehearsal based methods to increase

the size of their buffer which will enable more samples to be stored in them. This

could allow more samples to be revisited in the same amount of time it would have

taken a conventional MLP to train to achieve the same result. Despite these findings,

we discussed potential adaptations the KAN architecture could do to overcome the

shortcomings of the current implementation. As the main contributions of this study we

enlist the following:

• Provided empirical evidence that KANs are able to overcome catastrophic for-

getting when incrementally trained on univariate and multivariate analytical

functions

• Rigorously tested the ability of the current KAN architecture to battle catastrophic

forgetting and concluded that KANs on their current form and alone are not

adequate to do so.

• Subsequently, disproved the generic claim made by Liu et al in [1] by providing

the example of a slightly more complex benchmark (CIFAR-100)

• Provided suggestions on how the current architecture can be modified to address

some of the issues identified during this study.

31
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7.2 Future Work

The results of this study suggest several avenues for future research. Bellow we enlist

some of the most interesting that worth exploring:

• Adaptive Grid Techniques: One of the most interesting properties of KANs

which was not explored during this study was grid adaptation. This is the ability

of splines to further subdivide a single polynomial curved defined over an interval

[a,b] into a combination of splines without affecting the rest of the grid. Devel-

oping adaptive grid techniques that can dynamically adjust polynomials based

on the complexity of the task could improve task isolation and therefore is worth

exploring.

• Understand relation of Network Hyperparameters and forgetting: While

testing and fine tuning the models, it was noted that the variable for the grid size

and the amount of activation functions per layer for the network were directly

affecting its ability to battle forgetting. Developing an understanding of how

these are related could enable and guide further studies to efficiently choose their

hyperparameters and therefore accelerate their testings.

• Test for simpler real-world scenarios: As mentioned in the experiments section,

the main obstacle that prevented KANs from overcoming catastrophic forgetting

is learning how to store the latent representations provided by the convolutional

network. Since images are complicated structures are therefore are made out of

multiple complex features, learning to efficiently map that many features into

grids seemed difficult. However attempting to apply the same mapping for a

simpler domain in the real world could be simpler and much more efficient with

KANs.
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Appendix A

Additional Material

A.1 Universal Approximation Theorem

Theorem 2. Any continuous multivariate function f (x) can be approximated up to a

chosen approximation threshold ε given a set of weights w, biases b and non-linear,

non-polynomial activation functions σ as follows (see also [32] and [33]):

f (x) = f (x1, ...,xn) =
N(ε)

∑
i=1

αiσ(wi ·x+bi) (A.1)

A.2 Comparison between MLP and KAN

Figure A.1: Multi-Layer Perceptrons (MLPs) VS Kolmogorov-Arnold Networks (KANs) -

Image from [1]
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A.3 Trained KAN for the 2D function (domain-incremental)

Observing the last layer of activation functions after the end of training on each expe-

rience, it is clear that the shape of splines becomes more and more defined. After the

network has seen all experiences, the last layer of splines contains a few curves that are

similar to the projection of peaks along the x and y axis. However the structure of the

network doesn’t provide much intuition about the latent representations learnt.

Figure A.2: Trained KAN model
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