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Abstract

This research addresses the challenges of Composed Image Retrieval (CIR) in the

fashion domain, where the rapid turnover of products and fragmented online invento-

ries present unique difficulties for developing effective AI/ML solutions. Specifically,

these challenges require systems that can accurately integrate and process multimodal

queries—combining visual and textual information—to retrieve relevant images. The

existing literature on CIR presents a variety of methods, but the state of the art remains

unclear due to the fragmented nature of contributions and the uncertain value of dif-

ferent approaches. The central research question of this study is to identify the most

effective approach for CIR by dissecting and evaluating the key components of existing

methodologies.

To address this question, the study conducts an extensive ablation analysis of

state-of-the-art CIR techniques, focusing on the evaluation of linear and non-linear

multimodal fusion strategies and the implementation of a two-stage training approach.

The experiments, performed on benchmark fashion datasets such as FashionIQ and

Shoes, aim to clarify the impact of raw-data level multimodal fusion—particularly

through visual and textual query unification—on retrieval performance. The findings

indicate that a two-stage training scheme, when applied to these fusion techniques,

significantly enhances retrieval accuracy. This research not only formulates a clearer

understanding of the current state of the art in CIR but also offers actionable insights

into best practices for developing more robust and efficient CIR systems. The study’s

conclusions contribute to advancing the field and provide a solid foundation for future

research and practical applications in the fashion industry.
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Chapter 1

Introduction

1.1 Introduction

Composed Image Retrieval (CIR) is an emerging approach designed to retrieve images

that closely match a source image combined with textual modifications provided by

users. CIR holds potential for significantly advancing search systems within the fashion

domain, where rapid product turnover caused by ”Fast Fashion” [7] and dispersed online

inventories across different online retailers pose substantial challenges [44]. The need

for a search system that can reduce consumers’ substantial amounts of time researching

products alongside changing inventories is critical. CIR’s unique combination of visual

and textual input offers a promising solution for improving search efficiency and user

satisfaction in the fashion industry. CIR shows promise based on existing studies, and

current research in this area primarily focuses on developing and refining both linear

and non-linear multimodal fusion techniques and training strategies to improve retrieval

accuracy.

However, the current research landscape for CIR reveals a gap in identifying the

most effective components and methodologies due to the fragmented presentation of

solutions across various studies, remaining a need for comprehensive evaluations that

critically assess the limitations and practical effectiveness of these methods within the

fashion domain. This research aims to critique existing works and synthesize their

findings to identify the true state of the art in CIR. By conducting a comprehensive

ablation study, this research seeks to explore effective approaches for CIR, transcending

the invention of new models from various papers. This approach can not only identify

best practices but also push the boundaries of what is considered state-of-the-art in CIR.

Through thorough scientific investigation and critique, this study explores and validates

1



Chapter 1. Introduction 2

potential components to contribute to the development of more effective and robust CIR

systems that enhance the online shopping experience.

The hypothesis guiding this research is that the integration of individual components

from recent CIR methodologies, particularly those emphasizing raw-data-level multi-

modal fusion and the use of Visual Language Pretrained (VLP) models, like Contrastive

Language-Image Pre-Training (CLIP) [49], can significantly enhance CIR performance

in the fashion domain. Specifically, this research proposes that shifting the multimodal

fusion process from the traditional feature level to the raw data level, coupled with a

two-stage training approach, will result in improved retrieval accuracy and robustness.

The hypothesis states that the use of CLIP additivity fine-tuning, combined with lin-

ear multimodal query fusion, will better align textual and visual features within the

same embedding space, thereby optimizing the effectiveness of CIR systems. This

approach is expected to leverage the inherent strengths of VLP models, particularly

their cross-modal alignment capabilities, to create a more cohesive and precise retrieval

process. Given this hypothesis, the research is further divided into specific investigative

approaches to systematically study and validate the most effective methodologies for

CIR in the fashion domain:

1.1.1 Research Question

• What constitutes the most effective approach for Composed Image Retrieval in

the fashion domain?

1.1.2 Investigative Approach

• Critique and Synthesize Existing CIR Methods: To test the hypothesis, this

approach involves performing experiments on benchmark fashion datasets, such

as FashionIQ [64] and Shoes [20], to validate the proposed methods. The ex-

periments will utilize metrics such as recall to compare the performance of the

proposed CIR methodologies with state-of-the-art models, thereby identifying

the strengths and limitations of these methods.

• Evaluate the Effectiveness of Raw-Data Level Multimodal Fusion and Image
Preprocessing Techniques: Building on the hypothesis that raw-data level fusion

and preprocessing can enhance retrieval accuracy, this approach will investigate

the impact of techniques such as visual and textual query unification, alongside
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various image preprocessing methods (e.g., standard CLIP preprocessing, target

pad), on CIR performance.

• Analyze Non-Linear vs. Linear Multimodal Fusion Models: As part of

validating the hypothesis, this approach will focus on assessing the impact of

non-linear multimodal fusion models compared to linear models, specifically

examining how these models influence retrieval performance.

• Develop a Two-Stage Training Approach:

– Stage 1: Implement CLIP additivity fine-tuning to adapt the image and text

encoders for better alignment with CIR tasks, thereby addressing the mis-

match between large-scale pre-training and downstream task requirements

as hypothesized.

– Stage 2: Develop a linear multimodal query fusion technique using a Multi-

Layer Perceptron (MLP) to combine the features of unified textual and

visual queries, ensuring that the fused multimodal features remain within

the original embedding space, as suggested by the hypothesis.

• Identify Best Practices and Guidelines for CIR: The final approach aims to

synthesize findings from the experimental results to propose effective strategies

for developing robust CIR systems. This will advance the field of CIR in the

fashion domain by evaluating the effectiveness of innovative CIR methodologies

and image preprocessing techniques, ultimately validating or refining the initial

hypothesis.

1.1.3 Contributions

This research will contribute to the state-of-the-art in CIR by providing a thorough

critique of existing methodologies and offering new insights into best practices for

developing effective CIR systems. A key innovation in this study is the introduction

of GradCAM as a qualitative metric to enhance AI explainability. GradCAM will

be used to visualize and interpret how CLIP models process and output information,

enabling a deeper analysis of whether the model is extracting useful features from the

images. Additionally, this research will be the first to employ the t-SNE algorithm as a

quantitative metric to analyze how embeddings are learned by the model and how they

navigate toward the desired embedding in the embedding space. These visualizations



Chapter 1. Introduction 4

will provide critical insights into the effectiveness of different fusion strategies and

training approaches. The findings from this study will serve as a foundation for future

research and practical applications in the fashion industry, offering robust methodologies

for developing more intuitive and efficient CIR systems.

1.1.4 Outline

The Introduction Section 1 sets the stage by defining the problem of CIR and articulating

the research questions and objectives. This is followed by the Background Section

2, which reviews existing literature on image retrieval, focusing particularly on how

CIR advances traditional approaches. The Methodology Section 3 then details the

experimental design, explaining the choice of datasets, models, and evaluation metrics.

This is directly linked to the Experimental Results Section 4, where the outcomes of the

experiments are presented and analyzed, showcasing the effectiveness of the proposed

approaches. The Conclusion Section 5 summarizes the key findings and contributions

of this study, while the Impacts Section 6 outlines the practical applications and broader

implications of the research in both academic and industrial contexts. Finally, Section 7

addressed the limitations, and future research directions are proposed.



Chapter 2

Background

2.1 Introduction to Image Retrieval (IR)

2.1.1 Overview of Image Retrieval Techniques

Image Retrieval (IR) refers to the process of searching and retrieving images from

large databases based on visual content. It is a critical function in various applications,

including search engines, digital libraries, and e-commerce. Traditional Content-Based

Image Retrieval (CBIR) systems primarily rely on visual features like color, texture,

and shape extracted from images to perform searches.

2.1.2 Traditional Content-Based Image Retrieval (CBIR)

While CBIR techniques have evolved significantly—transitioning from the use of

engineered features such as Scale-Invariant Feature Transform (SIFT) [73] to the

adoption of Convolutional Neural Networks (CNNs) [35]. However, CBIR is limited by

its reliance on a single modality — visual content, leading to challenges when users

need to express more complex search queries that involve textual elements.

2.1.3 Composed Image Retrieval (CIR) as an Advancement Over

CBIR

This dual-modality approach, illustrated in Figure 2.1, allows for more nuanced and

specific searches by integrating visual and textual information to retrieve images that

closely match the user’s desired modifications [39, 47, 48]. In the CIR process, the

source image and the modification text are encoded separately through CLIP image and

5
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Figure 2.1: Example of Composed Image Retrieval (CIR) process

text encoders. The encoded features are then fused using a fusion model, which can

be either linear or non-linear. The target image is retrieved by calculating the cosine

similarity between the fused features and the stored vectors, ensuring that the retrieved

image aligns with the modifications specified by the user.

The task of CIR distinguishes itself from traditional CBIR by allowing users to

express their search intentions through a combination of both a source image and a

textual modification, rather than being restricted to using either a pure text query or

a visual query alone [39, 47, 48]. The limitations of CBIR, particularly its inability

to handle complex queries that combine visual and textual elements, underscore the

need for CIR. CIR’s ability to process and fuse information from both modalities offers

a significant advancement in retrieval accuracy and user satisfaction, particularly in

domains like fashion, where nuanced modifications to an image are often necessary to

meet user expectations.

2.2 Approaches for Feature Extraction

2.2.1 Traditional Model-Based Approaches

The feature extraction process involves mapping important characteristics of the data

into separate embedding spaces, tailored to each modality (e.g., one space for visual

features and another for textual features). Traditional model-based methods in feature

extraction typically involve models like ResNet [22] and Long Short-Term Memory

(LSTM) networks [24]. These models are trained on single-modality datasets to extract

features from images or text. Each type of data (modality) — whether image or text —

is usually mapped into its own separate space.
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2.2.2 Vision-Language Pretrained (VLP) Models

Vision-Language Pretrained (VLP) models have emerged as a powerful tool for CIR

due to their ability to handle both visual and textual information simultaneously. VLP

models like CLIP [49], ALIGN [26], and BLIP [33] represent a significant advancement

over traditional approaches. By integrating these modalities into a shared embedding

space, these models can perform complex cross-modal retrieval tasks with high accu-

racy, because they are pre-trained on vast datasets that include both images and their

corresponding natural language descriptions, enabling them to encode both visual and

textual information into a single, shared embedding space.

Figure 2.2: The illustration of the contrastive pre-training of CLIP models [67]

CLIP models are designed to align images and their corresponding text captions

in a unified embedding space, making them particularly well-suited for cross-modal

tasks like CIR. CLIP consists of two main components: an image encoder ψI and a

text encoder ψT . Given an image I, the image encoder extracts a feature representation

ψI(I) ∈ Rd , where d is the embedding dimension, and similarly, given a text query T ,

the text encoder generates a corresponding feature representation ψT (T ) ∈ Rd . CLIP

uses contrastive pre-training, where paired images and text descriptions (e.g., an image

of a dog with the caption ”The photo of a dog”) are aligned in the embedding space if

they are a correct pair and pushed apart if they are not. This training process shown in

Figure 2.2 involves creating embeddings for both images and texts and ensuring that

correct pairs (e.g., Image 1 with Text 1) are aligned closely in the embedding space,

while incorrect pairs (e.g., Image 1 with Text 2) are not. This approach enables CLIP to

learn robust cross-modal representations, essential for CIR tasks that require effective

integration and retrieval of information across both visual and textual modalities.
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2.2.3 Comparative Analysis of VLP Models vs. Traditional Models

Textual and visual features from traditional models are created in different spaces, and

combining or comparing features across different types of data (e.g. matching text with

images) can be challenging, often leading to less effective and suboptimal retrieval

performance. While traditional models struggle with the alignment of features across

different modalities, VLP models excel in this area due to their extensive training on

large and diverse multimodal datasets. This extensive training allows VLP models to

develop strong zero-shot cross-modal encoding capabilities, meaning they can accurately

interpret and align images and text without requiring specific retraining for every new

task. As a result, VLP models have demonstrated superior performance in CIR tasks

[56, 15, 21], especially when handling complex, real-world queries that require the

integration of both visual and textual information.

Given the success of native multimodal language models (Large Language Models

(LLMs) trained with multimodal data) like Meta’s Chameleon [2] and GPT-4o [45],

which use the same VLP models to encode both text and image, there is a clear advantage

to using a unified approach for the data encoding process. Therefore, this research

employs CLIP as the feature extraction backbone to encode both text and image for

target image retrieval.

2.3 Multimodal Fusion

Multimodal fusion in CIR involves the combination of visual and textual features to form

a unified query representation for target image retrieval. Recent CIR methodologies

have predominantly employed VLP models for feature extraction due to their ability to

project images and text into a common embedding space. This shared embedding space

naturally facilitates the fusion of multimodal queries, a critical process for accurately

retrieving target images.

2.4 Evaluation of CIR Techniques

The primary metric used in this research is recall [23], which measures the proportion

of relevant items retrieved out of all relevant items in the dataset. Recall is particularly

important in CIR because it quantifies the system’s ability to retrieve all the images that

meet the user’s specified criteria.



Chapter 2. Background 9

In mathematical terms, recall is defined as:

Recall =
Number of Relevant Items Retrieved

Total Number of Relevant Items in the Dataset
(2.1)

This metric is crucial in the context of CIR, where the goal is often to ensure that

as many relevant images as possible are retrieved, even at the expense of retrieving

some non-relevant images. The recall metric is calculated at different thresholds (e.g.,

R@1, R@10, R@50), which represent the recall at the top 1, 10, or 50 retrieved results,

respectively.

For instance, R@10 indicates the proportion of relevant images within the top 10

results returned by the CIR system. A higher recall at a given threshold suggests that

the system is more effective at retrieving relevant images early in the ranking process,

which is essential for user satisfaction in practical applications.

2.5 Related Work in CIR

In recent years, numerous approaches have been developed to address CIR tasks,

leveraging advanced technologies such as transformer architectures [55], large VLP

models, and generative models. These methods have diversified approaches to solving

CIR tasks, utilizing attention mechanisms [61, 52, 34, 65, 68], conversational models

[63, 6, 46], generative models [74, 18], Graph Neural Networks [71, 70], LLMs [16, 10,

38], multi-task learning [8], multi-expert models [21], prompt learning [3, 41, 19, 1, 30,

25, 28], re-ranking techniques [66, 9, 42], and similarity learning [59, 4, 27, 69, 32, 5].

Increasing computational power has led to notable improvements in CIR performance

applied to the fashion domain. For instance, the authors in [18] propose a latent

diffusion-based approach for composed image retrieval, focusing on generating high-

quality fused multimodal features by diffusing latent representations of the source

image and modification text. Similarly, [6] leverages LLMs to enhance multimodal

search capabilities, improving CIR by utilizing advanced language understanding and

processing capabilities. The work in [42] introduces a candidate set re-ranking approach

using a dual multi-modal encoder to refine initial retrieval results, ensuring higher

precision in CIR tasks. Additionally, [3] emphasizes using sentence-level prompts to

enhance CIR processes, capitalizing on the ability of detailed textual descriptions to

improve retrieval accuracy.
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2.5.1 Multimodal Fusion Techniques in CIR

The development of effective multimodal fusion techniques has become a central focus

in CIR research. The ability to effectively combine visual and textual features is crucial

for achieving high retrieval accuracy in CIR systems.

2.5.1.1 DQU-CIR: Dual Query Unification

The DQU-CIR framework, introduced by Wen et al. [59], presents a linear and sim-

ple fusion model architecture that addresses the challenge of effectively combining

multimodal queries in CIR. DQU-CIR [59] achieves absolute improvements of 5.51%,

and 8.63% over the best baseline for the Avg. metric on FashionIQ VAL-Split [64],

and Shoes [20] datasets respectively [59]. The key contribution of DQU-CIR [59] lies

in its introduction of Dual Query Unification strategies—text-oriented unification and

vision-oriented unification—that allow for a more effective combination of textual and

visual information. Text-oriented unification involves concatenating the source image’s

caption with the modification text to form a unified textual query, while vision-oriented

unification involves overlaying key modification words directly onto the source image

to create a unified visual query. These unified queries are then encoded using the CLIP

model, with the resulting features fused through a linear adaptive fusion mechanism.

This approach significantly simplifies the multimodal fusion process, making it more

efficient while still achieving State-of-the-art (SOTA) retrieval accuracy.

2.5.1.2 CLIP4CIR: Leveraging Non-Linear Fusion and Two-Stage Training

CLIP4CIR, presented by Baldrati et al. [4], advances CIR by introducing a non-

linear fusion model architecture and a two-stage training process. The CLIP4CIR

approach leverages the CLIP model’s pre-trained capabilities to extract rich visual

and textual features. The non-linear fusion model in CLIP4CIR [4] integrates these

features through a more complex architecture involving additional layers, such as fully

connected layers, which allow for more sophisticated interactions between modalities.

This non-linear approach is designed to capture more intricate relationships between the

visual and textual components, leading to enhanced retrieval performance. Furthermore,

CLIP4CIR [4] employs a two-stage training process: the first stage fine-tunes the CLIP

model to adapt its embeddings more effectively to the CIR task, while the second stage

focuses on training the non-linear fusion model itself. This two-stage process allows

for better alignment between the visual and textual embeddings, ultimately improving
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the robustness and accuracy of the CIR system.

2.5.2 Importance of Ablation Studies in Multimodal Fusion

Given the varying approaches to multimodal fusion, an ablation study is crucial to dissect

the impact of different strategies on CIR performance. DQU-CIR [59] and CLIP4CIR

[4] represent two SOTA methodologies that approach fusion in fundamentally different

ways—linear versus non-linear. However, these methods have not been thoroughly

evaluated against one another in existing literature, leaving the question of which

approach is more effective unanswered.

An ablation study focusing on these two methods will allow us to isolate the

contributions of each approach and understand how they influence retrieval accuracy.

This comprehensive analysis will not only clarify their roles in enhancing or hindering

CIR performance but will also provide valuable insights into the effectiveness of

different fusion strategies within the fashion domain. By thoroughly evaluating these

strategies, this research aims to fill critical gaps in the current understanding of CIR,

offering guidance for future studies and practical applications.



Chapter 3

Methodology

3.1 Problem Formulation

This research aims to address the task of Composed Image Retrieval (CIR), which

involves retrieving a target image that satisfies the constraints imposed by a multimodal

query consisting of a source image Is and a modification text Tm. The CIR task is distinct

from traditional image retrieval methods which typically rely on a single modality (either

text or image) for querying. Instead, CIR requires the system to understand and integrate

information from both the visual and textual domains to effectively retrieve a target

image that aligns with the user’s modification request.

Formally, the CIR problem can be defined as follows: Given a set of N training

triplets T = {(Is,Tm, It)i}N
i=1, where Is denotes the source image, Tm denotes the modifi-

cation text, and It denotes the target image. Textual features ftextual and visual features

fvisual are extracted by the CLIP model from the multimodal queries (Is,Tm), then used

as inputs to derive fused multimodal features output in a multimodal fusion process

that encapsulates the user’s essential search demand. The task is to align the fused

multimodal features closely with the feature representation of the target image in the

same embedding space.

Given the results in CLIP4CIR [4] and DQU-CIR [59] papers, ablation studies in

the following Section 3.2, 3.3, 3.4 are essential to systematically evaluate the innovating

components utilized in this two papers. This study for multimodal fusion will also

evaluate the effectiveness of the standalone components in improving retrieval perfor-

mance. The scenarios covered include real-world use cases where customers search for

products with desired adjusted features based on an input image and text modifications

(e.g. ”more blue and higher at the neckline” illustrated in Figure 3.1).

12
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3.2 Raw-data level Multimodal Unification

The motivation behind this ablation study is grounded in the empirical results presented

by DQU-CIR [59], which demonstrated the effectiveness of raw-data level multimodal

(visual and textual) query unification. This approach has shown significant potential as a

more efficient alternative to computationally intensive methods like image inpainting for

image manipulation [18, 74]. By unifying queries at the raw-data level, DQU-CIR [59]

effectively preserves the integrity of the original data while achieving a strong alignment

between the visual and textual modalities. Given these findings, it becomes crucial

to investigate whether this raw-data level fusion can serve as a superior approach to

reduce computational complexity without sacrificing retrieval performance. This study

aims to critically assess the potential of raw-data level query unification and whether

can improve the retrieval performance in fashion products with different unification

combinations, making it a crucial component of our ablation study.

Figure 3.1: Different combinations for raw-data level multimodal (visual and textual)

query unification

In this ablation study, the data preprocessing pipeline follows the methodology

outlined in DQU-CIR [59], where the query unification occurs at the raw-data level by

creating unified textual and visual queries as shown in Figure 3.1. A unified textual

query is achieved by concatenating the modification text with a textual description of

the source image, which is extracted using the BLIP-2 image captioning model [33].
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This textual unification aims to retain the complete semantic content of both the source

image and the modification text, making it particularly effective in CIR cases with

complex modification requests, where the modification text is critical to expressing the

user’s search intent. A unified textual query is achieved by extracting key modification

words from the modification text using a general-purposed Large Language Model

[53], then directly inscribed onto the source image. This visual unification ensures

that the visual integrity of the source image is preserved while embedding the crucial

target attributes within the image. By utilizing CLIP’s native transformer-based Optical

Character Recognition (OCR) capability stated in [58, 60], the system can effectively

reason about the user’s search demand based on the unified visual query.

SOTA results in DQU-CIR [59] demonstrated the recall performance of text-only,

visual-only, and combined query unification methods. However, the study did not

compare these results with a baseline system that does not incorporate any query

unification. To provide a fair and comprehensive evaluation of the effectiveness of raw-

data level preprocessing, it is necessary to include a baseline comparison. Furthermore,

while DQU-CIR [59] focused its query unification ablation study purely on the general

image CIRR dataset [40], this study aims to explore the impact of these unification

techniques in a domain-specific setting, specifically within the fashion industry. This

study’s findings will help clarify whether raw-data level fusion can indeed provide

measurable improvements over the standard FashionIQ dataset. Additionally, the study

will explore the applicability and limitations of these techniques in a fashion-specific

context.

3.3 Linear and Non-Linear Multimodal Query Fusion

In composed image retrieval (CIR) tasks that utilize the CLIP model as the feature

backbone, two primary variations of multimodal fusion are often considered: linear

and non-linear fusion. These variations differ in how they combine the textual and

visual features extracted by the CLIP model to form a unified query representation. The

choice between linear and non-linear fusion approaches can significantly impact the

effectiveness of the retrieval process. Linear fusion typically involves a straightforward

weighted addition of the features from both modalities as implemented in DQU-CIR

[59], while non-linear fusion incorporates additional transformations that may intro-

duce complexity but also the potential for better alignment between the modalities as

implemented in [12, 72, 61, 4].



Chapter 3. Methodology 15

3.3.1 Linear Fusion

DQU-CIR [59] presents a simple yet SOTA linear multimodal fusion approach where

the fused multimodal features are computed as a weighted sum of the textual and visual

query features. Formally, the combined feature q f is calculated as:

q f = λ · ftextual +(1−λ) · fvisual (3.1)

where ftextual and fvisual represent the extracted textual and visual features, respec-

tively, and λ is a learnable parameter with a range of 0-1 that adjusts the contribution

of each modality. This linear combination ensures that the resulting feature resides

within the same embedding space as the original features, thereby minimizing the risk

of deviating from the common embedding space established by the VLP model [59].

The linear fusion approach is expected to work well in scenarios where the textual and

visual information is complementary and straightforward to combine, which proves

that latent text representations from CLIP exhibit geometric regularities and are highly

structured [13].

3.3.2 Non-Linear Fusion

In contrast, CLIP4CIR [4] introduces a non-linear fusion approach that builds on the

linear weighted addition by adding a second branch that outputs a non-linear mixture of

the image and text features. Specifically, the combined features are obtained through

the Combiner network Cθ from CLIP4CIR [4], which learns to fuse the multimodal

features via a more complex transformation:

q̂ f = (1−λ) · fvisual +λ · ftextual +ν (3.2)

where ν represents the output of the non-linear branch with the textual and visual

features as the inputs, the process involves linear transformations followed by ReLU

activation and dropout layers, which introduce non-linearity into the fusion process.

The purpose of this non-linear branch is to capture more complex relationships between

the visual and textual features, potentially leading to better alignment in the embedding

space. However, there is also a risk that this additional complexity could cause the

fused multimodal features to deviate from the original embedding space, thus hindering

retrieval performance.
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3.3.3 Comparison and Evaluation

The effectiveness of linear versus non-linear fusion strategies remains an open question.

This ablation study seeks to clarify their respective roles in enhancing CIR performance

through a comprehensive ablation study and compares the retrieval performance of

two SOTA approaches — linear fusion using the DQU-CIR model [59] and non-linear

fusion using the CLIP4CIR model under identical preprocessing conditions and datasets.

The model architecture in DQU-CIR [59] is used as the linear multimodal fusion model,

and the model architecture in CLIP4CIR [4] is used as the non-linear multimodal fusion

model for comparison. The reason for choosing these two specific models is that the

CLIP4CIR model essentially includes a linear weighted addition branch, similar to the

DQU-CIR model, but with an additional branch that outputs the non-linear mixture

contribution of the image and text features. This setup allows for a fair contrast of the

retrieval performance focusing on linear and non-linear fusion processes, instead of

having performance comparison with different model setups as previous studies have

done [72, 62, 58, 12, 59, 4].

Both models employ the same contrastive loss learning metric, ensuring that the

comparison focuses solely on the differences between the fusion strategies. The con-

trastive loss function is formulated as:

L =− log
exp

(
cos( fq, fti)/τ

)
∑

B
j=1 exp

(
cos( fq, ft j)/τ

) (3.3)

where cos(·) represents the cosine similarity, fq is the fused multimodal features

query, fti is the target image feature, and τ is the temperature parameter. This loss

function encourages the fused multimodal features to be as close as possible to the

corresponding target image feature while maximizing the distance from other target

images within the batch.

The motivation for this investigation lies in the potential of non-linear fusion meth-

ods to capture complex relationships between visual and textual data that linear methods

might miss. However, there is also a concern from DQU-CIR [59] that introducing

non-linearity could disrupt the coherence of the fused multimodal features within the

embedding space, leading to suboptimal retrieval performance. This ablation study aims

to identify whether the additional complexity introduced by non-linear fusion offers a

significant advantage over the simpler linear fusion approach.
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3.4 Two-Stage Training

The two-stage training scheme originally proposed in CLIP4CIR [4] is designed to

enhance the multimodal fusion process for CIR. This study applies this two-stage

approach not just to the non-linear model as originally proposed but also to a linear

multimodal fusion model. The goal is to evaluate whether this training strategy can

similarly benefit the overall multimodal fusion task in a simpler, linear context, thus

offering a broader understanding of its effectiveness.

3.4.1 CLIP Additivity Fine-Tuning (First Stage)

The first stage involves task-oriented fine-tuning of the CLIP model, where both the

image and text encoders are adapted to better suit the CIR task. This process, as detailed

in CLIP4CIR [4], aims to reduce the mismatch between the large-scale pre-training

of CLIP and the downstream task by fine-tuning the encoders using an element-wise

sum of image and textual features. The key objective here is to enhance the additive

properties of the output features, allowing for better alignment between the source image

and the modification text in the embedding space. For example, given an image of a

black dress Is and a corresponding text query Tm (“is blue”), the aim is for the fine-tuned

model to generate embeddings where ψI(Is)+ψT (Tm) ≈ ψI(It), with It representing

the image of a blue dress. This fine-tuning process is expected to produce embeddings

that exhibit strong “additivity properties,” meaning the relative caption’s embedding

should correspond closely to the displacement vector between the source image and the

target image features, i.e., ψT (Tm)≈ ψI(It)−ψI(Is).

3.4.2 Linear Multimodal Fusion with MLP (Second Stage)

The second stage of the fusion model training process directly addresses a known

limitation of CLIP embeddings — while they support simple arithmetic operations,

their effectiveness in fine-grained tasks or complex transformations can be limited, as

highlighted in [14]. The need for more adaptive fusion mechanisms arises from the

fact that simple arithmetic, such as the direct addition of embeddings, may not fully

capture the nuanced relationships between visual and textual queries, especially in cases

involving complex user modifications or specific retrieval tasks.

In this stage, rather than relying solely on basic arithmetic operations, the model

learns to fuse the fine-tuned image and text features using MLP. This approach aims to
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enhance retrieval performance by learning an optimal weighted addition of the unified

textual and visual query features in a linear context as stated in Equation 3.1. The MLP

is tasked with refining the fused multimodal features to better align with the target

image representation, thereby overcoming the limitations of straightforward embedding

arithmetic. By employing triplets (Is,Tm, It) during training, where (Is,Tm) is the query

and It is the target image, the model learns to minimize the distance between the fused

multimodal features and the target image features. This learning process on top of

the first stage of CLIP fine-tuning ensures that the model can handle more complex or

fine-grained retrieval tasks effectively, beyond what simple embedding arithmetic can

achieve.

3.4.3 Significance

The application of this two-stage training approach to both linear and non-linear models

allows for a comprehensive evaluation of its potential to improve CIR tasks. By

assessing whether this method enhances the effectiveness of linear multimodal fusion,

this study contributes to the broader understanding of how best to align textual and

visual features within the VLP model’s embedding space. The results will inform

future approaches to CIR, potentially offering a simpler yet effective alternative to more

complex non-linear methods while addressing the inherent limitations of embedding

arithmetic in handling intricate retrieval tasks.
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Experimental Results

To provide an intuitive demonstration of the effective components in CIR, this research

illustrates the performance of different components from DQU-CIR [59] and CLIP4CIR

[4] papers on two public datasets (i.e. FashionIQ [64] and Shoes [20]). The experiments

in this section for each study mentioned in Section 3 are designed to facilitate a better

understanding of the contribution of each key component in terms of quantitative and

qualitative evaluation.

4.1 Datasets and Metrics

All the triplets in the training and test sets are structured as < Is,Tm, It >, consisting of

a source image (Is), text modifications (Tm), and the corresponding target image (It).

This research adhered to standard evaluation protocols for each dataset and utilized the

Recall@k (R@k) metric for a fair comparison. Recall@k (R@k) [23] is particularly

suitable for evaluating retrieval performance in this ablation study because it directly

measures the model’s ability to retrieve the correct target image within the top k

results, which is critical in CIR tasks where the goal is to match a source image and

modification text to a specific target image. This metric is highly relevant as it reflects

how well the model handles large candidate sets by focusing on the top results, which

is crucial for practical user scenarios where only the first few results are typically

considered. Additionally, to provide deeper insights into how the CLIP models process

visual information, this research proposed a novel evaluation of qualitative metrics

towards CIR task - GradCAM heatmaps [51, 36], to visualize the regions of the image

that receive the most attention during the retrieval process. The heatmaps generated

by GradCAM highlight the attention distribution across the image corresponding to

19
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the label without any additional training, where red heatmap regions indicate higher

attention the model has given, and thus, greater relevance as perceived by the model.

This visualization allows us to assess whether the model is focusing on the most relevant

regions of the image in relation to the query to enhance the explainability of CLIP

results, providing a qualitative evaluation of the model’s interpretability and focus.

The FashionIQ dataset [64] comprises 46,609 training images, 15,536 validation

images, and 15,538 test images, categorized into three fashion classes: Shirts, Dresses,

and Toptees. It includes a total of 18,000 training triplets, 6,016 test queries, and 8,619

test targets [64]. Examples of modification text (Tm) in this dataset include descriptions

like ”has less sleeves,” ”has stripes,” or ”is more solid colored.” The challenge’s evalua-

tion criteria defined in this dataset are followed, focusing on R@10 and R@50 across

these categories. Notably, FashionIQ provides two evaluation protocols: the VAL-Split

[11] and the Original-Split [64]. For consistency with existing literature, this study uses

the VAL-Split which validates the recall metrics on the union of reference and target

images in all validation set triplets.

The Shoes dataset [20] contains 8,990 training triplets, 1,761 test queries, and

4,658 test targets. It includes images of various women’s footwear types, such as

boots, sneakers, heels, and clogs. Examples of modification text include phrases like

”has laces,” ”has a strap and buckle,” or ”is a shoe and contains no heel.” In line with

prior studies [11, 15, 62, 60], R@1, R@10, and R@50 are reported along with their

calculated averages.

4.2 Experimental Setting

All experiments were conducted using the ViT-B/32 CLIP model [31] as the feature

extraction backbone. This choice was made to ensure a fair and consistent experimental

setup across all component variations, particularly because the DQU-CIR [59] used a

considerably larger CLIP model (ViT-H/14). Although the ViT-H/14 CLIP model is

doomed to offer superior performance due to its larger size, with approximately 5.6 times

more text parameters and 7.2 times more image parameters than the ViT-B/32 model,

its computational requirements make it less practical for extensive ablation studies. The

ViT-B/32 CLIP model strikes a balance between performance and efficiency, making

it ideal for in-depth experimental analysis in this study. Given the similarity between

fashion product items, the recall empirical results vary to a small extent between

different combinations of the ablation studies. Each experiment was run twice, and the
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average results were reported to ensure reliability.

This study identified the effective components that improve CIR tasks, based on the

methodologies from DQU-CIR [59] and CLIP4CIR [4]. The four distinctive compo-

nents identified for preliminary experiments include linear and non-linear multimodal

fusion models, image preprocessing for the CLIP model, model training scheme, and

raw-data level multimodal query unification. For the image preprocessing pipeline,

three methods were considered: CLIP standard, square pad, and target pad [4]. The

standard CLIP preprocessing pipeline involves resizing the image so that the smaller

side matches the input dimension, followed by a center crop to produce a square patch

[43]. To address the loss of information caused by this operation, CLIP4CIR [4] pro-

posed applying padding only when the aspect ratio exceeds a predefined target ratio.

Preliminary results (see Table 4.1) show that while the target pad method performed

slightly better, the differences were minimal, particularly given that most existing

studies [12, 72, 61, 4] use the standard CLIP preprocessing method.

Preprocess Dresses Shirts Tops&Tees Avg.
R@10 R@50 R@10 R@50 R@10 R@50

Standard 52.11 75.71 56.28 76.59 60.79 82 67.25

Square pad 51.9 75.5 56.2 76.52 60.4 81.95 67.08

Target pad 51.95 75.9 56.27 76.7 60.88 82.05 67.29

Table 4.1: Retrieval performance of image preprocessing methods ablation study based

on linear multimodal fusion with ViT-B-32 using FashionIQ VAL-split

All experiments were trained using the AdamW optimizer [17]. For both the

FashionIQ and Shoes datasets, CLIP and fusion model parameters were optimized

at different learning rates to ensure effective and gradual convergence, aligned with

the three proposed ablation studies. Specific hyperparameters are detailed in their

corresponding sections. 100 epochs are set for all experiment runs given the empirical

observation that multiple test runs of each experiment showed an increase in validation

loss after 100 epochs. For all experiments, the feature dimension of ViT-B/32 is 512,

the batch size is fixed at 128, and the temperature factor in Equation 3.3 is set to 0.1 as

DQU-CIR [59] proposed.

In conclusion, this section will conduct the three ablation studies proposed in

Section 3, maintaining consistency with the CLIP standard image preprocessing method
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and using the ViT-B/32 CLIP model as the feature extraction backbone to ensure

computational efficiency and reliable comparisons.

4.3 Raw-data level Multimodal Unification Study

This ablation study investigate the effectiveness of raw-data level multimodal (visual and

textual) query unification as proposed in DQU-CIR [59]. Each model was trained for 100

epochs, and experiments were conducted using a linear weighted addition model with

end-to-end training by inputting different unification query combinations as training

data, aiming to maintain a straightforward linear multimodal fusion process. The

experiments utilized the FashionIQ and Shoes datasets, adhering to standard protocols

and evaluation metrics, specifically focusing on Recall@k (R@k) to assess retrieval

performance. For the FashionIQ dataset, the fusion model and CLIP model learning

rates were 1e-5 and 1e-7 respectively. For the Shoes dataset, the fusion model and CLIP

model learning rates were 5e-6 and 5e-7 respectively.

Figure 4.1: t-SNE Visualization of Embeddings: This figure illustrates the embedding

space where different elements of the CIR process are projected onto a 2D space,

showing how the system navigates from the source image and modification text to the

target image.

To better understand the impact of query unification, t-SNE visualization is proposed
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in this paper and used to project a triplet sample into a 2D embedding space. T-SNE

algorithm aims to preserve the points that are close in the high-dimensional space

to be close in the low-dimensional embedding as well [54]. Figure 4.1 illustrates

that the embeddings of both the modification text (to unified textual query) and the

source image (to unified visual query) became closer to the target image embedding

after unification. This is significant because it demonstrates that raw-data level query

unification effectively navigates the embedding space toward the desired target image.

After the textual and visual query unification, the Euclidean distance between the text

input and the target image decreased by 21.7% (130.61 to 102.27), and the Euclidean

distance between the image input and the target image decreased by 43.7% (48.85 to

28.82), illustrated the method’s effectiveness in improving retrieval accuracy, in which

text on the image can harness the CLIP OCR property for the unified visual query,

while the more detailed modification text including source image caption of the original

object in the source image for the unified textual query. After conducting the t-SNE

distance experiments on 6,016 test queries in the FashionIQ VAL-split dataset, the

average difference in Euclidean distance from the modification text embedding to the

unified textual query embedding is decreased by 17.67%, and the average difference

in Euclidean distance from the source image embedding to the unified visual query

embedding is decreased by 41.69%.

The performance disparities across different product categories and query unification

methods, as shown in the recall tables 4.2 and 4.3, further motivated a qualitative

evaluation using GradCAM visualization. By computing gradients with respect to its

final retrieval embedding output, it is observed how different fine-tuned CLIP models

extracted features from the source and target images in a triplet example and then fused

these features to retrieve the target image.

Query Unification Dresses Shirts Toptees Avg.
R@10 R@50 R@10 R@50 R@10 R@50 (R@10 + R@50)/2 (Rank)

None 47.53% 72.56% 52.23% 71.2% 58.67% 80.89% 63.85% (4)

Both 52.11% 76.1% 56.13% 76.79% 61.04% 81.85% 67.34% (1)

Only Visual 48.56% 73.87% 53.11% 73.27% 61.24% 83.34% 65.57% (3)

Only Text 49.35% 74.54% 55.42% 75.83% 61.17% 82.14% 66.41% (2)

Table 4.2: Recall averages for Dresses, Shirts, Toptees of FashionIQ VAL-split dataset

(6,016 test queries) at 10 and 50 thresholds with different Query Unifications

From both of the recall tables 4.2 and 4.3, it is apparent that the no unification query
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Query Unification R@1 R@10 R@50 Avg.
(R@1 + R@10 + R@50)/3 (Rank)

None 25.34% 61.78% 82.87% 56.66% (4)

Both 27.81% 64.75% 84.97% 59.18% (2)

Only Visual 27.87% 65.1% 86.8% 59.92% (1)

Only Text 25.93% 64.14% 83.11% 57.72% (3)

Table 4.3: Recall averages for Shoes test dataset (1,761 test queries) at 1, 10, and 50

thresholds with different Query Unifications

consistently resulted in the worst retrieval performance across both datasets. This is

reflected in the GradCAM heatmaps, where the CLIP model showed scattered focus

for no unification query method, such as predominantly focusing on irrelevant areas

like a woman’s head in both source and target images in Figure 4.2, the same issue

happened in the Shoes source and target images in Figure 4.3. In contrast, by writing

the desired feature keywords in the source image, the unified visual query allowed the

CLIP model to focus more effectively on the overall structure of the target object shown

in both FashionIQ and Shoes images, leading to improved retrieval outcomes.

Interestingly, in the FashionIQ dataset, using only the unified textual query yielded

better recall than using only the unified visual query in Table 4.2. This is likely because,

while the unified visual query helps the CLIP model identify the correct object structure,

fewer red heatmap areas are spread across the dress on the target image compared to the

unified textual query in Figure 4.2. The unified textual query allows it to fully capture

specific features like texture, shape, and length, which are crucial in fashion objects.

This is because most dresses, shirts, and top tees have a similar shape in their own

category, the unified textual query becomes important to add more fashion features

on top of the structure and shape discovered by the unified visual query. Thus, in

the FashionIQ dataset, the highest recall was achieved with both unification queries,

combining the advantages of shape identification from the unified visual query and

detailed feature extraction from the unified textual query. In the Shoes dataset, the

unified textual query in the target image in Figure 4.3 guides the model to focus more

on the fashion details on the shoes, rather than the background corner in the target

image of no unification query method. However, the distinct differences between shoe

types (e.g. sneakers, high heels, clogs) made the unified visual query more effective

than using both unification queries or only the unified textual query method in terms of
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Figure 4.2: Triplet Example of GradCAM heatmap visualisation for different unification

combinations on Dress source and target images of FashionIQ computed by the gradients

of the CLIP model with respect to its final retrieval embedding output

recall metrics in Table 4.3.

The findings from this study provide compelling evidence that multimodal query

unification plays a critical role in enhancing composed image retrieval (CIR) perfor-

mance, particularly in the fashion domain. The empirical results demonstrate that the

absence of query unification consistently leads to the poorest retrieval outcomes, as

seen in both the recall metrics and GradCAM heatmaps, where the model’s focus was

often scattered and misaligned with relevant features. In contrast, integrating both

unified visual and textual queries significantly improved the model’s ability to capture

and focus on the necessary features of the target image, as evidenced by the more

targeted attention in the GradCAM visualizations and higher recall scores. Notably,

the unified textual query alone was more effective than the unified visual query in the

FashionIQ dataset, likely due to its ability to capture detailed fashion features that are

crucial within similar-shaped categories. However, in the Shoes dataset, the unified
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Figure 4.3: Triplet Example of GradCAM heatmap visualisation for different unification

combinations on Shoes source and target images computed by the gradients of the CLIP

model with respect to its final retrieval embedding output

visual query proved more effective, reflecting the importance of shape and structure in

distinguishing between diverse footwear types. These results underscore the importance

of raw-data level multimodal query unification, particularly when leveraging CLIP mod-

els, to optimize retrieval performance across varying product categories in the fashion

industry. This study thus validates the effectiveness of this approach and highlights its

potential to surpass traditional methods like image inpainting, offering a more efficient

and robust solution for CIR tasks.
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4.4 Linear and Non-Linear Multimodal Query Fusion

Study

In this ablation study, the focus is on exploring the effectiveness of linear versus non-

linear multimodal query fusion techniques in CIR tasks. The study aims to determine

whether linear or non-linear fusion of features extracted by CLIP models enhances

retrieval performance under the same experimental setup. The experiments were

conducted using linear and non-linear multimodal fusion model architectures, as stated

in Section 3.3, with end-to-end training over 100 epochs. For the FashionIQ dataset, the

fusion model and CLIP model learning rates were set at 1e-5 and 1e-7 respectively. For

the Shoes dataset, the fusion model and CLIP model learning rates were set at 5e-6 and

5e-7 respectively.

Fusion Model Dress Shirt Toptee Recall (Avg)
R@10 R@50 R@10 R@50 R@10 R@50

Linear 47.53% 72.56% 52.23% 71.2% 58.67% 80.89% 63.85%

Non-linear 53.94% 76.9% 56.08% 75.96% 62.88% 83.69% 68.24%

Table 4.4: Recall averages for Dresses, Shirts, and Toptees of FashionIQ at 10 and 50

thresholds with different Fusion Models.

Fusion Model R@1 R@10 R@50 Recall (Avg)

Linear 25.34% 61.78% 82.87% 56.66%

Non-linear 28.39% 66.21% 86.77% 60.46%

Table 4.5: Recall averages for Shoes at 1, 10, and 50 thresholds with different Fusion

Models.

From both the FashionIQ and Shoes recall tables 4.4 and 4.5, it is evident that

the non-linear fusion models surpassed the linear fusion models in terms of retrieval

performance, as indicated by higher recall metrics. By visualizing how the final retrieval

embedding output relates to the source and target images in Figure 4.4, it is observed

that the additional non-linear layer allows the model to intensify the attention on existing

useful features mentioned in the modification text, such as the text ”short sleeve” made

the corresponding red heatmap region in the source image more intense, and text ”darker
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colored tee shirt” had the same effect in the target image, which indicates the non-linear

layer has intensified the existing features in the final retrieval embedding. However, it

should be noted that the non-linear layer simultaneously intensified the features learned

from unrelated and redundant areas, such as the corner of the background in Figure

4.4. For the Shoes dataset, Figure 4.5 illustrates that more red heatmap areas are spread

across the stiletto heel shoes in both the source and target image, while still providing

attention to the existing textual features ”ankle straps” in the modification text. At the

same time, compared to the source and target images in the linear fusion model, the

features learned by the non-linear fusion have been more spread out to the target object

itself by sacrificing some intensities of the existing textual features, which potentially

leads to better recall metrics.

Figure 4.4: Examples of GradCAM heatmap visualisation for linear and non-linear

fusion models on Shirt source and target images of FashionIQ dataset computed by the

gradients of the CLIP model with respect to its final retrieval embedding output

This study has critically examined the effectiveness of linear and non-linear multi-

modal fusion techniques in composed image retrieval (CIR) tasks within the fashion

domain. The results, as evidenced by higher recall metrics in both the FashionIQ and

Shoes datasets, suggest that non-linear fusion models can indeed capture more complex

relationships between visual and textual data compared to their linear counterparts. The

GradCAM visualizations further revealed that the non-linear layer intensifies attention

on relevant features mentioned in the modification text, thereby enhancing the retrieval

embedding’s alignment with the target image. However, this intensification also occa-
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Figure 4.5: Examples of GradCAM heatmap visualisation for linear and non-linear fusion

models on Shoes dataset source and target images computed by the gradients of the

CLIP model with respect to its final retrieval embedding output

sionally extends to unrelated areas, indicating a trade-off between capturing essential

features and introducing noise. Despite this, the overall retrieval performance suggests

that the additional complexity introduced by non-linear fusion does provide a significant

advantage, particularly in fashion CIR tasks where nuanced feature integration is crucial.

Thus, contrary to concerns raised by DQU-CIR [59] about potential disruptions in the

embedding space, this study demonstrates that non-linear fusion not only preserves

but enhances the coherence of the fused multimodal features, thereby supporting its

application for more effective image retrieval in the fashion domain.

4.5 End-to-End vs 2-Stage Training Study

The experiments in this study utilized a straightforward linear multimodal fusion process,

employing a linear weighted addition model trained with two different schemes — end-

to-end training and two-stage training. Both schemes were applied to the FashionIQ

and Shoes datasets, incorporating textual and visual query unification. In the two-stage

training method, the CLIP encoder and fusion model are trained separately, unlike

the end-to-end approach where CLIP textual and image encoders are fine-tuned while

simultaneously training the fusion model. The first stage of CLIP fine-tuning was

conducted for 50 epochs, followed by a 100-epoch fusion model training stage. For the
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FashionIQ dataset, the learning rates for the end-to-end training of the fusion model and

CLIP model were set to 1e-5 and 1e-7, respectively, while for the two-stage training,

these were adjusted to 1e-4 and 1e-6. In the Shoes dataset, the learning rates for the

end-to-end training were 5e-6 and 5e-7, respectively, and for the two-stage training,

they were 6e-5 and 1e-6. Preliminary experiments indicated that the two-stage training

method could tolerate higher learning rates while maintaining effective and stable

convergence, justifying the selection of higher learning rates for both datasets.

Training Scheme Dress Shirt Toptee Recall (Avg)
R@10 R@50 R@10 R@50 R@10 R@50

End-to-End 52.11% 76.1% 56.13% 76.79% 61.04% 81.85% 67.34%

2-Stage Training 53.21% 77.4% 56.18% 77.21% 63.22% 84.38% 68.6%

Table 4.6: Recall averages for Dresses, Shirts, and Toptees of FashionIQ VAL-split

dataset (6,016 test queries) at 10 and 50 thresholds with different training schemes.

Training Scheme R@1 R@10 R@50 Recall (Avg)

End-to-End 27.81% 64.75% 84.97% 59.18%

2-Stage Training 30.83% 68.3% 87.44% 62.19%

Table 4.7: Recall averages for Shoes test dataset (1,761 test queries) at 1, 10, and 50

thresholds with different training schemes.

Embedding Type Average Percentage Increase in Euclidean Distance

Modification Text Embedding 27.16%

Textual Query Embedding 31.24%

Source Image Embedding 15.35%

Visual Query Embedding 13.66%

Retrieval Embedding 32.75%

Table 4.8: Average Percentage Increase in Euclidean Distance to Target Image Embed-

ding for Shoes test dataset (1,761 test queries) by changing the training scheme from

End-to-End to 2-Stage

The recall metrics in Tables 4.6 and 4.7 demonstrate that the 2-stage training

scheme consistently outperforms the end-to-end approach for both the FashionIQ and
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Embedding Type End-to-End Training (Rank) 2-Stage Training (Rank)

Modification Text Embedding 171.92 (5) 88.27 (5)

Textual Query Embedding 142.93 (4) 66.41 (4)

Source Image Embedding 65.42 (2) 41.02 (2)

Visual Query Embedding 37.11 (1) 23.90 (1)

Retrieval Embedding 110.13 (3) 50.06 (3)

Table 4.9: Shoes triplet example on Euclidean Distance to Target Image Embed-

ding: Comparison between End-to-End (Figure 4.6) and 2-Stage (Figure 4.7) Training

Schemes (Ranked by the shortest distance to target image embedding)

Figure 4.6: t-SNE Visualization of an end-to-end-trained Shoes embedding space

Shoes datasets, highlighting the effectiveness of the additional fine-tuning stage for

increasing the additivity of CLIP embeddings. This improvement is further supported

by projecting the query embeddings to a 2D space using t-SNE algorithm. In Table

4.8, after conducting the t-SNE distance experiments on 1,761 test queries in the Shoes

dataset, the average Euclidean distance between each of the embedding types and the

target image has a considerable decrease. Given the same Shoes triplet example, the

ranking of shortest Euclidean distances to the target image embedding presented in

Table 4.9 aligns with the ranking of retrieval performance in Table 4.3, showing that

both embeddings of unified visual query and source image are closer to the target image
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Figure 4.7: t-SNE Visualization of a 2-stage-trained Shoes embedding space

embedding in Figure 4.6 and 4.7 due to the fact of the importance of shape and structure

in distinguishing between diverse footwear types. In Table 4.9, there is a significant and

consistent reduction in the distance between the target image embedding and all other

embeddings when using the 2-stage training approach. This indicates that the 2-stage

training not only enhances recall metrics but also facilitates more effective navigation

within the embedding space, making all embeddings closer to the target image and

thereby improving retrieval performance.

Therefore, the quantitative results from recall and Euclidean distance, along with

the qualitative results from the t-SNE visualizations, validate the effectiveness of an

embedding space with robust additivity properties. These properties facilitate the linear

weighted addition of combining features, where the first-stage fine-tuning makes the

model more task-oriented to the fashion domain, allowing for better learning of the final

retrieval embedding in the subsequent multimodal fusion stage.

In conclusion, the 2-stage training scheme, initially proposed for non-linear fusion

in CLIP4CIR [4], is also effective in a simpler linear fusion context. This study confirms

that the additional complexity introduced by this training strategy benefits the overall

multimodal fusion task, providing a broader understanding of its effectiveness in the

context of composed image retrieval within the fashion domain.
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Conclusion

This research has systematically explored the key components that contribute to the

effectiveness of composed image retrieval (CIR) systems within the fashion domain,

focusing on the evaluation of raw-data-level multimodal fusion techniques and the

implementation of a two-stage training approach. Through extensive experimentation

on benchmark datasets such as FashionIQ and Shoes, the study has demonstrated

that shifting multimodal fusion from the traditional feature level to the raw data level

enhances retrieval accuracy. The integration of visual and textual query unification has

been particularly effective, improving the alignment of multimodal features within the

embedding space and leading to more accurate and robust retrieval results.

The two-stage training approach, originally designed for non-linear fusion, has

proven to be effective in a linear multimodal fusion context. By fine-tuning the CLIP

model to align more closely with CIR tasks and make the CLIP embeddings more

additive, and subsequently applying a linear multimodal query fusion, the research has

shown that this approach not only optimizes retrieval performance but also provides a

broader understanding of its applicability and effectiveness.

Additionally, the comparative analysis between linear and non-linear fusion models

revealed that the non-linear layer could capture more intense features at the target

modification area specified by the user in the modification text and additional features

across the whole object. However, this advantage comes with the potential introduction

of noise, which could detract from retrieval accuracy. The proposed GradCAM qual-

itative metrics in this study provide a valuable tool for future research in visualizing

whether the CIR model captures effective embeddings for retrieval, thereby enhancing

AI explainability.

In conclusion, the findings from this research suggest that the most effective ap-
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proach to achieve CIR in fashion involves a combination of raw-data level multimodal

fusion with visual and textual query unification and a two-stage training process that

fine-tunes both the image and text encoders.
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Impacts

Based on the insights gained from the ablation studies conducted in this research, the

proposed approach in Section 5 demonstrates significant potential for application in

both future research studies and industrial settings within the fashion domain.

In future research, this approach can be particularly valuable for investigating

more complex image retrieval tasks that require a detailed understanding of subtle

modifications to fashion items. The two-stage training process that fine-tunes both

image and text encoders could serve as a foundation for further experimental work aimed

at optimizing multimodal alignment and feature extraction in various CIR contexts.

Future research could explore the scalability of this approach across larger and more

diverse datasets, as well as its applicability to different machine learning paradigms,

such as unsupervised or self-supervised learning. Moreover, the inclusion of advanced

visualization techniques like GradCAM in future studies could provide deeper insights

into how the models interpret and prioritize different features during the retrieval process.

This would be crucial for refining model architectures and improving the interpretability

and transparency of CIR systems. This comprehensive research strategy offers a robust

framework for advancing CIR methodologies and expanding the boundaries of what is

achievable in the field of CIR.

In industrial applications, particularly in online fashion retail, this methodology

could be implemented to enhance search engines that cater to customers looking for

specific modifications in products (e.g., adjusting the color or style of a dress). By

adopting this approach, companies could significantly improve the customer shopping

experience, making it more intuitive and tailored to individual preferences. Moreover,

the two-stage training process that fine-tunes both image and text encoders ensures

that the system remains adaptable and precise in rapidly changing fashion inventories,
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making it a valuable tool for addressing the challenges posed by fast fashion dynamics.

In conclusion, the proposed approach not only advances the state-of-the-art in CIR

research but also holds considerable promise for practical deployment in the fashion

industry, offering a comprehensive strategy for developing sophisticated and user-centric

image retrieval systems.
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Limitations and Future Work

7.1 Enhancing Visual Focus in CIR Systems

Limitation: One significant issue identified in Section 4.3 is the tendency of the fusion

model to incorrectly focus on irrelevant areas, such as background corners or a person’s

head, rather than on the intended fashion object. This suggests that current methods may

not fully capture the nuances of visual information that are critical for accurate retrieval.

This limitation implies that retrieval accuracy may be compromised in scenarios where

precise focus on the fashion item is crucial.

Future Work: To address this, future research could explore the integration of

advanced automatic segmentation techniques, such as GroundedSAM [29, 50, 37],

which could provide a more refined, feature-oriented segmentation. By accurately

identifying and isolating the relevant fashion object within an image, such approaches

could significantly enhance the quality of the visual query for feature extraction of CLIP

models, thereby improving retrieval performance in extracting delicate fashion features.

7.2 Evaluating the Breadth of Non-Linear Models

Limitation: This study primarily focused on testing the essential MLP non-linear layer

on top of the linear fusion models as a fundamental approach to non-linear model

architectures in multimodal fusion. However, it is important to acknowledge that non-

linear models encompass a wide range of architectures, each with the potential for

significant variation in performance. This implies that by not exploring a broader range

of non-linear models, the study may miss out on potentially more effective methods for

enhancing CIR performance.
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Future Work: Future work could include a more comprehensive evaluation of these

non-linear models, particularly models such as transformers, which have demonstrated

superior capabilities in capturing complex interactions between modalities. Both qualita-

tive and quantitative assessments could be conducted to fully understand their potential

to enhance multimodal fusion for composed image retrieval. Such experiments would

provide a broader perspective on how different non-linear architectures can contribute

to more accurate and efficient retrieval systems, and coupled with a 2-stage training

scheme to evaluate how the retrieval performance is enhanced.

7.3 Addressing the Significance of Numerical Differ-

ences

Limitation: Another limitation of this study is the lack of a critical evaluation of the

significance of differences observed in the numerical results across different sections.

The differences in recall metrics reported in various tables may not always be statistically

significant, and potential reasons for these differences need to be thoroughly explored.

This implies that without statistical significance testing, the reliability of the results

might be questioned, and the observed differences could be due to random variation

rather than true performance improvements.

Future Work: For future work, conducting statistical significance tests or employ-

ing more robust metrics like Normalized Discounted Cumulative Gain (nDCG) [57]

could provide a more accurate assessment of retrieval performance. Especially, nDCG

considers ranking and similarity between the query and target images, which could

be the potential new benchmark evaluation metrics for FashionIQ [64] and Shoes [20]

datasets.

7.4 Reassessing Image Preprocessing Techniques

Limitation: One aspect that did not perform as expected was the application of the

target pad image preprocessing method proposed by CLIP4CIR [4]. While it was

expected to enhance retrieval performance, preliminary results in Table 4.1 showed

similar recall performance to the CLIP standard image preprocessing method when

applied to the linear multimodal fusion model. This finding implies that the target

pad method may not offer the expected benefits in a linear model context, potentially
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leading to inefficient preprocessing choices in future applications.

Future Work: This suggests that the target pad method may not be as effective in a

linear context, and more studies are needed to explore how padding and cropping meth-

ods affect CLIP feature extraction across different model architectures. Investigating

these preprocessing methods under different settings could provide insights into how to

better optimize image preparation techniques for CIR tasks.

7.5 Quantifying GradCAM Visualization Effectiveness

Limitation: The qualitative nature of GradCAM visualization, while valuable for

interpretability, could benefit from a more quantitative approach. This implies that the

reliance on qualitative assessments alone may limit the ability to objectively compare

model performance.

Future Work: Future research could develop a metric to quantify the effectiveness

of GradCAM visualizations, offering a more objective way to assess whether the model’s

attention aligns with the most relevant features in the retrieval task. A quantitative

approach would enhance the reliability of GradCAM as a tool for model interpretation

in CIR.

7.6 Expanding Applications with Advanced Shopping

Agents

Future Work: Regarding the future promising application of this study, I propose

expanding the application of the CLIP-based multimodal fusion system with LLMs

to incorporate a more advanced shopping agent, which has been a new research area

proposed by recently published papers [6, 63, 10, 16]. This agent will be designed to

better understand and adapt to the specific shopping stage the customer is in, such as

product discovery, messy exploration, or a stage of specific fashion feature preference.

The implication of developing such an agent is that it could revolutionize the shopping

experience by providing highly personalized and dynamic assistance, which could lead

to higher customer satisfaction and increased sales. By leveraging the capabilities of the

LLM for sophisticated text processing and CLIP for precise visual-textual alignment,

the agent can dynamically interpret and predict the customer’s needs, thereby guiding

them more effectively through their shopping journey. For instance, during the product
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discovery stage, the agent could prioritize broader search results, offering a variety

of styles and options. In contrast, in the specific feature preference stage, the agent

would focus on narrowing down choices based on detailed textual inputs using a unified

textual query studied in this paper, such as ”show me dresses with a V-neck and floral

patterns”. This approach not only enhances the relevance of search results but also

enriches the overall customer experience by providing a more intuitive and responsive

shopping assistant. Future research could explore the integration of this advanced agent

into the current system, aiming to further refine the user interaction model and improve

the adaptability of the shopping assistant in real-time customer scenarios.
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[23] Steven A. Hicks, Inga Strümke, Vajira Thambawita, Malek Hammou, Michael A.
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