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Abstract

Systematic reviews (SRs) of academic literature are a crucial part of many scientific

fields including healthcare, but the large time investment they require from experts

is a significant barrier to completing them and keeping them up to date. Pre-trained

language models (PLMs) could offer a new opportunity to alleviate this burden by

automating the abstract screening phase of SRs, in which potentially relevant papers are

identified from a large pool of candidate papers. We investigate methods to fine-tune

PLMs to carry out this task, which has not yet been studied in the literature, and find

that the performance of a model can be greatly improved in this way, even if labelled

data from the specific screening task to be carried out is scarce. Specifically, we utilise

data from other existing SRs to train ‘expert’ LoRA adapters, which, when merged,

boost the ability of the model to adapt to new screening tasks in a zero- or few-shot

manner, doing so better than a multi-task learning approach. Our results suggest there

is great promise in using data from many SRs to fine-tune such models, and motivate

efforts to create larger multi-SR datasets to develop even stronger abstract screening

models.
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Chapter 1

Introduction

1.1 Systematic Reviews

Systematic reviews (SRs) are reviews of academic literature where a rigorous, pre-

defined process is followed to obtain and synthesise a comprehensive selection of

literature that answers a given research question. The methods of an SR are designed to

be as systematic and explicit as possible in order to reduce the influence of the authors

on the results and thus mitigate the risk of bias and improve the reproducibility of

findings. This makes SRs an important part of scientific research across many domains,

and in particular in healthcare, where it is crucial to obtain reliable, unbiased data

regarding interventions and their outcomes and where individual studies may often

provide seemingly conflicting results [15].

However, the methods that make SRs reliable and objective also make them partic-

ularly costly and time-consuming, with a typical review involving 3-8 experts in the

domain of interest and taking over a year to complete [9]. Within the field of medicine,

[6] report that with the yearly number of newly published controlled trials growing

incessantly, SRs cannot be created or updated quickly enough for the medical profession

to keep up with new information. As such, methods to improve the speed and efficiency

of the SR process are urgently needed.
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Chapter 1. Introduction 2

1.2 Abstract screening with large pretrained language

models

A key part of the SR pipeline is the abstract screening stage, in which authors are

required to carry out a keyword search on multiple bibliographic databases and read

the title and abstract of every returned result in order to determine whether the paper is

likely to match a predefined set of inclusion criteria for the review. Such a search may

return 10,000s of records for screening [5], representing hundreds of expert hours spent

per review on a largely unfulfilling and repetitive task. As such, the abstract screening

task would greatly benefit form automation.

Abstract screening requires deep understanding of often complex scientific language,

which could traditionally only be achieved by a human expert. Yet recent years have

seen the development and public release of large pretrained language models (PLMs)

which show unprecedented skill in general natural language understanding tasks [41,

50, inter alia]. Furthermore, parameter-efficient fine-tuning (PEFT) methods make it

possible to adapt such models to further boost their performance on a target task by

making use of a relatively small labelled dataset. This presents a new opportunity for

automation in SRs.

In this work, we seek to fine-tune a PLM using LoRA (a PEFT method, described in

Section 3.5) to perform the abstract screening task of SRs, with the aim of establishing

whether such a method could be used to automate part of the abstract screening workload

of future SRs. A major challenge stems from the fact that every SR is effectively a

somewhat different task, with a unique set of inclusion criteria that require identifying

particular features in the input paper titles and abstracts. While it is possible to manually

annotate a small sample of training data demonstrating the target review criteria, doing

so for a large number of papers would be time-consuming and defeat the objective of

automation. On the other hand, prior completed SRs are a large source of labelled data

from which a model may be able to learn aspects of the general task of abstract screening,

improving its performance on the target SR. We therefore explore two questions:

1. How effectively can we fine-tune a PLM for abstract screening on a particular SR

when the amount of labelled data from that SR is limited?

2. Can we leverage labelled data from other SRs to improve the performance of the

PLM on the target SR?
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To tackle the second question above, we draw on recent research in multi-task

learning and modular learning (discussed further in the next chapter) which suggests that

we can use LoRA to fine-tune small modules (sets of model parameters) corresponding

to different tasks and combine these within one model to improve the model’s task

generalisation abilities. Our vision throughout this work is to develop a system whereby

a library of LoRA modules trained on past SRs can be utilised to obtain a model that

performs strongly on new SRs, and where further trained LoRA modules can be added

iteratively over time.

1.3 Outline and contributions

We begin with an overview of background literature in Chapter 2, covering previous

work towards automating SR abstract screening as well as current research on PLM

task generalisation and model merging, which we draw upon in this work. Chapter 3

introduces the general methods of the experiments, with 4 subsequently describing their

implementation and results in more detail. We interpret and discuss our findings in

Chapter 5 and provide some concluding remarks in Chapter 6.

Our results demonstrate that using fine-tuned PLMs is a highly promising strategy

for abstract screening automation. We show that even fine-tuning on a small sample of

manually labelled examples for an SR brings a notable performance gain that compen-

sates for the time spent annotating the data, and that labelled data from reviews other

than the target SR can be used to further improve performance. Additionally, contrary

to what is usually seen in the literature, we find that we are able to achieve results

equivalent or superior to those of a traditional multi-task learning approach by merging

individual expert modules, which opens up the exciting possibility of developing these

models in a distributed and iterative way.



Chapter 2

Background

2.1 Natural language processing for systematic reviews

As a result of the great scientific value and time consuming nature of SRs, attempts to

automate part of the SR process through natural language processing (NLP) and text

mining are plentiful and span the last two decades [39], with the majority of such works

focusing on the abstract screening task [49], as we do here. The approach is typically

to train a simple machine learning model – most commonly a support vector machine

(SVM) [5, 49] – on TF/IDF counts of words or n-grams as features of paper abstracts.

Such approaches have proved successful in real world case studies [22] and form the

basis of commercial tools [43, 54], but since they only learn to detect surface-level

properties of texts that relate to a particular SR, they must be re-trained on labelled data

for the specific inclusion criteria and input papers of any target SR one wishes to carry

out.

More recent studies [24, 18, 32] have tested the use of PLMs to carry out the abstract

screening task. As a result of training on datasets that showcase responses to varied

natural language descriptions of tasks, many PLMs are able to perform complex tasks

specified in natural language without task-specific tuning [57]. The aforementioned

studies exploit this property and find that PLMs offer a promising approach to the

automation of abstract screening without the use of review-specific data, but their

performance appears to vary considerably between reviews, highlighting the need for

a more reliable system. To our knowledge, the present work is the first to employ

fine-tuning of a PLM to the abstract screening task. We show this method can reap the

benefits of both approaches mentioned, incorporating the general pretrained language

abilities of a PLM while offering the option to improve performance using target SR

4



Chapter 2. Background 5

training data if available.

2.2 Task adaptation by combining adapters

Outside the specific application domain of SRs, our work generally falls under the topic

of task-level generalisation, which is the challenge of training a model on datasets

representing a range of different tasks to then perform inference on a new task for which

very little or no labelled training data is available. In our scenario, we can consider

each SR to correspond to one task, defined by its particular inclusion criteria and by the

domain of the abstracts that must be screened for the review.

A straightforward yet strong approach to task-level generalisation is to simply

fine-tune a model on data from all source tasks at once, minimising the sum of the

respective task losses [61]. We refer to this approach simply as ‘MTL’ throughout this

work, although many more sophisticated variants of multi-task learning exist [14]. MTL

encourages the model to learn shared representations for features that are common

to all the tasks, which can improve the model’s performance and/or data efficiency

on related downstream tasks [14]. However, while learning from source tasks can

sometimes improve performance on the target task, the opposite is also possible if the

tasks induce conflicting gradients on the model parameters [55]. Under the described

MTL paradigm, there is no way to adaptively select the source tasks that are likely to

lead to a performance improvement to the target task, unless we are prepared to repeat

the entire fine-tuning procedure for every new target task. Furthermore, since sequential

fine-tuning may lead to catastrophic forgetting [37, 46], training must be done using all

source datasets at once, limiting our ability to incrementally improve a model as more

data is acquired.

These considerations lead us to consider the modular learning [47] paradigm, where

separate groups of parameters (i.e., modules) are used to learn specific tasks or skills,

making it possible to avoid interference between tasks by separating them into different

parts of the model. This is a rich and broad area of study, with design decisions to be

made concerning the architecture of modules, the way they are combined within a model

and how they are trained. While a large number of designs exist in the literature relating

to these areas, the right choices in a given setting are likely to be heavily application

dependent and extensive comparative studies are lacking [47]. In the present work, we

narrow our focus to the general approach of training task-specific (i.e. review-specific)

parameter-efficient LoRA [27] modules and dynamically combining them within a
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base model at inference time. Such an approach is relatively simple to apply, not

requiring any application-specific architecture, and opens the door to easily adjusting

the use of different modules depending on the target review. It also results in a system

whereby new modules can gradually be trained and added to the system over time

(known as continual learning [7]) as labelled data for new reviews becomes available,

and where training could in theory be carried out in a distributed way, with different

parties training different experts using different datasets. We interchangeably refer to

these review-specific LoRA modules as ‘adapters’ or as ‘experts’ in this work, given

their conceptual similarity to expert modules in a Mixture-of-Experts [11] framework.

Under the described paradigm of expert module selection, two key decisions are

(1) how to combine the parameters of different modules and (2) how to select which

modules to combine to process a particular test item. The following subsections

introduce some key existing literature relevant to each of these concerns.

2.2.1 Combining parameter-efficient modules

Given two equally structured modules, the simplest approach to combining them is to

take a parameter-wise average to produce a single module. [62] show that this simple

approach can be applied to LoRA modules in order to combine their respective skills,

defining the merged module parameters as θmerge = λθ1 +(1− λ)θ2, where θ1 and

θ2 are the parameters of the modules to be merged and λ ∈ [0,1] is a hyperparameter

controlling the relative influence of each module. They apply this method (AriMerge)

to merge two modules trained on different NLP tasks, showing that the resulting merged

module performs well in both tasks. Through our experiments, we are aiming to take this

a step further and test whether several modules merged in this way will also generalise

better to completely unseen tasks, as a result of the composition of generally useful

skills.

While parameter-wise averaging often works well in practice, it is not fully un-

derstood from a theoretical perspective. Several alternative theoretically-grounded

methods to merging modules or entire models have been proposed, often giving stronger

results than AriMerge in various settings [36, 30, 16]. In our experiments, we focus

on TIES-Merging [60] since this has been found to perform better than alternative

methods specifically in the setting of combining models trained on different tasks to

improve generalisation to new tasks within NLP. TIES-Merging is a method to merge
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any number of LoRA modules1, consisting of three steps known as ‘trim’, ‘elect’ and

‘disjoint merge’. In the ‘trim’ step, each module is pruned down to k% of its weights,

by setting all parameters that fall within the bottom (100− k)% of parameters in the

module in terms of magnitude to 0. Then, the ‘elect’ involves calculating the sign of the

sum of values over the module for each parameter. That is, representing the trimmed

parameters of module i as a vector θi, a ‘sign vector’ for the n module to be merged

is calculated as sgn(Σn
i=1θi), where the ‘sgn’ function applies elementwise. Finally

the merged parameters are obtained by taking an average over the module for each

parameter only including those parameters that have not been trimmed and whose sign

agrees with the sign in the corresponding position of the sign vector from the previous

step.

TIES-Merging is motivated by the fact that merging models creates a risk of de-

structive interference between parameters, which increases as the number of merged

models increases. Removing parameters that are redundant or conflicting in their sign

should help to reduce this risk. This is a promising approach to try in our setting, where

experts for different reviews may have conflicting parameters.

2.2.2 Selecting experts to maximise transfer

We refer to an improvement on a target task caused by training on a separate task as

‘positive transfer’, and use the term ‘transferability’ to refer to the degree of positive

transfer that can be obtained from a particular combination of training and evaluation

tasks. The amount of positive transfer that can be obtained from one task to another

naturally depends on properties of the tasks, such as the degree to which they depend

on overlapping skills [64]. We aim to investigate how such properties can be identified

between our tasks, so that the most useful experts can be combined for inference on

a particular target review task. One existing approach, AdapterSoup [13], is to make

use of sentence embeddings of input text from each of the training datasets and the

target dataset. LoRA experts trained on the the individual training datasets are selected

if the average embeddings of those datasets have a cosine similarity with those of the

target dataset that is above some threshold value. In [13], the authors combine the

selected adapters via simple parameter averaging, but as discussed above, this can result

in interference when merging several adapters; we consider whether TIES-Merging

1TIES-Merging is formally defined in terms of merging task vectors, which are vectors of parameter
differences between a particular task and a parameter initialisation that is shared between tasks. We
simplify things by referring to vectors of LoRA module weights, which are an example of such vectors.
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could yield better results. Furthermore, AdapterSoup is specifically targeted towards

domain rather than task adaptation, i.e., the model is only trained and evaluated on

language modeling, with each dataset representing a different style of language. We

are interested in seeing whether such an approach can also prove beneficial in our

setting, where we are performing classification tasks over datasets relating to somewhat

different academic domains.

An alternative approach for expert selection is to focus on the expert modules them-

selves, rather than the task data. Prior work [53, 1] has found that vector embeddings

for tasks can be calculated from model parameters, and their similarity can be used as

a proxy for transferability between them. In the context of PEFT, [63] found that the

simply taking all the parameters of a PEFT module such as LoRA as a vector embedding

can serve this purpose. Unfortunately, obtaining such an embedding for a target task

requires some labelled data with which to train a PEFT module. We will investigate

whether fine-tuning on the very limited data set available in the few-shot adaptation

setting is enough to create useful task embeddings.



Chapter 3

Methods and data

3.1 Problem definition

In order to answer the research questions posed in 1.2, we carry out a series of experi-

ments where the goal is to build a binary classification model that correctly predicts

the inclusion decisions made by human experts for a collection of paper titles and

abstracts at the abstract screening stage of an SR. We consider ‘include’ as the positive

class of this classification problem, and ‘exclude’ as the negative class. We refer to the

review on which the model is evaluated as the ‘target SR’. A model may be trained on

expert-labelled data corresponding to a small proportion of all the screened papers for

the target SR, and/or on labelled data from other SRs.

For our experiments investigating task-level generalisation using data from other

SRs, we define two settings of interest: the zero-shot setting, where no labelled data

from the target SR is used, and the few-shot setting, where we allow access to 50

labelled items from the target review of which a minimum of 5 must belong to the

positive class.1 In practical terms, such a dataset would be created by an expert manually

labelling abstracts returned from a SR search query until the minimum numbers of total

items and positive items are met, discarding any negative items found beyond the 45th.

This represents a tradeoff between ensuring that the set carries some useful information

on both classes while allowing for an expert to manually curate the set in under an

hour2.
1In theory, we would not want the number of negative class items to be smaller than 5 either, but in

practice this is not an issue since all of our datasets are dominated by negative items.
2[33] estimate an expert’s screening rate at 60-120 abstracts per hour.

9
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3.2 Datasets

We were provided with access to nine datasets, each corresponding to one SR carried

out by University of Edinburgh researchers, extracted from Covidence3, an online SR

management platform. Each dataset contains the titles and abstracts of all papers that

were returned from the original keyword search and screened for the review, along

with the decision that was made at the abstract screening stage (‘include’ or ‘exclude’),

and the title and inclusion criteria of the review itself. We refer to each review and its

corresponding dataset by a given letter, from A to I. Throughout the experiments, we

often use the term ‘review’ to refer to a particular dataset and its associated classification

task, where this is clear from context.

We received the inclusion criteria for the reviews in a variety of formats, such as

tables of criteria included in the published reviews, flowcharts used by the authors in

the screening process, or simply textual descriptions. We therefore standardised these

by converting them into a passage of text per review that could be fed to the model,

structuring this in sections corresponding to kinds of criteria such as the type of study,

topic, or scope. An example can be found within the example prompt in Appendix

C. The reviews corresponding to our datasets broadly relate to public health but vary

substantially between them in subject matter. The datasets also span a wide range in

terms of their sizes (from 643 to 6976 total papers) and in their proportions of papers

marked for inclusion (from 1.88% to 37.0%). Dataset H contains only 26 positive class

items, which we do not consider enough to form representative training and test splits,

so we only use this dataset for the purpose of multi-task model validation. We hold out

dataset I from all of our experiments until the final evaluation of our model, so it can be

used as a fair test set.

Any items from the datasets where the title or abstract fields are empty are removed.

Items with abstracts in a language other than English are also removed, since our

base model is pretrained with a large majority of English text [2]. Non-English texts

are identified using the fasttext [31] text classification Python module. Abstracts are

truncated to a maximum of 8000 characters to avoid very long prompts to the model,

which could go beyond the model’s maximum context size or exhaust available GPU

memory. A description of each dataset can be found in Appendix A.

3https://www.covidence.org/
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3.3 Models and hardware

One would expect performance in our experiments to increase with the size of the

base PLM, yet the time constraints and hardware available for the project (a mixture

of NVIDIA A100 40/80 GB GPU units in a shared cluster) place a limit on the size

of model that can feasibly be fine-tuned in these experiments. Furthermore, by using

models that can be run and fine-tuned on resources typically available to academic

researchers, our results are more likely to be useful and reproducible by teams working

on SRs.

To obtain a good tradeoff between performance and computational cost, we run

all of our experiments (except where explicitly stated otherwise) using Meta Llama 3

8B Instruct [3] and use the 4-bit NormalFloat data type and Double Quantisation as

described in [19] while fine-tuning to further reduce the model memory footprint. This

allows fine-tuning with a typical batch size on 40 GB of GPU memory while obtaining

reasonable performance.

We obtain pretrained model weights from the Hugging Face Hub4 and implement

model training and evaluation using the Transformers [58] and Pytorch [4] Python

libraries.

In order to obtain a baseline to which we can compare our results, we also use the

much simpler model from [22], an SVM classifier which can be trained on a typical

personal machine in seconds. We use the implementation provided by the authors.

3.4 Classification task

In order to leverage the general natural language understanding and instruction-following

capabilities of the base PLM, we frame the abstract screening task in a text-to-text for-

mat where the task is fully described in each input to the model. To obtain a prediction,

the model is passed a prompt made up of the following elements in the specified order

(see Appendix C for an example of the prompt):

• General instructions describing the task.

• The title and inclusion criteria of the SR.

• The title and abstract of the research paper to consider.

4https://huggingface.co/
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• Final question encouraging the model to generate ‘Yes’ or ‘No’ in response.

To obtain baseline results, we also carry out experiments using in-context learning

and a base model without fine-tuning. In these experiments, we add a number of

examples to the prompt consisting of a title and abstract and the correct response (see

Section 4.1).

A probability distribution over the two classes is obtained by taking the model’s

logits corresponding to the ‘Yes’ and ‘No’ tokens at the next token position and passing

these two values through the softmax functions, as is typical in ‘prompt-based learning’

[34]. These probabilities are converted to discrete predictions by comparing them

to a threshold value, which can be adjusted to bias the model towards a particular

class (see 3.6 Evaluation). In theory, there is a risk that the model could give high

probability to responses that indicate a positive or negative response using different

token patterns (e.g., ‘yes‘ without capitalisation, or ‘Yes’ preceded by a newline token)

so in our tests we also compute the softmax over the entire vocabulary and record the

sum of probabilities assigned to the ‘Yes’ and ‘No’ tokens, to verify that the model is

conforming to the expected output format.

3.5 Fine-tuning

Given the aforementioned constraints on computational resources and the limited size

of some of the available datasets, as well as our focus on modular approaches, using a

parameter-efficient fine-tuning (PEFT) technique is the natural choice. Compared to full

fine-tuning, PEFT methods greatly reduce the cost and memory use of fine-tuning by

only tuning a small fraction of the model’s parameters, while often achieving achieving

superior performance in low-resource settings [12] and better generalisation [21].

We opt for LoRA (Low-Rank Adaptation) [27] as our chosen PEFT method, since

it is widely used, easily implemented through open source Hugging Face libraries

and obtains strong performance relative to other PEFT methods that train a similar or

smaller number of parameters [59]. LoRA modifies a given model parameter matrix,

W0 ∈ Rd×k, with the addition of a low-rank learnable matrix represented as BA, where

B ∈ Rd×r, A ∈ Rr×k and the rank r is a hyperparameter which should be much smaller

than the original matrix dimensions d and k. The resulting adapted weight matrix is

given by

W =W0 +αBA
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where α ∈ R+ is a hyperparameter controlling the influence of the adapted parameters

relative to the base parameters. B is initialised as a matrix of zeroes, yielding the

original weight matrix before training begins. We initialise A with values from a

Kaiming uniform distribution [26], as per the official code accompanying [27].

Following [27], we apply LoRA to the query and value matrices of the self-attention

block in each Transformer [52] layer of our model, using different A and B matrices for

each target matrix. During fine tuning, only the A and B parameters are adjusted, while

the rest of the model is kept frozen. For the Llama 3 8B model, this results in training

3.4 million parameters, or 0.075% of the full model.

We train the model by minimizing the cross entropy loss between the model’s

probabilities for the single next token after the given prompt and the target labels. Note

that unlike at inference time, where only the logits for the ‘Yes’ or ‘No’ tokens are

used to obtain a two-point distribution, the training loss is calculated with respect to

probabilities over the full vocabulary, so that the model is discouraged from producing

invalid tokens that do not correspond to either of the classes.

3.6 Evaluation

Evaluation of our models serves two primary purposes: 1) to compare the quality of

different models and hence establish the most effective techniques to solve our tasks,

and 2) to provide interested parties with a clear picture of the potential effectiveness of

the developed models in a real use case. The former requires the definition of a single

established metric on which models can be systematically compared, while the latter

calls for a range of measures such that decision makers can weigh up and consider the

many facets of the tool’s effectiveness.

In the context of an SR, excluding a paper that meets the review inclusion criteria

at the abstract screening stage is a serious issue, potentially leading to incomplete and

biased review results. False positives are less problematic, since irrelevant papers that

pass the abstract screening stage can be removed by human experts at later stages of

the process, but if the number of such errors is large, the tool will be of little value. As

such, the Cochrane Handbook for SRs specifies that the aim of a search for papers is to

balance precision and recall, with recall being most critical [33], but the exact trade-off

between the two metrics is a subjective decision to be made on a case-by-case basis.

Since our models produce continuous-valued outputs, we can easily adjust the

threshold value above which the positive class is predicted, in order to strike a desired
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balance between precision and recall. Therefore, to illustrate the real-world potential

value of our final model, we report on its precision at the threshold that achieves at least

95% recall, which is a reasonable target since it is estimated to be the level of agreement

between two independent human screeners [5].

However, for the purpose of developing the model and choosing between alternative

methods and hyperparameters, a single metric to optimise is necessary. Rather than

arbitrarily choosing a minimum recall value or classification threshold, we measure the

average precision score, which approximates the area under the precision versus recall

curve of the model with a weighted average of precisions over different thresholds.

Specifically, we consider a list of all possible threshold values that would result in

distinct partitions into the two classes of all the predicted outputs, in ascending order.

Then, the average precision is the sum, over all the thresholds n, of the precision

achieved at the threshold (Pn) multiplied by the increase in recall relative to the previous

threshold (Rn −Rn−1):

AP = ∑
n
(Rn −Rn−1)Pn (3.1)

We use the scikit-learn [45] implementation of this metric.

As noted in 3.2, the positive class rate varies dramatically between different review

datasets, and we observe in our experiments that the probabilities produced by the

models are often poorly calibrated. We therefore expect that in a real use case, the

classification threshold would be manually adjusted for a given target review, based

on a number of initial examples. Measuring average precision allows us to measure

the models’ predictive skill independently of its degree of calibration. While this could

also be achieved by measuring the area under the receiver operating characteristic curve

(AUROC) [38], this metric is based on specificity, i.e. accuracy over all negative class

items, and therefore typically gives artificially high values for most models on problems

that have a very high proportion of negative class items, such as the ones considered

here. On the other hand, average precision has the desirable property that if the search

criteria providing the papers for a review dataset was made far too wide and a number of

obviously irrelevant papers were added to the dataset which the model easily identified

as false, this would not affect the score.
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3.7 Plan of experiments

We will begin our experiments (4.1) by testing the capabilities of PLMs on our task

without any fine-tuning, as this will serve as a baseline for out work. We will then

look to fine-tune a model on a particular SR (4.2) and investigate the tradeoff between

the amount of training data used and the performance benefit, allowing us to answer

question (1) posed in the Introduction (1.2), as well as serving as a point of reference

for subsequent work on task generalisation. Following this, we will tackle question (2),

concerning the use of past SR data to generalise to a new SR, by breaking this challenge

down into several steps. Firstly, we will train a LoRA adapter on each of our individual

review datasets and examine their performance when evaluated on other datasets 4.3. We

will then make use of these adapters for an investigation of the performance of different

merging methods to combine adapter abilities 4.4, followed by a comparison of several

possible methods to predict adapters’ cross-task abilities. Finally, we will combine the

findings from previous experiments to develop a full approach to selecting and merging

individually-trained expert LoRA adapters for use on a target SR, comparing this to a

strong baseline of multi-task learning.



Chapter 4

Experiments

4.1 Zero- and few-shot prompting

Recently developed PLMs are able to perform complex tasks without any task-specific

fine-tuning, by following instructions given in natural language in their prompt (zero-

shot prompting), possibly with the addition of examples of the task with corresponding

expected responses (few-shot learning) [10]. Hence, we may expect reasonable per-

formance from our models on the abstract screening without performing and any

fine-tuning. This represents a performance baseline which fine-tuned models must

significantly surpass in order to justify the additional costs of fine-tuning and obtaining

labelled training data. We also make use of zero-shot tests to inform the prompt design

for the rest of the experiments. We compare the Meta Llama 3 8B Instruct model to

OpenAI’s GPT-4o model, a private model accessible through OpenAI’s API [40]. While

the GPT-4 family of models are much larger and more powerful than Llama 3 8B [41,

44], it is worth making this comparison since there may be situations where using the

OpenAI API in a zero- or few-shot setting is more practical and/or cost effective than

fine-tuning a smaller, self-hosted model.

Through these experiments, we also test a number of different approaches to format-

ting prompts and in-context examples in order to determine an effective format to use

throughout the rest of the experiments, which is shown in Appendix C. The zero-shot

results for each of the models on each review dataset (using the most effective prompt

format for each model) are shown in Table 4.1. As expected, GPT-4o achieves the

higher average precision score, showing a greater skill in separating the two classes

over the full range of classification thresholds, but surprisingly, Llama is superior in

terms of its F1 score when evaluated at the default threshold of 0.5, or if the threshold is

16
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Model F1 Average precision Precision @ 95%

GPT-4o 0.631 0.847 0.333

Llama 3 8B 0.729 0.814 0.536

Table 4.1: Performance of different models when evaluated with zero-shot prompting on

dataset A. ‘Precision @ 95%’ represents the best precision that can be obtained while

setting the classification threshold low enough to obtain a recall of at least 0.95.

set high enough to achieve a recall of 0.95.

Although the use of in-context examples has been shown to improve PLM perfor-

mance on a wide variety of tasks and particularly for very large models [10], we find

that it leads to worse results for the Llama model, and only a slight improvement for

GPT-4o, as shown in Figure 4.1. For these experiments, in-context examples are chosen

manually from the training split of the data to ensure representation of both class labels

and different types of research paper.

A possible explanation for these results is that examples are long (each containing

the abstract of a research paper) and contain relatively little information from which to

learn the task, since each label is simply a ‘Yes’ or ‘No’ answer without an explanation

of which parts of the abstract were relevant (or not) to the review criteria. Extracting

useful information from such examples requires complex reasoning which the smaller

Llama model may not be capable of, and it is likely that any potential benefit from the

examples is cancelled out by the effect of crucial semantic information from the review

criteria and test abstract parts of the prompt being ‘drowned out’ by the examples.

We find that repeating the review criteria in a summarised form after the examples

somewhat improves results, supporting the hypothesis that crucial information about the

review is being diluted, but this still does not result in an improvement over zero-shot

prompting for Llama. While it may be possible to obtain better results by improving

the helpfulness of the examples, e.g. through more sophisticated methods of selection,

or with chain-of-thought reasoning [56], this lies outside the scope of this project.

4.2 Fine-tuning on the target review

Having established a training-free baseline, we next turn to fine-tuning the Llama 3

model with LoRA using data from the target review dataset, which we refer to as the
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Figure 4.1: GPT-4o performance improves with inclusion of in-context examples, while

Llama is hindered by the examples. Results for > 0 shots include a repeated summary

of the review criteria after the examples in the model prompt, which somewhat improves

results. We ran fewer evaluations on GPT-4o due to the per-token cost of inference via

its API.
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‘in-review’ setting. This would of course not be an feasible strategy in a real scenario

where the target review has a very narrow scope, since there may not be enough existing

papers that match the criteria to build an effective training set. Nevertheless, some

SRs can select thousands of papers at the abstract screening phase (e.g. review A of

our datasets); for such reviews, it may be an effective strategy to manually label a

few hundred papers and use these to fine-tune a model that can identify the rest. In

order to establish the tradeoff between training data size and model performance, the

experiments in this section evaluate models fine-tuned on subsets of varying sizes of

the training data for the target review. The results are also compared with the baseline

SVM model of [22] trained and evaluated on the same data.

We randomly partition dataset A into training, validation and test splits according

to a 75:15:15 ratio. This is the only dataset used for these experiments, since other

datasets are not large enough to create such a partition with a sufficient number of items

per split. When creating subsets of the training dataset of particular sizes, we employ

two different approaches: 1) sampling a fixed number of positive and negative class

examples, to obtain a 50:50 balance between the classes; 2) sampling over the whole

dataset at once, to obtain a similar class balance to the underlying dataset (which, for

almost any SR, will be a greater proportion of negative items [17]). While varying the

distribution of classes risks creating a bias in the model towards the over-represented

class, this can be compensated for when selecting a classification threshold at test time,

and should not affect the average precision score we are interested in. On the other

hand, we theorise that a positive item, as an example of all the inclusion criteria that the

model is required to identify, is likely to be a richer source of task information than a

negative one, so balanced sets could prove to be more beneficial.

Throughout the LoRA experiments, we use the AdamW optimizer [35] and a linearly

decaying learning rate, tuning its inital value as a hyperparameter. Additionally, we

multiply the learning rate of the B matrix by 16, as suggested by [25]. Optimal values of

hyperparameters may vary between different dataset sizes, yet we do not have the time

and resources to do a comprehensive hyperparameter sweep for each size. We therefore

select hyperparameters as follows. Informed by online documentation and reports of

similar experiments, we begin with a base configuration of a LoRA rank of 4, 0.05

LoRA dropout probability, and LoRA α value of 16, and vary each of these individually

within a range around these values for three representative dataset sizes (100, 600,

2000), running three experiments with different random seeds for each configuration

and evaluating on the validation set. We find that for most hyperparameters, there is a
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Figure 4.2: Validation set performance of models trained on differently-sized subsets of

the training data for the target review. A ‘natural’ training set has the same class ratio as

the underlying dataset, while a ‘balanced’ one has an equal ratio of positive and negative

items. The training data is re-sampled for each experiment.

setting which performs better than or on par with all other settings at every dataset size,

so use these values throughout. The exceptions are the LoRA rank and the number of

training epochs, for which we carry out further evaluations on the validation set at finer

dataset size intervals to establish the correct settings for each size. Finally, we train the

model with the selected hyperparameters at each dataset size (listed in Appendix B) and

evaluate on the test split, obtaining the results shown in Figure 4.2.

The results show that while a larger training set leads to better results, even a dataset

of as few as 20 items can be used to obtain a sizeable performance boost through

fine-tuning. Furthermore, balancing the classes in the datasets appears to make little

difference to the outcome, which is encouraging since manually creating a balanced

labelled dataset would require an expert to evaluate a greater number of abstracts.

However, it should be noted that this dataset has a relatively high positive class rate of

37%, and some over-sampling of the positive class could still be required for datasets
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that contain an extreme class imbalance. The figure also shows a clear superiority of

the fine-tuned PLM approach relative to the baseline SVM method across all tested

dataset sizes, as well as the SVM requiring more than 100 training examples to match

the zero-shot performance of Llama 3.

4.3 Cross-review generalisation

The above results show that when targeting a medium or large SR, training on a manually

labelled subset of the full set of candidate papers is a promising approach. However,

this is unlikely to be effective for reviews with fewer than 100 relevant papers, and it

has the added drawback that fine-tuning is required for every new SR that one wishes to

carry out. Therefore, we now turn to investigate the ‘cross-review’ setting, where we

attempt to improve a model’s performance on a target review using training data from

different reviews.

Intuitively, one may expect the degree to which learning can be transferred between

two review tasks to depend on properties of the two reviews, such as the similarity

between the review domains or between their criteria. An understanding of such

factors would be beneficial in guiding efforts to create effective datasets for SR abstract

screening, as well as to adaptively select which training data should be used in order

to generalise well to a particular target review. To this end, we train a LoRA adapter

on each SR dataset and evaluate each adapter on each dataset. Given that we have 8

datasets excluding the held out test set, and one of these (H) is only used for evaluation

due to its small size, this gives 8×7 = 56 combinations of training and target reviews.

Since our primary focus is on inherent properties of particular SRs and their inclusion

criteria rather than specifics of the datasets, all training datasets are balanced in terms

of their class ratio within this section.

Each adapter is trained using the hyperparameters identified in section 4.2 for the

dataset size that most closely matches the training dataset size. Since most of the datasets

have 100–300 positive class items each, a 30% validation split would contain only 30–

90 positive examples, which we consider insufficient to obtain reliable performance

metrics. Therefore, we use the entire target dataset when evaluating an adapter that has

been trained on a different review. For the in-review case (i.e. when the training and

evaluation reviews match), we use 5-fold cross-validation so that evaluation is still over

the full set of examples. To keep comparisons between the in-review and cross-review

cases fair, adapters are always trained on the same amount of data that would be used
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Figure 4.3: Heatmaps showing the improvement in average precision score over zero-

shot performance for all tested combinations of training and evaluation datasets. For each

combination, fine-tuning was performed three times from different random initialisations;

larger numbers in each cell show the mean result and small, lower numbers give the

standard deviation.

if applying cross-validation. We make an exception to this approach for the smallest

training dataset (review G) which we believe is too small to take representative training

and validation splits; we therefore use the full set for training and do not run an in-review

experiment for it.

As seen in the previous section for the in-review setting, increasing the size of the

training dataset generally produces better results. We expect this trend to also apply

in the cross-review setting, particularly since larger datasets may contain a greater

diversity of examples, favouring more general learning. So that we can separate the

effects of dataset size from the effects of other properties of the review tasks, we train

two versions of each adapter: one trained on the training split described above, which

varies in size between datasets, and one trained on a truncated set of 196 items. We pick

this size as it is the largest that we can obtain across all training datasets.

The results for the two training set types are shown in Figure 4.3. For each combina-

tion of training and evaluation reviews, we report on the difference between the average

precision score obtained after fine-tuning and that obtained for zero-shot evaluation of

the base model on the target review. We refer to this measure as ∆AP henceforth. We

find that while more training data does help, dataset size by no means determines the

amount of positive transfer that is gained from a particular review. Review A’s balanced
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training set is more than five times larger than that of any other review, and more than

ten times larger than the truncated training sets. While the adapter trained on the whole

of the review A training set does perform better than the one trained on the truncated

dataset (the average ∆AP over target reviews is 0.023 versus 0.007), the adapters trained

on reviews C, D and E achieve comparable performance despite their much smaller

dataset sizes.

On the whole, cross-review training is generally helpful, giving a positive ∆AP value

for 36 of the 49 tested review combinations with truncated datasets. Yet the specific

combination of reviews involved can make a large difference to the result, with the

mean ∆AP values per review pair varying from −0.11 to +0.09. There is no obvious

pattern to these differences; for example, training on review B does not transfer well

to review H, despite both reviews targetting empirical studies on human adaptation

measures to natural hazards, and instead transfers much better to review D which is

about point-of-care medical tests.

4.4 Multi-review fine-tuning

We now consider methods to incorporate learning from several training reviews at once

to improve performance on a target review. As covered in Chapter 2, combining training

from multiple tasks, through either model merging or MTL, can be an effective way to

improve a model’s generalisation to new tasks. Motivated by the results from the last

section, which showed that one can obtain substantial positive transfer to a target review

if the training review is chosen wisely, a possible approach to our task generalisation

problem is to train a library of adapters, each corresponding to a review for which

we have training data, and, at test time, to adapt the base model with the merged set

of adapters that are likely to be most effective on the target review. This suggested

approach relies on two assumptions:

1. That we can predict the ∆AP value of a merged adapter on a particular review

from the aggregate ∆AP values of its constituent adapters on that review.

2. That we can predict the ∆AP of an adapter trained on one review and evaluated

on another, based on properties of those reviews.

This section investigates the first assumption, which is essentially a question of how

successfully we can merge adapters while retaining and composing their individual
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skills. We compare two popular methods of adapter merging, AriMerge [62] and

TIES [60] (described in Chapter 2). We also compare the proposed adapter-merging

approach to the alternative of MTL fine-tuning across all datasets, while assuming

that the second assumption can be fulfilled (we examine this in the following section).

MTL has the disadvantage that it does not allow adaptive selection of training data at

test time depending on the target review, but it more directly encourages the model to

learn representations that apply generally across reviews due to the use of a mixed task

optimisation objective, hence usually performing better than a merged set of adapters

trained on the same tasks [60]. It is therefore an open question whether our task

generalisation problem will benefit more from MTL fine-tuning on all available review

datasets or from a merge of well-selected review-specific adapters.

4.4.1 Evaluation of adapter merging methods

In order to evaluate how well adapter skills are compounded through merging, we make

use of the previously trained review-specific adapters. Taking one adapter fine-tuned

on each review, we create a merged adapter for every possible combination of three

of these adapters, and evaluate each merged adapter on two reviews (B and D). For

each target review, we do not evaluate combinations including the adapter trained on

that review, so this effectively gives
(6

3

)
= 20 adapter combinations to evaluate on each

review. For each combination, we test merges using TIES with varying values of k, as

well as with AriMerge. While [62] only defines AriMerge in terms of combinations of

two adapters, we make the natural extension to three adapters by weighting each set

of parameters by 1
3 and summing parameter-wise. Figure 4.4 shows, for each adapter

evaluation, the performance of the merged adapter against the average performance of

the constituent adapters.

The results broadly confirm the assumption that a merged adapter’s performance

correlates strongly with the performance of its constituents, but shows an interest-

ing difference between the different merging methods. When using TIES, merged

adapter performance very closely matches the mean performance of constituents, while

AriMerge appears to show a stronger compounding effect, giving an adapter that per-

forms better than the average when this average is positive and worse when it is negative.

Out of the adapter combinations where all adapters have a positive ∆AP, the merged

adapter performs better than any of the constituents on 60% of occasions when merging

with AriMerge, compared to only 15% when using TIES and k = 0.2 (the recommended
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Figure 4.4: Comparison of the individual and merged performance of trios of adapters.

Performance is measured as the change in average precision score that results from

adding the adapter to the base model (∆AP). Grey lines mark where the merged score

is equal to the sum of the individual scores (∆APmerged = ∆APsum) and to the mean of

the individual scores (∆APmerged = ∆APmean). TIES with k = 0.5 was also tested, giving

very similar results to k = 1

value from [60]) or 35% with k = 1 (i.e., no pruning of adapter weights).

These findings align well with the fact that AriMerge has been shown to aggregate

the individual skills of constituent adapters [62]. Given that each of our trained adapters

must learn to identify a specific set of features corresponding to the inclusion criteria of

a particular review, one can expect that a merged adapter that aggregates the skills of

several adapters trained on different reviews will be capable of identifying the union of

all these features, allowing it to perform better on a new review than any of the original

adapters alone. On the other hand, the primary aim of TIES is to avoid interference

between adapters by pruning parameter values that are in conflict with the majority and

averaging, effectively leading to an adapter that captures the shared properties of the

individual adapters, rather than their individual strengths. Furthermore, using a lower k
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value results in a greater proportion of parameters being trimmed to 0, which naturally

results in merged ∆AP values closer to 0. Due to the fact that the tasks in our setting are

qualitatively very similar, it is likely that there is very little interference between trained

adapters to begin with, explaining why applying TIES brings little benefit.

4.4.2 Comparing merged adapters to MTL

The findings above indicate that using AriMerge to combine adapters that give strong

performance individually on a target review will produce a merged adapter that very

likely performs better than their average, and likely performs better than any of those

individual constituents too. We note that the former, weaker result may still be useful

without the latter due to the fact any prediction of an adapter’s target review performance

will include some degree of error. Merging a number of probably-strong adapters allows

us to reduce the variance of resulting merged adapter performance, relative to that of a

single adapter. However, as noted previously, whether such an approach will perform

better than MTL using all available review tasks is an open question, which we now

investigate. Using the reviews A–G, we hold out one review and use the rest as training

data to test a number of alternative methods. As in Section 4.3 we use equally-sized

training sets with an even class balance for all reviews, thus eliminating the influence of

dataset size and class balance from our results.

The first of the tested methods is the MTL approach of fine-tuning a single LoRA

adapter on the combined dataset of all training reviews. We ensure that each training

batch consists of exactly one example from each review, thus making the optimised loss

function a constant mixture of the task-specific losses and keeping learning stable.

We compare this to an ‘Oracle Selection’ approach, where we use the target review

evaluation scores of adapters trained on each of the training reviews individually to

select the best adapters, and use either the top adapter individually, a merge of the top 3

adapters, or a merge of all adapters with a positive ∆AP (with merges carried out using

AriMerge). While the evaluation performance of each adapter would not be available to

us in a real test scenario, this represents an upper bound on the performance we may

expect to get if we can devise a good strategy for adapter selection. If this method does

not produce good results, we should not try to identify such a strategy and opt for an

MTL approach instead.

We note that using Oracle Selection may result in picking adapters that perform best

purely as a result of a ‘lucky’ initialisation that is particularly well suited to the target
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dataset, rather than as a result of inherent properties of the training and review tasks.

We therefore also consider an ‘Informed Selection’ approach, which is similar to the

Oracle approach, but adapters are ranked based on the performance of other trained

adapters (i.e., starting with a different random initialisation) trained and evaluated on

the same pair of reviews. If this approach proves effective, this would indicate that it is

possible to make a good selection of adapters based only on knowledge of the tasks on

which they were trained.

Target

review
Baseline MTL

Oracle Selection Informed Selection

Top 1 Top 3 All positive Top 3

A 0.819 0.814 0.835 0.837 0.839 0.835

B 0.572 0.592 0.617 0.623 0.624 0.612

C 0.550 0.626 0.602 0.627 0.630 0.604

D 0.580 0.649 0.666 0.670 0.664 0.673

E 0.565 0.590 0.604 0.601 0.580 0.604

F 0.283 0.350 0.348 0.346 0.339 0.338

G 0.613 0.663 0.659 0.666 0.663 0.664

Average 0.569 0.612 0.619 0.624 0.620 0.619

Table 4.2: Average precision scores obtained from fine-tuning models on a range of

reviews and evaluating on an unseen target review, using the different methods described

in the text. The baseline column shows the zero-shot performance of the base model.

Each reported value is the mean result of three different training runs using different

random adapter initialisations.

The results for the different methods across all reviews are provided in Table 4.2.

We firstly observe that all the tested methods substantially improve the base model’s

performance on an unseen review and that differences between the methods are slight,

with the average ∆AP over all reviews ranging from +0.043 for MTL to +0.055 for

oracle selection of the top 3 adapters. Within the strategies that use Oracle Selection,

neither is consistently best across reviews, but since the top 3 strategy obtains the

highest average score, we use only this method within the Informed Selection approach.

Impressively, Informed Selection obtains a better score than MTL for 5 of the 8 target

reviews and a better average score. While the difference is very small, the fact that the

scores are comparable is in itself encouraging, since merging adapters has the additional
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practical advantages outlined previously of very easily allowing iterative and distributed

training.

Finally, to confirm that the selection of adapters to merge is important, we also

repeat the tests above using the Informed Selection approach to select the worst ranked

three adapters, finding that the average performance across reviews drops to 0.557, i.e.

below zero-shot performance. This is evidence that there exist properties of the review

tasks that have a large effect on the cross-review performance of models on those tasks.

4.5 Adapter selection

Throughout the previous section, our experiments made use of evaluation scores of

adapters on the target review in order to rank and select adapters. In reality, we would

not have access to these scores, since the model would be used to classify papers for

a target review for which we do not already have labels. In this section, we consider

methods that can be used to predict the performance of an expert adapter on an target

review in either a zero-shot or few-shot fashion, with the few-shot setting allowing

access to 50 target labelled items from the target review as described in Section 3.1.

4.5.1 Adapter ranking methods

Relevant methods from prior research in identifying tasks for transfer learning were

briefly introduced in section 2.2.2; our methods are based on those works.

Firstly, we consider the approach introduced by AdapterSoup [13] of using domain
similarity between pairs of datasets as a predictor of transferability between them.

Specifically, this method consists of taking a sample of sentences from the input texts

of each dataset, encoding them using a sentence-level encoder model, and taking the

mean of the embeddings to obtain a vector representation of each dataset’s domain. The

similarity between datasets is then calculated as the cosine similarity between these

representations, and can be used to rank adapters corresponding to the training datasets

by the datasets’ similarity to the target dataset.

To implement this method, we concatenate the sentences of all abstracts within a

review dataset (splitting the abstracts into sentences with NLTK [8]), randomly sample

1000 of the sentences and encode them using the Sentence-BERT [48] model. We

use the pretrained all-mpnet-base-v21 Sentence-BERT model, as it is the same model

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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used by AdapterSoup, and gives strong performance as a sentence encoder while being

efficient enough to encode all the sampled sentences within a few seconds on our GPU

setup.

We note, however, an important shortcoming of this method of representing our tasks:

it only captures features of their respective domains, and ignores differences between

their respective labelling functions, i.e. their review inclusion criteria. Intuitively, we

would expect overlaps between review criteria to be an important factor in determining

transferability, since the skill of a model in identifying a particular criterion could be

re-used between the tasks. Therefore, we also implement a variation of this method,

criteria similarity, where we instead use an encoding of the SR inclusion criteria as

the representation of each dataset. We experiment with two options to create these

encodings: 1) encoding the full criteria of each review using the same model as above,

2) passing the criteria and task instructions through the same base model we use for the

abstract screening task (Llama 3 8B) and taking the output at an intermediate layer of

the model, averaging over token positions. The motivation for this second alternative is

that we would expect it to result in encodings that capture features which are particularly

relevant to the the target task and model.

In the few-shot setting, an obvious potential method is to simply evaluate each

available adapter on the labelled data, and use this as an estimate of the performance on

the full dataset. We refer to this method as few-shot evaluation. It has the disadvantage

of requiring 50 predictions for every available adapter every time the model is to be

used on a new target SR. If the system was to be scaled to include adapters for many

more reviews than we use here, this could become an infeasible approach due to the

computational cost. Nevertheless, with 7 trained modules this only entails evaluating

350 additional items per target review, which is not unreasonable since our largest

review dataset is twice this size.

As mentioned in Section 2.2.2, another approach suggested in past work [63] is to

use the vectorised parameters of a PEFT module fine-tuned on a particular task as an

embedding of the task and use this to predict transferability. In our case, this means

we must fine-tune a new adapter on the few-shot dataset of the target review and find

the existing adapters whose parameters have the highest cosine similarity with those of

the new adapter. We call this adapter similarity. Compared to few-shot evaluation,

this method scales much better with the number of trained adapters, since only a cosine

similarity calculation between reasonably small LoRA modules is required for each

one. Furthermore, while the requirement to fine-tune on each new target dataset may



Chapter 4. Experiments 30

seem like a heavy additional cost, this is something that would likely be done regardless

whenever few-shot data is available in order to improve the performance of the model,

as we will explore in the final section of experiments.

To test each of these similarity metrics as methods for ranking adapters, we compute

each metric between all of our datasets and compare the resulting values with the ∆AP

scores reported in Section 4.3 for the degree of transfer between the corresponding

datasets. We note that the previously reported transfer between reviews was not always

commutative, i.e. for some pairs of reviews, the ∆AP score was quite different depending

on which of the two was the target dataset. This of course limits the extent to which any

of the proposed similarity metrics, which are commutative, can successfully predict the

transfer.

We compare the similarity and transferability scores by computing:

• Avg. top 3 hits: How many of the actual top 3 experts for a given target dataset

are also within the top 3 selected by the similarity metric, averaged over target

reviews.

• Avg. ρ: Spearman’s rank correlation coefficient between the rankings induced by

the two scores over the training datasets for a given target dataset, averaged over

all target datasets

• Overall ρ: Spearman’s rank correlation coefficient calculated between the rank-

ings over all training/target dataset combinations.

We report this range of scores since each has its own disadvantages. Score a) is

easily interpreted, but does not take into account the full ranking, while b) and c) do.

Unfortunately, since there are only six experts to choose from (not counting the one

trained for the target review), a per-target-review correlation coefficient is unreliable

and gives very variable results. This is why we also calculate c), though we note that

this risks introducing the target dataset as a confounding variable that creates a spurious

correlation.

4.5.2 Results

The results of evaluating the adapter ranking methods described above on our set of

adapters is shown in Table 4.3

The results suggest that none of the tested similarity metrics produce particularly

effective rankings of the adapters. The domain similarity metric produces the best
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Ranking method Avg. ρ Overall ρ Avg. top 3 hits

Domain similarity 0.148 0.274 1.75
Criteria similarity (S-BERT) -0.035 -0.157 1.63

Criteria similarity (Llama layer 4) -0.189 -0.304 1.38

Criteria similarity (Llama layer 32) 0.145 0.136 1.75
Adapter similarity (fully trained) 0.069 0.033 1.71

Table 4.3: Evaluation of methods to predict the ranking of adapters in terms of their

transferability to a target review. A description of the evaluation scores in the columns is

given in the text.

scores, but only has a correlation coefficient of ρ = 0.148 averaged over target reviews,

which typically indicates no correlation or a very weak one.

As previously mentioned, the test adapter similarity method would need to use an

adapter for the target task that has been trained only on the few-shot dataset. However,

as a preliminary test, we first checked whether this method can accurately predict

transferability between the adapters trained on larger review datasets that were used in

previous experiments. In fact, we find that transferability from one review to another

shows no correlation with the cosine similarity between adapters trained on the two

reviews. Investigating further, we note that the cosine similarities between our adapters

depend very little on the training dataset: all pairs of adapters have a similarity in

the range 0.88–0.90 if they were trained from the same random initialisation, and

below 0.01 if the random initialisations were different. A possible explanation of

this finding is that despite the low rank of the LoRA matrices, the adapters are still

greatly overparametrised for their task, and as such only a small fraction of the module

parameters are significantly updated from their initialised values during training. To

eliminate the effect of the parameter initialisation, we also explored using the difference

between the final and initial parameter values of the adapters as the task embeddings,

which provided a more diverse range of similarity values (0.11–0.31). We used these

embeddings to obtain the scores of the adapter similarity method shown in Table 4.3.

Since this still performed poorly, we did not try to compute the embeddings using only

the few-shot datasets, since this would surely not have been more effective.

Finally, to evaluate the few-shot evaluation method of adapter ranking, we can artifi-

cially generate many ‘experiments’ from each single adapter evaluation: we randomly

partition the full set of predictions made by a given adapter on a given dataset into a
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few-shot set and a much larger ‘unseen’ set, and look at the correlation between the

average precision scores obtained on over these two sets for 100 randomly generated

partitions for each adapter evaluation of each dataset. We find that the score over the

50-item few-shot set provides almost no information on the score over the larger set,

with near-zero correlations between the two. This is related to our choice of average

precision as the target evaluation metric, which is particularly difficult to estimate from

a small sample. Unlike an accuracy estimate, where every sampled item has an equal

influence, an average precision score can be disproportionally influenced by a single

negative class item if it is given a higher positive probability by the model than most

positive class items in the sample, which results in a high variance when the score is

estimated from a small sample.

4.6 End-to-end comparison of methods

In the previous sections we separated the concerns of how to select optimal datasets

to train on for task generalisation (Section 4.5) and how to best combine learning

from a given collection of datasets (Sections 4.3–4.4). It is now natural to test the

most successful techniques in combination on the full problem of performing abstract

screening with zero or very limited labelled data (50 items, with at least 5 positive) from

the target review, making use of available labelled data corresponding to other reviews.

While we did not find a particularly effective indicator of transferability between

review tasks, domain similarity obtained the best results out of the tested metrics,

regardless of whether any labels were available for the target SR data. We therefore test

a method of combining the best three review-specific adapters via AriMerge as in section

4.4, but this time selecting the top adapters based on the degree of similarity between the

paper abstracts of their corresponding training datasets and those of the target dataset.

We refer to this overall strategy as ‘expert merging’. We compare this approach again

with the MTL approach; while this was seen to slightly underperform expert merging

when the expert modules were selected based on target dataset performance, this may

no longer be the case now that expert selection is based on domain similarity.

In the zero-shot setting, we simply evaluate on the target dataset using the three

selected adapters, merged by AriMerge, and compare with the MTL results of Section

4.4. In the few-shot setting, we make use of the target review data to additionally

fine-tune a new LoRA adapter, trained on top of the model that is already adapted by

either the MTL or review-specific adapters. We use the same hyperparameters that
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proved most effective when fine-tuning on the same amount of data in Section 4.2;

while the optimal values may in theory vary between reviews and between the MTL and

merged experts cases, we do not have access to validation data to make these choices

individually. In order to evaluate the effect of learning from other reviews, we compare

these methods to the base model fine-tuned with the few-shot data in the few-shot

setting, and the base model evaluated in a zero-shot manner in the zero-shot setting.

The results are shown in Figure 4.4.

Target

review

Zero-shot Few-shot

Baseline MTL Expert merge Baseline MTL Expert merge

A 0.565 0.590 0.580 0.595 0.600 0.636
B 0.819 0.814 0.830 0.850 0.835 0.883
C 0.550 0.626 0.612 0.639 0.658 0.657

D 0.580 0.649 0.558 0.575 0.635 0.594

E 0.572 0.592 0.593 0.667 0.654 0.693
F 0.283 0.350 0.314 0.378 0.377 0.371

G 0.613 0.663 0.659 0.695 0.740 0.789

Average 0.569 0.612 0.592 0.628 0.643 0.660

Table 4.4: Comparison of results for the MTL and expert merging to new review gener-

alisation, in both zero- and few-shot settings. Each row corresponds to a model being

trained using data from all reviews other than the indicated target review. ‘Baseline’ cor-

responds to base model evaluation under ‘Zero-shot’ and to the base model fine-tuned

with few-shot data under ‘Few-shot’.

In the zero-shot case, using the sentence embedding similarity metric for adapter

selection in place of target review evaluation scores leads to a drop in performance,

resulting in lower scores than MTL on 5 of the 7 target reviews and on average by a

difference of 0.02. This is as expected expected given the weak performance of the

similarity metric in predicting transferability (Section 4.5). Nevertheless, this score is

better than the baseline unadapted model score by a similar margin.

Given these observations, it is surprising that the trend reverses for the few-shot

setting, with the expert merging approach now obtaining an average 0.017 higher than

MTL. There is nothing different about the two approaches between the two settings,

other than the additional fine-tuning with the same few-shot data from the target
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review. Yet it appears that this few-shot fine-tuning provides a far bigger performance

improvement to the merged experts model (+0.068) than to the MTL model (+0.031).

We speculate that this difference may be owing to the different ways the underlying MTL

and merged expert models are created. In the MTL case, the model is optimised with a

multi-task objective, so it is well prepared to deal with new tasks (within the general

abstract screening meta-task) even in the zero-shot setting. In the expert merging case,

all previous training was task-specific, and while the merging of several modules equips

the model with the skills necessary to handle a range of reviews, a sub-optimal merge

may prevent these skills from being effectively utilised in the zero-shot case, while

some additional fine-tuning on the target task allows the model to adjust to effectively

utilise the representations gained from the review-specific merged modules.

4.7 Detailed evaluation of best model

We conclude our experiments with a more detailed analysis of the performance of our

expert merging approach in the few-shot setting, comparing this to the performance of

GPT-4o prompted with in-context examples, as this may represent a practical alternative

in a real-world scenario. We carry out this test on dataset I, which has been held out

of all other experiments such that our model design has not been unfairly optimised

towards it. Due to the per-token cost of running model evaluations with the OpenAI

API, we only use a sample of 300 randomly selected items from this set, including 67

positive class items.

Figure 4.5 shows the trade-off between precision and recall for all possible classi-

fication thresholds, for both models. Impressively, with our expert-based fine-tuning

regime, Llama 3 8B performs better than the much more powerful GPT-4o model at all

classification thresholds that achieve a recall of at least 0.2. Llama achieves an average

precision score of 0.57 compared to GPT-4o’s 0.47, and its precision value when recall

= 0.95 is 0.31 compared to GPT-4o’s 0.22. With a classification threshold of 0.5, the F1

score of Llama is 0.47, while that of GPT-4o is 0.46.

It is very difficult to make judgements about the models’ general abstract screening

ability from these results due to the very limited size and variety of the test dataset. As

is clear from our experiments on different review datasets, different screening tasks

vary widely in their difficulty depending on their inclusion criteria and on the ratio of

relevant papers in their screening pool. Nevertheless, the results are good evidence

that fine-tuning a model with data from past SRs using a merged experts approach is
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Figure 4.5: Precision and recall values achieved across different possible classification

thresholds by the GPT-4o model, provided with 4 in-context examples, and the Llama 3

8B model adapted with review-specific experts as described in the text. The models are

evaluated on a multi-review dataset.

an effective way of improving generalisation to new SRs, allowing a relatively small

model such as Llama 3 8B to surpass the performance of GPT-4o.
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Discussion

In light of our experimental results, we now return to the key questions of the project,

regarding the effectiveness of fine-tuning a PLM to the abstract screening task for a

particular review making use of very little labelled data from the target review and

abundant data from other reviews. We consider our results within the broader literature

on task and domain generalisation and model merging, discuss how the findings could

translate into real impacts on the SR process while also noting limitations and possible

extensions of our work.

5.1 Comparison to prior research

As discussed in Chapter 2, our work has combined previous insights from research

on model merging and on cross-task transfer to develop an approach for task-level

generalisation based on combining task-specific experts. Prior work focusing on task

generalisation through model merging does not generally compare this to approach to

MTL as an alternative, presumably due to the assumption that MTL would always be

expected to deliver better results due to directly optimising for multiple tasks, and that

an expert merging approach would be used in situations where multi-task training is

not possible, e.g. due to lack of concurrent access to training data from all the training

tasks [29]. Indeed, [60], who do compare their model merging approach with multi-task

learning, report far lower performance for their own method. It is therefore highly

surprising that in our experiments, we were able to surpass the performance of MTL by

selectively merging task-specific experts, even when the the selection process relied on

the fairly weak predictive metric of input data sentence similarity.

A plausible explanation for this finding is that our problem scenario involved tasks

36
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that are particularly similar to each other, and could in fact be considered different

variants of a single general abstract screening task. This means there is less of a risk of

interference when merging models than there would be if the tasks were more different,

and as a result the TIES-Merging method to mitigate parameter conflicts does not bring

benefits, as seen in Section 4.4. Another factor that likely contributed towards the lack

of difficulties when merging was that, as suggested in Section 4.5, our adapters appeared

to be greatly overparametrised for their fine-tuning task, leading to very few parameters

changing from their initialised state. The greater the redundancy in parameters, the

smaller the risk of important parameters coming into conflict when different modules

are merged.

On the other hand, our attempts to identify factors that determine transferability

between tasks proved less sucessful than in prior work. The metric that proved to be

the best predictor of transferability out of those we tested was the sentence embedding

cosine similarity approach used in AdapterSoup [13], but its performance in ranking

adapters was still disappointingly low. We would have expected the inclusion criteria of

different tasks to play an important role in determining transferability, as reviews that

share parts of their inclusion criteria should intuitively benefit more from shared skills,

but we were not able to identify such a pattern. Future work could test the use of more

sophisticated recent techniques to find strong expert module combinations in a few-shot

setting, such as [29, 28, 20], or the zero-shot method of [42], which we were not able to

implement and test in the time available for this project.

5.2 Practical implications of results

The end goal of an automated abstract screening system is to reduce time spent by

human experts manually screening abstracts, while ensuring that papers relevant to a

SR do not get missed out. It is therefore instructive to interpret our results in terms of

the rough time savings they could enable. Supposing that the classification threshold of

a particular screening system is always set such that the recall of the system is fixed at

some value, R, then an increase in the precision of the system, P, entails a drop in the

number of false positives predicted by the system. More specifically, one can show that:

F ′
+−F+ = NR

(
P−P′

P′P

)
(5.1)

where F+ and F ′
+ are the total number of false positives predicted by the system



Chapter 5. Discussion 38

on some dataset before and after some change to the system, respectively, N is the

total number of true positives in the dataset, R is the constant recall value, and P

and P′ are the precision values before and after the change. Hence, let us take as an

example the finding from Section 4.2 that fine-tuning on a dataset of 100 (balanced)

labelled examples led to an increase 0.44 to 0.57 in the precision achieved by the

model at a recall level of 0.95 or above. For the given dataset, which had 1248 positive

examples (beside the 25 used for training) such an improvement would correspond to

1248 ·0.95
(0.57−0.44

0.57·0.44

)
≈ 615 fewer false positive predictions. As such, the time spent

manually labelling 100 paper abstracts to train the model is clearly worthwhile given the

resulting reduction in irrelevant papers that would need to be read and discarded in the

following stages of the SR. However, this is an illustrative example, and the trade-off

between time spent curating target SR data versus time spent through automation on

carrying out that SR will heavily depend on characteristics of the particular review,

such as the complexity of the inclusion criteria and the number of abstracts that must be

screened.

While our results are not sufficient to verify the current suitability of fine-tuned

PLMs for SR abstract screening, we hope that they may motivate further research into

this opportunity. Given that we have shown that an 8-billion-parameter model can

greatly benefit from training on a small handful of existing SRs, it seems highly likely

that far more capable models could be developed by extending the methods we have put

forward to more powerful models and larger datasets combining a wider range of SRs.

5.3 Limitations

A major limitation in our experimental methods was the lack of a broad, diverse range

of of different review datasets on which to train and evaluate methods. Typically,

development of multi-task and task-generalisation methods is performed using a large

set of different tasks which are divided into a disjoint sets of training tasks, development

tasks and test tasks. Having only 9 review datasets available, we were only able to hold

out a single dataset for evaluation. This means that our final results may have been

determined by the specific properties of this review task and not be representative of the

models’ performance on abstract screening tasks in general. Moreover, having only 8

datasets on which to investigate transferability between reviews was likely part of the

reason why it was difficult to identify consistent patterns in this area. Given our positive

preliminary results regarding the effectiveness of multi-review training for abstract
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screening, we would encourage future efforts to develop large-scale, widely-accessible

datasets of SR screening decisions, on which our preliminary findings could be further

developed.

Furthermore, we made two important simplifications in our treatment of the task

generalisation problem by assuming that all training datasets were of equal size and

internally balanced between classes. While this was useful in order to allow us to focus

on inherent properties of the review tasks and domains, both dataset size and class

balance are likely to be important factors to that should be considered alongside other

dataset and expert properties when selecting which experts should be selected for a

given target task. Related to the issue of class balance, we have also avoided delving

into the problem of model calibration by seeking to improve general model performance

across all possible classification thresholds and assuming that in a downstream test

scenario, there will be a suitable method for identifying the classification threshold that

obtains the required level of recall. In fact, this would be difficult to do without access

to a large amount of target review data, and data from other reviews is likely of limited

use given the large differences in class balances between reviews. This issue is unlikely

to be easily solvable, since neural classifier calibration is an open research problem,

with methods always requiring held out validation data [23, 51].



Chapter 6

Conclusions

The contributions of this work have been twofold. On one hand, we have demonstrated

practical approaches that make it possible to boost the performance of a PLM on SR

abstract screening using data from prior SRs and possibly a small amount of labelled

data from the target SR. While we have used the relatively small Llama 3 8B model in

our experiments, it is likely that the results would also apply to models of much larger

sizes and similar architecture, creating an opportunity for even stronger systems. On the

other hand, we have contributed results relevant to more general research in task-level

generalisation, showing that an approach of merging task-specific expert LoRA modules

performs far better than expected from prior research, at least in our particular problem

setting involving closely related tasks that are variants of a single meta-task.

However, as noted in the previous section, the reported experiments were limited by

the quantity and variety of data available, and as such the results cannot be interpreted

as conclusive without further validation. Moreover, while our results suggest that

fine-tuned PLMs are a promising and powerful tool for accelerating the progress of SRs

and reducing the countless hours spent by expert academics sifting through irrelevant

literature, it is critical to examine the performance of any such system from a wide range

of different perspectives, including potential blind spots and biases of the model, before

considering any real-world practical application. We envisage that in a similar fashion

to currently in-use SR automation systems [43, 54], PLMs currently hold most promise

as tools providing increased efficiency within human-in-the-loop systems, which limit

the risk of costly automated mistakes and provide an opportunity for continual learning

and improved calibration using feedback from a human expert.

40
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Appendix A

Dataset composition

The sizes and positive class rates of the datasets are shown in Table A.1, and the titles

of the respective reviews are listed below:

• A: Is aerosolised HOCl an effective and safe technological approach for the

suppression of airborne viral loads in public spaces?

• B: What are the adaptations being implemented to address the health impacts of

flooding in LMICs in the tropics and what is known about their effectiveness?

• C: Risk of serious COVID-19 outcomes among adults and children with moderate-

to-severe asthma: a systematic review and meta-analysis

• D: The social lives of point-of-care tests in low- and middle-income countries: a

qualitative evidence synthesis protocol

• E: Compact cities and the Covid-19 pandemic: Systematic review of the as-

sociations between transmission of Covid-19 or other respiratory viruses and

population density or other features of neighbourhood design

• F: Assessing the implementation, outcomes and impact of national suicide pre-

vention strategies: a systematic review

• G: Impact of the COVID-19 Pandemic and Scottish Public Sector Response on

Refugees and Asylum Seekers

• H: A systematic review of the effectiveness of heat adaptation measures for urban

areas in an oceanic climate
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• I: An Evaluation of International Pandemic Recovery Strategies and Identification

of Good Practice Relevant to Scotland

Review label Dataset size Support

A 3707 0.370

B 1360 0.188

C 2292 0.104

D 6976 0.031

E 1330 0.107

F 4365 0.029

G 643 0.152

H (eval only) 1381 0.019

I (test set) 599 0.217

Table A.1: Composition of the SR datasets used in the experiments.



Appendix B

Hyperparameters for fine-tuning

Throughout our experiments we fine-tune using the general configuration outlined in

4.2 and the following hyperparameters:

• Initial learning rate of 5e−5 with linear decay schedule.

• Effective batch size of 12

• LoRA α value of 8 with LoRA+ [25] ratio of 16

• LoRA dropout of 0.05

Additionally, we select the number of training epochs and LoRA rank according to

the size of the training set, as specified in table B.1

Dataset size Number of epochs LoRA rank

< 50 8 2

50 7 4

100 6 4

200–400 5 4

600–1250 3 4

1500-1750 2 4

>= 2000 2 8

Table B.1: When fine-tuning with LoRA, we use the hyperparameters above that most

closely match the training dataset size
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Appendix C

Example of model prompt

Below is an example of a prompt used for the Llama 3 model, including two in-context

examples. Abstracts have been truncated here for brevity, but would be included in full

in the input to the model.

When using the OpenAI API, the content of the prompt is the same, but the text is

provided as JSON list of objects, with one object corresponding to each message that is

enclosed within ‘< |’, ‘|>’ tags in the Llama format.

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Your task is to analyse the provided title and abstract of

research papers to determine whether they should be included

in a systematic review.

The review is titled "Is aerosolised HOCl an effective and

safe technological approach for the suppression of airborne

viral loads in public spaces?"

The inclusion criteria for the review are as follows:

### Type of study

Include papers, book or report chapters containing empirical

data on HOCl
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### Topic of study

Include studies on HOCl, hypochlorous acid, or any of the

following synonyms: hypochlorous acid, electrolysed water

(EW), acidic electrolysed water (AEW), neutral electrolysed

water (NEW), electrolysed oxidising water (EOW), mixed

oxidant water (MIOX), electrochemically activated water

(ECAW), super-oxidised (1/2 word variations) water/solution

(SOW), NaDCC, SDIC, sodium dichloroisocyanurate, sodium

troclosene, troclosenum natricum. Exclude studies on

hypochlorite. Include studies on fogging or spraying of

HOCl, efficacy or toxicity. Exclude studies that do not

include any data on HOCl (or synonym) as an antimicrobial

Exclude studies that investigate ONLY a combination of HOCl

+ another method of disinfection.

### Population

Include studies on humans or animals, including food

decontamination.

### Setting

Include studies set in vitro (laboratory based), in vivo

(real life settings), and any interior or public spaces

where microbial pathogens need to be controlled.

Based on the title and abstract provided below, if it seems

possible that the paper fulfills the above criteria, please

respond with ’Yes’. If you are sure that the paper does not

fulfill the criteria, please respond with ’No’.

Here are some examples to get you started:

Title: A systematic review of the effectiveness of

interventions in the management of infection in the diabetic
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foot

Abstract: The International Working Group on the Diabetic

Foot expert panel on infection conducted ...

Should the paper be considered for inclusion? Yes

Title: In vivo bioluminescence: a cellular reporter for

research and industry

Abstract: The detection of specific bacterial pathogens,

indicator microorganisms and antimicrobial substances ...

Should the paper be considered for inclusion? No

This is the research paper to

consider:<|eot_id|><|start_header_id|>user<|end_header_id|>

Title: Development of point-of-use water disinfection

technology using ceramicwater filter and electrochemical

hybrid system

Abstract: The efficiency of water disinfection using a

ceramic water filter and electrochemical ...

Should the paper be considered for

inclusion?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
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