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Abstract
Physics-Informed Neural Networks (PINNs) are revolutionizing scientific machine

learning by imposing mathematical constraints on data-driven predictions. This has

sparked interest in time-sensitive Physics-Informed Reinforcement Learning (PIRL).

While much research has focused on incorporating known system dynamics, emerging

studies are beginning to address how neural network architectures can be constrained

to satisfy physical laws. In this work, we introduce a novel Lagrangian-Based Policy

Optimization (LBPO) algorithm that integrates principles from Lagrangian mechanics

with deep neural networks. Our results demonstrate that LBPO excels in classical

dynamics and control systems. The algorithm not only adheres to physical laws, such

as energy conservation, but also enhances policy optimization by uniquely sharing

gradient information between the world and agent models. Our code is available at

https://github.com/mantasu/lbpo.
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Chapter 1

Introduction

1.1 Motivation

The application of reinforcement learning (RL) in the realm of dynamics and control

systems has been a focal point of research in both academic and industrial settings [1, 2,

3]. For example, Tiumentsev and Zarubin [4] show that incorporating reinforcement

learning in aircraft control policy is crucial when the properties of the dynamical object

are unknown or incomplete. In recent years, physics-informed machine learning (PIML)

has gained traction which allows data-driven models to integrate physics constraints that

humans define or to discern physical laws directly from data [5, 6, 7]. When applied

to dynamical systems, these constraints usually take the form of differential equations

with respect to time. A classic example of this is the equations that describe the motion

of a pendulum [8] (Equation 1.1 defines its differential motion). The integration of

these physical laws ensures that the predictions made by the data-driven model align

with established physical principles.

d2θ

dt2 +
g
l

sinθ = 0 (1.1)

As such, physics-informed reinforcement learning (PIRL) has become an increasingly

studied field with numerous works being published over the last few years [9]. Studies

have shown that incorporating physics knowledge can help solve some major practical

problems, such as sample deficiency [10], high dimensionality [11], and safety risks

[12].
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Chapter 1. Introduction 2

1.2 Research Focus and Contributions

Most works have leveraged physics knowledge by identifying pertinent features [13, 14],

constraining the state or action space [15, 16], or adjusting the reward function [17, 18].

However, these methodologies are only applicable when the theory of the dynamical

system is already known. This is often not the case as the physics information can be

incomplete or absent, which becomes particularly apparent when transitioning from

idealized simulations to real-world scenarios [19].

Therefore, We shift our focus to neural ordinary differential equations (neural ODEs)

[20], more specifically, to problems where system dynamics are governed by differen-

tial equations - a foundational concept in physics [21]. This approach enables us to

design neural networks that inherently respect physical laws. For example, models like

Hamiltonian [22, 12] and Lagrangian [23, 24] neural networks naturally incorporate

energy-preserving constraints, embedding conservation principles directly into the learn-

ing process. Similarly, architectures such as Deep Operator Networks (DeepONets) [25,

26] and Neural Implicit Flow [27, 28] models are crafted to operate over continuous

functions, capturing the underlying consistency within differential fields. Additionally,

symbolic regression techniques like PySR [29, 30] and sparse identification of non-

linear dynamics (SINDy) [31, 32] aim to discover interpretable symbolic expressions

that represent the governing equations of a system.

Our work extends the integration of Lagrangian mechanics into model-based reinforce-

ment learning (MBRL) [33]. Specifically, we contribute the following:

• Lagrangian Neural Networks for Control: We extend the work by Cranmer

et al. [23] to control tasks, showing that Lagrangian-based models capture system

dynamics, enhance sample efficiency, and stabilize policy learning.

• Gradient-Enhanced PPO: We develop a variant of proximal policy optimization

(PPO) [34] that leverages gradient information from the physics-informed model,

speeding up training and improving convergence.

• Athletes Software Package: We introduce a lightweight, efficient Python pack-

age for reinforcement learning, offering unique features like nested agents, de-

signed for both beginners and advanced users.

The relative complexity of the project is also discussed in section A.1.
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1.3 Scope and Outline

The scope of the project is limited to single-agent reinforcement learning for dynamics

and control problems that do not involve contact and energy loss, such as Gymnasium’s

[35] Cartpole [36] and Pendulum [37] environments. This is to ensure a thorough analy-

sis can be conducted within a fixed field without expanding into too many directions for

the limited time that was given.

Here is a breakdown of the upcoming sections:

• Literature Review (section 2.1) - we discuss the fundamentals of reinforcement

learning and move to related works in physics-informed reinforcement learning

• Theoretical Details (section 2.2) - we introduce to proximal policy optimization

algorithm and lagrangian neural network, two concepts our work is based on

• Lagrnagian Neural Networks for Control (section 3.1) - we present a novel

architecture for lagrangian neural networks extending them to handle control

variables

• Gradient Boosted Proximal Policy Optimization (section 3.2) - we define the

algorithms that lagrangian-based policy optimization depends on

• Athletes Software Package (section 3.3) - we present a supplementary Python

package that was built alongside the conducted research

• Setup (section 4.1) - we discuss the environment and training setup for experi-

ments

• Individual Components (section 4.2) - we experiment with individual architec-

ture components of LBPO algorithm

• Algorithm Performance (section 4.3) - we compare our algorithm with other

existing ones

• Code Efficiency (section 4.4) - we showcase our package efficiency and present

autograd feature

• Concludion (chapter 5) - finally conclude our work and discuss limitations as

well as future perspectives



Chapter 2

Background

2.1 Literature Review

2.1.1 Reinforcement Learning

2.1.1.1 Fundamentals

“Reinforcement Learning: An Introduction” (R.S. Sutton and A.G. Barto) is often

regarded as a seminal handbook in reinforcement learning [39, 40, 41], offering a com-

prehensive theoretical framework. It essentially operates on the principles of a Markov

Decision Process (MDP) [42] (see Figure 2.1), where an agent interactively learns which

action a(t)i to take at which state s(t)j through a sequence of timesteps t ∈ {0, · · · ,T} to

maximize a cumulative return of goal-based rewards {r(1), · · · ,r(T )}. In other words,

the agent learns an optimal policy π∗(a(t)|s(t)) from trajectories {(s(t),a(t),r(t+1))}Tn
t=0

acquired by interacting with the environment through n = {1, · · · ,N} trials, or episodes.

Figure 2.1: The agent–environment interaction in a Markov Decision Process.

4
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Traditionally, reinforcement learning (RL) is split into model-free and model-based and

can be further divided into on-policy and off-policy (see Figure 2.2):

• Model-free algorithms optimize action strategies based on direct environment

interactions [43]. For instance, Saxena et al. [44] show how a simulated car

can learn to safely merge into dense traffic without explicit modeling of other

vehicles’ movements.

• Model-based algorithms, on the other hand, learn a model of the environment’s

dynamics, which is used to plan and make decisions [33]. Nagabandi et al. [45]

show how a learned dynamics neural network can significantly reduce the sample

size required to reach optimal policies for locomotion tasks.

• On-policy RL involves learning the same policy for both exploration and exploita-

tion [46], as exemplified by Li et al. [47] who use Proximal Policy Optimization

(PPO) [34] for bipedal robot control.

• Off-policy RL, conversely, learns a separate policy for exploration [48], as

demonstrated by Gu et al. [49] who adapt Normalized Advantage Functions

(NAF) [50] to teach a robot to open a door.

(a) On-policy model-free (b) Off-policy model-free

(c) On-policy model-based (d) Off-policy model-based

Figure 2.2: Reinforcement learning types. Illustrations are taken from and more details

can be found at [9].

The methodology proposed in this project employs model-based approach because

physics laws can be naturally incorporated when learning a model of the environment.

For simplicity and memory efficiency, we also constrain ourselves to on-policy learning.
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2.1.1.2 Dynamics and Control

Optimal control theory [51] has been applied to a variety of control problems, including

metal cutting processes [52], rotational translational actuators [53], missile autopilot

design [54], and has been a subject of extensive research for decades [55, 56, 57].

Recently, the success of reinforcement learning [58, 59] has also extended to these

control problems, such as in autonomous driving (2.3), where an agent must determine

appropriate steering rates and torque to maintain course [60], and in active flow control,

where an agent modulates mass flow rates to stabilize fluid flow around an object and

minimize resistance [61]. As Recht [62] explains, control theory involves designing

complex actions based on well-defined models, whereas reinforcement learning often

generates intricate predictions using only data, without relying on explicit models. This

highlights the strength of RL, particularly its applicability to control problems in noisy

environments where exact solutions would be too sensitive and adaptation is necessary

[63]; in scenarios where the environment is only partially observed [64]; or when

deriving an exact solution is challenging and approximations are required [65].

Figure 2.3: Autonomous Driving task (for illustrative purposes)1.

While traditional methods dominated for many years [66, 67], the advent of deep

learning [68, 69] has shifted the focus towards deep reinforcement learning (DRL)

[70, 71]. DRL is particularly effective for continuous state and action spaces, such

as in chemical reaction optimization, where an agent must apply precise temperature

or pressure controls [72]. However, these models are often black boxes, producing

excellent results but are difficult to understand [73]. In the context of model-based

RL, solutions to some problems, like DreamerV3’s algorithm for finding diamonds

in Minecraft [74], are challenging to explain due to the recurrent nature of the world

models used [75, 76, 77]. These models typically maintain internal states over time,

making their behavior harder to interpret. On the other hand, control problems are often

simpler because the environmental model usually depends only on the previous state

and action, provided they are sufficiently represented [78, 79, 80]. This simplicity in

control problems motivates the development of more explainable and physics-reliable

surrogate models, leading to more insightful results and analyses.
1https://www.flickr.com/photos/56682936@N03/35016564364 (CC BY 2.0)

https://www.flickr.com/photos/56682936@N03/35016564364
https://creativecommons.org/licenses/by/2.0/
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2.1.2 Incorporating Physics

2.1.2.1 Physics-Informed Machine Learning

Recently, physics-informed machine learning (PIML) has emerged [81]. This approach

imposes physics constraints on data-driven models, allowing handling problems with

less data. It has been successfully applied to a variety of mechanical tasks, including

heat transfer [82], power systems [83], and subsurface transport [84].

A physics-informed neural network (PINN) is typically designed for forward problems,

where the network’s output directly solves the defining partial differential equations

(PDEs) of the predicted dynamics [85]. Lu et al. [86] relate network architectures to

differential equations. For instance, the simplest architecture resembles a Residual Net-

work (ResNet) [87], where the prediction of the next state follows x(t+1)= x(t)+ fθ(x(t)),
with fθ(·) as the network’s prediction of the derivative dx

dt , a black-box non-linear func-

tion parameterized by θ. Such iterative updates are essentially Euler discretization

over continuous time [88]. Neural Ordinary Differential Equations (Neural ODEs) [20]

improve this method by allowing unevenly spaced timesteps, extending applicability

to continuous dynamics. This method computes x(t+1) = x(t)+
∫ t+1

t fθ(x(τ))dτ using

any ODE solver, such as Adams/BDF [89] or 8th order Runge-Kutta [90]. A more

advanced architecture, Hamiltonian Neural Networks [22], leverages the Hamiltonian

structure of many dynamical systems [91, 92, 93], reducing the data required for training

and facilitating the learning of energy conservation laws. These networks predict a

Hamiltonian Hθ(q,p), imposing constraints dq
dt =

∂H
∂q , where q and p are position and

momentum vectors, respectively. A similar but more general approach, Lagrangian

Neural Networks [23], uses Euler-Lagrange principles [94] to constrain the system.

This approach is used in this paper and discussed further in 2.2.2.

Substantial research has also been conducted on inverse problems to identify PDEs from

data [6, 95]. For instance, Xu and Zhang [96] combine PINN with a Genetic Algorithm

[97] to recover PDEs with high-order derivatives, such as Korteweg de Vries [98] and

Burger’s [99] equations. Cranmer et al. [100] use Graph Neural Networks [101] to

discover new cosmological laws from N-body data [102]. A leading and widely applied

architecture, as claimed by Kaptanoglu et al. [103], is Sparse Identification of Nonlinear

Dynamics (SINDy) [5], a kind of symbolic regression [104], which uses sparse linear

regression [105] to identify which terminals (1
3 , π) and non-terminals (÷, sin) compose

a dynamical equation. We utilize inverse techniques to enhance explainability.



Chapter 2. Background 8

2.1.2.2 Physics-Informed Reinforcement Learning

Physics-informed reinforcement learning (PIRL) has become increasingly studied [9].

Chen, Liu, and Di [106] incorporate a PINN into policy learning to solve Mean Field

Games (MFG) [107]. Similarly, Shilova et al. [108] use a PINN to approximate value

functions for several dynamics problems in continuous-time reinforcement learning.

One significant area where PINNs have been actively applied is safe reinforcement

learning, where ensuring the safety and reliability of the learned policies is crucial

[109]. Wang and Nakahira [110] provide a physics-informed framework to estimate

risk probability for safe control systems, while Zhao, Wang, and Yue [111] present a

framework for learning a safety controller that satisfies predefined boundary regions.

Other relevant works focus on model-based reinforcement learning [112, 113], where

researchers develop physics-informed surrogate models to solve various simulated

dynamic problems, such as Cartpole [114] and Acrobot [58]. These studies highlight

that embedding physics information reduces environment model bias, even when physics

laws are only partially known. Some approaches go further, using fully differentiable

simulators to obtain analytical gradients that are leveraged in policy learning [115,

116, 117]. However, these methods are limited by the knowledge of the governing

physics equations. To address this limitation, SINDy-RL [118, 119] learns a symbolic

model of world dynamics, while deep symbolic optimization [120, 121, 122] shows

that return-maximizing equations can be generated even for policies. Nonetheless,

the complexity of symbolic solutions can quickly escalate [123] and undermine their

explainability, which is why our method does not completely rely on them.

It is also worth noting that similar research areas exist, such as inverse reinforcement

learning (IRL) [124], where the agent seeks to identify the reward function from the

underlying Markov Decision Process (MDP). Other works use reinforcement learning

itself to uncover PDE expressions or their coefficients [125, 126], enhancing symbolic

regression, although these results are not embedded into any interactive learning process.

Overall, the convergence of physics and reinforcement learning through PIRL offers

promising avenues for developing more robust, reliable, and interpretable AI systems.

The incorporation of physical laws into the learning process not only enhances the

performance of RL algorithms but also ensures that the learned policies adhere to

real-world constraints and principles, paving the way for safer and more efficient AI

applications. This alignment with PIRL principles is a key motivation for our work.
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2.2 Theoretical Details

2.2.1 Proximal Policy Optimization

Our work relies on Proximal Policy Optimization (PPO) [34] which is a common choice

in PIRL [13, 127, 128]. Due to simplicity, it serves as a great baseline which is adopted

by our method. It essentially optimizes a surrogate objective loss L which is based on

ratio r between new and old policy and on advantages Â which asses how much better it

is to take the new policy actions. We use clip objective, the most common variant [129]:

LCLIP := E
a,s∼πold

[
min

(
r(θ)Âπold(a,s),clip(r(θ),1− ε,1+ ε) Âπold(a,s)

)]
(2.1)

Where r(θ) = πθ(a|s)
πold(a|s) is the probability ratio and Âπold(·) is advantage function, for

instance, Generalized Advantage Estimation (GAE) [130]. PPO algorithm involves

critic and actor updates; the simplified ones are shown below2 (see also section B.2):

Algorithm 1 Critic update
Require: O, νφ, N, B ▷ Attributes - see subsection B.2.4

1: procedure CRITIC UPDATE(D)

2: DR ←concat(D, compute returns(D)) ▷ Algorithm 8

3: for n = 1, · · · ,N do
4: {(ob,Rb)← sample(DR )}B

b=1 ▷ Sample batch

5: L ← 1
B ∑

B
b=1(Rb−νφ(ob))

2 ▷ MSE [131]

6: νφ← O.optimize(νφ,L)

7: return νφ

Algorithm 2 Proximal actor update
Require: O, πθ, νφ, N, B, ε ▷ Attributes - see subsection B.2.4

1: procedure PROXIMAL UPDATE(D)

2: DA ←concat(D, compute advantages(D,νφ)) ▷ Algorithm 9

3: πold← clone(πθ) ▷ Save old πθ

4: for n = 1, · · · ,N do
5: {(ob,ab,Ab)← sample(DA)}B

b=1 ▷ Sample batch

6: L ← 1
B ∑

B
b=1 min(Ab

πθ(ab|ob)
πold(ab|ob)

, Abclip( πθ(ab|ob)
πold(ab|ob)

,1± ε)) ▷ Equation 2.2.1

7: πθ← O.optimize(πθ,L)

8: return πθ

2Normally, the two are merged into one, however, for ease of understanding, we keep them separate.
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2.2.2 Lagrangian Neural Networks

Lagrangian Neural Networks (LNN) were introduced by Cranmer et al. [23]. Much

like Hamiltonian dynamics, many physical systems can be expressed using Lagrangian

formalism, including thermo- [132], fluid [133], and relativistic [134] dynamics. La-

grangian mechanics essentially states that the system behaves on the principle of ”least

action” [135], which is used to define Euler-Lagrange constraint:

d
dt

∂L
∂q̇i

=
∂L
∂qi

(2.2)

Such that L ≡ T −V , where T and V are kinetic and potential energies, respectively.

This requires the state of the system to be defined as a vector containing positions

and their velocities x =
(

q1, · · · ,qN , q̇N+1, · · · , q̇2N

)⊤
, which is common practice in

dynamical systems literature [136]. L can be learned via a neural network. From here,

acceleration can be computed as follows:

q̈ =
(

∇q̇∇
⊤
q̇ L

)−1 [
∇qL− (∇q∇q̇L)q̇

]
(2.3)

Where ∇ represents vectorized derivatives, i.e., (∇q̇)i =
∂

∂q̇i
. Having q(t), q̇(t), and q̈(t),

equips us with knowledge of how the system evolves and allows us to compute the next

state q(t+1), q̇(t+1) by solving ODE.

LNNs generalize over Hamiltonian Neural Networks (HNNs) [22] by allowing arbitrary

coordinates, and over Deep Lagrangian Networks (DeLaNs) [24] by not constraining

the type of dynamical system. They are a common choice for many applications,

for example, video prediction [137], robotic modeling [138], and identification of

mechanical system parameters [139].

As noted by Cranmer et al. [23] and Roehrl et al. [139], LNNs learn exact energy conser-

vation laws and arbitrary lagrangians, are more performant, universal, and interpretable,

therefore, more suitable for physical systems, compared to regular neural networks. It

should also be emphasized that they are designed to be differentiable, i.e., their forward

pass requires computing Jacobians and Hessians to infer the next state. Differentiating

them w.r.t. model parameters (during the update) enforces a “physics-informed” gradi-

ent flow throughout the network, enhancing bi-directional connectivity between layers.

Due to these benefits and because we only focus on classic control problems, LNNs are

a natural baseline choice.



Chapter 3

Methodology

3.1 Lagrangian Neural Networks for Control

3.1.1 Lagrangian Neural Networks as World Models

Lagrangian Neural Networks (LNNs) can serve as physics-informed surrogate models in

model-based reinforcement learning, offering a more accurate representation of system

dynamics. Typically, a world model predicts the next state x(t+1) from the current state

x(t) (including q and q̇) and action a(t). In the original formulation [23], given q, q̇ and

L , one can compute q̈. However, the challenge becomes incorporating action/control

variables, such as external forces, as they can significantly alter dynamics.

Attempts to use LNNs for reinforcement learning tasks [140, 141, 142] often rely on

domain-specific knowledge. For instance, Lutter, Listmann, and Peters [142] impose

specific speed and torque balance equations on an electric engine, while Ramesh and

Ravindran [143] use a Lagrangian-based equation specific to rigid body motion.

We propose several very simple methods to incorporate the control variable in a way

that generalizes across domains:

• Concatenation. The simplest approach is to concatenate the state and control

values. Specifically, the Lagrangian network can take as input

concatenate(x,a) =
(

q1, · · · ,qN , q̇N+1, · · · , q̇2N ,a1, · · · ,aM

)⊤
.

For its efficiency and simplicity, we adopt this method, building on it with

additional techniques discussed in the following subsections.

11
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• Outer Product. Another method is to compute the outer product

flatten(xa⊤) =
(

q1a1, · · · , q̇2Na1, · · · ,q1aM, · · · , q̇2NaM

)⊤
,

multiplying each state by each control value. The original values can also be

concatenated with the result. This method is particularly effective for discrete

action spaces, with a one-hot action representing a selective mapping. However,

the drawback is that the vector size increases quadratically with the number of

control and state variables.

• Double Encoder. A more sophisticated approach involves using separate en-

coders for the action and state vectors. Each encoder extracts features that can be

concatenated, added, or multiplied before being fed into the Lagrangian network.

This method is well-suited for high-dimensional spaces, though it introduces

additional parameters.

The methods discussed can generalize across any dynamic system without requiring

prior knowledge. While one might argue that Lagrangian mechanics imposes constraints,

requiring an understanding of which problems support this formalism, it’s important

to note that the “least action” principle is a fundamental concept in nature, applicable

from Newtonian to quantum mechanics [144]. As long as the state of a system can be

expressed in terms of q and q̇, this principle holds.

If the system is known to depend on specific parameters, like the gravitational constant,

existing methods might be preferable. However, our approach is better suited for

situations where the parameters are not fully known, can vary, or when the system

dynamics are being explored.

Toy problems like Gymnasium’s [35] Cartpole and Pendulum do not involve energy

loss (e.g., no friction), thus maintaining energy conservation. In contrast, real-world

problems are subject to noise and unknown factors. To address this, we propose using

Generalized LNNs [145], where a non-conservation term is predicted by an additional

neural network, taking the same input as the Lagrangian network. While control actions

explicitly change the system’s total energy, they don’t violate the conservation principle;

the Lagrangian network accounts for these changes when predicting the Lagrangian,

demonstrating the flexibility of neural networks in handling such complexities.
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3.1.2 Incorporating Actor Decision Process

A simple concatenation of state and action variables works because the predicted

Lagrangian is differentiated with respect to the “observation part” of the concatenated

vector when computing acceleration based on Equation 2.3. In reinforcement learning,

actions are typically predicted by a separate neural network (e.g., the actor network

[146]), which uses the same observation input. We can compute the full derivative dL
dx

by combining the partial derivatives ∂L
∂x and ∂L

∂a
∂a
∂x . Extending from Equation 2.3, we

obtain (see subsection B.1.1 for full derivation):

q̈ =
(

∇q̇L′′+∇
⊤
q̇ a∇aL′′

)−1 [
∇qL +∇

⊤
q a∇aL−

(
∇qL′′−∇

⊤
q a∇aL′′

)
q̇
]

(3.1)

Where L′′ =
(

∇q̇L +∇⊤q̇ a∇aL
)⊤

. However, expanding this matrix-based1 equation

fully would make it very complex. It turns out that these complications can be avoided,

at least from an implementation perspective - it is simpler to consider the actor as part of

the Lagrangian neural network. Using auto-differentiation in deep learning frameworks

[147, 148, 149], we can directly compute the full derivative w.r.t. q and q̇.

Figure 3.1: Lagrangian Neural Network for Control

One could, in fact, think of it as dense connectivity [150], where features extracted by

the actor network are concatenated with the original input. The downside is that this

increases training time for the Lagrangian network since the actor’s learning adjusts

its weights, affecting Jacobians and Hessians required for the LNN forward pass.

However, this is manageable because dynamic world models are usually trained after

each trajectory collection step [151, 59].
1Matrix-based derivation is necessary for efficiency
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3.1.3 Full Architecture and Enhancements

Architecture. The main building block adopted by our Lagrangian and non-conservation

model is illustrated in Figure 3.2a. It consists of the following layers: linear [152],

softplus [153], layer normalization [154], and dropout [155]. We also draw inspiration

from efficient networks [156, 157] and use residual connections [87] with squeeze

excitation [158], tailoring them to non-convolution networks. Primary motivations are

efficiency, compact model size, and generalization but please refer to the original papers

and subsection B.1.3 for more details.

(a) Main building block (b) Feature constructor

Figure 3.2: LNNc block and feature constructor. Note that actions are produced by an

actor and can be differentiated with respect to q, q̇.

We also made the following enhancements, which help speed up optimization:

• Features. We generate polynomial features from the observations, reflecting the

interactions seen in kinetic and potential energy equations [159, 160, 161].

• Lagrangians. We predict multiple Lagrangians (e.g., 1000) rather than just one,

allowing the network to consider multiple possibilities.

• Ensemble. Although dropout layers could already be interpreted as a form of

ensemble [162], we offer to average Lagrangian vectors from multiple LNNs.

This is different from the previous point as the weights are not shared. Due to

small network size, we can afford multiple models, and ensembles almost always

ensure performance gains [163, 164].
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Figure 3.3: Full architecture and workflow of LNNc. Feature constructor is expanded in

Figure 3.2b. For clarity, multiple lagrangians and ensemble structure is not illustrated.

Workflow. The full architecture and the workflow process from current x(t) to next

state x(t+1) is depicted in Figure 3.3.

1. First, the observation input x is passed through the actor to get the actions a and

through the polynomial network to get the features x̃ (refer to Figure 3.2b).

2. Then, the concatenated input is passed through two separate neural networks to

get the Lagrangian vector L and the non-conservation term F .

3. We then differentiate the Lagrangians with respect to observations to obtain the

Jacobian vector J which we further differentiate to obtain the Hessian matrix H.

4. The acceleration q̈ is computed using Equation 11 from the work by Xiao, Zhang,

and Tang [145] (also shown in the figure), however, our method computes the full

derivative since we differentiate the actor model as pointed in Figure 3.1).

5. Finally, we integrate the result to get the next state, either using an additional

neural network or analytical method, such as Euler integration:

x(t+1) = x(t)+δτ∇tx(t) =
(

q(t) q̇(t)
)⊤

+δτ

(
q̇(t) q̈(t)

)⊤
(3.2)

We also would like to add that Jacobian and Hessian computations are computationally

demanding, however, we found a way to do this quickly utilizing specific PyTorch [147]

functions. We refer the reader to the original code but the comparisons will also be

discussed in the Analysis section.
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3.2 Gradient Based Proximal Policy Optimization

3.2.1 Planning and Dreaming

Our model-based algorithm relies on Dyna [165]. The two main components in our case

are the PPO agent Aθ and the LNNc-based world model Mφ. Dyna-PPO is a common

choice [119, 166, 167] and varies regarding world models. It involves a planning phase:

Algorithm 3 Planning
Require: T , B ▷ Attributes - see subsection B.2.4

1: procedure PLANNING(Aθ, Mφ)

2: D← collect(Aθ,Mφ,T,1,B) ▷ Rollout Mφ (Algorithm 10)

3: Aθ← Aθ.update(Mφ,D) ▷ Agent update (Algorithm 5)

4: return Aθ

While proximal updates for the actor (Algorithm 2) are sufficient, we introduce a

gradient-informed method inspired by the Dreamer family [168, 169, 74], where

analytical gradients are used for policy updates. Unlike Dreamer, our algorithm directly

sums the state values instead of optimizing cumulative rewards, simplifying the process

due to no involvement of a recurrent model.

Algorithm 4 Dreaming actor update
Require: O, πθ, νφ, N, B, H, ε ▷ Attributes - see subsection B.2.4

1: procedure DREAMING UPDATE(Mθ, D)

2: for n = 1, · · · ,N do
3: {(o(t)b ← sample(D), vb← 0)}B

b=1 ▷ Sample obs, init state values

4: for (h = 1, · · · ,H) × (b = 1, · · · ,B) do
5: a(t+h)

b ← πθ(o
(t+h−1)
b ) + ε ▷ Act on policy + noise

6: o(t+h)
b ←M .dynamics(o(t+h−1)

b ,a(t)b ) ▷ Step dynamics model

7: vb← vb +νφ(o
(t+h)
b ) ▷ Update bth value sum

8: L ←−E[{ 1
H vb}B

b=1]

9: πθ← O.optimize(πθ,L)

10: return πθ

The motivation for policy updates being analytical is that the Lagrangian dynamics

model uses the actor’s gradients to predict the next state. During actor updates, the

model “sees” how its parameters and the gradient flow influence the next state. Further,

the actor’s parameters are directly involved in energy conservation.
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3.2.2 Agent and World

Full agent update consists of 3 steps: one critic update and two actor updates. Note,

however, in the actual code critic and proximal updates are merged for efficiency.

Algorithm 5 Agent update
Require: O, πθ, νφ ▷ Attributes - see subsection B.2.4

1: procedure Aθ.UPDATE(Mθ, D)

2: νφ← critic update(D) ▷ Critic update (Algorithm 1)

3: πθ← proximal update(D) ▷ Proximal update (Algorithm 2)

4: πθ← dreaming update(Mθ,D) ▷ Dreaming update (Algorithm 4)

5: return Aθ

The world model is updated (Algorithm 6) before each planning phase. This model

includes the Lagrangian dynamics for predicting the next state x(t+1), as well as reward

and termination models, which we implement using simple multi-layer perceptrons

(MLPs) [170] with Rectified Linear Unit (ReLU) activations [171]. While more complex

world models, such as convolutional neural networks [172] or transformers [173], are

common [174, 175, 176], we opt for simplicity because our focus is on dynamics

problems where predictions depend only on the current state and action.

Algorithm 6 World update

Require: O, Sθ, Rφ, Cψ, T , B, Tmax ▷ Attributes - see subsection B.2.4

1: procedure Mφ.UPDATE(Aρ, D)

2: {((o(t)b ,o(t+1)
b ),(r(t)b ,r(t+1)

b ),(c(t)b ,c(t+1)
b ))← pairs(D))}B

b=1 ▷ Sample

3: for n = 1, · · · ,N do
4: LS ← 1

B ∑
B
b=1(o

(t+1)
b −Sθ(o

(t)
b ,Aρ(o

(t)
b ))2 ▷ MSE(obs, pred)

5: LR ← 1
B ∑

B
b=1(r

(t+1)
b −Rφ(o

(t)
b ,Aρ(o

(t)
b ))2 ▷ MSE(rews, pred)

6: LC ← 1
B ∑

B
b=1(c

(t+1)
b −Cψ(o

(t)
b ,Aρ(o

(t)
b ))2 ▷ MSE(cont, pred)

7: (Sθ, Rφ, Cψ)← O.optimize((Sθ, Rφ, Cψ),(LS ,LR ,LC ))

8: return Mθ

Admittedly, physics-based interpretations could also be sought for reward and termina-

tion models [119, 177], however, their contribution is minimal beyond explainability for

simple problems. The dynamics model is the primary driver, ensuring aspects like safe

exploration. In other words, physics constraints do not have to be imposed everywhere,

in which regard we keep flexible - we only consider constraints for agent and world

models, where bigger effects are more likely.



Chapter 3. Methodology 18

3.2.3 Lagrangian-Based Policy Optimization Algorithm

Finally, we present the full algorithm. We iterate N times, where at each iteration we:

1. Collect trajectories of length T with batch size B from real environment E into

on-policy and off-policy buffers Don, Doff (see Algorithm 10).

2. Use the real data from off-policy buffer Doff to update the world model Mφ

(Algorithm 6) and from on-policy buffer Don to update the agent Aθ (Algorithm 5).

On-policy buffer Don is emptied afterwards.

3. Finally, perform planning (Algorithm 3) to collect surrogate environment (world

model) data and update the agent using this data.

Algorithm 7 Full LBPO algorithm

Require: Aθ, Mφ, N, T , B, Tmax ▷ Attributes - see subsection B.2.4

1: procedure LBPO(E)

2: Doff←{}
3: for n = 1, · · · ,N do
4: Don← collect(Aθ,E ,T,(n−1) ·T +1,B) ▷ Rollout real environment

5: Doff← trim(Doff∪Don,Tmax) ▷ Update off-policy buffer

6: Mφ←Mφ.update(Aθ,Doff) ▷ Update Mφ from real data

7: Aθ← Aθ.update(Mφ,Don) ▷ Update Aθ from real data

8: Aθ← planning(Mφ,Aθ) ▷ Update Aθ from imagined data

9: Don←{} ▷ Reset on-policy buffer

10: return πθ

Additionally, we found that by providing critic the previous action (Equation 3.3), i.e.,

not just the current state but also the action that led to it, the predicted value is more

accurate. It is quite surprising considering there is no information about the previous

observation, however, this could be problem-dependent. Also, it should not be confused

with Q-value predictions [178, 177] where the action is at timestep t.

v← νθ(x(t),a(t−1)) (3.3)
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3.3 Athletes Software Package

3.3.1 Features

We would like to present an accompanying software package called Athletes available

at https://github.com/mantasu/athletes. It was built alongside the introduced

LBPO algorithm, which depends on the package. Although many reinforcement learn-

ing packages exist [179, 180, 181], they are primarily built for industrial audiences.

They are convenient when it comes to applying existing SOTA to specific RL problems,

however, extending them to custom algorithms or even a minor functionality change

beyond parameter reconfiguration requires a deep understanding of the library’s com-

ponents. An example of RLLib’s complexity is discussed in subsection B.3.1. Our

package is lightweight and is built on the following principles:

• Simplicity: only a few components form the application programming interface

(API) core. Ideal for academia and students.

• Generality: easily extendible (subsection B.3.2), configurable via Hydra [182]2,

supporting PyTorch [147] (and, possibly, TensorFlow [148] in the future). Ideal

for research and developers.

• Efficiency: few dependencies, lightweight data structures, multi-GPU/TPU sup-

port. Ideal for industry and engineers.

Our package also supports nested agents (generality principle, see subsection B.3.3),

a feature not seen in other libraries. This could be exploited in some algorithms, e.g.,

hierarchical or compositional RL [184, 185]. Additionally, it also supports tensorized

environments (efficiency principle), which are recreations of Gymnasium’s [35] envi-

ronments but in PyTorch, yielding more efficiency than native vectorized versions.

One of the drawbacks is that it is not complete - many SOTA algorithms and tensorized

environments are missing. Further, the target version is Python 3.133 due to certain

features4 and is not planned to be compatible with lower versions. Additionally, multi-

agent RL [186] is not supported for now (as is not by Gymnasium).

2Will be supported when certain issues are fixed, such as OmegaConf’s [183], which Hydra depends
on, support for generic classes (https://github.com/omry/omegaconf/issues/731)

3To be released in autumn 2024 https://docs.python.org/3.13/whatsnew/3.13.html
4For instance, we utilize type defaults (https://peps.python.org/pep-0696/) to serve

the dual purpose of clearer type annotations and the ability for the config class to instanti-
ate a configurable purely from generic (https://docs.python.org/3/library/typing.html#
user-defined-generic-types) argument

https://github.com/mantasu/athletes
https://github.com/omry/omegaconf/issues/731
https://docs.python.org/3.13/whatsnew/3.13.html
https://peps.python.org/pep-0696/
https://docs.python.org/3/library/typing.html#user-defined-generic-types
https://docs.python.org/3/library/typing.html#user-defined-generic-types
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3.3.2 Structure

Our package primarily depends on Gymnasium and PyTorch. We would like to highlight

a couple of things based on the class diagram illustrated below (Figure Figure 3.4):

• The two main components are environment and agent, two opposing steppers.

Common classes in other frameworks like policy, algorithm, and learner are

avoided. In our case everything that is not a runner, tool, or utility, is an agent,

which keeps the architecture easy-to-read and beginner-friendly.

• Athletes conveniently splits between real and surrogate environments, allowing

trained surrogate world models to be run in place of real environments and allow-

ing surrogate environments to borrow real functionalities, such as termination

conditions, which is especially helpful when debugging performance.

Figure 3.4: Athletes class diagram. It only shows a simplified architecture of the package

(mostly abstract classes) and does not fully reflect the real structure.
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Analysis

4.1 Setup

4.1.1 Environments

We conduct a series of experiments to inspect the performance across different policy

optimization algorithms and their components. Primarily we focus on Cartpole [36]

and Pendulum [37] environments, which are used to analyze the algorithmic behavior

and architecture components due to simplicity and fast training:

• Cartpole - cartpole environment’s observation space consists of cart’s position,

poles agle and their velocities (x,θ, ẋ, θ̇). The action space is discrete - the

direction to which the force is applied (0 or 1).

• Pendulum - pendulum environment’s observation space is simply - only one

angle and its velocity (θ, θ̇). However, the action, i.e., the force to apply is a

continuous variable.

Additionally, we perform algorithm evaluation on more sophisticated environments in

subsection 4.3.3, namely Inverted Pendulum [114], a continuous version of Cartpole,

Acrobot [58], and Hopper [187]:

• Inverted Pendulum - the inverted pendulum has the same representation as

cartpole, except the action is continuos.

• Acrobot - acrobot’s observation space consists of two joint angles and their

velocities (θ1,θ2, θ̇1, θ̇2). The action space is discrete with three options - either

21
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apply ±1 to the actuated joint or do nothing.

• Hopper - hopper has the largest observation space. It consists of two torso

coordinates, its angle, and three joint angles, followed by velocities of all the

respective variables (x,z,θ1,θ2,θ3,θ4, ẋ, ż, θ̇1, θ̇2, θ̇3, θ̇4).

All environments were presented in a way that we process them - we always make sure

the state is represented as q, q̇ vector, and if the state has, for example, sinθ,cosθ, we

convert that to single θ.

4.1.2 Training

The hyperparameters for each experiment are discussed individually and experiment

configurations are available with the provided code. Some additional details on the

architectures used:

• Actor. The actor model by default consists of only two hidden layers with 64

units each. This design is rather standard across different packages, with the

exception that our activation function is hyperbolic tangent (Tanh) [188] instead

of ReLU [171], which we choose because our gradients cannot be zero when the

Lagrangian neural network differentiates the actor.

• Critic. The critic uses the same architecture as the actor, however, this time its

predictions are not required to compute the dynamics step, thus we keep ReLU

activation. We choose a leaky variant [189] as it helps to maintain the gradient

flow when computing the analytical gradients of the value function during the

dreaming update.

For all experiments, we use AdamW optimizer [190] and, where indicated, a cosine

annealing with warm restarts scheduler [191]. The actor-critic and world model loss

functions have already been introduced in section 3.2. For proximal loss, we additionally

perform entropy regularization [192], which is essential for on-policy algorithms as it

helps exploration. As a further regularizer, we utilize Kullback Leibler (KL) divergence

[193], a common way to stabilize policy learning [194].

The presented results are averaged over multiple experiment trials (at least 3). We also

apply smoothing for visualization purposes. The variance is denoted by coloured plots

around the curves.
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4.2 Individual Components

4.2.1 Gradient Boosted Proximal Policy Optimization

We perform groups of experiments for individual components to assess and justify

the design choices. This section focuses on algorithmic behavior and, in particular,

how the additional dreaming step in proximal policy optimization (see Algorithm 5)

enhances the performance. Here we do not use the Lagrangian neural network as our

world model - instead, we compute the ground-truth dynamics to fairly assess the agent

update, irrespective of the accuracy of the world model. Further experimental setup,

including hyperparameters, is outlined in section C.1.

(a) Update type comparison for Cartpole (b) Update type comparison for Pendulum

Figure 4.1: Comparison between PPO (proximal), gradient-based optimization (dream-

ing), and the combination of them, which is our algorithm (both).

Figure 4.1 illustrates the average return value over the number of environment steps.

As we can see, the dreaming update on its own is not capable of optimizing the policy

reliably. We suspect there are three reasons for that:

1. The critic predictions for state values are relative, rather than absolute (this is how

PPO works). The critic is always retrained to reflect the relative goodness of the

states that were recently encountered. This makes it difficult to determine to what

global extent the state was bad when computing the dreaming loss (the negated

state value), which is not an issue in the case of proximal update where old vs

new policy ratio is utilized.

2. Ground-truth values are not involved - the true cumulative returns are only used

in the proximal update, thus not having any pivot in the dreaming update could

lead to deviations.
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3. In the case of Pendulum, where a bit of exploration is needed to catch the

direction of where to improve, state values are only but so helpful - advantages

are a stronger way to indicate where an improvement can be made due to temporal

difference information.

We could speculate that a more global critic or advantage predictor would help the

dreaming update. Choosing an off-policy method could also help the learning.

On the other hand, using both proximal and dreaming updates proves to be beneficial.

Based on the points before, it makes sense - the proximal step already takes care of

the update direction, therefore the dreaming step can enhance it by adjusting the actor

in a way its actions result in even higher state values as guided by the critic. One

might say that the results are better simply because we perform more update steps when

we combine both updates. We show that this is not necessarily the case - Figure 4.2

illustrates how the performance changes based on the number of stochastic gradient

descent iterations.

Figure 4.2: Comparison of different numbers of stochastic gradient descent updates for

Pendulum environment.

As is clear from the graph, combining dreaming with proximal policy update leads to

a faster convergence, compared to when using the same number of gradient steps just

for the proximal update. One could probably further improve it by fine-tuning the ratio

of proximal vs dreaming steps. Overall we can conclude that our introduced dreaming

update boosts the PPO algorithm.
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4.2.2 Planning

In this section, we justify the use of planning - an offline agent training method via

the learned dynamics and reward models. Here, we used a two-layer perceptron with

120 hidden units and ReLU activation to predict the state derivative. The results for

Cartpole environment can be seen in Figure 4.3:

Figure 4.3: Comparison of different numbers of planning steps for Cartpole environment.

The number of environment steps only corresponds to the real environment. Coloured

plots represent standard deviation.

As expected, planning indicates that average return can increase more quickly as the

agent additionally learns from the surrogate environment. The more planning steps are

performed, the better the sample efficiency is.

However, there seems to be a cap, beyond which the sample efficiency does not increase.

This is natural because the dynamics model, especially such as a multi-layer perception,

cannot learn the full range of dynamics just from a few data points. The state distribution

shifts as the agent performs better actions and only then the dynamics model is able to

narrow down the precise dynamics of the environment. The only advantage of having

more planning steps beyond this cap is to ensure stability - for instance, we can see that

with 800 planning steps, we may still have some fluctuations, such as the dip at around

2,700th step.

One must also not forget the drawbacks — planning could backfire if the world model

is not accurate. Additionally, it can be very computationally demanding.
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4.3 Algorithm Performance

4.3.1 World Models

Here we inspect the performance of four surrogate world models:

1. MLP - a two-layer perception with 64 hidden units and ReLU in between. It is

configured to directly predict q̇, q̇.

2. MobileNet - a MobileNet-like model described in subsection 3.1.3. It is essen-

tially two LNNc blocks stacked together and also directly predict q̇, q̇

3. LNNc (partial) - our proposed Lagrangian NN but it does not backpropagate the

actor network and only computes partial derivatives of the Lagrangian.

4. LNNc (full) - the full LNN for control as shown in Figure 3.1

For computational reasons, we do not perform the dreaming step. The results are below:

(a) Average return (b) Dynamics log MSE

Figure 4.4: Comparison between different world models for pendulum environment.

This experiment confirms that the Lagrangian neural networks perform better than plain

neural ODE predictors, although, arguably performances are similar and evaluation

over a larger range of parameters would be more insightful. However, it seems that the

LNNc full outraces the other architectures, meaning the hypothesis that it “respects”

the actor parameters during inference holds. It slows down, however, as other networks

catch up with it. This could be explained by its high dynamics error, which is expected

because LNNc needs more effort to adjust its weights in response to better-performing

actor for correct prediction of Lagrangians. This, therefore, highlights a disadvantage

of our architecture which is that one would have to dedicate more resources to train our

network, especially if it scales.
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4.3.2 Physical Properties

In this section, we evaluate the physical properties of our Lagrangian world model for

control by comparing it with a standard two-layer perceptron, which we trained using

a Dyna-style algorithm (see Algorithm 3 and Algorithm 6). Specifically, we generate

imaginary trajectories—similar to those produced during planning — and examine the

cumulative dynamics loss and energy conservation error.

We focus on the cartpole and pendulum environments, as the dynamics equations for

these systems are simple, allowing for confident verification of our analysis. These

Gymnasium environments do not involve friction, so the dynamics for the cartpole

problem are defined as [195]:

θ̈cartpole =
gsinθ+ cosθ

[
−F−mplθ̇2 sinθ+µcsgn(ẋ)

mc+mp

]
l
[

4
3 −

mp cos2 θ

mc+mp

] (4.1)

ẍcartpole =
F +mpl(θ̇2 sinθ− θ̈cosθ)−µcsgn(ẋ)

mc +mp
(4.2)

And the dynamics for the pendulum are approximated as:

θ̈pendulum =
3g
2l

sin(θ)+
3

ml2 τ (4.3)

The figure below illustrates the accumulated trajectory error over time:

(a) Cumulitive generated trajectory error for

CartPole

(b) Cumulitive generated trajectory error for

Pendulum

Figure 4.5: Cumulitive generated trajectory errors. The error for a single time-step is

computed as the absolute error between the the predicted next state and the actual next

state simulated by a ground-truth dynamics model.
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As shown, LBPO maintains stability in the relatively simple cartpole environment and

produces small errors in the pendulum environment. In contrast, the MLP method

generates larger errors that accumulate linearly and may eventually diverge if the error

becomes too large. It may seem surprising that both algorithms produce larger errors in

the pendulum environment, given that its dynamics equation (Equation 4.3.2) is simpler

than that of the cartpole. However, it is actually more challenging for the agent to learn

the solution in the pendulum environment due to the need for more precise (continuous)

actions. The agent spends more time in its initial condition, causing the models to

develop an initial bias. This highlights a drawback of model-based RL methods—if

we do not carefully refine our buffer to include a broader data distribution, the agent’s

learning may be hindered by numerous planning steps.

Next, we analyze how well the models conserve energy over time. Recall that the total

energy of the system is the sum of kinetic and potential energy. For the cartpole, it is

computed as follows:

KEcartpole =
1
2

mcẋ2 +
1
2

mp((lω)2 +(ẋcos2
θ)) (4.4)

PEcartpole = mpgl(1− cosθ) (4.5)

For the pendulum, the calculation is simpler:

KEpendulum = 0.5m(lω)2 (4.6)

PEpendulum = mgl(1− cosθ) (4.7)

Additionally, we know that external forces are applied, which represent the work done

by the actuators. For both systems, the equation is fundamentally the same:

Wcartpole = Fδtẋ (4.8)

Wpendulum = Fδtω (4.9)

When the agent takes an action, it introduces an external force, causing the total energy

of the system to change. For the system to be conservative, the change in total energy

must equal the work performed by the actuators. We define the error as the absolute

difference between these two quantities. The results are shown in the figure below:

It is clear that the error in energy loss for LBPO is extremely low, whereas energy

loss for the MLP world model appears to increase exponentially. This suggests that

energy conservation is an even more significant issue than state error. Our findings

are consistent with other studies on Lagrangian neural networks [23, 112], which

demonstrate that energy conservation is a fundamental property of such networks.
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(a) Energy conservation for cartpole envi-

ronment

(b) Energy conservation for pendulum envi-

ronment

Figure 4.6: Cumulative generated trajectory energy loss. Both LBPO and Dyna-MLP

consist of two hidden layers with 128 neurons each. Both were trained for 200,000

environment interactions. The trajectory error is averaged over 64 samples.

4.3.3 Policy Algorithms

We also present an empirical study on more complex environments to compare our

algorithm with other established techniques. As mentioned earlier, we evaluate our

approach in three additional environments: Inverted Pendulum, Acrobot, and Hopper.

The algorithms we compared include standard Proximal Policy Optimization (PPO)

[34], Dyna-MLP with two hidden layers, the symbolic Dyna-SINDy algorithm [119],

and our LBPO method. While not all agents successfully reached the solution, the

performance curves provide a general intuition of each algorithm’s efficiency. The

results are shown in Figure 4.7:

(a) Inverted Pendulum (b) Acrobot (c) Hopper

Figure 4.7: Algorithm comparisons across different environments. For these problems

we increased the number of hidden units of all networks to 256. The number of planning

steps is 1600 for all algorithms except PPO which does not use it.
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The figure above shows that our algorithm scales effectively across different observation

spaces. It outperforms other algorithms in the Acrobot and Hopper environments,

validating our design choices and demonstrating the applicability of our approach

to such problems. Although LBPO did not outperform SINDy-RL in the Inverted

Pendulum case, this is understandable. The symbolic solution for the inverted pendulum

is relatively straightforward, and once the algorithm identifies the shortest solution,

it essentially ensures stability. For the Acrobot, the solution space is more complex,

causing SINDy-RL to struggle. As for Hopper, we found it infeasible to run SINDy-RL

and thus excluded it. Surprisingly, LBPO performed very well for Hopper, despite

the challenges posed by contact dynamics. This demonstrates the generality of our

approach and the ability of LNNs to approximate complex dynamics effectively.

4.4 Code Efficiency

4.4.1 Package

In this section, we test how efficient our package is compared to other existing ones,

namely RLLib [179] and TorchRL [181]. The results are shown in Figure 4.8.

Figure 4.8: Comparing PPO efficiency for CartPole environment. All efficiency pa-

rameters, such as trajectory lengths, model sizes, batch sizes, etc., are selected the

same. Note that only the first graph truly indicates the performance difference - other

ones depend on learning accuracy (e.g., better cartpole agents yield fewer but longer

episodes).

We can see that our package outperforms all other libraries regarding the PPO algorithm.

This efficiency comes the fact that the package is lightweight, meaning the callback

traces are much smaller. Additionally, data structures have also been optimized, e.g.,

instead of storing experience replay tensors in dictionaries, they are stored as direct

object attributes.
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4.4.2 Autograd

As mentioned at the end of subsection 3.1.3, we implemented a highly efficient Hessian

computation method that uses experimental PyTorch is grads batched feature. To

the best of our knowledge, no other work related to Lagrangian neural networks has

utilized it. More specifically, we identify three ways to perform gradient computation:

1. Naive - uses jacobian and hessian from torch.autograd.functional. They

are primarily designed to be used for single vectors, thus requiring a python loop

if the input is batched.

2. Functional - uses jacrev and hessian from torch.func. These can be com-

bined with torch.vmap to build an implicit C loop when computing the result.

3. Autograd - uses grad two times from torch.autograd. Unlike the previous

methods, this one does not accept target function as input, it directly takes the

output and the input, with respect to which the differentiation should happen.

It may sound intuitive and simple to just call grad twice, however, due to batched

vectors, certain tricks have to be performed (see subsection C.2.1) to individualize

hessian computations. For more details, please refer to our code.

As can be seen in Table 4.1, our method is twice as fast as the functional method that is

provided off-the-shelf by PyTorch. Such speedups in Hessian computations are essential

in training Lagrangian neural networks - it means we can speed up the optimization

twice purely from code perspective.

Method Jacobian (s) Hessian (s)

Naive [196]1 0.07 14.24

Functional [112]2 2×10−4 1.19

Autograd (our) 6×10−4 0.57

Table 4.1: Efficiency comparison of different gradient computation methods using

PyTorch and example papers that use them. Computations are performed for a random

function f (x) := ∑
D
d=1 2x3

d− x2
d for a batch B = 256 of random inputs x ∈ R1000.

1https://github.com/uwsbel/sbel-reproducibility/tree/master/2024/MNODE-code
2https://github.com/adi3e08/Physics_Informed_Model_Based_RL/tree/main

https://github.com/uwsbel/sbel-reproducibility/tree/master/2024/MNODE-code
https://github.com/adi3e08/Physics_Informed_Model_Based_RL/tree/main
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Conclusions

5.1 Discussion

We have introduced a novel physics-informed reinforcement learning algorithm based

on Lagrangian mechanics. Previous works like DeLaN [24] and PIMB-RL [112] ap-

plied Lagrangian neural networks primarily to problems involving rigid body motion.

Our work generalizes this approach by integrating the actor-network as part of the La-

grangian world model (section 3.1). In this framework, the Lagrangian neural network

“understands” the actor’s intentions by “reading” its parameters when computing the

Jacobian and Hessian to predict the next state. We further enhance this connection by

introducing a gradient-boosted Proximal Policy Optimization algorithm (section 3.2),

which includes dreaming steps that allow the critic’s parameters to more directly influ-

ence the actor’s updates. In this sense, the world model acts as a mediator, translating the

actor’s intentions for the critic and facilitating communication via double differentiation.

It’s as if the actor can query the critic to verify whether its decisions are sensible through

a physics-informed world model.

This is just one interpretation of the gradient-informed interaction between these three

entities, but our results confirm its effectiveness. We’ve demonstrated that dreaming and

planning are effective methods for improving sample efficiency (section 4.2), and that

Lagrangian neural networks possess the necessary physical properties (subsection 4.3.2),

making them a superior choice for classical dynamics problems. However, it is also

important to acknowledge the limitations of this approach (section 5.3).

32
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5.2 Future Work

There are several important directions for the future work:

• World Models: Firstly, the architecture of the Lagrangian neural network could

be explored further. We only considered an ensemble Lagrangian predictor with

various enhancements like dense connectivity (see subsection 3.1.3). However,

recent architectures, such as deep operator networks (DeepONets) [25], have

challenged the standard data-to-data predictors and have shown that function-

to-function approximators are more suitable for solving and analyzing ODEs

and PDEs. In this sense, we could use DeepONet to learn a solution operator G

that maps input function x(t) and control function u(t) to a Lagrangian function

l(t|x(t),u(t)). One could even look for connections with hyper-heuristic methods

[197] which also operate in problem space. Methods like these are deemed to be

highly generalizable [198, 199].

• Agent Models: We have only experimented with proximal policy optimization

agents. However, there are many other algorithms that could challenge its per-

formance. For example, soft actor-critic (SAC) [200] is an off-policy algorithm,

which has been shown to be more sample efficient than on-policy algorithms like

PPO. Furthermore, our introduced dreaming proximal policy optimization could

be modified to differentiate advantages, such as in gradient-informed PPO [201].

• Explainability: One would probably associate physics-informed machine learn-

ing with some form of interpretability. Although our architectural design makes

the predictive behavior more interpretable than black-box neural networks due to

the Euler-Lagrange constraint, we could still explore this aspect further. Some

models, such as deep symbolic optimization (DSO) [202] and SINDy-RL [119]

train models to predict symbolic forms of dynamics and policy equations. We

could use these models on top of our learned one to at least partially explain

the dynamics or we could look for symbolic, differentiable forms of comput-

ing a Lagrangian, the primary equation of which could be further refined by a

neural network. We actually have experimented with symbolic world models,

by reimplementing SINDy-RL, and implementing two custom world models for

control adopting PySR [29] and symbolic identification of non-linear dynamics

(SymINDy) [203]. Unfortunately, due to time constraints and because these

are slightly off-topic, we did not include them nor systematically experimented
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with them. However, the draft implementations are available in our code at

src/supplementary/draft/envs/surrogate/worlds.

• Evaluation: Our experiments were primarily performance-focused. We could per-

form qualitative evaluation by visualizing world model predictions on a reduced-

dimension time-space coordinate system, and inspecting how consistent and

smooth the trajectories are, and whether they make sense. Additionally, we could

evaluate how sensitive the models are to the initial observation conditions and

perform experiments over a range of parameters to determine training stability.

• Scalibility An important factor to assess is algorithm’s scalibility. While we only

experimented on toy problems, it would be more practical to test the algorithm in

real environments, with lots of unknown factors. Furthermore, simple problems

like cartpole and pendulum only have a few observation and action variables,

making the problem feasibly solvable by hand or random search for short episodes.

Extending the search space to hundreds or even thousands of dimensions could

reveal an even bigger benefit of using LNNs because artificial neural networks are

generally less susceptible to the curse of dimensionality [204]. On the other hand,

symbolic methods, as shown in Figure 4.7a, may work well for low dimensional

problems, however, as most of them utilize some form of genetic programming

[205], they are subject to bloat and generalization issues [206] as the search space

grows exponentially with the number of terminals/non-terminals added.

5.3 Limitations

Despite our successes, our work has some limitations that warrant discussion. First,

the gradient-informed communication flow is highly computationally demanding, and

due to time constraints, we were unable to fully experiment with and compare the

time required for the algorithms to converge. Second, the framework we introduced

is limited to generalized coordinate representations, where the observation space can

be expressed as q, q̇. This limitation means that our algorithm cannot be applied to

common reinforcement learning benchmarks, such as Atari games, which may involve

image-based state spaces. Finally, our approach may struggle with environments that

involve highly stochastic dynamics or significant discontinuities, where the assumptions

of smoothness in Lagrangian mechanics may not hold, potentially leading to degraded

performance or instability.
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5.4 Summary

To conclude, our project was a success. Namely, we introduced a powerful physics-

informed world model that generalizes to allow actions as inputs and a policy boosting

method via critic gradient information. Not only do these methods separately work

to improve sample efficiency and physics compliance, but they also seamlessly work

together due being more informed about each other’s parameters. We would like to also

emphasize that this project has also involved software development by which we built a

research-friendly Athletes package allowing to easily develop config-based lightweight

and efficient policy optimization algorithms.
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Appendix A

Introduction

A.1 Contributions

In addition to the mentioned contributions, I would personally like to add more details

to highlight the complexity relative to my experience:

• Deep learning - it was not too difficult for me to design and train neural networks

as I am highly familiar with deep learning.

• Reinforcement Learning - this was a new area for me. Although I had a

university module in RL, the teaching material mostly focused on traditional

techniques. Thus, it was quite difficult to familiarize myself with various policy

optimization algorithms, such as PPO and Dreamer, from scratch. Many of the

concepts I experimented with (for a more general understanding and more general

software), e.g., MARL, are not even discussed in this project.

• Physics - although the project does not involve many physics concepts, the

fundamental ones, such as derivative-based dynamics and Lagrangian mechanics

took quite a bit of time to understand and, especially, to apply to code.

• Software development - not a big challenge because I have developed Python

packages before. However, even though the presented package is not complete, it

took a tremendous amount of time to design and debug many components.

Overall, my expertise before starting this project was mainly in software development,

computer vision, and deep learning. Therefore, I am definitely satisfied I achieved

successful results in this research, whose main focus is far from my comfort zone.
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Appendix B

Methodology

B.1 Lagrangian Neural Networks for Control

B.1.1 Lagrangian Equation for Control

We begin by defining the full derivatives of dL
dq and dL

dq̇ to be dependent on q and q̇,

both of which are part of action function a(·) that computes an action a. In other words,

instead of being presented with

L(q, q̇) = T (q, q̇)−V (q) (B.1)

where q ∈ RN , q̇ ∈ RN and T,V are kinetic and potential energy functions, we are also

given a control action a ∈RM, or, more specifically, a vector function a : R2N →RM. It

influences the Lagrangian computation, which is approximated by a neural network:

L(q, q̇,a(q, q̇)) = NNLagrangian(q, q̇,NNActor(q, q̇)) (B.2)

By multivariate calculus chain rule and also by knowing that the Jacobian of a vector is

a Jacobian matrix (thereby ∂a
∂q⊤ ∈ RM×N , see subsection B.1.2), we have:

(L′)⊤ =
dL
dq⊤

=
∂L
∂q⊤

+
∂L
∂a⊤

∂a
∂q⊤

= ∇q⊤L +∇a⊤L∇q⊤a

(L′′)⊤ =
dL
dq̇⊤

=
∂L
∂q̇⊤

+
∂L
∂a⊤

∂a
∂q̇⊤

= ∇q̇⊤L +∇a⊤L∇q̇⊤a
(B.3)

We also know the Euler-Lagrange constraint d
dt

dL
dq̇⊤ =

dL
dq⊤ , which we can expand through

time using the multivariate chain rule and through Lagrangian using Equation B.3:
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∂L′′

∂q⊤
∂q
∂t

+
∂L′′

∂a⊤
∂a

∂q⊤
∂q
∂t

+
∂L′′

∂q̇⊤
∂q̇
∂t

+
∂L′′

∂a⊤
∂a

∂q̇⊤
∂q̇
∂t

=L′ (B.4)

∂L′′

∂q⊤
q̇+

∂L′′

∂a⊤
∂a

∂q⊤
q̇+

∂L′′

∂q̇⊤
q̈+

∂L′′

∂a⊤
∂a

∂q̇⊤
q̈ =L′ (B.5)(

∂L′′

∂q⊤
+

∂L′′

∂a⊤
∂a

∂q⊤

)
q̇+

(
∂L′′

∂q̇⊤
+

∂L′′

∂a⊤
∂a

∂q̇⊤

)
q̈ =L′ (B.6)(

∂L′′

∂q̇⊤
+

∂L′′

∂a⊤
∂a

∂q̇⊤

)−1[
L′−

(
∂L′′

∂q⊤
+

∂L′′

∂a⊤
∂a

∂q⊤

)
q̇
]
= q̈ (B.7)

In gradient-vector notation and, subsequently, in the notation adopted by the original

paper1 [23], we have:

q̈ =
(

∇q̇⊤L
′′+∇a⊤L

′′
∇q̇⊤a

)−1 [
L′−

(
∇q⊤L

′′−∇a⊤L
′′
∇q⊤a

)
q̇
]

(B.8)

q̈ =
(

∇q̇(L′′)⊤+∇
⊤
q̇ a∇a(L′′)⊤

)−1 [
L′−

(
∇q(L′′)⊤−∇

⊤
q a∇a(L′′)⊤

)
q̇
]

(B.9)

Now, to save space, let’s redefine L′ and L′′ to be equal to their transposes and also in

more compact authors’ notation

L′ =
(

∇qL +∇
⊤
q a∇aL

)⊤
L′′ =

(
∇q̇L +∇

⊤
q̇ a∇aL

)⊤ (B.10)

Now we can get rid of L′ term, which would now be (L′)⊤, in Equation B.9 and rewrite

it in its final form

q̈ =
(

∇q̇L′′+∇
⊤
q̇ a∇aL′′

)−1 [
∇qL +∇

⊤
q a∇aL−

(
∇qL′′−∇

⊤
q a∇aL′′

)
q̇
]

(B.11)

where:

• q, q̇, q̈ ∈ RN×1, a ∈ RM×1

• L ∈ R

• ∇q̇L ∈ RN×1, ∇aL ∈ RM×1

• ∇qa, ∇q̇a ∈ RM×N

• L′′ ∈ R1×N

• ∇qL′′, ∇q̇L′′ ∈ RN×N , ∇aL′′ ∈ RM×N

1It is not very clear what notation they choose for ∇xf, thus we use a commonly accepted Jacobian
matrix notation which results in RM×N for f : RN → RM and x ∈ RN . For a scalar function f , i.e., when
M = 1, it is clear that the authors choose a column-vector as a result, i.e., RN×1.
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B.1.2 Vector Differentiation

Assume, we have a function f : RN → R producing a scalar s ∈ R and two vectors

x ∈ RN and y ∈ RM. Differentiating a scalar function with respect to a vector and vice

versa is easy - we know that the result is a Jacobian vector.

Instead of defining the differential operator as d·
d· , let’s just say that it is some operator

· op · with the constraint that the term on the left can only interact with the term on

the right when the transition is smooth. In other words, much like we cannot do a dot

product between a⊤ ∈ R1×2 and B ∈ R3×2, we also cannot do a⊤ op B due to shape

mismatch. This constraint ensures consistency as we scale from scalars to tensors.

Now we can define vector Jacobians in the following way, understanding that the scalar

can be expressed as a vector of size 1, i.e., s ∈ R1:

ds
dv⊤

= ∇v⊤s =
(

∂s
∂v1
· · · ∂s

∂vN

) dv
ds

= ∇sv =


∂v1
∂s
...

∂vN
∂s

 (B.12)

Note how ds
dv would be illegal according to our constraint, however, people simply

define ds
dv ∈ RN which, instead of representing matrix differentiation, corresponds to

element-wise differentiation.

From here we can interpolate that differentiating a vector with respect to another

vector results in a matrix, commonly known as Jacobian matrix [207, 208, 209]. More

precisely, given a vector function f : RN → RK , we have that

df
dx⊤

= ∇x⊤f =


∂ f1
∂x1

· · · ∂ f1
∂xN

... . . . ...
∂ fK
∂x1

· · · ∂ fK
∂xN

 (B.13)

Jacobian matrix, when the function maps to a scalar, i.e., when M = 1, reduces to the

row vector ∇x⊤ f . Now assume f′ : RK → RN is a first-order derivative of x that can be

further differentiated with respect to y. We have:

df′

dy⊤
= ∇y⊤f′ = ∇y⊤∇

⊤
x⊤ f =


∂2 f

∂x1∂y1
· · · ∂2 f

∂x1∂yK
... . . . ...

∂2 f
∂xN∂y1

· · · ∂2 f
∂xN∂yN

 (B.14)

Note that authors in the original paper [23] define the transpose of it as ∇y∇⊤x f =(
∇y⊤∇⊤x⊤ f

)⊤
. Although this notation is more compact, by swapping rows with

columns, the chain rule for matrices becomes especially hard to understand.
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B.1.3 LNNc Block Architecture Details

We did not expand a lot on why we use specific layers and architecture choices when we

presented the LNNc structure. This is because we simply reuse the components rather

than introducing something novel, thus we limited the discussion beyond mentioning

the papers for a more curious reader (they’re ideas are well-known and commonly used

in deep learning architectures). Some details still need a few more comments:

• Normalization - we use layer normalization [154] instead of batch normalization

[210] because the distribution of encountered states shifts as the actor learns

which actions to take. Relying on minibatch statistics would be especially hurtful

for on-policy learning. Layer normalization, on the other hand, normalizes

across features for each individual data point. There are techniques specific to

reinforcement learning like CrossQ [211], however, for simplicity, we use what

is already available in PyTorch. Normalization guides the optimization faster by

smoothing the loss hypersurface [212].

• Softplus - as noted by Cranmer et al. [23], we cannot use ReLU because the

gradients are shut down. It is not an issue for regular neural networks, however,

we need the gradients to compute Jacobians and Hessians used to infer the next

state. We would further like to emphasize that this criteria also extends to actor

network because, in our case, we differentiate through actor as well. We found it

more performant to use hyperbolic tangent activation for actor networks rather

than softplus. Activations are needed to introduce nonlinearity between layers.

• Dropout - dropout [155] improves generalization by making hidden units less

dependent on each other and can even be perceived as a type of ensemble tech-

nique [162]. To further enhance generalization, we use the L2 penalty [213] via

AdamW [190]. Generalization is necessary for a dynamics model since it is used

for planning and dreaming, and we need to ensure the model generalizes to the

best of its ability to unseen states.

• Mobile-block - as mentioned before, we implement squeeze-and-excitation [158]

with residual connections [87]. This is similar to inverted residuals [214], however,

our design choice is simpler since we are not dealing with convolutional layers.

The core motivation is to enhance features while preserving the gradient flow.

That being said, please refer to the original code, more specifically we construct

BlockNet and EnsembleBlockNet classes with the components mentioned above.
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B.2 Dreaming Proximal Policy Optimization

B.2.1 Get, Sample, and Pairs

Although it should be straightforward what get, sample, and pairs mean from the

context, we utilize domain relational calculus queries [215] to formalize the definitions.

To keep notations simpler, we do not specify which kinds of elements the operations

are performed over - it should be clear from the returned value. For example, instead of

defining get o(·) for elements of type o and get rc(·) for tuples of elements of types r

and c, just a single get is used and it will be clear from the retrieved value over which

kinds of objects the function was performed.

We define y1, · · · ,yF to be a sequence of object kinds that we want to retrieve (free

elements), and x1, ...,xN to be a sequence of object kinds that we do not care about.

F +N is each tuple’s size in a queried set (usually a data buffer D). Furthermore, each

object is equipped with attributes t and b, representing timestep and batch indices.

Given a data buffer set D , method get returns the element(-s) with matching attributes

t and b, method sample returns a random element(-s), and method pairs returns a

random pair(-s) of consecutive elements:

get(D, t,b) :=
{(

y(t)1,b, · · · ,y
(t)
F,b

)
(B.15)∣∣∣∣ ∃x1,··· ,xN

(
x1, · · · ,xN ,y

(t ′)
1,b′, · · · ,y

(t ′)
F,b′

)
∈D ∧ t ′ = t ∧b′ = b

}
sample(D) :=

{(
y(t)1,b, · · · ,y

(t)
F,b

)
(B.16)∣∣∣∣ t ∼ Uniform(1,T )∧b∼ Uniform(1,B)

∧
(
∃x1,··· ,xN

(
x1, · · · ,xN ,y

(t ′)
1,b′, · · · ,y

(t ′)
F,b′

)
∈D ∧ t ′ = t ∧b′ = b

)}
pairs(D) :=

{((
y(t)1,b,y

(t+1)
1,b

)
, · · · ,

(
y(t)F,b,y

(t+1)
F,b

))
(B.17)∣∣∣∣ t ∼ Uniform(1,T )∧b∼ Uniform(1,B)

∧
(
∃x1,··· ,xN

(
x1, · · · ,xN ,y

(t ′)
1,b′, · · · ,y

(t ′)
F,b′

)
∈D ∧ t ′ = t ∧b′ = b

)
∧
(
∃x1,··· ,xN

(
x1, · · · ,xN ,y

(t ′+1)
1,b , · · · ,y(t

′+1)
F,b

)
∈D ∧ t ′ = t ∧b′ = b

)}
Although the operations are defined to return a set, we will only write the returned value,

because the returned set only contains a single element or tuple.
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B.2.2 Returns and Advantages

Algorithm 8 shows how to compute simple Monte-Carlo values [216]. Specifically,

instead of invoking Bellman equations [217], we rely on random trajectory discounted

returns to form direct value estimates. It is simple because it does not depend on the

size of the state space, a property of Monte-Carlo methods [31]. However, they have

high variance and require a lot of data due to stochasticity [38].

Algorithm 8 Monte-Carlo estimation of returns
Require: B, γ ▷ Batch size, discount factor

1: procedure COMPUTE RETURNS(D)

2: T ← 1
B |D| ▷ Buffer cardinality

3: R ←{R(T+1)
b ← 0}B

b=1 ▷ Init returns

4: for (t = T, · · · ,1) × (b = 1, · · · ,B) do
5: (r(t)b ,c(t)b )← get(D, t,b) ▷ Reward and continue flag

6: R(t)
b ← r(t)b + γ · c(t)b ·R

(t+1)
b ▷ Compute return for b at t

7: R ← R ∪{R(t)
b } ▷ Add return to returns set

8: return R

Algorithm 9 shows how to compute simple advantages from the Monte-Carlo returns.

It utilizes (old) critic to make the updates more stable (more gradual distribution shift).

Although more sophisticated methods, like GAE [130] exist, we stick with simplicity.

Algorithm 9 Standardized advantage estimation
Require: B, ε ▷ Batch size, epsilon

1: procedure COMPUTE ADVANTAGES(D , νφ)

2: T ← 1
B |D| ▷ Buffer cardinality

3: R ← compute returns(D) ▷ Compute returns

4: A ←{} ▷ Init advantages

5: for (t = 1, · · · ,T ) × (b = 1, · · · ,B) do
6: o(t)b ← get(D, t,b) ▷ Retrieve observation

7: R̃(t)
b ← (R(t)

b −E[R ])÷ (σ(R )+ ε) ▷ Standardize return

8: A
(t)
b ← R̃(t)

b −νφ(o
(t)
b )

9: A ← A ∪{A
(t)
b } ▷ Compute advantage

10: return A
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B.2.3 Collect, Concat, and Extras

Algorithm 10 simply describes how batched environment rollouts are performed:

Algorithm 10 Data collection
1: procedure COLLECT(A , E , T , t0, B)

2: DE = {(o(t0)b ,r(t0)b ,c(t0)b )← E .reset()}B
b=1 ▷ Initial obs, rews, terms

3: DA = {(a(t0)b ← 0 ∈ RB)}B
b=1 ▷ Initial actions (zeros)

4: D← concat(DE ,DA) ▷ Concatenate to form D

5: for (t = t0, · · · , t0 +T ) × (b = 1, · · · ,B) do
6: a(t)b ← A .act(o(t−1)

b ) ▷ Act on agent policy

7: if c(t−1)
b then

8: (o(t)b ,r(t)b ,c(t)b )← E .step(a(t)b ) ▷ If continue, step environment

9: else
10: (o(t)b ,r(t)b ,c(t)b )← E .reset() ▷ Otherwise, sample new state

11: D←D ∪{(o(t)b ,a(t)b ,r(t)b ,c(t)b )} ▷ Update data buffer

12: return D

We would also like to define a handy concat function which simply concatenates

corresponding tuples (at t and b) of some two sets D and D ′:

concat(D,D ′) :=
{(

d(t)
1,b, · · · ,d

(t)
N,b,d

(t)
1,b, · · · ,d

(t)
N′,b

)
(B.18)∣∣∣∣ ∃t ′,b′t

′ ∈ {1, · · · ,T}∧b′ ∈ {1, · · ·B}

∧
(

d(t)
1,b, · · · ,d

(t)
N,b

)
∈D ∧

(
d(t)

1,b, · · · ,d
(t)
N′,b

)
∈D ′∧ t ′ = t ∧b′ = b

}
There are a few functions mentioned that do not have clear definitions - they only

indicate what the algorithm should be doing. A few more details about these:

• step - takes action, steps environ-

ment, and returns a next-state tuple

• reset - resets environment, and re-

turns a random new-state tuple

• act - takes observation and produces

an action based on it

• dynamics - takes observation and

action to produce next observation

• trim - takes buffer set and capacity

value and returns trimmed buffer

• optimize- takes model(-s) and

loss(-es), backpropagates, and re-

turns the updated model(-s)



Appendix B. Methodology 68

B.2.4 Notations

• A - agent or advantages

• π - policy/actor

• ν - value function/critic

• E - real environment

• M - surrogate model

• S - state model

• R - reward model or returns

• C - continue model

• D - data buffer

• O - optimizer

• L - loss

• N - total iteration

• T - total timesteps

• B - batch size

• H - horizon

• n - iteration counter

• t - timestep

• b - sample index

• h - horizon step

• o - observation

• a - action

• r - reward

• c - continue

• R - discounted return

• v - value

• A - advantage

• γ - discount factor

• ε - small noise value

• θ - denotation of learnable params

• φ - denotation of learnable params

• ψ - denotation of learnable params

• on - denotation of “on-policy”

• off - denotation of “off-policy”
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B.3 Athletes Software Package

B.3.1 RLLib’s Complexity

For instance, if one would like to create an environment runner that alters between

real and surrogate models using Ray v2.31.0, then one would have to significantly

change the components of RLLib because they highly depend on each other. For

instance, RLlib creates multiple environments, which are controlled by an environment

runner, which by itself is part of a bigger group. Further, RLLib trains agents via

learner groups that contain multi-agent learners. Extending the functionality of some

existing class is not a complex task if one is familiar with RLLib’s framework, however,

implementing a new component, e.g., multi-agent and multi-world hybrid learner

requires deep knowledge of how each component utilizes each other. We have managed

to implement various features facilitating model-based learning and they can be checked

at src/supplementary/rllib. However, we had to discard the idea of working

with it further because adding anything extra always requires modifying at least a

few components, whose changes may propagate to further components making it very

time-consuming to develop research-focused code which is mainly experimental and

not stable. Still, some useful utilities can still be utilized now or in the future, such as

the surrogate switch wrapper:
from s u p p l e m e n t a r y . r l l i b . env . w r a p p e r s i m p o r t S u r r o g a t e S w i t c h W r a p p e r

# I n i t r e a l env & wor ld model

env = S u r r o g a t e S w i t c h W r a p p e r (

env=gymnasium . make ( ” C a r t P o l e −v1 ” ) ,

w o r l d m o d e l c o n f i g ={” c l s n a m e ” : ”MLPWorldModel” , ” framework ” : ” t o r c h ”}
)

# Load w e i g h t s i n t o t h e wor ld model & r e s e t

wrapped env . wor ld mode l . l o a d s t a t e d i c t ( t o r c h . l o a d ( ” p a t h / t o / w e i g h t s . p t h ” ) )

env . r e s e t ( )

# S t ep t h r o u g h t h e r e a l e n v i r o n m e n t

a c t i o n = env . a c t i o n s p a c e . sample ( )

s t a t e , reward , term , t r u n c , i n f o = env . s t e p ( a c t i o n )

env . s w i t c h ( ) # To s u r r o g a t e

o , r , t1 , t2 , i = env . s t e p ( a c t i o n )

env . s w i t c h ( ) # To r e a l

Listing B.1: A switch wrapper for Gymnasium environments
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B.3.2 Example Algorithm Using Athletes
i m p o r t d a t a c l a s s e s

i m p o r t t o r c h

from a t h l e t e s . a g e n t s i m p o r t Agent

c l a s s SimplePPO ( Agent ) :

@ d a t a c l a s s e s . d a t a c l a s s

c l a s s Conf ig [ T=PPO ] ( Agent . Conf ig [ T ] ) :

gamma : f l o a t = 0 . 9 9

n u m i t e r s : i n t = 30

l r : f l o a t = 1e −4

d e f i n i t ( s e l f , * a rgs , ** kwargs ) :

s u p e r ( ) . i n i t (* a rgs , ** kwargs )

# C r e a t e ve ry s i m p l e a c t o r and c r i t i c models

s e l f . a c t o r = t o r c h . nn . L a z y L i n e a r ( s e l f . a d im )

s e l f . c r i t i c = t o r c h . nn . L a z y L i n e a r ( 1 )

s e l f . o p t i m i z e r = t o r c h . opt im .AdamW( [

{” params ” : s e l f . a c t o r . p a r a m e t e r s ( ) , ” l r ” : s e l f . l r } ,

{” params ” : s e l f . c r i t i c . p a r a m e t e r s ( ) , ” l r ” : s e l f . l r } ,

] )

d e f f o r w a r d ( s e l f , o b s e r v a t i o n , a c t i o n =None ) :

# Make d i s t & use i t f o r e x t r a o u t p u t s

d i s t = s e l f . d i s t . make ( s e l f . a c t o r ( o b s e r v a t i o n ) )

a c t i o n = d i s t . r s a m p l e ( ) i f a c t i o n i s None e l s e a c t i o n

l o g p r o b = d i s t . l o g p r o b ( a c t i o n . d e t a c h ( ) )

r e t u r n a c t i o n , s e l f . c r i t i c ( o b s e r v a t i o n ) , l o g p r o b

d e f s t e p ( s e l f , o b s e r v a t i o n , reward , t e r m i n a t e d , t r u n c a t e d , i n f o ) :

# S t o r e i n b u f f e r

s e l f . b u f f e r . append (

obs= o b s e r v a t i o n , rew=reward , te rm = t e r m i n a t e d , t r u n = t r u n c a t e d ,

** d i c t ( z i p ( ( ” a c t ” , ” v a l ” , ” logp ” ) , o u t := s e l f ( o b s e r v a t i o n ) ) )

)

r e t u r n o u t [ 0 ]

d e f u p d a t e ( s e l f ) −> d i c t [ s t r , f l o a t ] : . . .

# Imp lemen t ion o f PPO u p d a t e . . .

Listing B.2: Simplified PPO using python 3.13 (notice type param default)

B.3.3 Nested Agent Code Snippet
# D e f a u l t Dyna c o n f i g b u t MFA i s o v e r r i d d e n t o be a n o t h e r Dyna a g e n t

a g e n t c o n f i g = Dyna . Conf ig ( m o d e l f r e e a g e n t =Dyna . Conf ig ( ) )

a g e n t = a g e n t c o n f i g ( )

Listing B.3: Agent Instance Example
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Analysis

C.1 Default Hyperparameters

These are the default parameters used in the experiments. In some experiments, it is

obvious if there are modifications, e.g., total steps, in others, changes are explicitly

stated. Please also refer to our code for any minor parameter changes.

Parameter Default value

max episode steps 400

total steps 50000

report every 1600

num sgd iters (world) 2000

num sgd iters (agent) 30

batch size (world) 256

batch size (agent) all

num planning steps 800

planning batch size 32

allow update from real True

activation actor Tanh

activation critic ReLU

activation dynamics Softplus

activation reward ReLU

Parameter Default value

num envs 32

lr actor 5e-5

lr critic 1e-3

lr dynamics 1e-4

lr reward 1e-4

weight decay 1e-2

actor hidden [64, 64]

critic hidden [64, 64]

dynamics hidden [64, 64]

reward hidden [64, 64]

num lagrangians 1000

is generalized False

gamma 0.99

clip eps 0.2

Table C.1: Default hyperparameters.
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C.2 Autograd

C.2.1 Autograd
i m p o r t t o r c h

from t o r c h . a u t o g r a d . f u n c t i o n a l i m p o r t j a c o b i a n , h e s s i a n

d e f j a c o b i a n h e s s i a n n a i v e ( func , i n p u t ) :

j a c o b i a n s , h e s s i a n s = [ ] , [ ]

f o r sample i n i n p u t :

j a c o b i a n s . append ( j a c o b i a n ( func , sample ) )

h e s s i a n s . append ( h e s s i a n ( func , sample ) )

r e t u r n t o r c h . s t a c k ( j a c o b i a n s ) , t o r c h . s t a c k ( h e s s i a n s )

Listing C.1: Naive computation of Jacobian and Hessian

i m p o r t t o r c h

from t o r c h . func i m p o r t j a c r e v , h e s s i a n

d e f j a c o b i a n h e s s i a n f u n c t i o n a l ( func , i n p u t ) :

r e t u r n t o r c h . vmap ( j a c r e v ( func ) ) ( i n p u t ) , t o r c h . vmap ( h e s s i a n ( func ) ) ( i n p u t )

Listing C.2: Functional computation of Jacobian and Hessian

i m p o r t t o r c h

from t o r c h . a u t o g r a d i m p o r t g r ad

d e f j a c o b i a n h e s s i a n a u t o g r a d ( func , i n p u t ) :

i n p u t = i n p u t . d e t a c h ( ) . c l o n e ( ) . r e q u i r e s g r a d ( True )

o u t p u t = f u n c b a t c h e d ( i n p u t )

j a c o b i a n = grad ( o u t p u t , i n p u t , t o r c h . o n e s l i k e ( o u t p u t ) , c r e a t e g r a p h =True ) [ 0 ]

g r a d o u t s = t o r c h . eye ( j a c o b i a n . s i z e ( 1 ) ) [ : , None ] . r e p e a t ( 1 , j a c o b i a n . s i z e ( 0 ) , 1 )

h e s s i a n T = grad ( j a c o b i a n , i n p u t , g r a d o u t s , i s g r a d s b a t c h e d =True ) [ 0 ]

r e t u r n j a c o b i a n , h e s s i a n T . t r a n s p o s e ( 0 , 1 )

Listing C.3: Autograd computation of Jacobian and Hessian

i m p o r t t o r c h

d e f func ( x : t o r c h . Tensor ) : # Expec ted x shape : (D , )

r e t u r n (2 * x . pow ( 3 ) − x . pow ( 2 ) ) . sum ( )

d e f f u n c b a t c h e d ( x : t o r c h . Tensor ) : # Expec ted x shape : (B , D)

r e t u r n (2 * x . pow ( 3 ) − x . pow ( 2 ) ) . sum ( dim =1 , keepdim=True )

Listing C.4: Example target function
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