
LBPO: Lagrangian-Based Policy Optimization

Mantas Birskus
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Informatics

University of Edinburgh

2024

Abstract
Physics-Informed Neural Networks (PINNs) are revolutionizing scientific machine

learning by imposing mathematical constraints on data-driven predictions. This has

sparked interest in time-sensitive Physics-Informed Reinforcement Learning (PIRL).

While much research has focused on incorporating known system dynamics, emerging

studies are beginning to address how neural network architectures can be constrained

to satisfy physical laws. In this work, we introduce a novel Lagrangian-Based Policy

Optimization (LBPO) algorithm that integrates principles from Lagrangian mechanics

with deep neural networks. Our results demonstrate that LBPO excels in classical

dynamics and control systems. The algorithm not only adheres to physical laws, such

as energy conservation, but also enhances policy optimization by uniquely sharing

gradient information between the world and agent models. Our code is available at

https://github.com/mantasu/lbpo.

i

https://github.com/mantasu/lbpo

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Mantas Birskus)

ii

Acknowledgements
I would like to express my heartfelt gratitude to my supervisor, Michael Herrmann,

for his continuous guidance and invaluable feedback in shaping my project. I am also

thankful to my friends and relatives for their unwavering moral support, which has

helped me stay motivated throughout this journey. Additionally, I extend my apprecia-

tion to my parents for their financial assistance, enabling me to conduct experiments on

a high-end machine. Lastly, I am grateful to the UoE Financial Support team for their

aid towards my living costs, which has significantly reduced my stress and allowed me

to focus on my studies.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Research Focus and Contributions 2

1.3 Scope and Outline . 3

2 Background 4
2.1 Literature Review . 4

2.1.1 Reinforcement Learning . 4

2.1.2 Incorporating Physics . 7

2.2 Theoretical Details . 9

2.2.1 Proximal Policy Optimization 9

2.2.2 Lagrangian Neural Networks 10

3 Methodology 11
3.1 Lagrangian Neural Networks for Control 11

3.1.1 Lagrangian Neural Networks as World Models 11

3.1.2 Incorporating Actor Decision Process 13

3.1.3 Full Architecture and Enhancements 14

3.2 Gradient Based Proximal Policy Optimization 16

3.2.1 Planning and Dreaming . 16

3.2.2 Agent and World . 17

3.2.3 Lagrangian-Based Policy Optimization Algorithm 18

3.3 Athletes Software Package . 19

3.3.1 Features . 19

3.3.2 Structure . 20

4 Analysis 21

iv

4.1 Setup . 21

4.1.1 Environments . 21

4.1.2 Training . 22

4.2 Individual Components . 23

4.2.1 Gradient Boosted Proximal Policy Optimization 23

4.2.2 Planning . 25

4.3 Algorithm Performance . 26

4.3.1 World Models . 26

4.3.2 Physical Properties . 27

4.3.3 Policy Algorithms . 29

4.4 Code Efficiency . 30

4.4.1 Package . 30

4.4.2 Autograd . 31

5 Conclusions 32
5.1 Discussion . 32

5.2 Future Work . 33

5.3 Limitations . 34

5.4 Summary . 35

A Introduction 60
A.1 Contributions . 60

B Methodology 61
B.1 Lagrangian Neural Networks for Control 61

B.1.1 Lagrangian Equation for Control 61

B.1.2 Vector Differentiation . 63

B.1.3 LNNc Block Architecture Details 64

B.2 Dreaming Proximal Policy Optimization 65

B.2.1 Get, Sample, and Pairs . 65

B.2.2 Returns and Advantages . 66

B.2.3 Collect, Concat, and Extras 67

B.2.4 Notations . 68

B.3 Athletes Software Package . 69

B.3.1 RLLib’s Complexity . 69

B.3.2 Example Algorithm Using Athletes 70

v

B.3.3 Nested Agent Code Snippet 70

C Analysis 71
C.1 Default Hyperparameters . 71

C.2 Autograd . 72

C.2.1 Autograd . 72

vi

Chapter 1

Introduction

1.1 Motivation

The application of reinforcement learning (RL) in the realm of dynamics and control

systems has been a focal point of research in both academic and industrial settings [1, 2,

3]. For example, Tiumentsev and Zarubin [4] show that incorporating reinforcement

learning in aircraft control policy is crucial when the properties of the dynamical object

are unknown or incomplete. In recent years, physics-informed machine learning (PIML)

has gained traction which allows data-driven models to integrate physics constraints that

humans define or to discern physical laws directly from data [5, 6, 7]. When applied

to dynamical systems, these constraints usually take the form of differential equations

with respect to time. A classic example of this is the equations that describe the motion

of a pendulum [8] (Equation 1.1 defines its differential motion). The integration of

these physical laws ensures that the predictions made by the data-driven model align

with established physical principles.

d2θ

dt2 +
g
l

sinθ = 0 (1.1)

As such, physics-informed reinforcement learning (PIRL) has become an increasingly

studied field with numerous works being published over the last few years [9]. Studies

have shown that incorporating physics knowledge can help solve some major practical

problems, such as sample deficiency [10], high dimensionality [11], and safety risks

[12].

1

Chapter 1. Introduction 2

1.2 Research Focus and Contributions

Most works have leveraged physics knowledge by identifying pertinent features [13, 14],

constraining the state or action space [15, 16], or adjusting the reward function [17, 18].

However, these methodologies are only applicable when the theory of the dynamical

system is already known. This is often not the case as the physics information can be

incomplete or absent, which becomes particularly apparent when transitioning from

idealized simulations to real-world scenarios [19].

Therefore, We shift our focus to neural ordinary differential equations (neural ODEs)

[20], more specifically, to problems where system dynamics are governed by differen-

tial equations - a foundational concept in physics [21]. This approach enables us to

design neural networks that inherently respect physical laws. For example, models like

Hamiltonian [22, 12] and Lagrangian [23, 24] neural networks naturally incorporate

energy-preserving constraints, embedding conservation principles directly into the learn-

ing process. Similarly, architectures such as Deep Operator Networks (DeepONets) [25,

26] and Neural Implicit Flow [27, 28] models are crafted to operate over continuous

functions, capturing the underlying consistency within differential fields. Additionally,

symbolic regression techniques like PySR [29, 30] and sparse identification of non-

linear dynamics (SINDy) [31, 32] aim to discover interpretable symbolic expressions

that represent the governing equations of a system.

Our work extends the integration of Lagrangian mechanics into model-based reinforce-

ment learning (MBRL) [33]. Specifically, we contribute the following:

• Lagrangian Neural Networks for Control: We extend the work by Cranmer

et al. [23] to control tasks, showing that Lagrangian-based models capture system

dynamics, enhance sample efficiency, and stabilize policy learning.

• Gradient-Enhanced PPO: We develop a variant of proximal policy optimization

(PPO) [34] that leverages gradient information from the physics-informed model,

speeding up training and improving convergence.

• Athletes Software Package: We introduce a lightweight, efficient Python pack-

age for reinforcement learning, offering unique features like nested agents, de-

signed for both beginners and advanced users.

The relative complexity of the project is also discussed in section A.1.

Chapter 1. Introduction 3

1.3 Scope and Outline

The scope of the project is limited to single-agent reinforcement learning for dynamics

and control problems that do not involve contact and energy loss, such as Gymnasium’s

[35] Cartpole [36] and Pendulum [37] environments. This is to ensure a thorough analy-

sis can be conducted within a fixed field without expanding into too many directions for

the limited time that was given.

Here is a breakdown of the upcoming sections:

• Literature Review (section 2.1) - we discuss the fundamentals of reinforcement

learning and move to related works in physics-informed reinforcement learning

• Theoretical Details (section 2.2) - we introduce to proximal policy optimization

algorithm and lagrangian neural network, two concepts our work is based on

• Lagrnagian Neural Networks for Control (section 3.1) - we present a novel

architecture for lagrangian neural networks extending them to handle control

variables

• Gradient Boosted Proximal Policy Optimization (section 3.2) - we define the

algorithms that lagrangian-based policy optimization depends on

• Athletes Software Package (section 3.3) - we present a supplementary Python

package that was built alongside the conducted research

• Setup (section 4.1) - we discuss the environment and training setup for experi-

ments

• Individual Components (section 4.2) - we experiment with individual architec-

ture components of LBPO algorithm

• Algorithm Performance (section 4.3) - we compare our algorithm with other

existing ones

• Code Efficiency (section 4.4) - we showcase our package efficiency and present

autograd feature

• Concludion (chapter 5) - finally conclude our work and discuss limitations as

well as future perspectives

Chapter 2

Background

2.1 Literature Review

2.1.1 Reinforcement Learning

2.1.1.1 Fundamentals

“Reinforcement Learning: An Introduction” (R.S. Sutton and A.G. Barto) is often

regarded as a seminal handbook in reinforcement learning [39, 40, 41], offering a com-

prehensive theoretical framework. It essentially operates on the principles of a Markov

Decision Process (MDP) [42] (see Figure 2.1), where an agent interactively learns which

action a(t)i to take at which state s(t)j through a sequence of timesteps t ∈ {0, · · · ,T} to

maximize a cumulative return of goal-based rewards {r(1), · · · ,r(T)}. In other words,

the agent learns an optimal policy π∗(a(t)|s(t)) from trajectories {(s(t),a(t),r(t+1))}Tn
t=0

acquired by interacting with the environment through n = {1, · · · ,N} trials, or episodes.

Figure 2.1: The agent–environment interaction in a Markov Decision Process.

4

Chapter 2. Background 5

Traditionally, reinforcement learning (RL) is split into model-free and model-based and

can be further divided into on-policy and off-policy (see Figure 2.2):

• Model-free algorithms optimize action strategies based on direct environment

interactions [43]. For instance, Saxena et al. [44] show how a simulated car

can learn to safely merge into dense traffic without explicit modeling of other

vehicles’ movements.

• Model-based algorithms, on the other hand, learn a model of the environment’s

dynamics, which is used to plan and make decisions [33]. Nagabandi et al. [45]

show how a learned dynamics neural network can significantly reduce the sample

size required to reach optimal policies for locomotion tasks.

• On-policy RL involves learning the same policy for both exploration and exploita-

tion [46], as exemplified by Li et al. [47] who use Proximal Policy Optimization

(PPO) [34] for bipedal robot control.

• Off-policy RL, conversely, learns a separate policy for exploration [48], as

demonstrated by Gu et al. [49] who adapt Normalized Advantage Functions

(NAF) [50] to teach a robot to open a door.

(a) On-policy model-free (b) Off-policy model-free

(c) On-policy model-based (d) Off-policy model-based

Figure 2.2: Reinforcement learning types. Illustrations are taken from and more details

can be found at [9].

The methodology proposed in this project employs model-based approach because

physics laws can be naturally incorporated when learning a model of the environment.

For simplicity and memory efficiency, we also constrain ourselves to on-policy learning.

Chapter 2. Background 6

2.1.1.2 Dynamics and Control

Optimal control theory [51] has been applied to a variety of control problems, including

metal cutting processes [52], rotational translational actuators [53], missile autopilot

design [54], and has been a subject of extensive research for decades [55, 56, 57].

Recently, the success of reinforcement learning [58, 59] has also extended to these

control problems, such as in autonomous driving (2.3), where an agent must determine

appropriate steering rates and torque to maintain course [60], and in active flow control,

where an agent modulates mass flow rates to stabilize fluid flow around an object and

minimize resistance [61]. As Recht [62] explains, control theory involves designing

complex actions based on well-defined models, whereas reinforcement learning often

generates intricate predictions using only data, without relying on explicit models. This

highlights the strength of RL, particularly its applicability to control problems in noisy

environments where exact solutions would be too sensitive and adaptation is necessary

[63]; in scenarios where the environment is only partially observed [64]; or when

deriving an exact solution is challenging and approximations are required [65].

Figure 2.3: Autonomous Driving task (for illustrative purposes)1.

While traditional methods dominated for many years [66, 67], the advent of deep

learning [68, 69] has shifted the focus towards deep reinforcement learning (DRL)

[70, 71]. DRL is particularly effective for continuous state and action spaces, such

as in chemical reaction optimization, where an agent must apply precise temperature

or pressure controls [72]. However, these models are often black boxes, producing

excellent results but are difficult to understand [73]. In the context of model-based

RL, solutions to some problems, like DreamerV3’s algorithm for finding diamonds

in Minecraft [74], are challenging to explain due to the recurrent nature of the world

models used [75, 76, 77]. These models typically maintain internal states over time,

making their behavior harder to interpret. On the other hand, control problems are often

simpler because the environmental model usually depends only on the previous state

and action, provided they are sufficiently represented [78, 79, 80]. This simplicity in

control problems motivates the development of more explainable and physics-reliable

surrogate models, leading to more insightful results and analyses.
1https://www.flickr.com/photos/56682936@N03/35016564364 (CC BY 2.0)

https://www.flickr.com/photos/56682936@N03/35016564364
https://creativecommons.org/licenses/by/2.0/

Chapter 2. Background 7

2.1.2 Incorporating Physics

2.1.2.1 Physics-Informed Machine Learning

Recently, physics-informed machine learning (PIML) has emerged [81]. This approach

imposes physics constraints on data-driven models, allowing handling problems with

less data. It has been successfully applied to a variety of mechanical tasks, including

heat transfer [82], power systems [83], and subsurface transport [84].

A physics-informed neural network (PINN) is typically designed for forward problems,

where the network’s output directly solves the defining partial differential equations

(PDEs) of the predicted dynamics [85]. Lu et al. [86] relate network architectures to

differential equations. For instance, the simplest architecture resembles a Residual Net-

work (ResNet) [87], where the prediction of the next state follows x(t+1)= x(t)+ fθ(x(t)),
with fθ(·) as the network’s prediction of the derivative dx

dt , a black-box non-linear func-

tion parameterized by θ. Such iterative updates are essentially Euler discretization

over continuous time [88]. Neural Ordinary Differential Equations (Neural ODEs) [20]

improve this method by allowing unevenly spaced timesteps, extending applicability

to continuous dynamics. This method computes x(t+1) = x(t)+
∫ t+1

t fθ(x(τ))dτ using

any ODE solver, such as Adams/BDF [89] or 8th order Runge-Kutta [90]. A more

advanced architecture, Hamiltonian Neural Networks [22], leverages the Hamiltonian

structure of many dynamical systems [91, 92, 93], reducing the data required for training

and facilitating the learning of energy conservation laws. These networks predict a

Hamiltonian Hθ(q,p), imposing constraints dq
dt =

∂H
∂q , where q and p are position and

momentum vectors, respectively. A similar but more general approach, Lagrangian

Neural Networks [23], uses Euler-Lagrange principles [94] to constrain the system.

This approach is used in this paper and discussed further in 2.2.2.

Substantial research has also been conducted on inverse problems to identify PDEs from

data [6, 95]. For instance, Xu and Zhang [96] combine PINN with a Genetic Algorithm

[97] to recover PDEs with high-order derivatives, such as Korteweg de Vries [98] and

Burger’s [99] equations. Cranmer et al. [100] use Graph Neural Networks [101] to

discover new cosmological laws from N-body data [102]. A leading and widely applied

architecture, as claimed by Kaptanoglu et al. [103], is Sparse Identification of Nonlinear

Dynamics (SINDy) [5], a kind of symbolic regression [104], which uses sparse linear

regression [105] to identify which terminals (1
3 , π) and non-terminals (÷, sin) compose

a dynamical equation. We utilize inverse techniques to enhance explainability.

Chapter 2. Background 8

2.1.2.2 Physics-Informed Reinforcement Learning

Physics-informed reinforcement learning (PIRL) has become increasingly studied [9].

Chen, Liu, and Di [106] incorporate a PINN into policy learning to solve Mean Field

Games (MFG) [107]. Similarly, Shilova et al. [108] use a PINN to approximate value

functions for several dynamics problems in continuous-time reinforcement learning.

One significant area where PINNs have been actively applied is safe reinforcement

learning, where ensuring the safety and reliability of the learned policies is crucial

[109]. Wang and Nakahira [110] provide a physics-informed framework to estimate

risk probability for safe control systems, while Zhao, Wang, and Yue [111] present a

framework for learning a safety controller that satisfies predefined boundary regions.

Other relevant works focus on model-based reinforcement learning [112, 113], where

researchers develop physics-informed surrogate models to solve various simulated

dynamic problems, such as Cartpole [114] and Acrobot [58]. These studies highlight

that embedding physics information reduces environment model bias, even when physics

laws are only partially known. Some approaches go further, using fully differentiable

simulators to obtain analytical gradients that are leveraged in policy learning [115,

116, 117]. However, these methods are limited by the knowledge of the governing

physics equations. To address this limitation, SINDy-RL [118, 119] learns a symbolic

model of world dynamics, while deep symbolic optimization [120, 121, 122] shows

that return-maximizing equations can be generated even for policies. Nonetheless,

the complexity of symbolic solutions can quickly escalate [123] and undermine their

explainability, which is why our method does not completely rely on them.

It is also worth noting that similar research areas exist, such as inverse reinforcement

learning (IRL) [124], where the agent seeks to identify the reward function from the

underlying Markov Decision Process (MDP). Other works use reinforcement learning

itself to uncover PDE expressions or their coefficients [125, 126], enhancing symbolic

regression, although these results are not embedded into any interactive learning process.

Overall, the convergence of physics and reinforcement learning through PIRL offers

promising avenues for developing more robust, reliable, and interpretable AI systems.

The incorporation of physical laws into the learning process not only enhances the

performance of RL algorithms but also ensures that the learned policies adhere to

real-world constraints and principles, paving the way for safer and more efficient AI

applications. This alignment with PIRL principles is a key motivation for our work.

Chapter 2. Background 9

2.2 Theoretical Details

2.2.1 Proximal Policy Optimization

Our work relies on Proximal Policy Optimization (PPO) [34] which is a common choice

in PIRL [13, 127, 128]. Due to simplicity, it serves as a great baseline which is adopted

by our method. It essentially optimizes a surrogate objective loss L which is based on

ratio r between new and old policy and on advantages Â which asses how much better it

is to take the new policy actions. We use clip objective, the most common variant [129]:

LCLIP := E
a,s∼πold

[
min

(
r(θ)Âπold(a,s),clip(r(θ),1− ε,1+ ε) Âπold(a,s)

)]
(2.1)

Where r(θ) = πθ(a|s)
πold(a|s) is the probability ratio and Âπold(·) is advantage function, for

instance, Generalized Advantage Estimation (GAE) [130]. PPO algorithm involves

critic and actor updates; the simplified ones are shown below2 (see also section B.2):

Algorithm 1 Critic update
Require: O, νφ, N, B ▷ Attributes - see subsection B.2.4

1: procedure CRITIC UPDATE(D)

2: DR ←concat(D, compute returns(D)) ▷ Algorithm 8

3: for n = 1, · · · ,N do
4: {(ob,Rb)← sample(DR)}B

b=1 ▷ Sample batch

5: L ← 1
B ∑

B
b=1(Rb−νφ(ob))

2 ▷ MSE [131]

6: νφ← O.optimize(νφ,L)

7: return νφ

Algorithm 2 Proximal actor update
Require: O, πθ, νφ, N, B, ε ▷ Attributes - see subsection B.2.4

1: procedure PROXIMAL UPDATE(D)

2: DA ←concat(D, compute advantages(D,νφ)) ▷ Algorithm 9

3: πold← clone(πθ) ▷ Save old πθ

4: for n = 1, · · · ,N do
5: {(ob,ab,Ab)← sample(DA)}B

b=1 ▷ Sample batch

6: L ← 1
B ∑

B
b=1 min(Ab

πθ(ab|ob)
πold(ab|ob)

, Abclip(πθ(ab|ob)
πold(ab|ob)

,1± ε)) ▷ Equation 2.2.1

7: πθ← O.optimize(πθ,L)

8: return πθ

2Normally, the two are merged into one, however, for ease of understanding, we keep them separate.

Chapter 2. Background 10

2.2.2 Lagrangian Neural Networks

Lagrangian Neural Networks (LNN) were introduced by Cranmer et al. [23]. Much

like Hamiltonian dynamics, many physical systems can be expressed using Lagrangian

formalism, including thermo- [132], fluid [133], and relativistic [134] dynamics. La-

grangian mechanics essentially states that the system behaves on the principle of ”least

action” [135], which is used to define Euler-Lagrange constraint:

d
dt

∂L
∂q̇i

=
∂L
∂qi

(2.2)

Such that L ≡ T −V , where T and V are kinetic and potential energies, respectively.

This requires the state of the system to be defined as a vector containing positions

and their velocities x =
(

q1, · · · ,qN , q̇N+1, · · · , q̇2N

)⊤
, which is common practice in

dynamical systems literature [136]. L can be learned via a neural network. From here,

acceleration can be computed as follows:

q̈ =
(

∇q̇∇
⊤
q̇ L

)−1 [
∇qL− (∇q∇q̇L)q̇

]
(2.3)

Where ∇ represents vectorized derivatives, i.e., (∇q̇)i =
∂

∂q̇i
. Having q(t), q̇(t), and q̈(t),

equips us with knowledge of how the system evolves and allows us to compute the next

state q(t+1), q̇(t+1) by solving ODE.

LNNs generalize over Hamiltonian Neural Networks (HNNs) [22] by allowing arbitrary

coordinates, and over Deep Lagrangian Networks (DeLaNs) [24] by not constraining

the type of dynamical system. They are a common choice for many applications,

for example, video prediction [137], robotic modeling [138], and identification of

mechanical system parameters [139].

As noted by Cranmer et al. [23] and Roehrl et al. [139], LNNs learn exact energy conser-

vation laws and arbitrary lagrangians, are more performant, universal, and interpretable,

therefore, more suitable for physical systems, compared to regular neural networks. It

should also be emphasized that they are designed to be differentiable, i.e., their forward

pass requires computing Jacobians and Hessians to infer the next state. Differentiating

them w.r.t. model parameters (during the update) enforces a “physics-informed” gradi-

ent flow throughout the network, enhancing bi-directional connectivity between layers.

Due to these benefits and because we only focus on classic control problems, LNNs are

a natural baseline choice.

Chapter 3

Methodology

3.1 Lagrangian Neural Networks for Control

3.1.1 Lagrangian Neural Networks as World Models

Lagrangian Neural Networks (LNNs) can serve as physics-informed surrogate models in

model-based reinforcement learning, offering a more accurate representation of system

dynamics. Typically, a world model predicts the next state x(t+1) from the current state

x(t) (including q and q̇) and action a(t). In the original formulation [23], given q, q̇ and

L , one can compute q̈. However, the challenge becomes incorporating action/control

variables, such as external forces, as they can significantly alter dynamics.

Attempts to use LNNs for reinforcement learning tasks [140, 141, 142] often rely on

domain-specific knowledge. For instance, Lutter, Listmann, and Peters [142] impose

specific speed and torque balance equations on an electric engine, while Ramesh and

Ravindran [143] use a Lagrangian-based equation specific to rigid body motion.

We propose several very simple methods to incorporate the control variable in a way

that generalizes across domains:

• Concatenation. The simplest approach is to concatenate the state and control

values. Specifically, the Lagrangian network can take as input

concatenate(x,a) =
(

q1, · · · ,qN , q̇N+1, · · · , q̇2N ,a1, · · · ,aM

)⊤
.

For its efficiency and simplicity, we adopt this method, building on it with

additional techniques discussed in the following subsections.

11

Chapter 3. Methodology 12

• Outer Product. Another method is to compute the outer product

flatten(xa⊤) =
(

q1a1, · · · , q̇2Na1, · · · ,q1aM, · · · , q̇2NaM

)⊤
,

multiplying each state by each control value. The original values can also be

concatenated with the result. This method is particularly effective for discrete

action spaces, with a one-hot action representing a selective mapping. However,

the drawback is that the vector size increases quadratically with the number of

control and state variables.

• Double Encoder. A more sophisticated approach involves using separate en-

coders for the action and state vectors. Each encoder extracts features that can be

concatenated, added, or multiplied before being fed into the Lagrangian network.

This method is well-suited for high-dimensional spaces, though it introduces

additional parameters.

The methods discussed can generalize across any dynamic system without requiring

prior knowledge. While one might argue that Lagrangian mechanics imposes constraints,

requiring an understanding of which problems support this formalism, it’s important

to note that the “least action” principle is a fundamental concept in nature, applicable

from Newtonian to quantum mechanics [144]. As long as the state of a system can be

expressed in terms of q and q̇, this principle holds.

If the system is known to depend on specific parameters, like the gravitational constant,

existing methods might be preferable. However, our approach is better suited for

situations where the parameters are not fully known, can vary, or when the system

dynamics are being explored.

Toy problems like Gymnasium’s [35] Cartpole and Pendulum do not involve energy

loss (e.g., no friction), thus maintaining energy conservation. In contrast, real-world

problems are subject to noise and unknown factors. To address this, we propose using

Generalized LNNs [145], where a non-conservation term is predicted by an additional

neural network, taking the same input as the Lagrangian network. While control actions

explicitly change the system’s total energy, they don’t violate the conservation principle;

the Lagrangian network accounts for these changes when predicting the Lagrangian,

demonstrating the flexibility of neural networks in handling such complexities.

Chapter 3. Methodology 13

3.1.2 Incorporating Actor Decision Process

A simple concatenation of state and action variables works because the predicted

Lagrangian is differentiated with respect to the “observation part” of the concatenated

vector when computing acceleration based on Equation 2.3. In reinforcement learning,

actions are typically predicted by a separate neural network (e.g., the actor network

[146]), which uses the same observation input. We can compute the full derivative dL
dx

by combining the partial derivatives ∂L
∂x and ∂L

∂a
∂a
∂x . Extending from Equation 2.3, we

obtain (see subsection B.1.1 for full derivation):

q̈ =
(

∇q̇L′′+∇
⊤
q̇ a∇aL′′

)−1 [
∇qL +∇

⊤
q a∇aL−

(
∇qL′′−∇

⊤
q a∇aL′′

)
q̇
]

(3.1)

Where L′′ =
(

∇q̇L +∇⊤q̇ a∇aL
)⊤

. However, expanding this matrix-based1 equation

fully would make it very complex. It turns out that these complications can be avoided,

at least from an implementation perspective - it is simpler to consider the actor as part of

the Lagrangian neural network. Using auto-differentiation in deep learning frameworks

[147, 148, 149], we can directly compute the full derivative w.r.t. q and q̇.

Figure 3.1: Lagrangian Neural Network for Control

One could, in fact, think of it as dense connectivity [150], where features extracted by

the actor network are concatenated with the original input. The downside is that this

increases training time for the Lagrangian network since the actor’s learning adjusts

its weights, affecting Jacobians and Hessians required for the LNN forward pass.

However, this is manageable because dynamic world models are usually trained after

each trajectory collection step [151, 59].
1Matrix-based derivation is necessary for efficiency

Chapter 3. Methodology 14

3.1.3 Full Architecture and Enhancements

Architecture. The main building block adopted by our Lagrangian and non-conservation

model is illustrated in Figure 3.2a. It consists of the following layers: linear [152],

softplus [153], layer normalization [154], and dropout [155]. We also draw inspiration

from efficient networks [156, 157] and use residual connections [87] with squeeze

excitation [158], tailoring them to non-convolution networks. Primary motivations are

efficiency, compact model size, and generalization but please refer to the original papers

and subsection B.1.3 for more details.

(a) Main building block (b) Feature constructor

Figure 3.2: LNNc block and feature constructor. Note that actions are produced by an

actor and can be differentiated with respect to q, q̇.

We also made the following enhancements, which help speed up optimization:

• Features. We generate polynomial features from the observations, reflecting the

interactions seen in kinetic and potential energy equations [159, 160, 161].

• Lagrangians. We predict multiple Lagrangians (e.g., 1000) rather than just one,

allowing the network to consider multiple possibilities.

• Ensemble. Although dropout layers could already be interpreted as a form of

ensemble [162], we offer to average Lagrangian vectors from multiple LNNs.

This is different from the previous point as the weights are not shared. Due to

small network size, we can afford multiple models, and ensembles almost always

ensure performance gains [163, 164].

Chapter 3. Methodology 15

Figure 3.3: Full architecture and workflow of LNNc. Feature constructor is expanded in

Figure 3.2b. For clarity, multiple lagrangians and ensemble structure is not illustrated.

Workflow. The full architecture and the workflow process from current x(t) to next

state x(t+1) is depicted in Figure 3.3.

1. First, the observation input x is passed through the actor to get the actions a and

through the polynomial network to get the features x̃ (refer to Figure 3.2b).

2. Then, the concatenated input is passed through two separate neural networks to

get the Lagrangian vector L and the non-conservation term F .

3. We then differentiate the Lagrangians with respect to observations to obtain the

Jacobian vector J which we further differentiate to obtain the Hessian matrix H.

4. The acceleration q̈ is computed using Equation 11 from the work by Xiao, Zhang,

and Tang [145] (also shown in the figure), however, our method computes the full

derivative since we differentiate the actor model as pointed in Figure 3.1).

5. Finally, we integrate the result to get the next state, either using an additional

neural network or analytical method, such as Euler integration:

x(t+1) = x(t)+δτ∇tx(t) =
(

q(t) q̇(t)
)⊤

+δτ

(
q̇(t) q̈(t)

)⊤
(3.2)

We also would like to add that Jacobian and Hessian computations are computationally

demanding, however, we found a way to do this quickly utilizing specific PyTorch [147]

functions. We refer the reader to the original code but the comparisons will also be

discussed in the Analysis section.

Chapter 3. Methodology 16

3.2 Gradient Based Proximal Policy Optimization

3.2.1 Planning and Dreaming

Our model-based algorithm relies on Dyna [165]. The two main components in our case

are the PPO agent Aθ and the LNNc-based world model Mφ. Dyna-PPO is a common

choice [119, 166, 167] and varies regarding world models. It involves a planning phase:

Algorithm 3 Planning
Require: T , B ▷ Attributes - see subsection B.2.4

1: procedure PLANNING(Aθ, Mφ)

2: D← collect(Aθ,Mφ,T,1,B) ▷ Rollout Mφ (Algorithm 10)

3: Aθ← Aθ.update(Mφ,D) ▷ Agent update (Algorithm 5)

4: return Aθ

While proximal updates for the actor (Algorithm 2) are sufficient, we introduce a

gradient-informed method inspired by the Dreamer family [168, 169, 74], where

analytical gradients are used for policy updates. Unlike Dreamer, our algorithm directly

sums the state values instead of optimizing cumulative rewards, simplifying the process

due to no involvement of a recurrent model.

Algorithm 4 Dreaming actor update
Require: O, πθ, νφ, N, B, H, ε ▷ Attributes - see subsection B.2.4

1: procedure DREAMING UPDATE(Mθ, D)

2: for n = 1, · · · ,N do
3: {(o(t)b ← sample(D), vb← 0)}B

b=1 ▷ Sample obs, init state values

4: for (h = 1, · · · ,H) × (b = 1, · · · ,B) do
5: a(t+h)

b ← πθ(o
(t+h−1)
b) + ε ▷ Act on policy + noise

6: o(t+h)
b ←M .dynamics(o(t+h−1)

b ,a(t)b) ▷ Step dynamics model

7: vb← vb +νφ(o
(t+h)
b) ▷ Update bth value sum

8: L ←−E[{ 1
H vb}B

b=1]

9: πθ← O.optimize(πθ,L)

10: return πθ

The motivation for policy updates being analytical is that the Lagrangian dynamics

model uses the actor’s gradients to predict the next state. During actor updates, the

model “sees” how its parameters and the gradient flow influence the next state. Further,

the actor’s parameters are directly involved in energy conservation.

Chapter 3. Methodology 17

3.2.2 Agent and World

Full agent update consists of 3 steps: one critic update and two actor updates. Note,

however, in the actual code critic and proximal updates are merged for efficiency.

Algorithm 5 Agent update
Require: O, πθ, νφ ▷ Attributes - see subsection B.2.4

1: procedure Aθ.UPDATE(Mθ, D)

2: νφ← critic update(D) ▷ Critic update (Algorithm 1)

3: πθ← proximal update(D) ▷ Proximal update (Algorithm 2)

4: πθ← dreaming update(Mθ,D) ▷ Dreaming update (Algorithm 4)

5: return Aθ

The world model is updated (Algorithm 6) before each planning phase. This model

includes the Lagrangian dynamics for predicting the next state x(t+1), as well as reward

and termination models, which we implement using simple multi-layer perceptrons

(MLPs) [170] with Rectified Linear Unit (ReLU) activations [171]. While more complex

world models, such as convolutional neural networks [172] or transformers [173], are

common [174, 175, 176], we opt for simplicity because our focus is on dynamics

problems where predictions depend only on the current state and action.

Algorithm 6 World update

Require: O, Sθ, Rφ, Cψ, T , B, Tmax ▷ Attributes - see subsection B.2.4

1: procedure Mφ.UPDATE(Aρ, D)

2: {((o(t)b ,o(t+1)
b),(r(t)b ,r(t+1)

b),(c(t)b ,c(t+1)
b))← pairs(D))}B

b=1 ▷ Sample

3: for n = 1, · · · ,N do
4: LS ← 1

B ∑
B
b=1(o

(t+1)
b −Sθ(o

(t)
b ,Aρ(o

(t)
b))2 ▷ MSE(obs, pred)

5: LR ← 1
B ∑

B
b=1(r

(t+1)
b −Rφ(o

(t)
b ,Aρ(o

(t)
b))2 ▷ MSE(rews, pred)

6: LC ← 1
B ∑

B
b=1(c

(t+1)
b −Cψ(o

(t)
b ,Aρ(o

(t)
b))2 ▷ MSE(cont, pred)

7: (Sθ, Rφ, Cψ)← O.optimize((Sθ, Rφ, Cψ),(LS ,LR ,LC))

8: return Mθ

Admittedly, physics-based interpretations could also be sought for reward and termina-

tion models [119, 177], however, their contribution is minimal beyond explainability for

simple problems. The dynamics model is the primary driver, ensuring aspects like safe

exploration. In other words, physics constraints do not have to be imposed everywhere,

in which regard we keep flexible - we only consider constraints for agent and world

models, where bigger effects are more likely.

Chapter 3. Methodology 18

3.2.3 Lagrangian-Based Policy Optimization Algorithm

Finally, we present the full algorithm. We iterate N times, where at each iteration we:

1. Collect trajectories of length T with batch size B from real environment E into

on-policy and off-policy buffers Don, Doff (see Algorithm 10).

2. Use the real data from off-policy buffer Doff to update the world model Mφ

(Algorithm 6) and from on-policy buffer Don to update the agent Aθ (Algorithm 5).

On-policy buffer Don is emptied afterwards.

3. Finally, perform planning (Algorithm 3) to collect surrogate environment (world

model) data and update the agent using this data.

Algorithm 7 Full LBPO algorithm

Require: Aθ, Mφ, N, T , B, Tmax ▷ Attributes - see subsection B.2.4

1: procedure LBPO(E)

2: Doff←{}
3: for n = 1, · · · ,N do
4: Don← collect(Aθ,E ,T,(n−1) ·T +1,B) ▷ Rollout real environment

5: Doff← trim(Doff∪Don,Tmax) ▷ Update off-policy buffer

6: Mφ←Mφ.update(Aθ,Doff) ▷ Update Mφ from real data

7: Aθ← Aθ.update(Mφ,Don) ▷ Update Aθ from real data

8: Aθ← planning(Mφ,Aθ) ▷ Update Aθ from imagined data

9: Don←{} ▷ Reset on-policy buffer

10: return πθ

Additionally, we found that by providing critic the previous action (Equation 3.3), i.e.,

not just the current state but also the action that led to it, the predicted value is more

accurate. It is quite surprising considering there is no information about the previous

observation, however, this could be problem-dependent. Also, it should not be confused

with Q-value predictions [178, 177] where the action is at timestep t.

v← νθ(x(t),a(t−1)) (3.3)

Chapter 3. Methodology 19

3.3 Athletes Software Package

3.3.1 Features

We would like to present an accompanying software package called Athletes available

at https://github.com/mantasu/athletes. It was built alongside the introduced

LBPO algorithm, which depends on the package. Although many reinforcement learn-

ing packages exist [179, 180, 181], they are primarily built for industrial audiences.

They are convenient when it comes to applying existing SOTA to specific RL problems,

however, extending them to custom algorithms or even a minor functionality change

beyond parameter reconfiguration requires a deep understanding of the library’s com-

ponents. An example of RLLib’s complexity is discussed in subsection B.3.1. Our

package is lightweight and is built on the following principles:

• Simplicity: only a few components form the application programming interface

(API) core. Ideal for academia and students.

• Generality: easily extendible (subsection B.3.2), configurable via Hydra [182]2,

supporting PyTorch [147] (and, possibly, TensorFlow [148] in the future). Ideal

for research and developers.

• Efficiency: few dependencies, lightweight data structures, multi-GPU/TPU sup-

port. Ideal for industry and engineers.

Our package also supports nested agents (generality principle, see subsection B.3.3),

a feature not seen in other libraries. This could be exploited in some algorithms, e.g.,

hierarchical or compositional RL [184, 185]. Additionally, it also supports tensorized

environments (efficiency principle), which are recreations of Gymnasium’s [35] envi-

ronments but in PyTorch, yielding more efficiency than native vectorized versions.

One of the drawbacks is that it is not complete - many SOTA algorithms and tensorized

environments are missing. Further, the target version is Python 3.133 due to certain

features4 and is not planned to be compatible with lower versions. Additionally, multi-

agent RL [186] is not supported for now (as is not by Gymnasium).

2Will be supported when certain issues are fixed, such as OmegaConf’s [183], which Hydra depends
on, support for generic classes (https://github.com/omry/omegaconf/issues/731)

3To be released in autumn 2024 https://docs.python.org/3.13/whatsnew/3.13.html
4For instance, we utilize type defaults (https://peps.python.org/pep-0696/) to serve

the dual purpose of clearer type annotations and the ability for the config class to instanti-
ate a configurable purely from generic (https://docs.python.org/3/library/typing.html#
user-defined-generic-types) argument

https://github.com/mantasu/athletes
https://github.com/omry/omegaconf/issues/731
https://docs.python.org/3.13/whatsnew/3.13.html
https://peps.python.org/pep-0696/
https://docs.python.org/3/library/typing.html#user-defined-generic-types
https://docs.python.org/3/library/typing.html#user-defined-generic-types

Chapter 3. Methodology 20

3.3.2 Structure

Our package primarily depends on Gymnasium and PyTorch. We would like to highlight

a couple of things based on the class diagram illustrated below (Figure Figure 3.4):

• The two main components are environment and agent, two opposing steppers.

Common classes in other frameworks like policy, algorithm, and learner are

avoided. In our case everything that is not a runner, tool, or utility, is an agent,

which keeps the architecture easy-to-read and beginner-friendly.

• Athletes conveniently splits between real and surrogate environments, allowing

trained surrogate world models to be run in place of real environments and allow-

ing surrogate environments to borrow real functionalities, such as termination

conditions, which is especially helpful when debugging performance.

Figure 3.4: Athletes class diagram. It only shows a simplified architecture of the package

(mostly abstract classes) and does not fully reflect the real structure.

Chapter 4

Analysis

4.1 Setup

4.1.1 Environments

We conduct a series of experiments to inspect the performance across different policy

optimization algorithms and their components. Primarily we focus on Cartpole [36]

and Pendulum [37] environments, which are used to analyze the algorithmic behavior

and architecture components due to simplicity and fast training:

• Cartpole - cartpole environment’s observation space consists of cart’s position,

poles agle and their velocities (x,θ, ẋ, θ̇). The action space is discrete - the

direction to which the force is applied (0 or 1).

• Pendulum - pendulum environment’s observation space is simply - only one

angle and its velocity (θ, θ̇). However, the action, i.e., the force to apply is a

continuous variable.

Additionally, we perform algorithm evaluation on more sophisticated environments in

subsection 4.3.3, namely Inverted Pendulum [114], a continuous version of Cartpole,

Acrobot [58], and Hopper [187]:

• Inverted Pendulum - the inverted pendulum has the same representation as

cartpole, except the action is continuos.

• Acrobot - acrobot’s observation space consists of two joint angles and their

velocities (θ1,θ2, θ̇1, θ̇2). The action space is discrete with three options - either

21

Chapter 4. Analysis 22

apply ±1 to the actuated joint or do nothing.

• Hopper - hopper has the largest observation space. It consists of two torso

coordinates, its angle, and three joint angles, followed by velocities of all the

respective variables (x,z,θ1,θ2,θ3,θ4, ẋ, ż, θ̇1, θ̇2, θ̇3, θ̇4).

All environments were presented in a way that we process them - we always make sure

the state is represented as q, q̇ vector, and if the state has, for example, sinθ,cosθ, we

convert that to single θ.

4.1.2 Training

The hyperparameters for each experiment are discussed individually and experiment

configurations are available with the provided code. Some additional details on the

architectures used:

• Actor. The actor model by default consists of only two hidden layers with 64

units each. This design is rather standard across different packages, with the

exception that our activation function is hyperbolic tangent (Tanh) [188] instead

of ReLU [171], which we choose because our gradients cannot be zero when the

Lagrangian neural network differentiates the actor.

• Critic. The critic uses the same architecture as the actor, however, this time its

predictions are not required to compute the dynamics step, thus we keep ReLU

activation. We choose a leaky variant [189] as it helps to maintain the gradient

flow when computing the analytical gradients of the value function during the

dreaming update.

For all experiments, we use AdamW optimizer [190] and, where indicated, a cosine

annealing with warm restarts scheduler [191]. The actor-critic and world model loss

functions have already been introduced in section 3.2. For proximal loss, we additionally

perform entropy regularization [192], which is essential for on-policy algorithms as it

helps exploration. As a further regularizer, we utilize Kullback Leibler (KL) divergence

[193], a common way to stabilize policy learning [194].

The presented results are averaged over multiple experiment trials (at least 3). We also

apply smoothing for visualization purposes. The variance is denoted by coloured plots

around the curves.

Chapter 4. Analysis 23

4.2 Individual Components

4.2.1 Gradient Boosted Proximal Policy Optimization

We perform groups of experiments for individual components to assess and justify

the design choices. This section focuses on algorithmic behavior and, in particular,

how the additional dreaming step in proximal policy optimization (see Algorithm 5)

enhances the performance. Here we do not use the Lagrangian neural network as our

world model - instead, we compute the ground-truth dynamics to fairly assess the agent

update, irrespective of the accuracy of the world model. Further experimental setup,

including hyperparameters, is outlined in section C.1.

(a) Update type comparison for Cartpole (b) Update type comparison for Pendulum

Figure 4.1: Comparison between PPO (proximal), gradient-based optimization (dream-

ing), and the combination of them, which is our algorithm (both).

Figure 4.1 illustrates the average return value over the number of environment steps.

As we can see, the dreaming update on its own is not capable of optimizing the policy

reliably. We suspect there are three reasons for that:

1. The critic predictions for state values are relative, rather than absolute (this is how

PPO works). The critic is always retrained to reflect the relative goodness of the

states that were recently encountered. This makes it difficult to determine to what

global extent the state was bad when computing the dreaming loss (the negated

state value), which is not an issue in the case of proximal update where old vs

new policy ratio is utilized.

2. Ground-truth values are not involved - the true cumulative returns are only used

in the proximal update, thus not having any pivot in the dreaming update could

lead to deviations.

Chapter 4. Analysis 24

3. In the case of Pendulum, where a bit of exploration is needed to catch the

direction of where to improve, state values are only but so helpful - advantages

are a stronger way to indicate where an improvement can be made due to temporal

difference information.

We could speculate that a more global critic or advantage predictor would help the

dreaming update. Choosing an off-policy method could also help the learning.

On the other hand, using both proximal and dreaming updates proves to be beneficial.

Based on the points before, it makes sense - the proximal step already takes care of

the update direction, therefore the dreaming step can enhance it by adjusting the actor

in a way its actions result in even higher state values as guided by the critic. One

might say that the results are better simply because we perform more update steps when

we combine both updates. We show that this is not necessarily the case - Figure 4.2

illustrates how the performance changes based on the number of stochastic gradient

descent iterations.

Figure 4.2: Comparison of different numbers of stochastic gradient descent updates for

Pendulum environment.

As is clear from the graph, combining dreaming with proximal policy update leads to

a faster convergence, compared to when using the same number of gradient steps just

for the proximal update. One could probably further improve it by fine-tuning the ratio

of proximal vs dreaming steps. Overall we can conclude that our introduced dreaming

update boosts the PPO algorithm.

Chapter 4. Analysis 25

4.2.2 Planning

In this section, we justify the use of planning - an offline agent training method via

the learned dynamics and reward models. Here, we used a two-layer perceptron with

120 hidden units and ReLU activation to predict the state derivative. The results for

Cartpole environment can be seen in Figure 4.3:

Figure 4.3: Comparison of different numbers of planning steps for Cartpole environment.

The number of environment steps only corresponds to the real environment. Coloured

plots represent standard deviation.

As expected, planning indicates that average return can increase more quickly as the

agent additionally learns from the surrogate environment. The more planning steps are

performed, the better the sample efficiency is.

However, there seems to be a cap, beyond which the sample efficiency does not increase.

This is natural because the dynamics model, especially such as a multi-layer perception,

cannot learn the full range of dynamics just from a few data points. The state distribution

shifts as the agent performs better actions and only then the dynamics model is able to

narrow down the precise dynamics of the environment. The only advantage of having

more planning steps beyond this cap is to ensure stability - for instance, we can see that

with 800 planning steps, we may still have some fluctuations, such as the dip at around

2,700th step.

One must also not forget the drawbacks — planning could backfire if the world model

is not accurate. Additionally, it can be very computationally demanding.

Chapter 4. Analysis 26

4.3 Algorithm Performance

4.3.1 World Models

Here we inspect the performance of four surrogate world models:

1. MLP - a two-layer perception with 64 hidden units and ReLU in between. It is

configured to directly predict q̇, q̇.

2. MobileNet - a MobileNet-like model described in subsection 3.1.3. It is essen-

tially two LNNc blocks stacked together and also directly predict q̇, q̇

3. LNNc (partial) - our proposed Lagrangian NN but it does not backpropagate the

actor network and only computes partial derivatives of the Lagrangian.

4. LNNc (full) - the full LNN for control as shown in Figure 3.1

For computational reasons, we do not perform the dreaming step. The results are below:

(a) Average return (b) Dynamics log MSE

Figure 4.4: Comparison between different world models for pendulum environment.

This experiment confirms that the Lagrangian neural networks perform better than plain

neural ODE predictors, although, arguably performances are similar and evaluation

over a larger range of parameters would be more insightful. However, it seems that the

LNNc full outraces the other architectures, meaning the hypothesis that it “respects”

the actor parameters during inference holds. It slows down, however, as other networks

catch up with it. This could be explained by its high dynamics error, which is expected

because LNNc needs more effort to adjust its weights in response to better-performing

actor for correct prediction of Lagrangians. This, therefore, highlights a disadvantage

of our architecture which is that one would have to dedicate more resources to train our

network, especially if it scales.

Chapter 4. Analysis 27

4.3.2 Physical Properties

In this section, we evaluate the physical properties of our Lagrangian world model for

control by comparing it with a standard two-layer perceptron, which we trained using

a Dyna-style algorithm (see Algorithm 3 and Algorithm 6). Specifically, we generate

imaginary trajectories—similar to those produced during planning — and examine the

cumulative dynamics loss and energy conservation error.

We focus on the cartpole and pendulum environments, as the dynamics equations for

these systems are simple, allowing for confident verification of our analysis. These

Gymnasium environments do not involve friction, so the dynamics for the cartpole

problem are defined as [195]:

θ̈cartpole =
gsinθ+ cosθ

[
−F−mplθ̇2 sinθ+µcsgn(ẋ)

mc+mp

]
l
[

4
3 −

mp cos2 θ

mc+mp

] (4.1)

ẍcartpole =
F +mpl(θ̇2 sinθ− θ̈cosθ)−µcsgn(ẋ)

mc +mp
(4.2)

And the dynamics for the pendulum are approximated as:

θ̈pendulum =
3g
2l

sin(θ)+
3

ml2 τ (4.3)

The figure below illustrates the accumulated trajectory error over time:

(a) Cumulitive generated trajectory error for

CartPole

(b) Cumulitive generated trajectory error for

Pendulum

Figure 4.5: Cumulitive generated trajectory errors. The error for a single time-step is

computed as the absolute error between the the predicted next state and the actual next

state simulated by a ground-truth dynamics model.

Chapter 4. Analysis 28

As shown, LBPO maintains stability in the relatively simple cartpole environment and

produces small errors in the pendulum environment. In contrast, the MLP method

generates larger errors that accumulate linearly and may eventually diverge if the error

becomes too large. It may seem surprising that both algorithms produce larger errors in

the pendulum environment, given that its dynamics equation (Equation 4.3.2) is simpler

than that of the cartpole. However, it is actually more challenging for the agent to learn

the solution in the pendulum environment due to the need for more precise (continuous)

actions. The agent spends more time in its initial condition, causing the models to

develop an initial bias. This highlights a drawback of model-based RL methods—if

we do not carefully refine our buffer to include a broader data distribution, the agent’s

learning may be hindered by numerous planning steps.

Next, we analyze how well the models conserve energy over time. Recall that the total

energy of the system is the sum of kinetic and potential energy. For the cartpole, it is

computed as follows:

KEcartpole =
1
2

mcẋ2 +
1
2

mp((lω)2 +(ẋcos2
θ)) (4.4)

PEcartpole = mpgl(1− cosθ) (4.5)

For the pendulum, the calculation is simpler:

KEpendulum = 0.5m(lω)2 (4.6)

PEpendulum = mgl(1− cosθ) (4.7)

Additionally, we know that external forces are applied, which represent the work done

by the actuators. For both systems, the equation is fundamentally the same:

Wcartpole = Fδtẋ (4.8)

Wpendulum = Fδtω (4.9)

When the agent takes an action, it introduces an external force, causing the total energy

of the system to change. For the system to be conservative, the change in total energy

must equal the work performed by the actuators. We define the error as the absolute

difference between these two quantities. The results are shown in the figure below:

It is clear that the error in energy loss for LBPO is extremely low, whereas energy

loss for the MLP world model appears to increase exponentially. This suggests that

energy conservation is an even more significant issue than state error. Our findings

are consistent with other studies on Lagrangian neural networks [23, 112], which

demonstrate that energy conservation is a fundamental property of such networks.

Chapter 4. Analysis 29

(a) Energy conservation for cartpole envi-

ronment

(b) Energy conservation for pendulum envi-

ronment

Figure 4.6: Cumulative generated trajectory energy loss. Both LBPO and Dyna-MLP

consist of two hidden layers with 128 neurons each. Both were trained for 200,000

environment interactions. The trajectory error is averaged over 64 samples.

4.3.3 Policy Algorithms

We also present an empirical study on more complex environments to compare our

algorithm with other established techniques. As mentioned earlier, we evaluate our

approach in three additional environments: Inverted Pendulum, Acrobot, and Hopper.

The algorithms we compared include standard Proximal Policy Optimization (PPO)

[34], Dyna-MLP with two hidden layers, the symbolic Dyna-SINDy algorithm [119],

and our LBPO method. While not all agents successfully reached the solution, the

performance curves provide a general intuition of each algorithm’s efficiency. The

results are shown in Figure 4.7:

(a) Inverted Pendulum (b) Acrobot (c) Hopper

Figure 4.7: Algorithm comparisons across different environments. For these problems

we increased the number of hidden units of all networks to 256. The number of planning

steps is 1600 for all algorithms except PPO which does not use it.

Chapter 4. Analysis 30

The figure above shows that our algorithm scales effectively across different observation

spaces. It outperforms other algorithms in the Acrobot and Hopper environments,

validating our design choices and demonstrating the applicability of our approach

to such problems. Although LBPO did not outperform SINDy-RL in the Inverted

Pendulum case, this is understandable. The symbolic solution for the inverted pendulum

is relatively straightforward, and once the algorithm identifies the shortest solution,

it essentially ensures stability. For the Acrobot, the solution space is more complex,

causing SINDy-RL to struggle. As for Hopper, we found it infeasible to run SINDy-RL

and thus excluded it. Surprisingly, LBPO performed very well for Hopper, despite

the challenges posed by contact dynamics. This demonstrates the generality of our

approach and the ability of LNNs to approximate complex dynamics effectively.

4.4 Code Efficiency

4.4.1 Package

In this section, we test how efficient our package is compared to other existing ones,

namely RLLib [179] and TorchRL [181]. The results are shown in Figure 4.8.

Figure 4.8: Comparing PPO efficiency for CartPole environment. All efficiency pa-

rameters, such as trajectory lengths, model sizes, batch sizes, etc., are selected the

same. Note that only the first graph truly indicates the performance difference - other

ones depend on learning accuracy (e.g., better cartpole agents yield fewer but longer

episodes).

We can see that our package outperforms all other libraries regarding the PPO algorithm.

This efficiency comes the fact that the package is lightweight, meaning the callback

traces are much smaller. Additionally, data structures have also been optimized, e.g.,

instead of storing experience replay tensors in dictionaries, they are stored as direct

object attributes.

Chapter 4. Analysis 31

4.4.2 Autograd

As mentioned at the end of subsection 3.1.3, we implemented a highly efficient Hessian

computation method that uses experimental PyTorch is grads batched feature. To

the best of our knowledge, no other work related to Lagrangian neural networks has

utilized it. More specifically, we identify three ways to perform gradient computation:

1. Naive - uses jacobian and hessian from torch.autograd.functional. They

are primarily designed to be used for single vectors, thus requiring a python loop

if the input is batched.

2. Functional - uses jacrev and hessian from torch.func. These can be com-

bined with torch.vmap to build an implicit C loop when computing the result.

3. Autograd - uses grad two times from torch.autograd. Unlike the previous

methods, this one does not accept target function as input, it directly takes the

output and the input, with respect to which the differentiation should happen.

It may sound intuitive and simple to just call grad twice, however, due to batched

vectors, certain tricks have to be performed (see subsection C.2.1) to individualize

hessian computations. For more details, please refer to our code.

As can be seen in Table 4.1, our method is twice as fast as the functional method that is

provided off-the-shelf by PyTorch. Such speedups in Hessian computations are essential

in training Lagrangian neural networks - it means we can speed up the optimization

twice purely from code perspective.

Method Jacobian (s) Hessian (s)

Naive [196]1 0.07 14.24

Functional [112]2 2×10−4 1.19

Autograd (our) 6×10−4 0.57

Table 4.1: Efficiency comparison of different gradient computation methods using

PyTorch and example papers that use them. Computations are performed for a random

function f (x) := ∑
D
d=1 2x3

d− x2
d for a batch B = 256 of random inputs x ∈ R1000.

1https://github.com/uwsbel/sbel-reproducibility/tree/master/2024/MNODE-code
2https://github.com/adi3e08/Physics_Informed_Model_Based_RL/tree/main

https://github.com/uwsbel/sbel-reproducibility/tree/master/2024/MNODE-code
https://github.com/adi3e08/Physics_Informed_Model_Based_RL/tree/main

Chapter 5

Conclusions

5.1 Discussion

We have introduced a novel physics-informed reinforcement learning algorithm based

on Lagrangian mechanics. Previous works like DeLaN [24] and PIMB-RL [112] ap-

plied Lagrangian neural networks primarily to problems involving rigid body motion.

Our work generalizes this approach by integrating the actor-network as part of the La-

grangian world model (section 3.1). In this framework, the Lagrangian neural network

“understands” the actor’s intentions by “reading” its parameters when computing the

Jacobian and Hessian to predict the next state. We further enhance this connection by

introducing a gradient-boosted Proximal Policy Optimization algorithm (section 3.2),

which includes dreaming steps that allow the critic’s parameters to more directly influ-

ence the actor’s updates. In this sense, the world model acts as a mediator, translating the

actor’s intentions for the critic and facilitating communication via double differentiation.

It’s as if the actor can query the critic to verify whether its decisions are sensible through

a physics-informed world model.

This is just one interpretation of the gradient-informed interaction between these three

entities, but our results confirm its effectiveness. We’ve demonstrated that dreaming and

planning are effective methods for improving sample efficiency (section 4.2), and that

Lagrangian neural networks possess the necessary physical properties (subsection 4.3.2),

making them a superior choice for classical dynamics problems. However, it is also

important to acknowledge the limitations of this approach (section 5.3).

32

Chapter 5. Conclusions 33

5.2 Future Work

There are several important directions for the future work:

• World Models: Firstly, the architecture of the Lagrangian neural network could

be explored further. We only considered an ensemble Lagrangian predictor with

various enhancements like dense connectivity (see subsection 3.1.3). However,

recent architectures, such as deep operator networks (DeepONets) [25], have

challenged the standard data-to-data predictors and have shown that function-

to-function approximators are more suitable for solving and analyzing ODEs

and PDEs. In this sense, we could use DeepONet to learn a solution operator G

that maps input function x(t) and control function u(t) to a Lagrangian function

l(t|x(t),u(t)). One could even look for connections with hyper-heuristic methods

[197] which also operate in problem space. Methods like these are deemed to be

highly generalizable [198, 199].

• Agent Models: We have only experimented with proximal policy optimization

agents. However, there are many other algorithms that could challenge its per-

formance. For example, soft actor-critic (SAC) [200] is an off-policy algorithm,

which has been shown to be more sample efficient than on-policy algorithms like

PPO. Furthermore, our introduced dreaming proximal policy optimization could

be modified to differentiate advantages, such as in gradient-informed PPO [201].

• Explainability: One would probably associate physics-informed machine learn-

ing with some form of interpretability. Although our architectural design makes

the predictive behavior more interpretable than black-box neural networks due to

the Euler-Lagrange constraint, we could still explore this aspect further. Some

models, such as deep symbolic optimization (DSO) [202] and SINDy-RL [119]

train models to predict symbolic forms of dynamics and policy equations. We

could use these models on top of our learned one to at least partially explain

the dynamics or we could look for symbolic, differentiable forms of comput-

ing a Lagrangian, the primary equation of which could be further refined by a

neural network. We actually have experimented with symbolic world models,

by reimplementing SINDy-RL, and implementing two custom world models for

control adopting PySR [29] and symbolic identification of non-linear dynamics

(SymINDy) [203]. Unfortunately, due to time constraints and because these

are slightly off-topic, we did not include them nor systematically experimented

Chapter 5. Conclusions 34

with them. However, the draft implementations are available in our code at

src/supplementary/draft/envs/surrogate/worlds.

• Evaluation: Our experiments were primarily performance-focused. We could per-

form qualitative evaluation by visualizing world model predictions on a reduced-

dimension time-space coordinate system, and inspecting how consistent and

smooth the trajectories are, and whether they make sense. Additionally, we could

evaluate how sensitive the models are to the initial observation conditions and

perform experiments over a range of parameters to determine training stability.

• Scalibility An important factor to assess is algorithm’s scalibility. While we only

experimented on toy problems, it would be more practical to test the algorithm in

real environments, with lots of unknown factors. Furthermore, simple problems

like cartpole and pendulum only have a few observation and action variables,

making the problem feasibly solvable by hand or random search for short episodes.

Extending the search space to hundreds or even thousands of dimensions could

reveal an even bigger benefit of using LNNs because artificial neural networks are

generally less susceptible to the curse of dimensionality [204]. On the other hand,

symbolic methods, as shown in Figure 4.7a, may work well for low dimensional

problems, however, as most of them utilize some form of genetic programming

[205], they are subject to bloat and generalization issues [206] as the search space

grows exponentially with the number of terminals/non-terminals added.

5.3 Limitations

Despite our successes, our work has some limitations that warrant discussion. First,

the gradient-informed communication flow is highly computationally demanding, and

due to time constraints, we were unable to fully experiment with and compare the

time required for the algorithms to converge. Second, the framework we introduced

is limited to generalized coordinate representations, where the observation space can

be expressed as q, q̇. This limitation means that our algorithm cannot be applied to

common reinforcement learning benchmarks, such as Atari games, which may involve

image-based state spaces. Finally, our approach may struggle with environments that

involve highly stochastic dynamics or significant discontinuities, where the assumptions

of smoothness in Lagrangian mechanics may not hold, potentially leading to degraded

performance or instability.

Chapter 5. Conclusions 35

5.4 Summary

To conclude, our project was a success. Namely, we introduced a powerful physics-

informed world model that generalizes to allow actions as inputs and a policy boosting

method via critic gradient information. Not only do these methods separately work

to improve sample efficiency and physics compliance, but they also seamlessly work

together due being more informed about each other’s parameters. We would like to also

emphasize that this project has also involved software development by which we built a

research-friendly Athletes package allowing to easily develop config-based lightweight

and efficient policy optimization algorithms.

Bibliography

[1] Hamid Benbrahim and Judy A. Franklin. “Biped Dynamic Walking Using Rein-

forcement Learning”. In: Robotics and Autonomous Systems 22.3 (1997). Robot

Learning: The New Wave, pp. 283–302. DOI: 10.1016/S0921-8890(97)

00043-2.

[2] Frank L. Lewis, Draguna Vrabie, and Kyriakos G. Vamvoudakis. “Reinforce-

ment Learning and Feedback Control: Using Natural Decision Methods to

Design Optimal Adaptive Controllers”. In: IEEE Control Systems Magazine

32.6 (2012), pp. 76–105. DOI: 10.1109/MCS.2012.2214134.

[3] Zhongyu Li et al. “Reinforcement Learning for Versatile, Dynamic, and Robust

Bipedal Locomotion Control”. In: ArXiv abs/2401.16889 (2024). DOI: 10.

48550/arXiv.2401.16889.

[4] Yu. V. Tiumentsev and R. A. Zarubin. “Lateral Motion Control of a Maneuver-

able Aircraft Using Reinforcement Learning”. In: Optical Memory and Neural

Networks 33.1 (Mar. 2024), pp. 1–12. DOI: 10.3103/S1060992X2401003X.

[5] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. “Discovering Gov-

erning Equations From Data by Sparse Identification of Nonlinear Dynamical

Systems”. In: Proceedings of the National Academy of Sciences 113.15 (2016),

pp. 3932–3937. DOI: 10.1073/pnas.1517384113.

[6] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. “Physics-Informed

Neural Networks: A Deep Learning Framework for Solving Forward and Inverse

Problems Involving Nonlinear Partial Differential Equations”. In: Journal of

Computational Physics 378 (2019), pp. 686–707. DOI: 10.1016/j.jcp.2018.

10.045.

36

https://doi.org/10.1016/S0921-8890(97)00043-2
https://doi.org/10.1016/S0921-8890(97)00043-2
https://doi.org/10.1109/MCS.2012.2214134
https://doi.org/10.48550/arXiv.2401.16889
https://doi.org/10.48550/arXiv.2401.16889
https://doi.org/10.3103/S1060992X2401003X
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045

BIBLIOGRAPHY 37

[7] Eric Aislan Antonelo et al. “Physics-Informed Neural Nets for Control of

Dynamical Systems”. In: Neurocomputing 579 (2024), p. 127419. DOI: 10.

1016/j.neucom.2024.127419.

[8] Kenneth S. Krane. “The Pendulum: A Case Study in Physics”. In: Physics

Today 59.7 (July 2006), pp. 52–53. DOI: 10.1063/1.2337835.

[9] Chayan Banerjee et al. “A Survey on Physics Informed Reinforcement Learn-

ing: Review and Open Problems”. In: ArXiv abs/2309.01909 (2023). DOI:

10.48550/arXiv.2309.01909.

[10] Yu Han et al. “A Physics-Informed Reinforcement Learning-Based Strategy for

Local and Coordinated Ramp Metering”. In: Transportation Research Part C:

Emerging Technologies 137 (2022), p. 103584. DOI: 10.1016/j.trc.2022.

103584.

[11] Majdi I. Radaideh et al. “Physics-informed reinforcement learning optimization

of nuclear assembly design”. In: Nuclear Engineering and Design 372 (2021),

p. 110966. DOI: 10.1016/j.nucengdes.2020.110966.

[12] Desong Du et al. “Reinforcement Learning for Safe Robot Control using Con-

trol Lyapunov Barrier Functions”. In: 2023 IEEE International Conference

on Robotics and Automation (ICRA). 2023, pp. 9442–9448. DOI: 10.1109/

ICRA48891.2023.10160991.

[13] Peng Zhao and Yongming Liu. “Physics Informed Deep Reinforcement Learn-

ing for Aircraft Conflict Resolution”. In: IEEE Transactions on Intelligent

Transportation Systems 23.7 (2022), pp. 8288–8301. DOI: 10.1109/TITS.

2021.3077572.

[14] Di Cao et al. “Physics-Informed Graphical Representation-Enabled Deep Rein-

forcement Learning for Robust Distribution System Voltage Control”. In: IEEE

Transactions on Smart Grid 15.1 (2024), pp. 233–246. DOI: 10.1109/TSG.

2023.3267069.

[15] Colin Rodwell and Phanindra Tallapragada. “Physics-Informed Reinforcement

Learning for Motion Control of a Fish-Like Swimming Robot”. In: Scientific

Reports 13.1 (July 2023), p. 10754. DOI: 10.1038/s41598-023-36399-4.

https://doi.org/10.1016/j.neucom.2024.127419
https://doi.org/10.1016/j.neucom.2024.127419
https://doi.org/10.1063/1.2337835
https://doi.org/10.48550/arXiv.2309.01909
https://doi.org/10.1016/j.trc.2022.103584
https://doi.org/10.1016/j.trc.2022.103584
https://doi.org/10.1016/j.nucengdes.2020.110966
https://doi.org/10.1109/ICRA48891.2023.10160991
https://doi.org/10.1109/ICRA48891.2023.10160991
https://doi.org/10.1109/TITS.2021.3077572
https://doi.org/10.1109/TITS.2021.3077572
https://doi.org/10.1109/TSG.2023.3267069
https://doi.org/10.1109/TSG.2023.3267069
https://doi.org/10.1038/s41598-023-36399-4

BIBLIOGRAPHY 38

[16] Atriya Biswas et al. “Safe Reinforcement Learning for Energy Management

of Electrified Vehicle with Novel Physics-Informed Exploration Strategy”. In:

IEEE Transactions on Transportation Electrification (2024), pp. 1–1. DOI:

10.1109/TTE.2024.3361462.

[17] Yuanzheng Li et al. “Federated Multiagent Deep Reinforcement Learning Ap-

proach via Physics-Informed Reward for Multimicrogrid Energy Management”.

In: IEEE Transactions on Neural Networks and Learning Systems (2023), pp. 1–

13. DOI: 10.1109/TNNLS.2022.3232630.

[18] Rajarshi Mukhopadhyay, Ashoke Sutradhar, and Paramita Chattopadhyay. “A

novel investigation on the effects of state and reward structure in designing deep

reinforcement learning-based controller for nonlinear dynamical systems”. In:

International Journal of Dynamics and Control (Mar. 2024). DOI: 10.1007/

s40435-024-01407-6.

[19] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. “Sim-to-Real

Transfer in Deep Reinforcement Learning for Robotics: a Survey”. In: 2020

IEEE Symposium Series on Computational Intelligence (SSCI). 2020, pp. 737–

744. DOI: 10.1109/SSCI47803.2020.9308468.

[20] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”. In: Proceed-

ings of the 32nd International Conference on Neural Information Processing

Systems. NIPS’18. Montréal, Canada: Curran Associates Inc., 2018, pp. 6572–

6583. DOI: 10.5555/3327757.3327764.

[21] Gerald Teschl. Ordinary Differential Equations and Dynamical Systems. Vol. 140.

American Mathematical Society, 2024.

[22] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. “Hamiltonian Neural

Networks”. In: Advances in Neural Information Processing Systems. Ed. by

H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019. DOI: 10.48550/arXiv.

1906.01563.

[23] Miles Cranmer et al. “Lagrangian Neural Networks”. In: ArXiv Preprint ArXiv:

2003.04630 (2020). DOI: 10.48550/arXiv.2003.04630.

[24] Michael Lutter, Christian Ritter, and Jan Peters. “Deep Lagrangian Networks:

Using Physics as Model Prior for Deep Learning”. In: International Conference

on Learning Representations. 2019. DOI: 10.48550/arXiv.1907.04490.

https://doi.org/10.1109/TTE.2024.3361462
https://doi.org/10.1109/TNNLS.2022.3232630
https://doi.org/10.1007/s40435-024-01407-6
https://doi.org/10.1007/s40435-024-01407-6
https://doi.org/10.1109/SSCI47803.2020.9308468
https://doi.org/10.5555/3327757.3327764
https://doi.org/10.48550/arXiv.1906.01563
https://doi.org/10.48550/arXiv.1906.01563
https://doi.org/10.48550/arXiv.2003.04630
https://doi.org/10.48550/arXiv.1907.04490

BIBLIOGRAPHY 39

[25] Lu Lu et al. “Learning Nonlinear Operators via DeepONet Based on the Uni-

versal Approximation Theorem of Operators”. In: Nature Machine Intelligence

3.3 (Mar. 2021), pp. 218–229. DOI: 10.1038/s42256-021-00302-5.

[26] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “Learning the Solution Oper-

ator of Parametric Partial Differential Equations with Physics-Informed Deep-

ONets”. In: Science Advances 7.40 (2021), eabi8605. DOI: 10.1126/sciadv.

abi8605.

[27] Shaowu Pan, Steven L. Brunton, and J. Nathan Kutz. “Neural Implicit Flow: a

Mesh-Agnostic Dimensionality Reduction Paradigm of Spatio-Temporal Data”.

In: The Journal of Machine Learning Research 24.1 (Mar. 2024). DOI: 10.

5555/3648699.3648740.

[28] Imran Nasim and Joaõ Lucas de Sousa Almeida. “Using Neural Implicit Flow To

Represent Latent Dynamics Of Canonical Systems”. In: ArXiv abs/2404.17535

(2024). DOI: 10.48550/arXiv.2404.17535.

[29] Miles Cranmer. “Interpretable Machine Learning for Science with PySR and

SymbolicRegression.jl”. In: ArXiv abs/2305.01582 (2023). DOI: 10.48550/

arXiv.2305.01582.

[30] Marco Calapristi et al. “Interpretability analysis of Symbolic Regression models

for dynamical systems”. In: 2024 International Conference on Control, Au-

tomation and Diagnosis (ICCAD). 2024, pp. 1–6. DOI: 10.1109/ICCAD60883.

2024.10553801.

[31] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. “A Sparse Sampling

Algorithm for Near-Optimal Planning in Large Markov Decision Processes”.

In: Machine Learning 49.2 (Nov. 2002), pp. 193–208. DOI: 10 . 1023 / A :

1017932429737.

[32] Urban Fasel et al. “SINDy with Control: A Tutorial”. In: 2021 60th IEEE

Conference on Decision and Control (CDC). Austin, TX, USA: IEEE Press,

2021, pp. 16–21. DOI: 10.1109/CDC45484.2021.9683120.

[33] Thomas M. Moerland et al. “Model-based Reinforcement Learning: A Survey”.

In: Foundations and Trends® in Machine Learning 16.1 (2023), pp. 1–118. DOI:

10.1561/2200000086.

[34] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: ArXiv

Preprint ArXiv:1707.06347 (2017). DOI: 10.48550/arXiv.1707.06347.

https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.5555/3648699.3648740
https://doi.org/10.5555/3648699.3648740
https://doi.org/10.48550/arXiv.2404.17535
https://doi.org/10.48550/arXiv.2305.01582
https://doi.org/10.48550/arXiv.2305.01582
https://doi.org/10.1109/ICCAD60883.2024.10553801
https://doi.org/10.1109/ICCAD60883.2024.10553801
https://doi.org/10.1023/A:1017932429737
https://doi.org/10.1023/A:1017932429737
https://doi.org/10.1109/CDC45484.2021.9683120
https://doi.org/10.1561/2200000086
https://doi.org/10.48550/arXiv.1707.06347

BIBLIOGRAPHY 40

[35] Mark Towers et al. “Gymnasium: A Standard Interface for Reinforcement

Learning Environments”. In: ArXiv abs/2407.17032 (2024). DOI: 10.48550/

arXiv.2407.17032.

[36] Swagat Kumar. “Balancing a CartPole System with Reinforcement Learning–A

Tutorial”. In: ArXiv abs/2006.04938 (2020). DOI: 10.48550/arXiv.2006.

04938.

[37] Yifei Bi, Xinyi Chen, and Caihui Xiao. “A Deep Reinforcement Learning

Approach towards Pendulum Swing-up Problem based on TF-Agents”. In:

ArXiv abs/2106.09556 (2021). DOI: 10.48550/arXiv.2106.09556.

[38] R.S. Sutton and A.G. Barto. “Reinforcement Learning: An Introduction”. In:

IEEE Transactions on Neural Networks 9.5 (1998), pp. 1054–1054. DOI: 10.

1109/TNN.1998.712192.

[39] J. E. R. Staddon. “The dynamics of behavior: Review of Sutton and Barto:

Reinforcement Learning: An Introduction (2nd ed.)” In: Journal of the Ex-

perimental Analysis of Behavior 113.2 (2020), pp. 485–491. DOI: https :

//doi.org/10.1002/jeab.587.

[40] Tom Verguts. “Computational Models of Cognitive Control”. In: The Wiley

Handbook of Cognitive Control. Hoboken, NJ, US: Wiley Blackwell, 2017,

pp. 127–142. DOI: 10.1002/9781118920497.ch8.

[41] Cangqing Wang et al. “Theoretical Analysis of Meta Reinforcement Learn-

ing: Generalization Bounds and Convergence Guarantees”. In: ArXiv Preprint

ArXiv:2405.13290 (2024). DOI: 10.48550/arXiv.2405.13290.

[42] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. 1st. USA: John Wiley & Sons, Inc., 1994. DOI: 10.5555/

528623.

[43] Sinan Çalışır and Meltem Kurt Pehlivanoğlu. “Model-Free Reinforcement

Learning Algorithms: A Survey”. In: 2019 27th Signal Processing and Commu-

nications Applications Conference (SIU). 2019, pp. 1–4. DOI: 10.1109/SIU.

2019.8806389.

[44] Dhruv Mauria Saxena et al. “Driving in Dense Traffic with Model-Free Rein-

forcement Learning”. In: 2020 IEEE International Conference on Robotics and

Automation (ICRA). 2020, pp. 5385–5392. DOI: 10.1109/ICRA40945.2020.

9197132.

https://doi.org/10.48550/arXiv.2407.17032
https://doi.org/10.48550/arXiv.2407.17032
https://doi.org/10.48550/arXiv.2006.04938
https://doi.org/10.48550/arXiv.2006.04938
https://doi.org/10.48550/arXiv.2106.09556
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/https://doi.org/10.1002/jeab.587
https://doi.org/https://doi.org/10.1002/jeab.587
https://doi.org/10.1002/9781118920497.ch8
https://doi.org/10.48550/arXiv.2405.13290
https://doi.org/10.5555/528623
https://doi.org/10.5555/528623
https://doi.org/10.1109/SIU.2019.8806389
https://doi.org/10.1109/SIU.2019.8806389
https://doi.org/10.1109/ICRA40945.2020.9197132
https://doi.org/10.1109/ICRA40945.2020.9197132

BIBLIOGRAPHY 41

[45] Anusha Nagabandi et al. “Neural Network Dynamics for Model-Based Deep

Reinforcement Learning with Model-Free Fine-Tuning”. In: 2018 IEEE Inter-

national Conference on Robotics and Automation (ICRA). 2018, pp. 7559–7566.

DOI: 10.1109/ICRA.2018.8463189.

[46] Marcin Andrychowicz et al. “What Matters In On-Policy Reinforcement Learn-

ing? A Large-Scale Empirical Study”. In: ArXiv Preprint ArXiv:2006.05990

(2020). DOI: 10.48550/arXiv.2006.05990.

[47] Tianyu Li et al. “Using Deep Reinforcement Learning to Learn High-Level

Policies on the ATRIAS Biped”. In: 2019 International Conference on Robotics

and Automation (ICRA). 2019, pp. 263–269. DOI: 10.1109/ICRA.2019.

8793864.

[48] Rafael Figueiredo Prudencio, Marcos R. O. A. Maximo, and Esther Luna

Colombini. “A Survey on Offline Reinforcement Learning: Taxonomy, Review,

and Open Problems”. In: IEEE Transactions on Neural Networks and Learning

Systems (2023), pp. 1–. DOI: 10.1109/TNNLS.2023.3250269.

[49] Shixiang Gu et al. “Deep reinforcement learning for robotic manipulation with

asynchronous off-policy updates”. In: 2017 IEEE International Conference on

Robotics and Automation (ICRA). 2017, pp. 3389–3396. DOI: 10.1109/ICRA.

2017.7989385.

[50] Shixiang Gu et al. “Continuous deep Q-learning with model-based accelera-

tion”. In: Proceedings of the 33rd International Conference on International

Conference on Machine Learning - Volume 48. ICML’16. New York, NY, USA:

JMLR.org, 2016, pp. 2829–2838. DOI: 10.5555/3045390.3045688.

[51] D.E. Kirk. Optimal Control Theory: An Introduction. Dover Books on Electrical

Engineering. Dover Publications, 2012.

[52] Paul Albrecht. “Dynamics of the Metal-Cutting Process”. In: Journal of Engi-

neering for Industry 87.4 (Nov. 1965), pp. 429–441. DOI: 10.1115/1.3670857.

[53] Robert T. Bupp, Dennis S. Bernstein, and Vincent T. Coppola. “A Benchmark

Problem for Nonlinear Control Design”. In: International Journal of Robust and

Nonlinear Control 8.4-5 (1998), pp. 307–310. DOI: 10.1002/(SICI)1099-

1239(19980415/30)8:4/5<307::AID-RNC354>3.0.CO;2-7.

https://doi.org/10.1109/ICRA.2018.8463189
https://doi.org/10.48550/arXiv.2006.05990
https://doi.org/10.1109/ICRA.2019.8793864
https://doi.org/10.1109/ICRA.2019.8793864
https://doi.org/10.1109/TNNLS.2023.3250269
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.5555/3045390.3045688
https://doi.org/10.1115/1.3670857
https://doi.org/10.1002/(SICI)1099-1239(19980415/30)8:4/5<307::AID-RNC354>3.0.CO;2-7
https://doi.org/10.1002/(SICI)1099-1239(19980415/30)8:4/5<307::AID-RNC354>3.0.CO;2-7

BIBLIOGRAPHY 42

[54] M. Rimer, D.K. Frederick, and C.Y. Huang. “Solutions of the Second Bench-

mark Control Problem”. In: IEEE Control Systems Magazine 10.5 (1990),

pp. 33–39. DOI: 10.1109/37.60422.

[55] R. M. Centner and J. M. Idelsohn. “Adaptive Controller for a Metal Cutting

Process”. In: IEEE Transactions on Applications and Industry 83.72 (1964),

pp. 154–161. DOI: 10.1109/TAI.1964.5407783.

[56] M. Margaliot and G. Langholz. “Fuzzy Control of a Benchmark Problem: A

Computing With Words Approach”. In: IEEE Transactions on Fuzzy Systems

12.2 (2004), pp. 230–235. DOI: 10.1109/TFUZZ.2004.825083.

[57] Alberto M. Simões and Vinı́cius M. G. B. Cavalcanti. “Missile Autopilot Design

via Structured Robust Linear Parameter-Varying Synthesis”. In: Journal of

Guidance, Control, and Dynamics 46.8 (2023), pp. 1649–1656. DOI: 10.2514/

1.G007580.

[58] Richard S Sutton. “Generalization in Reinforcement Learning: Successful Ex-

amples Using Sparse Coarse Coding”. In: Advances in Neural Information

Processing Systems. Ed. by D. Touretzky, M.C. Mozer, and M. Hasselmo.

Vol. 8. MIT Press, 1995.

[59] David Silver et al. “Mastering the Game of Go Without Human Knowledge”.

In: Nature 550.7676 (Oct. 2017), pp. 354–359. DOI: 10.1038/nature24270.

[60] Kenan Ahmic et al. “Reinforcement Learning-Based Path Following Control

with Dynamics Randomization for Parametric Uncertainties in Autonomous

Driving”. In: Applied Sciences 13.6 (2023). DOI: 10.3390/app13063456.

[61] Jean Rabault et al. “Artificial neural networks trained through deep reinforce-

ment learning discover control strategies for active flow control”. In: Journal of

Fluid Mechanics 865 (2019), pp. 281–302. DOI: 10.1017/jfm.2019.62.

[62] Benjamin Recht. “A Tour of Reinforcement Learning: The View from Continu-

ous Control”. In: Annual Review of Control, Robotics, and Autonomous Systems

2.Volume 2, 2019 (2019), pp. 253–279. DOI: 10.1146/annurev-control-

053018-023825.

[63] Steven Douglas Whitehead. “Reinforcement Learning for the Adaptive Control

of Perception and Action”. UMI Order No. GAX92-31329. PhD thesis. USA:

University of Rochester, 1992. DOI: 10.5555/150910.

https://doi.org/10.1109/37.60422
https://doi.org/10.1109/TAI.1964.5407783
https://doi.org/10.1109/TFUZZ.2004.825083
https://doi.org/10.2514/1.G007580
https://doi.org/10.2514/1.G007580
https://doi.org/10.1038/nature24270
https://doi.org/10.3390/app13063456
https://doi.org/10.1017/jfm.2019.62
https://doi.org/10.1146/annurev-control-053018-023825
https://doi.org/10.1146/annurev-control-053018-023825
https://doi.org/10.5555/150910

BIBLIOGRAPHY 43

[64] J.A. Bagnell and J.G. Schneider. “Autonomous Helicopter Control Using Rein-

forcement Learning Policy Search Methods”. In: Proceedings 2001 ICRA. IEEE

International Conference on Robotics and Automation (Cat. No.01CH37164).

Vol. 2. 2001, 1615–1620 vol.2. DOI: 10.1109/ROBOT.2001.932842.

[65] Benjamin Van Roy and John N. Tsitsiklis. “Learning and value function ap-

proximation in complex decision processes”. AAI0599623. PhD thesis. USA:

Massachusetts Institute of Technology, 1998. DOI: 10.5555/928091.

[66] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. “Reinforce-

ment learning: a survey”. In: J. Artif. Int. Res. 4.1 (May 1996), pp. 237–285.

DOI: 10.5555/1622737.1622748.

[67] Yaakov Engel. “Algorithms and Representations for Reinforcement Learning”.

PhD thesis. Hebrew University of Jerusalem, Israel, 2005.

[68] Terrence J. Sejnowski. The Deep Learning Revolution. The MIT Press, Oct.

2018. DOI: 10.7551/mitpress/11474.001.0001.

[69] Ajay Shrestha and Ausif Mahmood. “Review of Deep Learning Algorithms and

Architectures”. In: IEEE Access 7 (2019), pp. 53040–53065. DOI: 10.1109/

ACCESS.2019.2912200.

[70] Kai Arulkumaran et al. “Deep Reinforcement Learning: A Brief Survey”. In:

IEEE Signal Processing Magazine 34.6 (2017), pp. 26–38. DOI: 10.1109/MSP.

2017.2743240.

[71] Yuxi Li. “Deep Reinforcement Learning: An Overview”. In: ArXiv Preprint

ArXiv:1701.07274 (2018). DOI: 10.48550/arXiv.1701.07274.

[72] Zhenpeng Zhou, Xiaocheng Li, and Richard N. Zare. “Optimizing Chemical

Reactions with Deep Reinforcement Learning”. In: ACS Central Science 3.12

(Dec. 2017), pp. 1337–1344. DOI: 10.1021/acscentsci.7b00492.

[73] Jabbar Hussain. “Deep Learning Black Box Problem”. MA thesis. Uppsala

University, Department of Informatics and Media, 2019, p. 59.

[74] Danijar Hafner et al. “Mastering Diverse Domains through World Models”.

In: ArXiv Preprint ArXiv:2301.04104 (2024). DOI: 10.48550/arXiv.2301.

04104.

https://doi.org/10.1109/ROBOT.2001.932842
https://doi.org/10.5555/928091
https://doi.org/10.5555/1622737.1622748
https://doi.org/10.7551/mitpress/11474.001.0001
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.48550/arXiv.1701.07274
https://doi.org/10.1021/acscentsci.7b00492
https://doi.org/10.48550/arXiv.2301.04104
https://doi.org/10.48550/arXiv.2301.04104

BIBLIOGRAPHY 44

[75] Michael I. Jordan. “Chapter 25 - Serial Order: A Parallel Distributed Processing

Approach”. In: Neural-Network Models of Cognition. Ed. by John W. Donahoe

and Vivian Packard Dorsel. Vol. 121. Advances in Psychology. North-Holland,

1997, pp. 471–495. DOI: 10.1016/S0166-4115(97)80111-2.

[76] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:

Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. DOI: 10.1162/neco.1997.

9.8.1735.

[77] Kyunghyun Cho et al. “On the Properties of Neural Machine Translation:

Encoder–Decoder Approaches”. In: Proceedings of SSST-8, Eighth Workshop

on Syntax, Semantics and Structure in Statistical Translation. Ed. by Dekai

Wu et al. Doha, Qatar: Association for Computational Linguistics, Oct. 2014,

pp. 103–111. DOI: 10.3115/v1/W14-4012.

[78] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal Methods for Discrete-

Time Dynamical Systems. 1st ed. Studies in Systems, Decision and Control.

Springer Cham, 2017, pp. XVIII, 284. DOI: 10.1007/978-3-319-50763-7.

[79] Manfred Morari and Jay H. Lee. “Model predictive control: past, present and

future”. In: Computers & Chemical Engineering 23.4 (1999), pp. 667–682. DOI:

10.1016/S0098-1354(98)00301-9.

[80] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. “NeuroAni-

mator: fast neural network emulation and control of physics-based models”.

In: Proceedings of the 25th Annual Conference on Computer Graphics and

Interactive Techniques. SIGGRAPH ’98. New York, NY, USA: Association for

Computing Machinery, 1998, pp. 9–20. DOI: 10.1145/280814.280816.

[81] George Em Karniadakis et al. “Physics-informed machine learning”. In: Nature

Reviews Physics 3.6 (June 2021), pp. 422–440. DOI: 10.1038/s42254-021-

00314-5.

[82] Shengze Cai et al. “Physics-Informed Neural Networks for Heat Transfer

Problems”. In: Journal of Heat Transfer 143.6 (Apr. 2021), p. 060801. DOI:

10.1115/1.4050542.

[83] George S. Misyris, Andreas Venzke, and Spyros Chatzivasileiadis. “Physics-

Informed Neural Networks for Power Systems”. In: 2020 IEEE Power & Energy

Society General Meeting (PESGM). 2020, pp. 1–5. DOI: 10.1109/PESGM41954.

2020.9282004.

https://doi.org/10.1016/S0166-4115(97)80111-2
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1016/S0098-1354(98)00301-9
https://doi.org/10.1145/280814.280816
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1115/1.4050542
https://doi.org/10.1109/PESGM41954.2020.9282004
https://doi.org/10.1109/PESGM41954.2020.9282004

BIBLIOGRAPHY 45

[84] QiZhi He et al. “Physics-informed neural networks for multiphysics data as-

similation with application to subsurface transport”. In: Advances in Water

Resources 141 (2020), p. 103610. DOI: https://doi.org/10.1016/j.

advwatres.2020.103610.

[85] Salvatore Cuomo et al. “Scientific Machine Learning Through Physics–Informed

Neural Networks: Where we are and What’s Next”. In: Journal of Scientific

Computing 92.3 (July 2022), p. 88. DOI: 10.1007/s10915-022-01939-z.

[86] Yiping Lu et al. “Beyond Finite Layer Neural Networks: Bridging Deep Ar-

chitectures and Numerical Differential Equations”. In: Proceedings of the 35th

International Conference on Machine Learning. Ed. by Jennifer Dy and An-

dreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, July

2018, pp. 3276–3285. DOI: 10.48550/arXiv.1710.10121.

[87] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,

pp. 770–778. DOI: 10.1109/CVPR.2016.90.

[88] Masaya Yamaguti and Hiroshi Matano. “Euler’s finite difference scheme and

chaos”. In: Proceedings of the Japan Academy, Series A, Mathematical Sciences

55.3 (1979), pp. 78–80. DOI: 10.3792/pjaa.55.78.

[89] Linda Petzold. “Automatic Selection of Methods for Solving Stiff and Nonstiff

Systems of Ordinary Differential Equations”. In: SIAM Journal on Scientific

and Statistical Computing 4.1 (1983), pp. 136–148. DOI: 10.1137/0904010.

[90] Ernst Hairer, Gerhard Wanner, and Syvert P. Nørsett. Solving Ordinary Dif-

ferential Equations I: Nonstiff Problems. 2nd ed. Vol. 8. Springer Series in

Computational Mathematics. Springer Berlin, Heidelberg, 1993, pp. XV, 528.

DOI: 10.1007/978-3-540-78862-1.

[91] Rick Salmon. “Hamiltonian Fluid Mechanics”. In: Annual Review of Fluid

Mechanics 20.Volume 20, 1988 (1988), pp. 225–256. DOI: 10.1146/annurev.

fl.20.010188.001301.

[92] Fritz Rohrlich. “Relativistic Hamiltonian dynamics I. Classical mechanics”. In:

Annals of Physics 117.2 (1979), pp. 292–322. DOI: https://doi.org/10.

1016/0003-4916(79)90357-9.

https://doi.org/https://doi.org/10.1016/j.advwatres.2020.103610
https://doi.org/https://doi.org/10.1016/j.advwatres.2020.103610
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.48550/arXiv.1710.10121
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3792/pjaa.55.78
https://doi.org/10.1137/0904010
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1146/annurev.fl.20.010188.001301
https://doi.org/10.1146/annurev.fl.20.010188.001301
https://doi.org/https://doi.org/10.1016/0003-4916(79)90357-9
https://doi.org/https://doi.org/10.1016/0003-4916(79)90357-9

BIBLIOGRAPHY 46

[93] Barry Simon. Quantum Mechanics for Hamiltonians Defined as Quadratic

Forms. Vol. 72. Princeton Series in Physics. Princeton: Princeton University

Press, 1971. DOI: 10.1515/9781400868834.

[94] Romeo Ortega et al. “Euler-Lagrange systems”. In: Passivity-based Control

of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical

Applications. London: Springer London, 1998, pp. 15–37. DOI: 10.1007/978-

1-4471-3603-3_2.

[95] Steven L. Brunton and J. Nathan Kutz. “Promising directions of machine learn-

ing for partial differential equations”. In: Nature Computational Science 4.7

(July 2024), pp. 483–494. DOI: 10.1038/s43588-024-00643-2.

[96] Hao Xu and Dongxiao Zhang. “Robust Discovery of Partial Differential Equa-

tions in Complex Situations”. In: Phys. Rev. Res. 3 (3 Sept. 2021), p. 033270.

DOI: 10.1103/PhysRevResearch.3.033270.

[97] Darrell Whitley. “A Genetic Algorithm Tutorial”. In: Statistics and Computing

4.2 (June 1994), pp. 65–85. DOI: 10.1007/BF00175354.

[98] D. J. Korteweg and G. de Vries. “XLI. On the change of form of long waves

advancing in a rectangular canal, and on a new type of long stationary waves”.

In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science 39.240 (1895), pp. 422–443. DOI: 10.1080/14786449508620739.

[99] Harry Bateman. “Some Recent Researches on the Motion of Fluids”. In: Monthly

Weather Review 43.4 (1915), pp. 163–170. DOI: 10.1175/1520-0493(1915)

43<163:SRROTM>2.0.CO;2.

[100] Miles Cranmer et al. “Discovering Symbolic Models From Deep Learning with

Inductive Biases”. In: Proceedings of the 34th International Conference on

Neural Information Processing Systems. NIPS ’20. Vancouver, BC, Canada:

Curran Associates Inc., 2020. DOI: 10.5555/3495724.3497186.

[101] Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE Transac-

tions on Neural Networks 20.1 (2009), pp. 61–80. DOI: 10.1109/TNN.2008.

2005605.

[102] Francisco Villaescusa-Navarro et al. “The Quijote Simulations”. In: The Astro-

physical Journal Supplement Series 250.1 (Aug. 2020), p. 2. DOI: 10.3847/

1538-4365/ab9d82.

https://doi.org/10.1515/9781400868834
https://doi.org/10.1007/978-1-4471-3603-3_2
https://doi.org/10.1007/978-1-4471-3603-3_2
https://doi.org/10.1038/s43588-024-00643-2
https://doi.org/10.1103/PhysRevResearch.3.033270
https://doi.org/10.1007/BF00175354
https://doi.org/10.1080/14786449508620739
https://doi.org/10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
https://doi.org/10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
https://doi.org/10.5555/3495724.3497186
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.3847/1538-4365/ab9d82
https://doi.org/10.3847/1538-4365/ab9d82

BIBLIOGRAPHY 47

[103] Alan A. Kaptanoglu et al. “Benchmarking Sparse System Identification with

Low-Dimensional Chaos”. In: Nonlinear Dynamics 111.14 (July 2023), pp. 13143–

13164. DOI: 10.1007/s11071-023-08525-4.

[104] G. Kronberger et al. Symbolic Regression. CRC Press, 2024.

[105] Xiaogang Su, Xin Yan, and Chih-Ling Tsai. “Linear regression”. In: WIREs

Computational Statistics 4.3 (2012), pp. 275–294. DOI: 10.1002/wics.1198.

[106] Xu Chen, Shuo Liu, and Xuan Di. “A Hybrid Framework of Reinforcement

Learning and Physics-Informed Deep Learning for Spatiotemporal Mean Field

Games”. In: Proceedings of the 2023 International Conference on Autonomous

Agents and Multiagent Systems. AAMAS ’23. , London, United Kingdom, Inter-

national Foundation for Autonomous Agents and Multiagent Systems, 2023,

pp. 1079–1087. DOI: 10.5555/3545946.3598748.

[107] Jean-Michel Lasry and Pierre-Louis Lions. “Mean Field Games”. In: Japanese

Journal of Mathematics 2.1 (Mar. 2007), pp. 229–260. DOI: 10.1007/s11537-

007-0657-8.

[108] Alena Shilova et al. Learning HJB Viscosity Solutions with PINNs for Continuous-

Time Reinforcement Learning. Tech. rep. RR-9541. Inria Lille - Nord Europe,

CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de

Lille - UMR 9189 ; Univ. Lille, CNRS, Centrale Lille, Inria UMR 9189 -

CRIStAL,INRIA Lille Nord Europe, Villeneuve d’Ascq, France ; Univ. Greno-

ble Alps, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France, Feb. 2024,

pp. 1–30.

[109] Shangding Gu et al. “A Review of Safe Reinforcement Learning: Methods,

Theory and Applications”. In: ArXiv Preprint ArXiv:2205.10330 (2024). DOI:

10.48550/arXiv.2205.10330.

[110] Zhuoyuan Wang and Yorie Nakahira. “A Generalizable Physics-informed Learn-

ing Framework for Risk Probability Estimation”. In: Proceedings of The 5th

Annual Learning for Dynamics and Control Conference. Ed. by Nikolai Matni,

Manfred Morari, and George J. Pappas. Vol. 211. Proceedings of Machine

Learning Research. PMLR, June 2023, pp. 358–370. DOI: 10.48550/arXiv.

2407.08868.

https://doi.org/10.1007/s11071-023-08525-4
https://doi.org/10.1002/wics.1198
https://doi.org/10.5555/3545946.3598748
https://doi.org/10.1007/s11537-007-0657-8
https://doi.org/10.1007/s11537-007-0657-8
https://doi.org/10.48550/arXiv.2205.10330
https://doi.org/10.48550/arXiv.2407.08868
https://doi.org/10.48550/arXiv.2407.08868

BIBLIOGRAPHY 48

[111] Tianqiao Zhao, Jianhui Wang, and Meng Yue. “A Barrier-Certificated Reinforce-

ment Learning Approach for Enhancing Power System Transient Stability”.

In: IEEE Transactions on Power Systems 38.6 (2023), pp. 5356–5366. DOI:

10.1109/TPWRS.2022.3233770.

[112] Adithya Ramesh and Balaraman Ravindran. “Physics-Informed Model-Based

Reinforcement Learning”. In: ArXiv Preprint ArXiv:2212.02179 (2023). DOI:

10.48550/arXiv.2212.02179.

[113] Xin-Yang Liu and Jian-Xun Wang. “Physics-Informed Dyna-Style Model-Based

Deep Reinforcement Learning for Dynamic Control”. In: Proceedings of the

Royal Society A 477 (2021). DOI: 10.1098/rspa.2021.0618.

[114] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. “Neuron-

like Adaptive Elements That Can Solve Difficult Learning Control Problems”.

In: IEEE Transactions on Systems, Man, and Cybernetics SMC-13.5 (1983),

pp. 834–846. DOI: 10.1109/TSMC.1983.6313077.

[115] Miguel Angel Zamora Mora et al. “PODS: Policy Optimization via Differen-

tiable Simulation”. In: Proceedings of the 38th International Conference on

Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings

of Machine Learning Research. PMLR, July 2021, pp. 7805–7817.

[116] Michael Lutter et al. “Differentiable Physics Models for Real-world Offline

Model-based Reinforcement Learning”. In: 2021 IEEE International Confer-

ence on Robotics and Automation (ICRA). Xi’an, China: IEEE Press, 2021,

pp. 4163–4170. DOI: 10.1109/ICRA48506.2021.9561805.

[117] Jie Xu et al. Accelerated Policy Learning with Parallel Differentiable Simulation.

2022. DOI: 10.48550/arXiv.2204.07137.

[118] Rushiv Arora, Eliot Moss, and Bruno Castro da Silva. “Model-Based Rein-

forcement Learning with SINDy”. In: Decision Awareness in Reinforcement

Learning Workshop at ICML 2022. 2022. DOI: 10.48550/arXiv.2208.14501.

[119] Nicholas Zolman et al. “SINDy-RL: Interpretable and Efficient Model-Based

Reinforcement Learning”. In: ArXiv Preprint ArXiv:2403.09110 (2024). DOI:

10.48550/arXiv.2403.09110.

https://doi.org/10.1109/TPWRS.2022.3233770
https://doi.org/10.48550/arXiv.2212.02179
https://doi.org/10.1098/rspa.2021.0618
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1109/ICRA48506.2021.9561805
https://doi.org/10.48550/arXiv.2204.07137
https://doi.org/10.48550/arXiv.2208.14501
https://doi.org/10.48550/arXiv.2403.09110

BIBLIOGRAPHY 49

[120] Mikel Landajuela et al. “Discovering symbolic policies with deep reinforcement

learning”. In: Proceedings of the 38th International Conference on Machine

Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of

Machine Learning Research. PMLR, July 2021, pp. 5979–5989.

[121] Soo Kyung Kim et al. “Discovering Symbolic Policy for Building Control using

Reinforcement Learning”. In: IFAC-PapersOnLine 56.2 (2023). 22nd IFAC

World Congress, pp. 1522–1527. DOI: 10.1016/j.ifacol.2023.10.1848.

[122] Jiaming Guo et al. “Efficient Symbolic Policy Learning With Differentiable

Symbolic Expression”. In: Proceedings of the 37th International Conference

on Neural Information Processing Systems. NIPS ’23. New Orleans, LA, USA:

Curran Associates Inc., 2024. DOI: 10.5555/3666122.3667696.

[123] Wenqing Zheng et al. “Symbolic Learning to Optimize: Towards Interpretability

and Scalability”. In: International Conference on Learning Representations.

2022. DOI: 10.48550/arXiv.2203.06578.

[124] Michael Herman et al. “Inverse Reinforcement Learning with Simultaneous Es-

timation of Rewards and Dynamics”. In: Proceedings of the 19th International

Conference on Artificial Intelligence and Statistics. Ed. by Arthur Gretton and

Christian C. Robert. Vol. 51. Proceedings of Machine Learning Research. Cadiz,

Spain: PMLR, May 2016, pp. 102–110. DOI: 10.48550/arXiv.1604.03912.

[125] Maxime Bassenne and Adrián Lozano-Durán. “Computational model discovery

with reinforcement learning”. In: ArXiv Preprint ArXiv:2001.00008 (2019).

DOI: 10.48550/arXiv.2001.00008.

[126] Mengge Du, Yuntian Chen, and Dongxiao Zhang. “DISCOVER: Deep Iden-

tification of Symbolically Concise Open-Form Partial Differential Equations

via Enhanced Reinforcement Learning”. In: Phys. Rev. Res. 6 (1 Feb. 2024),

p. 013182. DOI: 10.1103/PhysRevResearch.6.013182.

[127] Mingsheng Yin et al. “Zero-Shot Wireless Indoor Navigation through Physics-

Informed Reinforcement Learning”. In: ArXiv Preprint ArXiv:2306.06766

(2023). DOI: 10.48550/arXiv.2306.06766.

[128] Amartya Mukherjee and Jun Liu. “Bridging Physics-Informed Neural Networks

with Reinforcement Learning: Hamilton-Jacobi-Bellman Proximal Policy Op-

timization (HJBPPO)”. In: ICML Workshop on New Frontiers in Learning,

Control, and Dynamical Systems. 2023. DOI: 10.48550/arXiv.2302.00237.

https://doi.org/10.1016/j.ifacol.2023.10.1848
https://doi.org/10.5555/3666122.3667696
https://doi.org/10.48550/arXiv.2203.06578
https://doi.org/10.48550/arXiv.1604.03912
https://doi.org/10.48550/arXiv.2001.00008
https://doi.org/10.1103/PhysRevResearch.6.013182
https://doi.org/10.48550/arXiv.2306.06766
https://doi.org/10.48550/arXiv.2302.00237

BIBLIOGRAPHY 50

[129] Chloe Ching-Yun Hsu, Celestine Mendler-Dünner, and Moritz Hardt. “Revis-

iting Design Choices in Proximal Policy Optimization”. In: ArXiv Preprint

ArXiv:2009.10897 (2020). DOI: 10.48550/arXiv.2009.10897.

[130] John Schulman et al. “High-Dimensional Continuous Control Using Gener-

alized Advantage Estimation”. In: 4th International Conference on Learning

Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Confer-

ence Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016. DOI:

10.48550/arXiv.1506.02438.

[131] E. L. Lehmann and George Casella. “Mean Squared Error”. In: The Concise

Encyclopedia of Statistics. New York, NY: Springer New York, 2008, pp. 337–

339. DOI: 10.1007/978-0-387-32833-1_251.

[132] M. A. Biot. “Lagrangian Thermodynamics of Heat Transfer in Systems Includ-

ing Fluid Motion”. In: Journal of the Aerospace Sciences 29.5 (1962), pp. 568–

577. DOI: 10.2514/8.9559.

[133] Andrew Bennett. Lagrangian Fluid Dynamics. Cambridge Monographs on Me-

chanics. Cambridge University Press, 2006. DOI: 10.1017/CBO9780511734939.

[134] G. Kalman. “Lagrangian Formalism in Relativistic Dynamics”. In: Phys. Rev.

123 (1 July 1961), pp. 384–390. DOI: 10.1103/PhysRev.123.384.

[135] Karl Friedrich Siburg. The Principle of Least Action in Geometry and Dynamics.

1st ed. Vol. 1844. Lecture Notes in Mathematics. Springer Berlin, Heidelberg,

2004, pp. XII, 132. DOI: 10.1007/978-3-540-40985-4.

[136] Anatole Katok and Boris Hasselblatt. Introduction to the Modern Theory of Dy-

namical Systems. Encyclopedia of Mathematics and its Applications. Cambridge

University Press, 1995. DOI: 10.1017/CBO9780511809187.

[137] Christine Allen-Blanchette et al. “LagNetViP: A Lagrangian Neural Network

for Video Prediction”. In: ArXiv Preprint ArXiv:2010.12932 (2020). DOI: 10.

48550/arXiv.2010.12932.

[138] Shuangshuang Wu et al. “Dynamic Modeling of Robotic Manipulator via an

Augmented Deep Lagrangian Network”. In: Tsinghua Science and Technology

29.5 (2024), pp. 1604–1614. DOI: 10.26599/TST.2024.9010011.

https://doi.org/10.48550/arXiv.2009.10897
https://doi.org/10.48550/arXiv.1506.02438
https://doi.org/10.1007/978-0-387-32833-1_251
https://doi.org/10.2514/8.9559
https://doi.org/10.1017/CBO9780511734939
https://doi.org/10.1103/PhysRev.123.384
https://doi.org/10.1007/978-3-540-40985-4
https://doi.org/10.1017/CBO9780511809187
https://doi.org/10.48550/arXiv.2010.12932
https://doi.org/10.48550/arXiv.2010.12932
https://doi.org/10.26599/TST.2024.9010011

BIBLIOGRAPHY 51

[139] Manuel A. Roehrl et al. “Modeling System Dynamics with Physics-Informed

Neural Networks Based on Lagrangian Mechanics”. In: IFAC-PapersOnLine

53.2 (2020). 21st IFAC World Congress, pp. 9195–9200. DOI: 10.1016/j.

ifacol.2020.12.2182.

[140] Ziming Yan and Yan Xu. “Real-Time Optimal Power Flow: A Lagrangian Based

Deep Reinforcement Learning Approach”. In: IEEE Transactions on Power

Systems 35.4 (2020), pp. 3270–3273. DOI: 10.1109/TPWRS.2020.2987292.

[141] Hailong Zhang et al. “A Deep Reinforcement Learning-Based Energy Man-

agement Framework With Lagrangian Relaxation for Plug-In Hybrid Electric

Vehicle”. In: IEEE Transactions on Transportation Electrification 7.3 (2021),

pp. 1146–1160. DOI: 10.1109/TTE.2020.3043239.

[142] Michael Lutter, Kim Listmann, and Jan Peters. “Deep Lagrangian Networks for

End-to-End Learning of Energy-based Control for Under-Actuated Systems”.

In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). 2019, pp. 7718–7725. DOI: 10.1109/IROS40897.2019.8968268.

[143] Adithya Ramesh and Balaraman Ravindran. “Physics-Informed Model-Based

Reinforcement Learning”. In: Proceedings of The 5th Annual Learning for

Dynamics and Control Conference. Ed. by Nikolai Matni, Manfred Morari, and

George J. Pappas. Vol. 211. Proceedings of Machine Learning Research. PMLR,

June 2022, pp. 26–37. DOI: 10.48550/arXiv.2212.02179.

[144] Maurice A de Gosson and Basil Hiley. The Principles of Newtonian and Quan-

tum Mechanics. 2nd. World Scientific, 2017. DOI: 10.1142/10307.

[145] Shanshan Xiao, Jiawei Zhang, and Yifa Tang. “Generalized Lagrangian Neural

Networks”. In: ArXiv Preprint ArXiv:2401.03728 (2024). DOI: 10.48550/

arXiv.2401.03728.

[146] Ivo Grondman et al. “A Survey of Actor-Critic Reinforcement Learning: Stan-

dard and Natural Policy Gradients”. In: IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews) 42.6 (2012), pp. 1291–

1307. DOI: 10.1109/TSMCC.2012.2218595.

[147] Jason Ansel et al. “PyTorch 2: Faster Machine Learning Through Dynamic

Python Bytecode Transformation and Graph Compilation”. In: 29th ACM Inter-

national Conference on Architectural Support for Programming Languages and

https://doi.org/10.1016/j.ifacol.2020.12.2182
https://doi.org/10.1016/j.ifacol.2020.12.2182
https://doi.org/10.1109/TPWRS.2020.2987292
https://doi.org/10.1109/TTE.2020.3043239
https://doi.org/10.1109/IROS40897.2019.8968268
https://doi.org/10.48550/arXiv.2212.02179
https://doi.org/10.1142/10307
https://doi.org/10.48550/arXiv.2401.03728
https://doi.org/10.48550/arXiv.2401.03728
https://doi.org/10.1109/TSMCC.2012.2218595

BIBLIOGRAPHY 52

Operating Systems, Volume 2 (ASPLOS ’24). ACM, Apr. 2024. DOI: 10.1145/

3620665.3640366.

[148] Martı́n Abadi et al. TensorFlow, Large-scale Machine Learning on Heteroge-

neous Systems. Nov. 2015. DOI: 10.5281/zenodo.4724125.

[149] James Bradbury et al. JAX: Composable Transformations of Python+NumPy

Programs. Version 0.3.13. 2018.

[150] Gao Huang et al. “Densely Connected Convolutional Networks”. In: 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017,

pp. 2261–2269. DOI: 10.1109/CVPR.2017.243.

[151] Anusha Nagabandi et al. “Neural Network Dynamics for Model-Based Deep

Reinforcement Learning with Model-Free Fine-Tuning”. In: 2018 IEEE Inter-

national Conference on Robotics and Automation (ICRA). 2018, pp. 7559–7566.

DOI: 10.1109/ICRA.2018.8463189.

[152] Mansfield Merriman. A list of writings relating to the method of least squares,

with historical and critical notes. From the Transactions of the Connecticut

Academy, v.4, 1877. New Haven: Kessinger Publishing, 1877, [151]–232 p.

[153] Charles Dugas et al. “Incorporating second-order functional knowledge for

better option pricing”. In: Proceedings of the 13th International Conference

on Neural Information Processing Systems. NIPS’00. Denver, CO: MIT Press,

2000, pp. 451–457. DOI: 10.5555/3008751.3008817.

[154] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normaliza-

tion”. In: ArXiv abs/1607.06450 (2016). DOI: 10.48550/arXiv.1607.06450.

[155] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks

from Overfitting”. In: J. Mach. Learn. Res. 15.1 (Jan. 2014), pp. 1929–1958.

DOI: 10.5555/2627435.2670313.

[156] Mingxing Tan and Quoc V. Le. “EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks”. In: ArXiv Preprint ArXiv:1905.11946 (2020).

DOI: 10.48550/arXiv.1905.11946.

[157] Mingxing Tan and Quoc V. Le. “EfficientNetV2: Smaller Models and Faster

Training”. In: ArXiv Preprint ArXiv:2104.00298 (2021). DOI: 10.48550/arXiv.

2104.00298.

[158] Jie Hu et al. “Squeeze-and-Excitation Networks”. In: ArXiv Preprint ArXiv:1709.01507

(2019). DOI: 10.48550/arXiv.1709.01507.

https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/ICRA.2018.8463189
https://doi.org/10.5555/3008751.3008817
https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.2104.00298
https://doi.org/10.48550/arXiv.2104.00298
https://doi.org/10.48550/arXiv.1709.01507

BIBLIOGRAPHY 53

[159] A Kragten. “Basic Knowledge About Electrical, Chemical, Mechanical, Po-

tential and Kinetic Energy to Understand Literature About the Generation of

Energy by Small Wind Turbines”. In: KD 378 (2008).

[160] R. F. Snider. “Conversion between kinetic energy and potential energy in the

classical nonlocal Boltzmann equation”. In: Journal of Statistical Physics 80.5

(Sept. 1995), pp. 1085–1117. DOI: 10.1007/BF02179865.

[161] C. A. Coulson and R. P. Bell. “Kinetic Energy, Potential Energy and Force in

Molecule Formation”. In: Trans. Faraday Soc. 41 (0 1945), pp. 141–149. DOI:

10.1039/TF9454100141.

[162] Kazuyuki Hara, Daisuke Saitoh, and Hayaru Shouno. “Analysis of Dropout

Learning Regarded as Ensemble Learning”. In: Artificial Neural Networks and

Machine Learning – ICANN 2016. Ed. by Alessandro E.P. Villa, Paolo Masulli,

and Antonio Javier Pons Rivero. Cham: Springer International Publishing, 2016,

pp. 72–79. DOI: 10.1007/978-3-319-44781-0_9.

[163] Thomas G. Dietterich. “Ensemble Methods in Machine Learning”. In: Pro-

ceedings of the First International Workshop on Multiple Classifier Systems.

MCS ’00. Berlin, Heidelberg: Springer-Verlag, 2000, pp. 1–15. DOI: 10.5555/

648054.743935.

[164] Rincy Thomas and Roopam Gupta. “Ensemble Learning Techniques and its

Efficiency in Machine Learning: A Survey”. In: 2nd International Conference

on Data, Engineering and Applications (IDEA). IEEE. Feb. 2020, pp. 1–6. DOI:

10.1109/IDEA49133.2020.9170675.

[165] Richard S. Sutton. “Integrated Architectures for Learning, Planning, and React-

ing Based on Approximating Dynamic Programming”. In: Machine Learning

Proceedings 1990. Ed. by Bruce Porter and Raymond Mooney. San Francisco

(CA): Morgan Kaufmann, 1990, pp. 216–224. DOI: 10.1016/B978-1-55860-

141-3.50030-4.

[166] Guanlin Wu et al. “Dyna-PPO Reinforcement Learning with Gaussian Process

for the Continuous Action Decision-making in Autonomous Driving”. In: Ap-

plied Intelligence 53.13 (July 2023), pp. 16893–16907. DOI: 10.1007/s10489-

022-04354-x.

https://doi.org/10.1007/BF02179865
https://doi.org/10.1039/TF9454100141
https://doi.org/10.1007/978-3-319-44781-0_9
https://doi.org/10.5555/648054.743935
https://doi.org/10.5555/648054.743935
https://doi.org/10.1109/IDEA49133.2020.9170675
https://doi.org/10.1016/B978-1-55860-141-3.50030-4
https://doi.org/10.1016/B978-1-55860-141-3.50030-4
https://doi.org/10.1007/s10489-022-04354-x
https://doi.org/10.1007/s10489-022-04354-x

BIBLIOGRAPHY 54

[167] Christof Angermueller et al. “Model-based Reinforcement Learning for Biolog-

ical Sequence Sesign”. In: International Conference on Learning Representa-

tions. 2020.

[168] Danijar Hafner et al. “Dream to Control: Learning Behaviors by Latent Imagi-

nation”. In: International Conference on Learning Representations. 2020. DOI:

10.48550/arXiv.1912.01603.

[169] Danijar Hafner et al. “Mastering Atari with Discrete World Models”. In: In-

ternational Conference on Learning Representations. 2021. DOI: 10.48550/

arXiv.2010.02193.

[170] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage

and Organization in the Brain.” In: Psychological Review 65.6 (1958), pp. 386–

408. DOI: 10.1037/h0042519.

[171] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted

Boltzmann Machines”. In: Proceedings of the 27th International Conference

on International Conference on Machine Learning. ICML’10. Haifa, Israel:

Omnipress, 2010, pp. 807–814. DOI: 10.5555/3104322.3104425.

[172] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-

fication with Deep Convolutional Neural Networks”. In: Advances in Neural

Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Asso-

ciates, Inc., 2012. DOI: 10.1145/3065386.

[173] Ashish Vaswani et al. “Attention is all you need”. In: Proceedings of the 31st

International Conference on Neural Information Processing Systems. NIPS’17.

Long Beach, California, USA: Curran Associates Inc., 2017, pp. 6000–6010.

DOI: 10.5555/3295222.3295349.

[174] Lili Chen et al. “Decision Transformer: Reinforcement Learning via Sequence

Modeling”. In: Advances in Neural Information Processing Systems. Ed. by

M. Ranzato et al. Vol. 34. Curran Associates, Inc., 2021, pp. 15084–15097. DOI:

10.48550/arXiv.2106.01345.

[175] Sahika Genc et al. “Zero-Shot Reinforcement Learning with Deep Attention

Convolutional Neural Networks”. In: ArXiv Preprint ArXiv:2001.00605 (2020).

DOI: 10.48550/arXiv.2001.00605.

https://doi.org/10.48550/arXiv.1912.01603
https://doi.org/10.48550/arXiv.2010.02193
https://doi.org/10.48550/arXiv.2010.02193
https://doi.org/10.1037/h0042519
https://doi.org/10.5555/3104322.3104425
https://doi.org/10.1145/3065386
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.48550/arXiv.2106.01345
https://doi.org/10.48550/arXiv.2001.00605

BIBLIOGRAPHY 55

[176] Tomoki Nishi et al. “Traffic Signal Control Based on Reinforcement Learning

with Graph Convolutional Neural Nets”. In: 2018 21st International Conference

on Intelligent Transportation Systems (ITSC). 2018, pp. 877–883. DOI: 10.

1109/ITSC.2018.8569301.

[177] Penghui Lin et al. “Physics-informed Deep Reinforcement Learning for En-

hancement on Tunnel Boring Machine’s Advance Speed and Stability”. In:

Automation in Construction 158 (2024), p. 105234. DOI: 10.1016/j.autcon.

2023.105234.

[178] Derong Liu, Xiaoxu Xiong, and Yi Zhang. “Action-dependent adaptive critic

designs”. In: IJCNN’01. International Joint Conference on Neural Networks.

Proceedings (Cat. No.01CH37222). Vol. 2. 2001, 990–995 vol.2. DOI: 10.

1109/IJCNN.2001.939495.

[179] Eric Liang et al. “RLlib: Abstractions for Distributed Reinforcement Learning”.

In: Proceedings of the 35th International Conference on Machine Learning.

Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine

Learning Research. PMLR, July 2018, pp. 3053–3062. DOI: 10.48550/arXiv.

1712.09381.

[180] Sergio Guadarrama et al. TF-Agents: A Library for Reinforcement Learning in

TensorFlow. https://github.com/tensorflow/agents. 2018.

[181] Albert Bou et al. “TorchRL: A Data-Driven Decision-Making Library for Py-

Torch”. In: ArXiv abs/2306.00577 (2023). DOI: 10 . 48550 / arXiv . 2306 .

00577.

[182] Omry Yadan. Hydra - A Framework for Elegantly Configuring Complex Appli-

cations. Github. 2019.

[183] Omry Yadan, Jasha Sommer-Simpson, and Olivier Delalleau. omegaconf. Nov.

2019.

[184] Shubham Pateria et al. “Hierarchical Reinforcement Learning: A Compre-

hensive Survey”. In: ACM Comput. Surv. 54.5 (June 2021). DOI: 10.1145/

3453160.

[185] Aishwarya Mandyam et al. “Compositional Q-learning for Electrolyte Repletion

with Imbalanced Patient Sub-Populations”. In: ArXiv abs/2110.02879 (2024).

DOI: 10.48550/arXiv.2110.02879.

https://doi.org/10.1109/ITSC.2018.8569301
https://doi.org/10.1109/ITSC.2018.8569301
https://doi.org/10.1016/j.autcon.2023.105234
https://doi.org/10.1016/j.autcon.2023.105234
https://doi.org/10.1109/IJCNN.2001.939495
https://doi.org/10.1109/IJCNN.2001.939495
https://doi.org/10.48550/arXiv.1712.09381
https://doi.org/10.48550/arXiv.1712.09381
https://github.com/tensorflow/agents
https://doi.org/10.48550/arXiv.2306.00577
https://doi.org/10.48550/arXiv.2306.00577
https://doi.org/10.1145/3453160
https://doi.org/10.1145/3453160
https://doi.org/10.48550/arXiv.2110.02879

BIBLIOGRAPHY 56

[186] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. “Multi-Agent Reinforcement

Learning: A Selective Overview of Theories and Algorithms”. In: Handbook of

Reinforcement Learning and Control. Ed. by Kyriakos G. Vamvoudakis et al.

Cham: Springer International Publishing, 2021, pp. 321–384. DOI: 10.1007/

978-3-030-60990-0_12.

[187] Hugh Durrant-Whyte, Nicholas Roy, and Pieter Abbeel. “Infinite-Horizon

Model Predictive Control for Periodic Tasks with Contacts”. In: Robotics:

Science and Systems VII. The MIT Press, 2012, pp. 73–80. DOI: 10.7551/

mitpress/9481.003.0015.

[188] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. “Acti-

vation functions in deep learning: A comprehensive survey and benchmark”.

In: Neurocomput. 503.C (Sept. 2022), pp. 92–108. DOI: 10.1016/j.neucom.

2022.06.111.

[189] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier Nonlineari-

ties Improve Neural Network Acoustic Models”. In: Proceedings of the 30th

International Conference on Machine Learning. Vol. 28. 3. Atlanta, GA. 2013,

p. 3.

[190] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”.

In: ArXiv abs/1711.05101 (2019). DOI: 10.48550/arXiv.1711.05101.

[191] Ilya Loshchilov and Frank Hutter. “SGDR: Stochastic Gradient Descent with

Warm Restarts”. In: International Conference on Learning Representations.

2017. DOI: 10.48550/arXiv.1608.03983.

[192] Zafarali Ahmed et al. “Understanding the Impact of Entropy on Policy Opti-

mization”. In: Proceedings of the 36th International Conference on Machine

Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Pro-

ceedings of Machine Learning Research. PMLR, June 2019, pp. 151–160. DOI:

10.48550/arXiv.1811.11214.

[193] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: The

Annals of Mathematical Statistics 22.1 (1951), pp. 79–86. DOI: 10.1214/aoms/

1177729694.

[194] Nino Vieillard et al. “Leverage the Average: An Analysis of KL Regularization

in Reinforcement Learning”. In: Proceedings of the 34th International Con-

https://doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.7551/mitpress/9481.003.0015
https://doi.org/10.7551/mitpress/9481.003.0015
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.48550/arXiv.1811.11214
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694

BIBLIOGRAPHY 57

ference on Neural Information Processing Systems. NIPS ’20. Vancouver, BC,

Canada: Curran Associates Inc., 2020. DOI: 10.5555/3495724.3496744.

[195] Răzvan Florian. “Correct Equations for the Dynamics of the Cart-Pole System”.

In: ResearchGate (Aug. 2005).

[196] Jingquan Wang et al. “MBD-NODE: Physics-Informed Data-Driven Modeling

and Simulation of Constrained Multibody Systems”. In: Multibody System

Dynamics (July 2024). DOI: 10.1007/s11044-024-10012-6.

[197] Edmund Burke et al. “Hyper-Heuristics: An Emerging Direction in Modern

Search Technology”. In: Handbook of Metaheuristics. Ed. by Fred Glover and

Gary A. Kochenberger. Boston, MA: Springer US, 2003, pp. 457–474. DOI:

10.1007/0-306-48056-5_16.

[198] Nikola B. Kovachki, Samuel Lanthaler, and Andrew M. Stuart. “Operator

Learning: Algorithms and Analysis”. In: ArXiv abs/2402.15715 (2024). DOI:

10.48550/arXiv.2402.15715.

[199] Edmund K. Burke et al. “Hyper-Heuristics: A Survey of the State of the Art”. In:

Journal of the Operational Research Society 64.12 (Dec. 2013), pp. 1695–1724.

DOI: 10.1057/jors.2013.71.

[200] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep

Reinforcement Learning with a Stochastic Actor”. In: Proceedings of the 35th

International Conference on Machine Learning. Ed. by Jennifer Dy and Andreas

Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, July 2018,

pp. 1861–1870. DOI: 10.48550/arXiv.1801.01290.

[201] Sanghyun Son et al. “Gradient informed proximal policy optimization”. In:

Proceedings of the 37th International Conference on Neural Information Pro-

cessing Systems. NIPS ’23. New Orleans, LA, USA: Curran Associates Inc.,

2024. DOI: 10.5555/3666122.3666506.

[202] Mikel Landajuela et al. “Discovering symbolic policies with deep reinforcement

learning”. In: Proceedings of the 38th International Conference on Machine

Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of

Machine Learning Research. PMLR, July 2021, pp. 5979–5989.

[203] Andrei Kitaitsev and Matteo Manzi. “SymINDy: Symbolic Identification of

Nonlinear Dynamics Statement of need”. In: ResearchGate (Aug. 2022). DOI:

10.13140/RG.2.2.22197.55528.

https://doi.org/10.5555/3495724.3496744
https://doi.org/10.1007/s11044-024-10012-6
https://doi.org/10.1007/0-306-48056-5_16
https://doi.org/10.48550/arXiv.2402.15715
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.5555/3666122.3666506
https://doi.org/10.13140/RG.2.2.22197.55528

BIBLIOGRAPHY 58

[204] Pierfrancesco Beneventano et al. “High-Dimensional Approximation Spaces of

Artificial Neural Networks and Applications to Partial Differential Equations”.

In: ArXiv abs/2012.04326 (2020). DOI: 10.48550/arXiv.2012.04326.

[205] John R. Koza. “Genetic programming as a means for programming computers

by natural selection”. In: Statistics and Computing 4.2 (June 1994), pp. 87–112.

DOI: 10.1007/BF00175355.

[206] Grant Dick. “Bloat and Generalisation in Symbolic Regression”. In: Simulated

Evolution and Learning. Ed. by Grant Dick et al. Cham: Springer International

Publishing, 2014, pp. 491–502. DOI: 10.1007/978-3-319-13563-2_42.

[207] Emilio Novati (https://math.stackexchange.com/users/187568/emilio-novati).

Derivative of Vector With Respect To Vector. Mathematics Stack Exchange.

URL:https://math.stackexchange.com/q/2197287 (version: 2017-03-21). 2017.

[208] Wikipedia contributors. Jacobian Matrix and Determinant — Wikipedia, The

Free Encyclopedia. [Online; accessed 15-August-2024]. 2024.

[209] Won Young Yang et al. “Appendix C: Differentiation with Respect to a Vector”.

In: Applied Numerical Methods Using MATLAB®. John Wiley & Sons, Ltd,

2005, pp. 471–472. DOI: 10.1002/0471705195.app3.

[210] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift”. In: ArXiv abs/1502.03167

(2015). DOI: 10.48550/arXiv.1502.03167.

[211] Aditya Bhatt et al. “CrossQ: Batch Normalization in Deep Reinforcement Learn-

ing for Greater Sample Efficiency and Simplicity”. In: The Twelfth International

Conference on Learning Representations. 2024. DOI: 10.48550/arXiv.1902.

05605.

[212] Shibani Santurkar et al. “How Does Batch Normalization Help Optimization?”

In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al.

Vol. 31. Curran Associates, Inc., 2018. DOI: 10.48550/arXiv.1805.11604.

[213] Li Wan et al. “Regularization of Neural Networks Using DropConnect”. In:

Proceedings of the 30th International Conference on International Conference

on Machine Learning - Volume 28. ICML’13. Atlanta, GA, USA: JMLR.org,

2013, III–1058–III–1066. DOI: 10.5555/3042817.3043055.

https://doi.org/10.48550/arXiv.2012.04326
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/978-3-319-13563-2_42
https://doi.org/10.1002/0471705195.app3
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.48550/arXiv.1902.05605
https://doi.org/10.48550/arXiv.1902.05605
https://doi.org/10.48550/arXiv.1805.11604
https://doi.org/10.5555/3042817.3043055

BIBLIOGRAPHY 59

[214] Mark Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bottlenecks”.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). June 2018. DOI: 10.48550/arXiv.1801.04381.

[215] Michel Lacroix and Alain Pirotte. “Domain-Oriented Relational Languages”. In:

Proceedings of the Third International Conference on Very Large Data Bases.

Vol. 3. VLDB ’77. Tokyo, Japan: VLDB Endowment, 1977, pp. 370–378. DOI:

10.5555/1286580.1286620.

[216] Nan Jiang. “Reinforcement Learning and Monte-Carlo Methods”. In: University

of Illinois Urbana-Champaign (2021).

[217] Richard Bellman and Stuart Dreyfus. Dynamic Programming. Vol. 33. Princeton

University Press, 2010. DOI: 10.2307/j.ctv1nxcw0f.

https://doi.org/10.48550/arXiv.1801.04381
https://doi.org/10.5555/1286580.1286620
https://doi.org/10.2307/j.ctv1nxcw0f

Appendix A

Introduction

A.1 Contributions

In addition to the mentioned contributions, I would personally like to add more details

to highlight the complexity relative to my experience:

• Deep learning - it was not too difficult for me to design and train neural networks

as I am highly familiar with deep learning.

• Reinforcement Learning - this was a new area for me. Although I had a

university module in RL, the teaching material mostly focused on traditional

techniques. Thus, it was quite difficult to familiarize myself with various policy

optimization algorithms, such as PPO and Dreamer, from scratch. Many of the

concepts I experimented with (for a more general understanding and more general

software), e.g., MARL, are not even discussed in this project.

• Physics - although the project does not involve many physics concepts, the

fundamental ones, such as derivative-based dynamics and Lagrangian mechanics

took quite a bit of time to understand and, especially, to apply to code.

• Software development - not a big challenge because I have developed Python

packages before. However, even though the presented package is not complete, it

took a tremendous amount of time to design and debug many components.

Overall, my expertise before starting this project was mainly in software development,

computer vision, and deep learning. Therefore, I am definitely satisfied I achieved

successful results in this research, whose main focus is far from my comfort zone.

60

Appendix B

Methodology

B.1 Lagrangian Neural Networks for Control

B.1.1 Lagrangian Equation for Control

We begin by defining the full derivatives of dL
dq and dL

dq̇ to be dependent on q and q̇,

both of which are part of action function a(·) that computes an action a. In other words,

instead of being presented with

L(q, q̇) = T (q, q̇)−V (q) (B.1)

where q ∈ RN , q̇ ∈ RN and T,V are kinetic and potential energy functions, we are also

given a control action a ∈RM, or, more specifically, a vector function a : R2N →RM. It

influences the Lagrangian computation, which is approximated by a neural network:

L(q, q̇,a(q, q̇)) = NNLagrangian(q, q̇,NNActor(q, q̇)) (B.2)

By multivariate calculus chain rule and also by knowing that the Jacobian of a vector is

a Jacobian matrix (thereby ∂a
∂q⊤ ∈ RM×N , see subsection B.1.2), we have:

(L′)⊤ =
dL
dq⊤

=
∂L
∂q⊤

+
∂L
∂a⊤

∂a
∂q⊤

= ∇q⊤L +∇a⊤L∇q⊤a

(L′′)⊤ =
dL
dq̇⊤

=
∂L
∂q̇⊤

+
∂L
∂a⊤

∂a
∂q̇⊤

= ∇q̇⊤L +∇a⊤L∇q̇⊤a
(B.3)

We also know the Euler-Lagrange constraint d
dt

dL
dq̇⊤ =

dL
dq⊤ , which we can expand through

time using the multivariate chain rule and through Lagrangian using Equation B.3:

61

Appendix B. Methodology 62

∂L′′

∂q⊤
∂q
∂t

+
∂L′′

∂a⊤
∂a

∂q⊤
∂q
∂t

+
∂L′′

∂q̇⊤
∂q̇
∂t

+
∂L′′

∂a⊤
∂a

∂q̇⊤
∂q̇
∂t

=L′ (B.4)

∂L′′

∂q⊤
q̇+

∂L′′

∂a⊤
∂a

∂q⊤
q̇+

∂L′′

∂q̇⊤
q̈+

∂L′′

∂a⊤
∂a

∂q̇⊤
q̈ =L′ (B.5)(

∂L′′

∂q⊤
+

∂L′′

∂a⊤
∂a

∂q⊤

)
q̇+

(
∂L′′

∂q̇⊤
+

∂L′′

∂a⊤
∂a

∂q̇⊤

)
q̈ =L′ (B.6)(

∂L′′

∂q̇⊤
+

∂L′′

∂a⊤
∂a

∂q̇⊤

)−1[
L′−

(
∂L′′

∂q⊤
+

∂L′′

∂a⊤
∂a

∂q⊤

)
q̇
]
= q̈ (B.7)

In gradient-vector notation and, subsequently, in the notation adopted by the original

paper1 [23], we have:

q̈ =
(

∇q̇⊤L
′′+∇a⊤L

′′
∇q̇⊤a

)−1 [
L′−

(
∇q⊤L

′′−∇a⊤L
′′
∇q⊤a

)
q̇
]

(B.8)

q̈ =
(

∇q̇(L′′)⊤+∇
⊤
q̇ a∇a(L′′)⊤

)−1 [
L′−

(
∇q(L′′)⊤−∇

⊤
q a∇a(L′′)⊤

)
q̇
]

(B.9)

Now, to save space, let’s redefine L′ and L′′ to be equal to their transposes and also in

more compact authors’ notation

L′ =
(

∇qL +∇
⊤
q a∇aL

)⊤
L′′ =

(
∇q̇L +∇

⊤
q̇ a∇aL

)⊤ (B.10)

Now we can get rid of L′ term, which would now be (L′)⊤, in Equation B.9 and rewrite

it in its final form

q̈ =
(

∇q̇L′′+∇
⊤
q̇ a∇aL′′

)−1 [
∇qL +∇

⊤
q a∇aL−

(
∇qL′′−∇

⊤
q a∇aL′′

)
q̇
]

(B.11)

where:

• q, q̇, q̈ ∈ RN×1, a ∈ RM×1

• L ∈ R

• ∇q̇L ∈ RN×1, ∇aL ∈ RM×1

• ∇qa, ∇q̇a ∈ RM×N

• L′′ ∈ R1×N

• ∇qL′′, ∇q̇L′′ ∈ RN×N , ∇aL′′ ∈ RM×N

1It is not very clear what notation they choose for ∇xf, thus we use a commonly accepted Jacobian
matrix notation which results in RM×N for f : RN → RM and x ∈ RN . For a scalar function f , i.e., when
M = 1, it is clear that the authors choose a column-vector as a result, i.e., RN×1.

Appendix B. Methodology 63

B.1.2 Vector Differentiation

Assume, we have a function f : RN → R producing a scalar s ∈ R and two vectors

x ∈ RN and y ∈ RM. Differentiating a scalar function with respect to a vector and vice

versa is easy - we know that the result is a Jacobian vector.

Instead of defining the differential operator as d·
d· , let’s just say that it is some operator

· op · with the constraint that the term on the left can only interact with the term on

the right when the transition is smooth. In other words, much like we cannot do a dot

product between a⊤ ∈ R1×2 and B ∈ R3×2, we also cannot do a⊤ op B due to shape

mismatch. This constraint ensures consistency as we scale from scalars to tensors.

Now we can define vector Jacobians in the following way, understanding that the scalar

can be expressed as a vector of size 1, i.e., s ∈ R1:

ds
dv⊤

= ∇v⊤s =
(

∂s
∂v1
· · · ∂s

∂vN

) dv
ds

= ∇sv =


∂v1
∂s
...

∂vN
∂s

 (B.12)

Note how ds
dv would be illegal according to our constraint, however, people simply

define ds
dv ∈ RN which, instead of representing matrix differentiation, corresponds to

element-wise differentiation.

From here we can interpolate that differentiating a vector with respect to another

vector results in a matrix, commonly known as Jacobian matrix [207, 208, 209]. More

precisely, given a vector function f : RN → RK , we have that

df
dx⊤

= ∇x⊤f =


∂ f1
∂x1

· · · ∂ f1
∂xN

...
∂ fK
∂x1

· · · ∂ fK
∂xN

 (B.13)

Jacobian matrix, when the function maps to a scalar, i.e., when M = 1, reduces to the

row vector ∇x⊤ f . Now assume f′ : RK → RN is a first-order derivative of x that can be

further differentiated with respect to y. We have:

df′

dy⊤
= ∇y⊤f′ = ∇y⊤∇

⊤
x⊤ f =


∂2 f

∂x1∂y1
· · · ∂2 f

∂x1∂yK
...

∂2 f
∂xN∂y1

· · · ∂2 f
∂xN∂yN

 (B.14)

Note that authors in the original paper [23] define the transpose of it as ∇y∇⊤x f =(
∇y⊤∇⊤x⊤ f

)⊤
. Although this notation is more compact, by swapping rows with

columns, the chain rule for matrices becomes especially hard to understand.

Appendix B. Methodology 64

B.1.3 LNNc Block Architecture Details

We did not expand a lot on why we use specific layers and architecture choices when we

presented the LNNc structure. This is because we simply reuse the components rather

than introducing something novel, thus we limited the discussion beyond mentioning

the papers for a more curious reader (they’re ideas are well-known and commonly used

in deep learning architectures). Some details still need a few more comments:

• Normalization - we use layer normalization [154] instead of batch normalization

[210] because the distribution of encountered states shifts as the actor learns

which actions to take. Relying on minibatch statistics would be especially hurtful

for on-policy learning. Layer normalization, on the other hand, normalizes

across features for each individual data point. There are techniques specific to

reinforcement learning like CrossQ [211], however, for simplicity, we use what

is already available in PyTorch. Normalization guides the optimization faster by

smoothing the loss hypersurface [212].

• Softplus - as noted by Cranmer et al. [23], we cannot use ReLU because the

gradients are shut down. It is not an issue for regular neural networks, however,

we need the gradients to compute Jacobians and Hessians used to infer the next

state. We would further like to emphasize that this criteria also extends to actor

network because, in our case, we differentiate through actor as well. We found it

more performant to use hyperbolic tangent activation for actor networks rather

than softplus. Activations are needed to introduce nonlinearity between layers.

• Dropout - dropout [155] improves generalization by making hidden units less

dependent on each other and can even be perceived as a type of ensemble tech-

nique [162]. To further enhance generalization, we use the L2 penalty [213] via

AdamW [190]. Generalization is necessary for a dynamics model since it is used

for planning and dreaming, and we need to ensure the model generalizes to the

best of its ability to unseen states.

• Mobile-block - as mentioned before, we implement squeeze-and-excitation [158]

with residual connections [87]. This is similar to inverted residuals [214], however,

our design choice is simpler since we are not dealing with convolutional layers.

The core motivation is to enhance features while preserving the gradient flow.

That being said, please refer to the original code, more specifically we construct

BlockNet and EnsembleBlockNet classes with the components mentioned above.

Appendix B. Methodology 65

B.2 Dreaming Proximal Policy Optimization

B.2.1 Get, Sample, and Pairs

Although it should be straightforward what get, sample, and pairs mean from the

context, we utilize domain relational calculus queries [215] to formalize the definitions.

To keep notations simpler, we do not specify which kinds of elements the operations

are performed over - it should be clear from the returned value. For example, instead of

defining get o(·) for elements of type o and get rc(·) for tuples of elements of types r

and c, just a single get is used and it will be clear from the retrieved value over which

kinds of objects the function was performed.

We define y1, · · · ,yF to be a sequence of object kinds that we want to retrieve (free

elements), and x1, ...,xN to be a sequence of object kinds that we do not care about.

F +N is each tuple’s size in a queried set (usually a data buffer D). Furthermore, each

object is equipped with attributes t and b, representing timestep and batch indices.

Given a data buffer set D , method get returns the element(-s) with matching attributes

t and b, method sample returns a random element(-s), and method pairs returns a

random pair(-s) of consecutive elements:

get(D, t,b) :=
{(

y(t)1,b, · · · ,y
(t)
F,b

)
(B.15)∣∣∣∣ ∃x1,··· ,xN

(
x1, · · · ,xN ,y

(t ′)
1,b′, · · · ,y

(t ′)
F,b′

)
∈D ∧ t ′ = t ∧b′ = b

}
sample(D) :=

{(
y(t)1,b, · · · ,y

(t)
F,b

)
(B.16)∣∣∣∣ t ∼ Uniform(1,T)∧b∼ Uniform(1,B)

∧
(
∃x1,··· ,xN

(
x1, · · · ,xN ,y

(t ′)
1,b′, · · · ,y

(t ′)
F,b′

)
∈D ∧ t ′ = t ∧b′ = b

)}
pairs(D) :=

{((
y(t)1,b,y

(t+1)
1,b

)
, · · · ,

(
y(t)F,b,y

(t+1)
F,b

))
(B.17)∣∣∣∣ t ∼ Uniform(1,T)∧b∼ Uniform(1,B)

∧
(
∃x1,··· ,xN

(
x1, · · · ,xN ,y

(t ′)
1,b′, · · · ,y

(t ′)
F,b′

)
∈D ∧ t ′ = t ∧b′ = b

)
∧
(
∃x1,··· ,xN

(
x1, · · · ,xN ,y

(t ′+1)
1,b , · · · ,y(t

′+1)
F,b

)
∈D ∧ t ′ = t ∧b′ = b

)}
Although the operations are defined to return a set, we will only write the returned value,

because the returned set only contains a single element or tuple.

Appendix B. Methodology 66

B.2.2 Returns and Advantages

Algorithm 8 shows how to compute simple Monte-Carlo values [216]. Specifically,

instead of invoking Bellman equations [217], we rely on random trajectory discounted

returns to form direct value estimates. It is simple because it does not depend on the

size of the state space, a property of Monte-Carlo methods [31]. However, they have

high variance and require a lot of data due to stochasticity [38].

Algorithm 8 Monte-Carlo estimation of returns
Require: B, γ ▷ Batch size, discount factor

1: procedure COMPUTE RETURNS(D)

2: T ← 1
B |D| ▷ Buffer cardinality

3: R ←{R(T+1)
b ← 0}B

b=1 ▷ Init returns

4: for (t = T, · · · ,1) × (b = 1, · · · ,B) do
5: (r(t)b ,c(t)b)← get(D, t,b) ▷ Reward and continue flag

6: R(t)
b ← r(t)b + γ · c(t)b ·R

(t+1)
b ▷ Compute return for b at t

7: R ← R ∪{R(t)
b } ▷ Add return to returns set

8: return R

Algorithm 9 shows how to compute simple advantages from the Monte-Carlo returns.

It utilizes (old) critic to make the updates more stable (more gradual distribution shift).

Although more sophisticated methods, like GAE [130] exist, we stick with simplicity.

Algorithm 9 Standardized advantage estimation
Require: B, ε ▷ Batch size, epsilon

1: procedure COMPUTE ADVANTAGES(D , νφ)

2: T ← 1
B |D| ▷ Buffer cardinality

3: R ← compute returns(D) ▷ Compute returns

4: A ←{} ▷ Init advantages

5: for (t = 1, · · · ,T) × (b = 1, · · · ,B) do
6: o(t)b ← get(D, t,b) ▷ Retrieve observation

7: R̃(t)
b ← (R(t)

b −E[R])÷ (σ(R)+ ε) ▷ Standardize return

8: A
(t)
b ← R̃(t)

b −νφ(o
(t)
b)

9: A ← A ∪{A
(t)
b } ▷ Compute advantage

10: return A

Appendix B. Methodology 67

B.2.3 Collect, Concat, and Extras

Algorithm 10 simply describes how batched environment rollouts are performed:

Algorithm 10 Data collection
1: procedure COLLECT(A , E , T , t0, B)

2: DE = {(o(t0)b ,r(t0)b ,c(t0)b)← E .reset()}B
b=1 ▷ Initial obs, rews, terms

3: DA = {(a(t0)b ← 0 ∈ RB)}B
b=1 ▷ Initial actions (zeros)

4: D← concat(DE ,DA) ▷ Concatenate to form D

5: for (t = t0, · · · , t0 +T) × (b = 1, · · · ,B) do
6: a(t)b ← A .act(o(t−1)

b) ▷ Act on agent policy

7: if c(t−1)
b then

8: (o(t)b ,r(t)b ,c(t)b)← E .step(a(t)b) ▷ If continue, step environment

9: else
10: (o(t)b ,r(t)b ,c(t)b)← E .reset() ▷ Otherwise, sample new state

11: D←D ∪{(o(t)b ,a(t)b ,r(t)b ,c(t)b)} ▷ Update data buffer

12: return D

We would also like to define a handy concat function which simply concatenates

corresponding tuples (at t and b) of some two sets D and D ′:

concat(D,D ′) :=
{(

d(t)
1,b, · · · ,d

(t)
N,b,d

(t)
1,b, · · · ,d

(t)
N′,b

)
(B.18)∣∣∣∣ ∃t ′,b′t

′ ∈ {1, · · · ,T}∧b′ ∈ {1, · · ·B}

∧
(

d(t)
1,b, · · · ,d

(t)
N,b

)
∈D ∧

(
d(t)

1,b, · · · ,d
(t)
N′,b

)
∈D ′∧ t ′ = t ∧b′ = b

}
There are a few functions mentioned that do not have clear definitions - they only

indicate what the algorithm should be doing. A few more details about these:

• step - takes action, steps environ-

ment, and returns a next-state tuple

• reset - resets environment, and re-

turns a random new-state tuple

• act - takes observation and produces

an action based on it

• dynamics - takes observation and

action to produce next observation

• trim - takes buffer set and capacity

value and returns trimmed buffer

• optimize- takes model(-s) and

loss(-es), backpropagates, and re-

turns the updated model(-s)

Appendix B. Methodology 68

B.2.4 Notations

• A - agent or advantages

• π - policy/actor

• ν - value function/critic

• E - real environment

• M - surrogate model

• S - state model

• R - reward model or returns

• C - continue model

• D - data buffer

• O - optimizer

• L - loss

• N - total iteration

• T - total timesteps

• B - batch size

• H - horizon

• n - iteration counter

• t - timestep

• b - sample index

• h - horizon step

• o - observation

• a - action

• r - reward

• c - continue

• R - discounted return

• v - value

• A - advantage

• γ - discount factor

• ε - small noise value

• θ - denotation of learnable params

• φ - denotation of learnable params

• ψ - denotation of learnable params

• on - denotation of “on-policy”

• off - denotation of “off-policy”

Appendix B. Methodology 69

B.3 Athletes Software Package

B.3.1 RLLib’s Complexity

For instance, if one would like to create an environment runner that alters between

real and surrogate models using Ray v2.31.0, then one would have to significantly

change the components of RLLib because they highly depend on each other. For

instance, RLlib creates multiple environments, which are controlled by an environment

runner, which by itself is part of a bigger group. Further, RLLib trains agents via

learner groups that contain multi-agent learners. Extending the functionality of some

existing class is not a complex task if one is familiar with RLLib’s framework, however,

implementing a new component, e.g., multi-agent and multi-world hybrid learner

requires deep knowledge of how each component utilizes each other. We have managed

to implement various features facilitating model-based learning and they can be checked

at src/supplementary/rllib. However, we had to discard the idea of working

with it further because adding anything extra always requires modifying at least a

few components, whose changes may propagate to further components making it very

time-consuming to develop research-focused code which is mainly experimental and

not stable. Still, some useful utilities can still be utilized now or in the future, such as

the surrogate switch wrapper:
from s u p p l e m e n t a r y . r l l i b . env . w r a p p e r s i m p o r t S u r r o g a t e S w i t c h W r a p p e r

I n i t r e a l env & wor ld model

env = S u r r o g a t e S w i t c h W r a p p e r (

env=gymnasium . make (” C a r t P o l e −v1 ”) ,

w o r l d m o d e l c o n f i g ={” c l s n a m e ” : ”MLPWorldModel” , ” framework ” : ” t o r c h ”}
)

Load w e i g h t s i n t o t h e wor ld model & r e s e t

wrapped env . wor ld mode l . l o a d s t a t e d i c t (t o r c h . l o a d (” p a t h / t o / w e i g h t s . p t h ”))

env . r e s e t ()

S t ep t h r o u g h t h e r e a l e n v i r o n m e n t

a c t i o n = env . a c t i o n s p a c e . sample ()

s t a t e , reward , term , t r u n c , i n f o = env . s t e p (a c t i o n)

env . s w i t c h () # To s u r r o g a t e

o , r , t1 , t2 , i = env . s t e p (a c t i o n)

env . s w i t c h () # To r e a l

Listing B.1: A switch wrapper for Gymnasium environments

Appendix B. Methodology 70

B.3.2 Example Algorithm Using Athletes
i m p o r t d a t a c l a s s e s

i m p o r t t o r c h

from a t h l e t e s . a g e n t s i m p o r t Agent

c l a s s SimplePPO (Agent) :

@ d a t a c l a s s e s . d a t a c l a s s

c l a s s Conf ig [T=PPO] (Agent . Conf ig [T]) :

gamma : f l o a t = 0 . 9 9

n u m i t e r s : i n t = 30

l r : f l o a t = 1e −4

d e f i n i t (s e l f , * a rgs , ** kwargs) :

s u p e r () . i n i t (* a rgs , ** kwargs)

C r e a t e ve ry s i m p l e a c t o r and c r i t i c models

s e l f . a c t o r = t o r c h . nn . L a z y L i n e a r (s e l f . a d im)

s e l f . c r i t i c = t o r c h . nn . L a z y L i n e a r (1)

s e l f . o p t i m i z e r = t o r c h . opt im .AdamW([

{” params ” : s e l f . a c t o r . p a r a m e t e r s () , ” l r ” : s e l f . l r } ,

{” params ” : s e l f . c r i t i c . p a r a m e t e r s () , ” l r ” : s e l f . l r } ,

])

d e f f o r w a r d (s e l f , o b s e r v a t i o n , a c t i o n =None) :

Make d i s t & use i t f o r e x t r a o u t p u t s

d i s t = s e l f . d i s t . make (s e l f . a c t o r (o b s e r v a t i o n))

a c t i o n = d i s t . r s a m p l e () i f a c t i o n i s None e l s e a c t i o n

l o g p r o b = d i s t . l o g p r o b (a c t i o n . d e t a c h ())

r e t u r n a c t i o n , s e l f . c r i t i c (o b s e r v a t i o n) , l o g p r o b

d e f s t e p (s e l f , o b s e r v a t i o n , reward , t e r m i n a t e d , t r u n c a t e d , i n f o) :

S t o r e i n b u f f e r

s e l f . b u f f e r . append (

obs= o b s e r v a t i o n , rew=reward , te rm = t e r m i n a t e d , t r u n = t r u n c a t e d ,

** d i c t (z i p ((” a c t ” , ” v a l ” , ” logp ”) , o u t := s e l f (o b s e r v a t i o n)))

)

r e t u r n o u t [0]

d e f u p d a t e (s e l f) −> d i c t [s t r , f l o a t] : . . .

Imp lemen t ion o f PPO u p d a t e . . .

Listing B.2: Simplified PPO using python 3.13 (notice type param default)

B.3.3 Nested Agent Code Snippet
D e f a u l t Dyna c o n f i g b u t MFA i s o v e r r i d d e n t o be a n o t h e r Dyna a g e n t

a g e n t c o n f i g = Dyna . Conf ig (m o d e l f r e e a g e n t =Dyna . Conf ig ())

a g e n t = a g e n t c o n f i g ()

Listing B.3: Agent Instance Example

Appendix C

Analysis

C.1 Default Hyperparameters

These are the default parameters used in the experiments. In some experiments, it is

obvious if there are modifications, e.g., total steps, in others, changes are explicitly

stated. Please also refer to our code for any minor parameter changes.

Parameter Default value

max episode steps 400

total steps 50000

report every 1600

num sgd iters (world) 2000

num sgd iters (agent) 30

batch size (world) 256

batch size (agent) all

num planning steps 800

planning batch size 32

allow update from real True

activation actor Tanh

activation critic ReLU

activation dynamics Softplus

activation reward ReLU

Parameter Default value

num envs 32

lr actor 5e-5

lr critic 1e-3

lr dynamics 1e-4

lr reward 1e-4

weight decay 1e-2

actor hidden [64, 64]

critic hidden [64, 64]

dynamics hidden [64, 64]

reward hidden [64, 64]

num lagrangians 1000

is generalized False

gamma 0.99

clip eps 0.2

Table C.1: Default hyperparameters.

71

Appendix C. Analysis 72

C.2 Autograd

C.2.1 Autograd
i m p o r t t o r c h

from t o r c h . a u t o g r a d . f u n c t i o n a l i m p o r t j a c o b i a n , h e s s i a n

d e f j a c o b i a n h e s s i a n n a i v e (func , i n p u t) :

j a c o b i a n s , h e s s i a n s = [] , []

f o r sample i n i n p u t :

j a c o b i a n s . append (j a c o b i a n (func , sample))

h e s s i a n s . append (h e s s i a n (func , sample))

r e t u r n t o r c h . s t a c k (j a c o b i a n s) , t o r c h . s t a c k (h e s s i a n s)

Listing C.1: Naive computation of Jacobian and Hessian

i m p o r t t o r c h

from t o r c h . func i m p o r t j a c r e v , h e s s i a n

d e f j a c o b i a n h e s s i a n f u n c t i o n a l (func , i n p u t) :

r e t u r n t o r c h . vmap (j a c r e v (func)) (i n p u t) , t o r c h . vmap (h e s s i a n (func)) (i n p u t)

Listing C.2: Functional computation of Jacobian and Hessian

i m p o r t t o r c h

from t o r c h . a u t o g r a d i m p o r t g r ad

d e f j a c o b i a n h e s s i a n a u t o g r a d (func , i n p u t) :

i n p u t = i n p u t . d e t a c h () . c l o n e () . r e q u i r e s g r a d (True)

o u t p u t = f u n c b a t c h e d (i n p u t)

j a c o b i a n = grad (o u t p u t , i n p u t , t o r c h . o n e s l i k e (o u t p u t) , c r e a t e g r a p h =True) [0]

g r a d o u t s = t o r c h . eye (j a c o b i a n . s i z e (1)) [: , None] . r e p e a t (1 , j a c o b i a n . s i z e (0) , 1)

h e s s i a n T = grad (j a c o b i a n , i n p u t , g r a d o u t s , i s g r a d s b a t c h e d =True) [0]

r e t u r n j a c o b i a n , h e s s i a n T . t r a n s p o s e (0 , 1)

Listing C.3: Autograd computation of Jacobian and Hessian

i m p o r t t o r c h

d e f func (x : t o r c h . Tensor) : # Expec ted x shape : (D ,)

r e t u r n (2 * x . pow (3) − x . pow (2)) . sum ()

d e f f u n c b a t c h e d (x : t o r c h . Tensor) : # Expec ted x shape : (B , D)

r e t u r n (2 * x . pow (3) − x . pow (2)) . sum (dim =1 , keepdim=True)

Listing C.4: Example target function

	Introduction
	Motivation
	Research Focus and Contributions
	Scope and Outline

	Background
	Literature Review
	Reinforcement Learning
	Incorporating Physics

	Theoretical Details
	Proximal Policy Optimization
	Lagrangian Neural Networks

	Methodology
	Lagrangian Neural Networks for Control
	Lagrangian Neural Networks as World Models
	Incorporating Actor Decision Process
	Full Architecture and Enhancements

	Gradient Based Proximal Policy Optimization
	Planning and Dreaming
	Agent and World
	Lagrangian-Based Policy Optimization Algorithm

	Athletes Software Package
	Features
	Structure

	Analysis
	Setup
	Environments
	Training

	Individual Components
	Gradient Boosted Proximal Policy Optimization
	Planning

	Algorithm Performance
	World Models
	Physical Properties
	Policy Algorithms

	Code Efficiency
	Package
	Autograd

	Conclusions
	Discussion
	Future Work
	Limitations
	Summary

	Introduction
	Contributions

	Methodology
	Lagrangian Neural Networks for Control
	Lagrangian Equation for Control
	Vector Differentiation
	LNNc Block Architecture Details

	Dreaming Proximal Policy Optimization
	Get, Sample, and Pairs
	Returns and Advantages
	Collect, Concat, and Extras
	Notations

	Athletes Software Package
	RLLib's Complexity
	Example Algorithm Using Athletes
	Nested Agent Code Snippet

	Analysis
	Default Hyperparameters
	Autograd
	Autograd

