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Abstract

In recent years, the efficient application of reliable video generation in file making,

game development and other fields has gained significant attention. Built upon these,

trajectory-controllable video models have been recognized for their enhanced editing po-

tential for temporal content through incorporating motion guidance from user-interactive

trajectory input. However, current state-of-the-art image-based trajectory controlling

models face challenges in handling 3D-aware movements such as object rotation fol-

lowing large-angle curve-based trajectory. This problem stems from the insufficient 3D

motions presented in training dataset containing open-domain videos and lack of 3D

guidance from 2D-based trajectory. To address these issues, our research focused on

incorporating 3D-aware guidance to enable our trained model to generate corresponding

3D movements like rotation following given trajectory-curves. In this project, we

present a self-constructed dataset compromising animated objects with sampled rotating

process and propose a novel 3D-aware two-stage fine-tuning strategy through generating

3D bounding box sequence in the first stage as additional 3D prompt and integrate a

spatial-enhancement loss during training to improve consistency of object’s identity

with changing poses. Through extensive experiments, our designed model achieves

superior performance in animating rotating motion within our constructed dataset and

demonstrates potential zero-shot animating capacity on open-domain videos. This result

highlights the effectiveness of our designed pre-training dataset and methodology in

facilitating 3D-aware animation guided from complex trajectories while maintaining

consistent object appearance, accurate object position and poses.
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Chapter 1

Introduction

1.1 Background

During recent years, substantial advancements have been made for the task of video

generation, resulting in more natural and stable performance across generated frames

on models including SVD [3], Gen-2 [14], VideoCrafter [10] and SORA [6]. These

achievements can be contributed to the success of strong visual generative basemodels

based on Latent-Diffusion [32] and the utilization of large-scale video datasets. Al-

though these realistic video generation models hold great potential for various industrial

applications, such as character animation and film production, their overall control-

lability for generated motion tendency and content remains a significant obstacle for

effective usage. Most current methods are predominantly rely on text or image-based

guidance, where the conditioning signals only provide spatial information, while the

overall generation lacks more precise temporal motion message. To address fine-grained

motion control, previous works have focused on trajectory-based animation, inspired

by its interactive and user-friendly nature and the success of trajectory-controlling for

image editing on feature latent space [29].

For trajectory controllable video generation, earlier works primarily focused on the

limited domain of human-specific animation [4, 11] guided by skeleton movements.

DragNUWA [46] presents the first attempt to realize trajectory controlling in open-

domain videos. This model employs a flow estimator with a trajectory sampler strategy

to extract both dense and sparse trajectories, and subsequently injecting encoded tra-

jectory information into the video-based Denoising UNet. Another impressive work

MotionCtrl [40] endeavors to decouple object movement and camera movement through

a two-stage process: with an initial pre-training stage involving a camera-moving dataset,

1



Chapter 1. Introduction 2

Figure 1.1: Visualization of the performance from sampled animated video given same

trajectory from DragAnything and our proposed model trained in our self-constructed

dataset. The objects can not rotate while the camera moves for DragAnything.

followed by second-stage finetuning with extra motion-control modules for wild videos.

Built upon DragNUWA, DragAnything enhances model’s trajectory awareness of ob-

ject identity by extracting object embedding through Segment-Anything [25] with

corresponding object mask and a pre-trained entity extractor[43]. This object-specific

embedding is then fused with trajectory guidance conditioned on a Controlnet [47].

Through extra entity-guided signal, DragAnything achieves state-of-the-art trajectory

animation performance with consistent object appearance and accurate controlling.
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1.2 Motivation

Nonetheless, several challenges persist for effective trajectory controlling. As illustrated

in our tested demos (figure 1.1) from DragAnything [43], current trajectory controlling

still lacks 3D-awareness for rotating motions and are only accurate following simple
trajectory, such as straight lines or basic arcs, while struggling with large and com-
plex motions like large-angle rotation. The primary reason of this issue of insufficient

3D understanding is that the encoded trajectory only contains 2D spatial information,

while lacking 3D guidance for object pose during rotation. Furthermore, 3D movement

like rotating is closely coupled with camera rotating, making effective training harder,

as most open-domain videos do not contain sufficient scenarios for 3D movement like
large-angle rotation.

To tackle these problems, we propose the following research question: Can we self-
construct a 3D-aware trajectory-driven dataset containing only various rotating
objects with complex trajectory like S-shaped arcs and pre-train a designed 3D-
aware model with extra incorporated 3D guidance on it? During following project

development, we first successfully constructing a rendering dataset with rotating objects

in different shapes following complex trajectory with large angle rotations. Subse-

quently, we select a reliable video generation basemodel, Stable-Video-Diffusion (SVD)

[3], with superior trajectory controlling accuracy and temporal consistency in small-

scale open-domain videos. Built upon SVD, for self-constructed dataset, we propose a

3D-aware fine-tuning strategy with trajectory-specific Controlnet by generating objects

with their 3D bounding boxes during first-stage training, which significantly improves

overall trajectory accuracy and spatial reconstruction quality for object appearnce during

rotation.

Our project have following contributions:

• We proposed the first 3D-aware Video Generation model through two-stage fine-

tuning process involving 3D bounding box generation. This model can maintain

both driving trajectory accuracy and corresponding object appearance and pose

during large-angle rotation, achieving superior FID, SSIM, FVD and trajectory

accuracy on self-constructed 3D-rotating dataset as shown in Table 4.2 and Figure

4.4 compared to simply finetuning through trajectory conditioning as proposed in

DragNUWA [46].

• We constructed the first dataset containing complex arcs or S-shaped trajectories

with corresponding rotating object and realistic simulation of real-world environ-
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ment. This dataset is rendered without camera-movement simplifying model’s

learning difficulty for camera decoupling. Moreover, we evaluate the importance

of sufficient data scale for our self-constructed dataset as shown in table 4.5.

• We successfully evaluates the effectiveness of pre-training a 3D-aware video

generation model on self-constructed dataset by demonstrating that our pretrained

model can can generalize its trajectory animation capacity on unseen objects and

even zero-shot unseen open-domain videos as shown in figure 4.4 and 4.5.



Chapter 2

Literature Review

2.1 Latent Diffusion Model

The Diffusion model for image generation, first proposed by [19], has achieved superior

performance which beat Generative Advesial Networks (GAN) in terms of diversity

and generation quality. Unlike GAN, which relies on a generative network with a

competitive discriminator to distinguish between generated samples with true distri-

bution, the diffusion model generates samples by predicting the added noise for each

timestep during denoising process. To be specific, diffusion model contains forward

and denoising stages. During the forward process, increasing noise following noise

scheduler for each timestep is added to the target output, and this process is formulated

following Markov Chain where each step Xt is only dependent with previous step Xt−1.

By repeatedly adding noise during forward process, the input distribution converges

into a Gaussian Distribution, from which the denoising process can directly sample. For

the denoising stage, the generator models the condition distribution through predicting

the reversed noise given conditional signal. Given the predicted noise and Xt , sample

xt−1 in previous step can be calculated through combination of Bayes Rule. Compared

to other generative model like GAN and auto-regressive models, diffusion model offer

more diversity by directly modelling the generation of target distribution and recursively

introducing sampled noise during each denoising step.

Although the naive diffusion model achieves impressive success in generating compre-

hensive and high-quality images, its denoising UNet-based generator faces intensive

computational and memory cost with high-dimentional input, such as pixels in single

image. Aiming at reducing the overall training cost, Latent Diffusion is proposed

by compressing pixel-level information into a latent feature space with a pre-trained

5
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Varational Auto-Encoder (VAE) [32]. Following Markov chain property, given noise

scheduler βt and ᾱt = ∏
t
s=1(1− βs), the latent distribution zt in timestep t can be

calculated through one step equation as shown in 2.1. During denoising procedure,

the conditional distribution of previous timestep pθ(zt−1|zt ,c) can be modelled by

predicting reverse noise given latent target in current timestep and conditional signal

c following equation 2.2. By introducing a strong pre-trained VAE in large-scale un-

labelled data and employing diffusion for the encoded latent feature, Latent diffusion

is capable for both efficient model training with sampling and preserving satisfactory

generation performance.

q(zt |z0) := N(zt ;
√

ᾱtz0,(1− ᾱt)I). (2.1)

pθ(zt−1|zt ,c) = N(zt−1;µθ(zt , t,c),βtI). (2.2)

Further works boosts the generation performance of latent diffusion with more powerful

AutoEncoders such as VQGAN [15] or denoising network like Scalable Diffusion

Transformer (DIT) [30]. Concurrently, latent diffusion based generative modelling has

been widely applied in various tasks and modalities like Text-to-Speech Synthesis [27],

Human Motion Generation [24, 1] and Video Generation [10, 37].

2.2 Video Generation Models

While image generation tasks like text-to-speech synthesis has accomplished high-

fedility performance for models such as DALL-E2 [31] and Imagen [33] with extensive

large-scale image dataset and corresponding huge parameters in designed structure,

video generation has only begun its evolution in recent years. Earlier method GODIVA

[41] employs a 2D VAE with additional Sparse Attention to capture semantic guidance

for text-to-video synthesis. Following it, NUWA [42] enhanced the quality of generated

video by acquiring a unified representation across multi-modality learning guidance.

CogVideo [20] presents the first work which finetuned a text-to-video model based on

pre-trained frozen Text-to-Image weight with minimal training parameters. Make-a-

Video [34] further extends CogVideo by efficiently adapting all model parameters with

pesudo 3D convolutional and temporal attention layer as model backbone which signifi-

cantly reduces training cost and produces superior temporal performance. Considering

the intensive computational cost of pixel-level diffusion for multiple frames, several

recent video diffusion models [5, 17, 23] employed latent diffusion with pre-trained
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image encoder and are finetuned from text-to-image prior weights. With the collec-

tion of a significantly larger amount of high-quality videos through carefully designed

data curation, more recent state-of-the-art models including VideoCrafter [10], Gen-2

[14], SVD [3] and SORA[6] have achieved realistic simulation of real world with high

generation quality by fully-training their designed 3D backbone such as 3D UNet or

Diffusion Transfer with inserted cross-frame attention and has supported multi-mode

generation such as image-to-video extension facilitated by sufficient prior knowledge

from large data.

2.2.1 Controllable Video Generation

Although current video diffusion models have achieved impressive performance in

generating comprehensive and diverse videos, most of these base models purely rely

on condition guidance of text descriptions or first-frame images. However, these

conditional signals only provide spatial information during video generation, without

more fine-grained control over content information especially temporal motion across

frames. Consequently, many recent works are focusing on trajectory-based animation

Compared to other motion representation, such as motion field or dense flow, trajectory

provides straightforward object-centric motion guidance and also enable effective user-

interaction by allowing users to directly hand-crafting lines on images. Early researches

on trajectory-based animation such as IPoke [4] and MCDiff [11] only focused on

limited-domain like human videos by extracting the movement of human skeletons

and conditioning this trajectory information on generation model training from scartch.

DragNUWA [46] is the first work to achieve trajectory animation in open-domain videos

by employing a powerful pre-trained image-to-video generation model and fine-tuning

it with extra trajectory guidance extracted from state-of-the-art flow estimator. However,

for DragNUWA, objects’ temporal consistency often collapses, and the trajectory

guidance is not accurate for driving the whole object identity during animation. To

tackle this problem, DragAnything enhances model’s awareness of object’s identity

across frames with significantly better identity consistency through incorporating object

entity by first segmenting out object’s boundary with segmentor Segment-Anything

[25] and then employ pre-trained spatial image encoder for entity extraction. Some

other text-to-video based works like Direct-A-Video [45] and MotionCtrl [40] further

attempts to disentangle between object motions from camera movement for more fine-

grained and accurate controlling over for-ground and background and has successfully
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integrate motion guidance along with camera poses and semantic prompt from text

descripations.

Although the state-of-the-art image-based trajectory animation model DragAnything

is capable of generating realistic and accurate motions with consistent object identity,

it struggles with more complex and 3D-aware motions like rotation of objects or cars

as shown in figure 1.1. This problem stems from the lack of 3D awareness in the pre-

trained SVD model and is challenging to solve because collected wild videos usually

do not contain purely rotation motions and 3D motions like object rotation is closely

coupled with and influenced by frequent camera movements. Furthermore, trajectory in

2D pixel space is unable of providing extra 3D-based guidance. To solve this problem,

our project aims to self-construct a rendered dataset containing rotating objects with

driving trajectories and design a novel 3D-aware model structure to handle 3D complex

motions, such as large-angle rotations, on this pre-training dataset.

2.3 Finetuning Large Pre-trained Models

Fine-tuning large pre-trained models, such as large language model, can achieve supe-

rior performance on customized data or different downstream tasks by adapting large

model’s understanding as prior knowledge. However, directly fine-tuning the entire

network is computationally intensive and would introduce problems such as mode

collapse or forgetting phenomenon for already learned knowledge. To tackle these

problems, extensive researches has focused on developing more efficient and applicable

fine-tuning methods. Among these, adapter is proposed in earlier methods by injecting

a small number of nearly identity-initialized learnable layers into the original Trans-

former based network for NLP tasks [21]. Adapter fine-tuning has achieved impressive

performance on transferring pre-trained NLP models into downstream tasks and has

been extended successfully into Computer Vision field by adapting Vision Transfer

[26] or Stable Diffusion on Controllable Image generation [16]. To further solve the

catastrophic forgetting problem and limit the total amount of learning parameters, Low-

Rank Adaptation (LoRA) [22] has been proposed. LoRA only optimizes weights in

inserted low-rank matrices as a parameter residual to introduce new learning ability

while preserving the original feature space compared to adapter finetuning. LoRA

is widely used in influencing attention modules in modern text-to-image generative

models with low training cost and has achieved notable controllability for tasks like

style or identity controllable image generation. Although these fine-tuning methods
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is capable of transferring the abilities of large-scale pre-trained model into various

downstream task setting, they can not introduce precise control from new condition

signals like human-poses or driving trajectories in our task setting. Aiming at enhancing

spatial-consistent and task-specific condition control for pre-trained Text-to-Image

(T2I) models, Controlnet [47] is proposed which clones a trainable-copy from the

original network (e.g Unet’s Encoder) with pre-trained parameters and integrate its

output as learnable residuals upon the original network. To avoid potential negative

influence from randomly initialized parameters, these residuals are connected through

zero-convolutional layers where all the weights and parameters are initialized as zero.

Controlnet has achieved impressive performance by adding extra sketch or pose condi-

tion during text-to-image generation and is also selected as fine-tuning method for our

trajectory signal.



Chapter 3

Methodology

3.1 Dataset Construction

The majority of existing available video generation dataset [2, 7, 28], used for text-

to-video, image-to-video or trajectory-controlled video generation are derived from

open-domain videos. Although these datasets encompass comprehensive representation

of natural object movements, the frequent carema movement introduces unexpected

influences on object locations and poses. Futhermore, motions from object’s movement

may not be obvious for effective learning. Consequently, modelling objects’ movements

from trajectories for such unconstrained videos requires additional decoupling module

between camera movement [40]. To address this issue, we have self-constructed a novel

video dataset from rendering software blender, containing single moving object with

randomly sampled trajectories, a static background and unchanged camera.

Our dataset offers several distinct advantages over open-domain videos: 1. It includes a

wider range of paired complex 3D-aware movements with driving trajectory such as

circular or S-shaped trajectories, as well as self-rotation process for single object. 2. All

movements are purely object-centric, thus avoiding the unintended influence of camera

movement and enhancing model’s understanding of object-specific trajectory-based

controlling. 3. The sampled trajectories and objects’ bounding boxes are accurate,

eliminating potential inaccuracies introduced by extra annotation tools, such as flow

estimation or point tracking models. 4. The dataset size is scalable because we can

sample infinite trajectories with random angle for each single object.

10
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Figure 3.1: Visualization of one sample of video frames and corresponding trajectory for

”Barrel” in the self-constructed dataset with circled trajectory moving template.

3.1.1 Dataset Rendering

For detailed implementation, we employed Blender software for the dataset rendering

pipeline as shown in 3.2. Firstly, we initailized the blender environment with floors in

wooden texture and lighting. To simulate realistic lighting, we created environment light

from indoor HDRI images instead of simple directional lights or sun lights. Following

this, We sampled high-quality and realistic 3D models from public resource website
1 and then rendered them with textures and materials in the virtual environment. To

maintain appropriate object size, each object’s height is normalized below camera

window’s height with minimum 1 unit height. Subsequently, a random trajectory will

be generated from pre-set movement templetes of ”circle” or ”S-shaped curve” with

random rotating angles. Once generated, the rendered object was programmed to

move according to this trajectory with fixed speed while changing its poses and facing

direction towards the rotating center. At last, a camera is placed in suitable position and

the moving procedure is recorded and rendered using the Cycles engine.

1https://polyhaven.com/
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Figure 3.2: The data production pipeline of our self-constructed data through blender

software.

3.1.2 Dataset Annotation

Along with the recorded video of objects’ movements, we have saved the trajectory’s

parameters and object’s 3D position, including location for 8 vertexs of 3D bounding

boxes. All trajectories and bounding box positions are mapped to local pixel space

given camera pose parameters. For trajectory representation, inspired by the annotation

process of DragNuwa which sampled multiple sparse trajectories to enhance trajectory

guidance and supports users’ imprecise hand-crafted input rather than the precise one

from object center, we employ a region-aware trajectory sampler. This sampler randomly

select 1-5 points within the mapped bounding boxes and drawing the same trajectory

trend from the saved trajectory parameters for these points. Through further experiments

in section 4.5.4, the trajectory sampler improves the trajectory-based animation accuracy

and overall generation quality.

3.2 Model Design

Our project’s objective is to generate a sequence of video frames in length L F =

[F1,F2, ...,FL] given starting frame Fs and a corresponding trajectory sequence J =

[J1,J2, ...,JL] that drives the object. Unlike previous methods that lack explicit control-

ling for more complex motion with object rotation, such as ”S shaped” trajectory, our

proposed model emphasizes enhancing 3D-aware understanding, trajectory accuracy

and object reconstruction quality during rotation. This is achieved through a designed

two-stage 3D-aware fine-tuning method with an additional spatial enhancement loss

as introduced in following sections. In this project, our focus is on training and eval-
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Figure 3.3: Visualization of our proposed 3D-aware model structure of trajectory-guided

animation. It mainly composed of a trajectory-specific Controlnet, the designed two-stage

finetuning strategy and spatial enhancement loss as explained in the paper.

uating the performance on self-reconstructed dataset containing rotating objects with

corresponding trajectories. To ensure reliable video generating performance, following

previous works, we utilize Controlnet for our designed 3D-aware finetuning on the

state-of-the-art Image-to-Video model Stable-Video-Diffusion.

3.2.1 Stable Video Diffusion Model

For controllable video generation fine-tuning, it is crucial to select a robust and powerful

large-scale pre-trained video generation model as baseline. Through performance com-

parison in section 4.3, we have chosen the state-of-the-art Image-to-Video generation

model, Stable-Video-Diffusion (SVD) [3] as our base model. SVD has demonstrated

superior temporal consistency and realistic generation compared to two-stage finetuing

of text-to-image model. It also serves as the current basemodel for other state-of-the-art

trajectory-animation model including DragNUWA and DragAnything. As shown in

figure 3.3, SVD’s denoiser is a 3D UNet comparmising spatial convolution layer, spa-

tial attention layer and spatial temporal layers within each UNet block. The video is

encoded by a pre-trained spatial VAE into latent feature sequences L. During training,

the 3D UNet takes the latent feature Lt with added noise from schdler in timestep t
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combined with the time step embedding and encoded first frame feature from same

VAE to predict the added noise et−1. During denoising, the condition provided to the

3D UNet is another semantic image feature from a CLIP-based image encoder, which

provides direct guidance for the generated spatial information.

To achieve superior performance for reliable generation, as reported by the authors,

the image-to-video based SVD is fine-tune from another pre-trained Text-to-Video

model and this T2V model undergoes three-stage pre-training process. The first stage

involves selecting a pre-trained Text-to-Image model - Stable Diffusion 2.1. The second

stage further employs a video pre-training based on a carefully curated video dataset

containing 152M samples with updated 3d UNet with cross-frame attention module for

temporal modelling. During data curation, Videos with insufficient motion are filtered

out and the remaining videos are divided into subsets for further performance scoring.

The final stage applies high-quality fine-tuning, where the pre-trained weights are fur-

ther trained at dataset in higher resolution of 320*576 with fewer high-fidelity videos.

With this carefully designed training strategy and an extremely large video collection,

SVD outperforms other popular video models including GEN-AI and Pikalabs and has

also achieved superior performance on downstream tasks like image-to-3D generation

and trajectory editing [43].

3.2.2 Trajectory-Specific Controlnet

In accordance with the proposed Controlnet for text-to-image finetuning [47], our Image-

to-Video Controlnet creates a trainable copy of the Spatio-Temporal UNet’s downsam-

pling blocks from SVD model, incorporating zero-convolutional layers. The designed

trajectory-specific Controlnet takes noised latent features encoded from image-based

VAE, time step embedding, the encoded first frame and encoded Trajectory guidance to

generate feature residuals derived from stacked UNet blocks. These residuals are then

integrated into corresponding up-sampling blocks to inject trajectory-specific control-

ling signals. Through this training strategy, the fine-tuned model not only supports extra

conditioning mode of trajectory animation but also retains its original video generative

understanding in the frozen 3D UNet, which facilitates further zero-shot generability as

shown in section 4.4.4

Trajectory Encoding. Through annotation and region-aware trajectory sampler, our

trajectory is represented as a sequence of images in length L-1, where each image

contains painted sparse sampled red directional lines or curves and green circles for
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ending positions. A Trajectory-Guider composed of residual convolutional blocks

with same downsampling rate as the SVD’s UNet blocks, is employed for extracting

trajectory guidance from the image sequences. The Trajectory Guider’s convolutional

only operates on image channels for spatial feature compressing without influencing for

temporal cross-frame relationship and encoded frame length. Therefore, to ensure the

encoded length matches the generated frames with length of L, a zero padding frame is

added at the sequence end.

To save training memory requirement and accelerate the overall training speed, only the

trajectory-Controlnet are trained in 32 bits, while other modules including Image-based

CLIP encoder, VAE encoder and 3D UNet backbone, are frozen with 16 bits weights.

Futhermore, the attention layers in each transformer block within the frozen UNet

network are all replaced by flash-attention [12] layers for efficient training.

3.2.3 3D-Aware Finetuning of Stable-Video-Diffusion

According to our tested demos and authors’ studies from DragAnything, it is evident

that pre-trained SVD lacks 3D-awareness and generative ability for rotating objects and

large rotating motions. Consequently, it is essential to provide extra 3D guidance for the

trajectory-based fine-tuning process for SVD model. However, indicted from following

experiments, merely injecting trajectory specific Controlnet for video finetuning in pixel

space is uncapable of capturing 3D-aware movement like large-angle rotation and would

result in serious identity collapse for target objects. This is primarily due to the fact that

2D trajectory only provides pixel-wise positional movement, while both object’s pose

and position undergo changes during rotation. In addition, the appearance of rotating

object’s also changes facing different directions, but original SVD’s generation ability

for continous frames lacks a clear 3D reconstruction capacity.

To enhance the Controlnet’s 3D rotation-specific perceptivity, we propose a novel

two-stage fine-tuning strategy by incorporating the generation of 3D bounding box

as 3D guidance prompt. This is achieved as follows: First-stage fine-tuning accepts

initial frame with 3D bounding box and requires model to generate 3D bounding box

sequences for each animated frame along with the moving object as shown in figure 3.3.

Subsequently, once the model is capable of generating accurate 3D bounding boxes,

second-stage finetuning can seamlessly remove the bounding boxes and continuously

improve the reconstruction quality of object’s appearance. Comparing to directly

modelling object-centric rotation pattern, 3D bounding bboxes not only provide more
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apparent, reliable and learnable guidance during generation but also constrain the

object’s entity inside the bounding bbox during generation, preventing serious entity

collapse especially for complex objects. By generating corresponding 3D bounding

boxes, the model efficiently captures the precise rotating facing angles with the 3D

object poses following given trajectory. Through following experiments 4.2, our two-

stage fine-tuning significantly enhances video quality and trajectory accuracy with lower

FID, FVD, Motion-Diff (reflects trajectory accuracy) and higher SSIM score as well as

much better visualization performance.

3.2.4 Spatial Enhancement Loss

Through experiments, it has been observed that, although directly applying 3D-aware

two-stage produces more accurate rotation movement following given trajectories, the

reconstruction consistency for object’s identity can not be maintained with potential

collapse. This issue is particularly obvious for complex objects with asymmetric

textures or complex geometric structures, as its identity may easily collapse for longer

frames. This problem is reasonable because 1) geometric or asymmetric features are

hard for high-quality reconstruction and 2) the averaged MSE loss may lack sufficient

constraint for spatial reconstruction performance because it is calculated by averaging

over temporal and spatial loss which couples model’s temporal and spatial modelling

ability together. To enhance the model’s spatial awareness, as illustrated in 3.3, we

employ an extra spatial loss module by randomly sampling one frame’s latent noise zt

with corresponding short trajectory representation between frame 0− l and generate

single-frame object using same denoising UNet. The new loss function, as shown in

equation 3.1, is calculated by adding original noise loss and spatial loss together with

a weight factor α. After inserting spatial-specific loss, model can stabilize for fixed

background generation in early training stage with less frequent appearance collapse

which improves overall trajectory-controlling performance as shown in experiments

4.3.

lossmse = α∗ lossspa + losstemp (3.1)
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Experiments

In the beginning of experiments chapter, we first illustrates the limitations of current

SOTA models through our tested demos. Then, we demonstrate our employed evaluation

metrics for clarification purposes. Subsequently, it comes to our formal experiments,

we first select a proper and powerful baseline for video generative fine-tuning in a toy

open-domain video dataset and then perform our main experiment with our proposed

two-stage 3D-aware fine-tuning with performance metrics. As the training code of state-

of-the-art trajectory-based animation models including DragNUWA, DragAnything and

MotionCtrl are not publicly avaliable (motionctrl release its training code near the end

of project submission deadline). We self-implemented two methods to compare with our

proposed method: Traj-Disco and Fine-tuning SVD. Traj-Disco is adapted from Disco

for SOTA pose-guided video animation as shown in figure 4.2 and fine-tuning SVD

directly incorporating a trajectory encoded Controlnet to finetune the pre-trained SVD

similar to DragNUWA’s implementation which is also our implementation baseline.

Detailed explanations are provided in section 4.3.1. To further demonstrate and analysis

for our choices for model and dataset design, we further conducted several ablation

studies.

4.1 Limitations of Current Trajectory-Guided Video Mod-

els

To evaluate the controllability of current state-of-the-art Motion-Controllable models.

We selected two state-of-the-art models: MotionCtrl and DragAnything with inferenced

demos based on it.

17
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Figure 4.1: Annotation of trajectory in DAVIS dataset for baseline selection training.

MotionCtrl: MotionCtrl adapts separate camera encoder and trajectory encoder to

distangle between camera movement and trajectory-specific object motions. However,

its text guidance nature can not provide editing for fixed image and the objects in many

synthesized video can not strictly follow the trajectory or presents collapsed, unnatural

object appearance. This demonstrated that simply encoding trajectory into text-to-video

model can not produce accurate trajectory-editing facing complex object or senario.

DragAnything: As reflected in the test demos from DragAnything, when facing

complex or rotating trajectory, the model usually moves the camera following the angle

instead of rotating the object itself. This illustrates its weakness for handling 3D-aware

motions and this problem orignirates from its implicit condition of first-frame fixed

object entity which constainrs the appearnce adapation in following frames.

4.2 Evaluation Metric on Following Experiments

To ensure a convincing and effective performance evaluation for our trajectory-based

video generation experiments on following sections, we employ several metrics to

measure spatial reconstruction quality, temporal consistency and overall trajectory

accuracy. All metrics can be divided into image-based metrics, video-based metrics and

trajectory-specific metric as follows.

Image-based Metric: For Image-based Metirc, we use the Frechet Inception Distance

(FID) [18] and Structural Similarity Index Measure (SSIM) [39] to evaluate overall

spatial generation quality. FID measures spatial reconstruction similarity and accuracy

by comparing the difference between the distribution of ground truth images and

generated images. Comparing to it, SSIM focuses more on overall spatial naturalness

comparison between generated images and target ones. During experiments on self-

reconstructed dataset, SSIM metric provides more performance insights for object-

centric reconstruction quality, as we are rendering images with same background and

SSIM tends to analysis more detailed features of object appearance.
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Figure 4.2: The structure of the implemented Traj-Disco adapted from original Disco for

pose-guided video synthesis. It contains separate Controlnet to receive first-frane image

and trajectory as generation condition.

Video-based Metric: To measure the generated video’s quality in both spatial and

temporal dimensions, we employ the Frechet Video Distance FVD [35] as video-based

metric. Similar to FID, FVD first encodes video samples with pre-trained feature

extractor such as I3D network [8] and then computes latent distribution difference

between generated videos and ground truth videos. FVD is capable of measuring both

spatial video quality and temporal consistency.

Trajectory Metric: Evaluating model solely with FID, SSIM and FVD is insufficient

for demonstrating the accuracy of object movement following the given trajectory. Thus,

we propose another metric named Motion-Diff to measure the trajectory accuracy of

animated frames based on temporal motions across frames. Considering that objects

rotate with changing for-ground angle, which may cause confusion for point tracker

models, we employ the flow estimator UniMatch [44] as utilized in DragNUWA, to

extra dense flow maps from generated and target video and than calculate the difference

between them.

4.3 Implementation Baseline Selection

Aiming to select a proper implementation baseline for reliable video generation per-

formance, we experiments with two popular model setting 1. Two-stage finetuning of

Image Generation Model with inserted temporal modules [36, 23, 9] and 2. Single-stage
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Figure 4.3: Visualization of generated video frames in DAVIS dataset, from top to bottom

are: Ground Truth Video, Video from Disco Image-to-Image, Disco Image-to-Video,

Finetuning SVD with 256*256 resolution and Finetuning SVD with 320*592 resolution.

Finetuning of Video diffusion model [38]. Specifically, for two-stage finetuning of

Image-to-Image (I2I) model, we implemented Traj-Disco based on Disco [36] as shown

in figure 4.2. The first-stage of training leverages Controlnet taken short-trajectory and

initial image as input to finetune for the pre-trained UNet, and second-stage training

continues finetuning with inserted trainable temporal layers with longer trajectories.

For SVD-Finetuning, the structure is similar to our final model structure in figure 3.3,

the Controlnet takes trajectory sequence as input to finetune for the entire 3D UNet.

4.3.1 Open-domain Dataset and Trajectory Annotation

Due to GPU resource and time constraint, we select a smaller dataset, DAVIS, compared

to the training dataset Webvid-10M [2] of DragNUWA and VIPSeg [28] of DragAny-

thing. DAVIS contains 90 videos containing multiple moving objects and corresponding

object mask. For trajectory annotation, as shown in 4.1, we applies similar procedure

with DragNUWA by employing Unimatch’s [44] flow estimator to draw sparse trajecto-

ries of points sampled from each object’s masks. A Gaussian Filter is further applied to

enhance the strength of trajectory information.
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Model FID SSIM FVD

Traj-Disco I2I 144.65 0.439 2194.79

Traj-Disco I2V 188.59 0.587 3067.11

Ft-SVD 256*256 67.60 0.782 1294.29

Ft-SVD 320*576 46.60 0.866 1148.72

Table 4.1: Evaluation metrics for image-based FID, SSIM and video-based FVD for

the baseline selection experiment. Finetune-SVD with 320*576 resolution achieves

significantly better performance compared to two-stage finetuning for Traj-Disco.

4.3.2 Result Analysis

For detailed training implementation, we train each stage of finetuning for 20 epochs

with Adam-W optimizer with initial learning rate of 1e-5. For each method, following

Disco’s implementation, we perform training on 256*256 resolution. To investigate the

impact of finetuning resolution for SVD’s Controlnet, we perform an extra training on

320*576 resolution on SVD following DragAnything.

We divided each video in DAVIS into 16-frame windows with 4 overlapping steps,

finally sampling 1159 training sub-videos and 23 testset sub-videos. For Image gen-

eration based evaluation, we calculate frame-wise FID and SSIM, while for video

generation, we measure FVD-VID and FVD for video of 16 frames.

As illstrurated from table 4.1 and figure 4.3, several conclusion could be drawn: 1. Fine-

tuning SVD achieves significantly more realistic and temporal consistency comparing

to Disco based two-stage finetuning of Image models. 2. Although first-stage Image-

to-Image training of Disco could preserve the spatial consistency, the object’s identity

collapse for longer trajectory and totally broken for second-stage video finetuning. Thus,

pre-trained temporal modelling plays an important role. 3. During SVD finetuning,

larger resolution training produces notable better performance. This is reasonable as

more pixels offers more fine-grained information for Controlnet learning.
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4.4 Experiments on Self-constructed Blender Dataset

4.4.1 Dataset Details

To ensure a fair and robust evaluation of model’s trajectory-specific controlling per-

formance and its generalization ability, we constructed three sub-datasets: 1) Training

dataset, 2) Test-1 dataset containing already seen objects with unseen moving trajec-

tories and 3) Test-2 dataset containing unseen objects and trajectories. For detailed

implementation, training subset contains 50 objects with 15 random sampled trajecto-

ries per object (750 video clips in total) and test-1 subset share same objects with one

sampled unseen trajectory (50 video clips). Test-2 subset contains 10 unseen objects

with two sampled unseen trajectory (20 video clips).

4.4.2 Training Implementation

As mentioned in section 3.2, to save computation memory and training time, only

the Controlnet is trainable with 16 bits weights initialized from UNet’s pre-trained

downsampling blocks or pre-trained Controlnet from previous stage. All other modules

including original UNet, VAE and image-specific CLIP are frozen in 8 bit, an accelerator

package is also employed for further training speedup. Each training stage, including

pre-training stage, contains 30k iteration steps. The used optimizer is Adam-W with

an initial learning rate of 1e-5. Due to resource constraints, all training is operated on

single 40G A100 card with a batch size of 1 where each stage of training took about

45 hours. Considering the sampling diversity originated from Diffusion architecture,

we directly use model weights of 30k steps for evaluation without checkpoint selection

through validation set.

4.4.3 Results Analysis for Self-Constructed Dataset

As illustrated in table 4.2, our method, which incorporates 3D-Aware Two-stage fine-

tuning outperforms original version of single-stage SVD finetuning and Image-to-Video

based Traj-Disco for image-based SSIM, video-based metric FVD and trajectory-based

motion-diff. This further reflects the importance of extra-stage finetuning for modelling

3D-aware rotating movement facing precise trajectory guidance.

Shown from table 4.2 and figure 4.4, several conclusions can be made: 1. Similar

to evaluation performance in section 4.3.2, for disco based two-stage fintuning from
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Figure 4.4: Visualization of generated video frames in self-constructed dataset, from

modesls: Disco Image-to-Video, Finetuning SVD and our proposed method.

text-to-Image model, although the object and background can be reconstructed in few

frames which results in higher FID, it can not ensure general reconstruction naturalness,

temporal consistency and trajectory accuracy in subsequent frames with significantly

lower SSIM, and higher motion-difference and FVD score. Its better single-frame

reconstruction of FID is highly likely due to its first-stage image-based training. 2.

For the baseline method of Controlnet-based finetuning of SVD, although its temporal

consistency and trajectory accuracy outperforms Traj-disco, its overall performance for

all metrics is lower than our final designed model with corresponding worse visualiza-

tion result where the object usually can not rotate accurately and would collapse its
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Model FID SSIM FVD Motion-Diff

Seen objs Traj-Disco 77.10 0.812 336.02 0.151

Ft-SVD 108.36 0.892 212.14 0.143

Ours 101.54 0.904 180.17 0.098

UnSeen objs Traj-Disco 122.65 0.801 440.44 0.176

Ft-SVD 122.16 0.880 265.01 0.186

Ours 114.62 0.895 235.40 0.122

Table 4.2: Evaluation metrics for image-based FID, SSIM and video-based FVD-VID and

FVD for 3D-aware movement animation on our self-constructed dataset for both seen

and unseen objects. Our proposed model incorporating two-stage 3D-aware finetuning

outperforms other baseline including Traj-Disco and directly Finetuning SVD.

identity structure following the trajectory. 3. Comparing to simply empolying trajectory

Controlnet, our final model trained by two-stage 3D-aware finetuning with 3D bounding

box prompt and spatial enhancement loss generates much more reliable object appear-

ance, which the object integrity during rotation, owing to model’s prior knowledge for

3D reconstruction and pose estimation, resulting in significantly improved FVD and

SSIM. Moreover, the model’s trajectory accuracy is much better as reflected by both

a significantly lower motion difference score and the visualization results of rotating

objects following complex trajectory.

We also tested our model on unseen object to reflect their generalizability and to deter-

mine whether our trajectory model overfits for already-seen training objects. We can

observe from table 4.2 that the performance comparison between the three methods on

unseen objects is similar to that on seen objects but with larger performance gap. Our

3D-aware finetuning model achieves better overall performance for FID, SSIM, FVD

score and motion-accuracy which demonstrates its superior ability for generalize across

different scenarios through injecting 3D-prior knowledge. Moreover, it is notable that

Traj-Disco exhibits worse performance distance regarding all four metrics on unseen

objects and can not maintain object’s appearance even in first few frames. This high-

lights the importance of a large pre-trained model on general videos, which contributes

better object-centric temporal reconstruction consistency and trajectory understanding.
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Figure 4.5: Visualization of generated video frames inferenced from the model weight

finetuned in self-constructed dataset on zeroshot open-domain videos with reliable

trajectory animation.

4.4.4 Performance on Zero-shot Controlling on Open-domain Videos

To further evaluate the effectiveness of pre-training in self-reconstructed data, we con-

ducted an additional experiment for 3D-aware trajectory controlling on open-domain

videos, which involves zero-shot data distribution compared to our unreal rendered

dataset. Specifically, we select several video samples with corresponding trajectory

from previous DAVIS dataset and directly apply our Controlnet weights finetuned

from self-constructed dataset for animation based on its first-frame. As visualized in

figure 4.5, it can be seen that our model can successfully animate target object with

accurate movement including rotation following rotating trajectory while maintains the

background with minor natural movement. This result demonstrated that the learned

3D-aware trajectory guided motions is decoupled with for-ground and background

appearance as well as input image’s distribution from finetuned dataset and can be

transfered in zero-shot manner on open-domain videos. It is noteworthy that current

state-of-the-art trajectory oriented works including DragNUWA, MotionCtrl and Dra-

gAnything can not produce similar 3D-aware animation performance of target object

given only 2D trajectory in pixel space.

4.5 Ablation Study

During model development, to optimize model performance and analysis the effec-

tiveness of different modules, we apply experiments mainly on three aspects: 1. The

method of injecting 3D information during model training, 2. Effectiveness of model
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Dataset FID SSIM FVD Motion-Diff

Ours 101.54 0.904 180.17 0.098

- Spatial Loss 102.73 0.901 182.14 0.095

- two-stage finetuning 118.70 0.897 261.38 0.140

Table 4.3: Evaluation metric of our ablation study to compare the performance of trained

model without Spatial-enhancement loss or two-stage 3D-aware finetuning

module design and 3. The importance of dataset scale for our self-reconstructed dataset

for promising performance.

4.5.1 Importance of Model Design

To evaluate the effectiveness of our designed modules to increase model performance,

we conducted the first ablation study to compare the performance metric of models

without our proposed 3D-aware two-stage finetuning pipeline. To be specific, we

conducted two experiments: 1. Training our model without first-stage finetuning

involving 3D bounding box generation and 2. Training our model without spatial

enhancement loss during two-stage finetuning.

As shown in table 4.3 and figure 4.6, without spatial loss, although model captures

comparable trajectory accuracy as the original model, it exhibited decreased spatial

construction quality as reflected in corrupted object identity in visualization results

and decreased FID and SSIM, as well as slight dropping in temporal consistency from

FVD. For the model without two-stage finetuning, it perform much worse on all metrics,

with serious identity collapse which even results in the object vanishing in last few

frames with inaccurate motions. Moreover, its performance is also worse than directly

finetuning SVD, which suggests that for a model with week spatial reconstruction

ability, spatial loss can reversely hinder model learning by imposing too strong spatial

constraints. These results further demonstrate the importance of applying both two-

stage finetuning and spatial loss for reliable and accurate trajectory-guided 3D-aware

video generation.
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Figure 4.6: Visualization of generated animation videos for our trained model without

Spatial-enhancement loss or two-stage 3D-aware finetuning

4.5.2 How to inject 3D Guidance Information

Despite our finally choice of the two-stage finetuning method with first-stage 3D-

bbox generative training, we have experimented on another 3D conditioning mode

named ”bbox-condition”. Considering the effectiveness of 3D bounding box guidance,

we designed an alternative 3D-aware module (shown from figure 4.7) by providing

first-frame’s bounding box image with a bbox guider. This bbox guider first encodes

3D-bbox image into feature Bc through similar structure as our trajectory-guider and

then concatenates it with the trajectory feature from trajectory-guider by repeating

it n times into Bc1,Bc2, ...,BcL. To investigate whether bbox-condition mode is also

beneficial for model performance, we employ three experiments: 1. model trained with

our two-stage finetuning only, 2. model with 3D bbox-condition only and 3. model

with two-stage finetuning and bbox-condition in each training stage.

As illustrated in table 4.4, employing only two-stage bounding-box aware finetuning

outperforms model with 3D-bbox condition over all metrics with frequent inaccurate an-

imated object’s movement and object poses. Moreover, even combing first-frame bbox

condition with two-stage finetuning, the model performance also drops especially for
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Figure 4.7: Visualization of generated video frames in self-constructed dataset, from

top to bottom are: Ground Truth Video, Disco Image-to-Video, Finetuning SVD and our

proposed model.

Model FID SSIM FVD Motiond-Diff

Ft-SVD 108.36 0.892 212.14 0.143

+ bbox condition 117.56 0.891 205.43 0.136

+ 3D two-stage ft 101.54 0.904 180.17 0.098

+ both 110.92 0.898 196.01 0.105

Table 4.4: Evaluation metric of our ablation study to compare two potential methods

for 3D-aware conditioning including two-stage finetuning with 3D bbox and employing

bbox-condition through Controlnet.

generated temporal video quality. This result demonstrates that providing the 3D bound-

ing box in first frame alone is not helpful for model’s understanding of 3D knowledge

for rotating poses, while it increases model’s learning difficulty with extra parameters.

This is reasonable because, compared to forcing the model to generate3D bounding

boxes sequence, single frame condition of first frame can not provide awareness of

potential temporal changing trend for 3D positional information following trajectory.

In contrast, generating 3D bounding box sequences is capable of combining explicit

modelling of objects’ continuous 3D motions during trajectory-animated training.

4.5.3 Dataset Scale

For reliable and accurate trajectory animation both on seen rendered dataset and unseen

dataset, it is crucial to have a large enough dataset containing corresponding trajectory

and animated videos for the added Controlnet training as done in DragNUWA and Dra-

gAnything [43]. During the experiments for model developing, we also observed that
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Model FID SSIM FVD-VID FVD

Seen objs Small Data 105.03 0.896 201.13 0.128

Medium Data 110.84 0.899 204.52 0.099

Large Data 101.54 0.904 180.17 0.098

UnSeen objs Small Data 130.72 0.890 269.37 0.142

Medium Data 115.63 0.893 262.12 0.107

Large Data 114.62 0.895 235.40 0.122

Table 4.5: Evaluation metric of our ablation study for the performance from models

trained with different data scale.

the trained model with the same structure suffered from insufficient self-reconstructed

dataset. To further evaluate the importance of dataset scale and provide several training

hints for following trajectory-based generation works, we conducted experiment on

three different data scale: small (Sgen), medium (Mgen) and large (Lgen). Lgen contains

same data amount of 750 videos with 15 clips for 50 objects. The small set Sgen contains

250 videos with 5 clips for each object and the medium set Mgen have 500 videos with

10 clips per object. To ensure fair comparison, all models on each dataset are trained

with two-stage 3D-aware finetuning for 30k per stage.

As illustrated in table 4.5, model trained with the largest dataset achieve better overall

performance across all metrics on both seen and unseen dataset compared to model

trained with medium and small dataset. This phenomenon verifies that reliable trajectory

animation and 3D-aware reconstruction capacity actually requires large dataset to pro-

vide sufficient 3D-aware understanding across different scenarios facing comprehensive

trajectories. Moreover, it can be noticed that the overall performance gap between

largest data and medium data is more obvious than that between medium and small

datasets, this phenomenon indicates the fact that larger data can further boost model’s

trajectory-guided generative ability at higher rate while its model’s overall convergence

and generalizability suffers with insufficient data.

4.5.4 Trajectory Representation

In this section, we conduct ablation experiment to evaluate the influence of incorporating

sparse trajectories sampled from region-aware trajectory sampler during data annotation
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Traj-sampler FID SSIM FVD Motion-Diff

Seen objs No 111.85 0.900 217.66 0.124

YES 101.54 0.904 180.17 0.098

UnSeen objs No 116.75 0.892 237.86 0.155

Yes 114.62 0.895 235.40 0.122

Table 4.6: Evaluation metric of our ablation study for comparing the model performance

with and without trajectory representation of sparse trajectories from region-aware

sampler.

process. Specifically, we experiment on the model trained with single driving precise

trajectory and the model with sparse trajectories representation to verify whether more

sampled trajectories surrounding object can enhance trajectory understanding and

facilitate the use of hand-crafted imprecise trajectories during inference. In detail, we

employ same test sets including imprecise sampled trajectories as previous experiments

and modify training time encoded trajectories into the precise one for same 3D-aware

two stage fine-tuning strategy.

As illustrated in table 4.6, when compared to directly employing single driving trajectory,

the application of trajectory sampler to generate more sparse and random trajectories

around object yields better performance regarding all metrics on both seen and unseen

objects, particularly in relation to trajectory accuracy and video quality measured by

FVD score. These findings further evaluates the hypothesis that more sparse and

inaccurate trajectories (those not strictly following the object center) during training

enhance model’s awareness for trajectory-based motion guidance and support the

generalization for hand-crafting trajectory.
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Discussion

5.1 Contribution of Our Project

As shown from our experiments, several contributions can be observed from our self-

constructed data and proposed methodology:

5.1.1 Importance of Self-Constructed Data

As illustrated from our experiments on DragAnything’s performance for rotating and

large trajectory, fine-tuning video generation model on open-domain videos cannot

incorporate sufficient 3D understanding for motions like rotation. Through finetuning

model on our self-constructed dataset, the model is capable of rotation following

complex trajectory for target object with satisfied spatial and temporal consistency.

Furthermore, by comparing between DragAnything’s performance and our model’s

zeroshot performance on open-domain videos, we can discover that the the prior

knowledge of 3D rotation and large motions can be injected by pre-training the model

on our constructed dataset with generalization potential on wild videos. Although there

is domain gap between constructed data in blender software and realistic videos, model

finetuned from Controlnet can capture the trajectory guidance with corresponding 3D

influence of object’s appearance by decoupling motion information between background

and data distribution of images.

5.1.2 Importance of Two-stage 3D-Aware Finetuning

As discussed in the ablation study, simply employing trajectory finetuning through Con-

trolnet still cannot handle 3D rotating motions, even in our self-constructed dataset, with

31
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serious identity collapse problem and inaccurate animated motions. This phenomenon

further emphasizes the importance of two-stage 3D finetuning which successfully

generated videos with consistent object identity during rotation with more accurate

motions following complex trajectory. Facilitated by 3D bounding box as 3D signals

containing both rotating 3D pose and temporal positions, our model achieve superior

performance on all metrics including Image-based FID, SSIM, Video based FVD and

Trajectory-based motion difference.

5.2 Limitation and Future Work

Although our current model with 3D-aware two-stage finetuning ans spatial enhance-

ment loss has achieved superior performance for rotating animation following large

trajectory, several problems still remains.

5.2.1 Reconstruction Quality for Complex Object

As illustrated in section 4.5.1, incorporating spatial loss has successfully stablized the

reconstruction of rotating object’s appearance. However, the appearance identity still

collapse in special situations if objects have too complex geometrical structure like

armchair with multiple legs. This problem is highly due to the pre-trained SVD does not

involve enough awareness for 3D reconstruction on complex structure and our current

dataset not being large enough to involve sufficient prior knowledge during finetuning.

For future work, to achieve more realistic reconstruction for rotating objects, we will

construct a much-larger rendering dataset to provide 3D prior information with more

diverse objects sampled from objverse-xl [13] which is the largest high-quality 3D

objects dataset containg millions of high-quality 3D models.

5.2.2 Domain Gap between Rendered Dataset and Real Videos

In this project, we have demonstrated that our proposed model is capable of 3D-

aware trajectory animation for in self-rendered dataset and exhibits potential zero-

shot animation capacity on open-domain videos. However, as shown in figure 4.5,

the animation for the object movement produces unnatural synthesized frames with

darker background and blurred object identity in the final few frames. For example,

the background for the black car turns darker with blurry car’s rear-end appearance.

Consequently, for our future work, we are attempting to bridging the domain gap
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between rendered data and real videos through several potential methods including

1. Constructing more realistic environment for blender rendering with larger realistic

3D models and 2. Collecting a diverse-set high-quality videos containing obvious 3D

motions like rotating through designed data filtering pipeline to ensure our selected

videos do not contain obvious camera movement. Subsequently, we plan to fine-tune our

pre-trained model with a lower learning rate or extra Controlnet to adapt our pre-trained

model’s 3D-awareness from limited domain of rendering data to general open-domain

scenarios.
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Conclusions

In conclusion, our project self-constructed a dataset containing object’s 3D motions

like rotating with corresponding trajectory and successfully introduced a 3D-Aware

Video Generation model with a novel two-stage 3D-aware fine-tuning process which

can generate identity-consistent 3D motions like large-angle rotation following complex

trajectory in our self-constructed dataset. Our proposed model exhibits corresponding

enhanced metric and visualization performance and further demonstrates its potential

3D controlling generalizability on zero-shot open-domain videos.

Our primary motivation lies in tackling the main challenge of video generation for gen-

erating accurate 3D rotation motions, especially when facing large-angle and complex

trajectory. Our experimental findings indicate that this challenge arises from two main

problems 1. open-domain videos lack sufficient 3D rotating scenarios and 2. Simply

injecting 2D trajectory controlling can not provide extra 3D conditioning prompt neces-

sary for changing object pose and appearance during rotation. To address these issues,

in our project, we first self-constructed a realistic rendering dataset containing object’s

large-angle rotation driving by randomly sampled complex arc or S-trajectory in blender

software. Built upon this, we designed a two-stage 3D-aware fine-tuning strategy by

forcing model to generate object with 3D bounding box in first stage as 3D prompt to

facilitate the capture the change of object’s position, pose and appearance during rota-

tion following given trajectory. After generating accurate 3D bbox sequences, in second

stage, model can easily learn to eliminate the 3D bounding box and thereby enhancing

the reconstruction quality of the object’s identity. Additionally, we employed spatial

loss to improve model’s reconstruction quality for more complex object’s appearance

across longer frames by randomly passing single-frame noise with corresponding short

trajectory to generate the respective single-frame object.

34
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Compared to simply encoding trajectory for Controlnet’s condition signal, our proposed

method achieves superior performance regarding all image-based metric, video-based

metric and motion difference which represents significantly higher temporal and spatial

consistency as well as improved trajectory accuracy. Through ablation study, we further

validates the effectiveness of our model design, the appropriateness of our method of

injecting 3D conditional guidance and the usage of trajectory sampler. Furthermore,

leveraging the scalability of our self-generated dataset, we investigate the impact of

dataset scale for achieving stable rotating motions and discover that our model suffers

from insufficient smaller data.

In our future work, we are planning on two primary objectives 1. constructing a larger-

scale data to further improve model’s 3D-awareness facing complex objects and 2.

collecting and filtering a high-quality open-domain videos to fully adapt the model’s 3D-

awareness from our self-constructed data into realistic videos, achieving state-of-the-art

trajectory controlling performance.
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