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Abstract

This project introduces a novel method for displaying uncertainty of few-shot novel

view synthesis models, with a focus on approaches that use neural radiance fields as a

base. Leveraging inference-time dropout, our approach quantifies uncertainty without

additional training costs, while improving rendering fidelity across various datasets. We

support our design choices using theoretical reasoning, with tools from information

theory and statistics, as well as empirically through a variety of experiments.

The results show that our method has strong positive correlation (formally quantified

using rank correlation coefficients) with the output error, which is a key trait of a good

uncertainty measure. We also discuss how our contribution can be utilised beyond this

report for further improvements in output quality.
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Chapter 1

Introduction

1.1 Motivation

Novel view synthesis (NVS) is the process of generating new, unseen views of a scene

from a limited set of existing images or views. The ability to faithfully generate

high-fidelity novel views is an important research problem in computer vision and

beyond: it can be utilised for inferring scene information in robotics for navigation path

planning or object manipulation, as well as for enhancing visualisation and 3D scene

representation in augmented and virtual reality [3]. Its applications are expanding daily

and are especially relevant in the era of generative AI. The current challenge in the

field is few-shot novel view synthesis: although we have limited information about the

scene, we still require rendering a full, faithful representation. While it is clear that with

fewer views some areas of the scene might not be fully captured, our goal is to infer

and approximate the function representing the whole scene. A simple illustration of a

novel view sythesis task is shown in Figure 1.1.

Figure 1.1: An example of a multi-view novel view synthesis task [4]. Given multiple source

views, we aim to synthesise a target image with an arbitrary target pose only from given source

images.

Novel view synthesis models work under the tacit assumption that the correct

functions that are needed to generate new views can be uniquely determined from the

1



Chapter 1. Introduction 2

sparse set of given views. However, unseen views do not necessarily consist of the same

frequency features. The known views can possibly be represented with different sets of

features, so the set that a NVS model learns perfectly from the training process might

not be the best one for the unseen views. Often the difference in performance on the

training set versus the test set is drastic and highly noticeable. This suggests that the

common hypotheses on the properties of the function that represents the 3D scene do

not truly capture the underlying structure.

Furthermore, an interesting phenomenon observed in state of the art (SOTA) models

for few-shot novel view synthesis is that different configurations of the model – for ex-

ample, different error functions, adding adversarial training using networks with various

structures, or even different weight initialisations – can yield SOTA performance for

certain views. Marginal gains in performances often cannot be prescribed to the overall

improvement of the solution, but rather the particular environment of the experiments:

different random seeds, different GPUs or versions of libraries/software.

In summary:

• the model that performs the best on average does not perform the best in every

view, and

• a model that performs the best in one computational environment does not neces-

sarily perform the best in a different one.

Therefore, understanding the different outputs and corresponding performances a model

can achieve, and exploring (un)certainty in its outputs becomes an interesting problem

of high value, especially in fields where correctness and accuracy of the novel views

are crucial. However, since novel view synthesis models are deterministic (evaluating

each input multiple times in a constant environment will give the same output), they are

unable to quantify this uncertainty associated with their learned functions. Quantifying

the uncertainty contained in a NVS model is a relatively new area of study, and existing

methods either use probabilistic techniques and/or elaborate changes to the conventional

NeRF training pipeline that require costly computational power [5].

1.2 Aims and objectives

The goal of this project is to design a simple, yet effective uncertainty measurement

technique of the SOTA performing model family (neural radiance fields). We are

interested in analysing the variations we can produce, and what kind of uncertainty does
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the network present in its key components, as this provides meaningful insight into the

limitations of models for few-shot novel view synthesis. We expect that unseen views

share certain features with known views, but different feature/function sets might share

more than the others.

Our key objectives, on a high level, can be defined as follows.

• Integrate an uncertainty measurement method to our baseline model such that

the features and functions perform perfectly on known views, on par with the

baseline.

• Design and implement the optimisation algorithm of the method’s hyperparame-

ters, and support it with analytical reasoning.

• Evaluate the method’s performance against the baseline, and interpret the results

to devise potential future research directions.

• Verify the uncertainty measurement method by relating it to the errors of the

model’s outputs against the ground truth and using relevant statistical metrics.

Our contribution can be highlighted in several ways. As mentioned, there have not

been many publications that have attempted to quantify uncertainty within the most

popular novel view synthesis models, but as of recently it is a research area in rising

[6, 5]. We also found that no previous work on uncertainty in novel view synthesis,

particularly within the model family of the SOTA model, considered this approach.

This makes a valuable addition to the relevancy and expected impact of this thesis.

Furthermore, our method is model-agnostic, so it can be applied to other NVS models

besides our baseline to produce similar results. Beyond quantifying uncertainty, we

found that a large proportion of the results produced by our modifications outperform

the baseline, showing promise that the method will be used to further enhance few-shot

NVS models.

Finally, we aim for this work to be used as a comprehensive guide to model uncer-

tainty and the current challenges regarding its quantification and measurement.

1.3 Thesis structure

First, we delve into the technical background relevant to the research, which is split into

two chapters: introduction to NVS and introduction to uncertainty estimation. Chapter 2
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provides an overview of the foundational concepts in 3D scene representation, focusing

on NeRFs (Neural Radiance Fields). We also discuss the main challenges that NVS

models face in few-shot scenarios, and how techniques such as Positional Encoding

enhance the learning process. We also introduce our baseline model on which we will

apply our modification. In Chapter 3, as a continuation of the background, we present

the theoretical framework needed to understand quantifying uncertainty in few-shot

NVS models. We explain the mathematical interpretation of uncertainty, including the

two main types of model uncertainty and how this relates to our method. Related work

in this domain is also reviewed, providing context to why a novel solution is needed.

Chapters 4 details the methodology employed in the thesis, beginning with an

introduction to our novel uncertainty measurement method based on inference-time

dropout. We elaborate on our implementation details and key design choices such as

dropout rate optimisation and position, as well integrating the uncertainty into the model

output. We also introduce our testing environment: the dataset and evaluation metrics.

Following our solution design, we discuss the experimental setup used to evaluate

the proposed uncertainty quantification method in Chapter 5. The results are analysed

using the predefined fidelity metrics, and we analyse the impact of different dropout

configurations. We also present a visualisation of uncertainty and its correlation with

model performance, demonstrating the effectiveness of the method in enhancing NVS

models.

Finally, Chapter 6 summarises the key findings of the research and discusses the

broader implications of the proposed method for few-shot NVS models. We outline

potential directions for further research and improvements in uncertainty quantifica-

tion. The appendices provide additional technical details, including implementation

specifications, theoretical work, and results of the supplementary experiments. These

materials are intended to facilitate the understanding of the results and to offer deeper

insights into the experiments conducted during the thesis.



Chapter 2

Background

This chapter serves as both an introduction to NVS models, and as a deeper dive into the

importance of our work and the relevant progress made in the field. First, we provide an

overview of current solutions in NVS, focusing on the two main interpretations of 3D

scene representation: Neural Radiance Fields (NeRF), and 3D Gaussian Splatting. We

then discuss the current challenges with adapting these models for sparse inputs, and

use this discussion to navigate our choice of baseline model. Finally, we summarise the

potential applications of uncertainty for novel view synthesis models, the most recent

publications that have tackled similar research questions to us and their flaws.

2.1 3D Scene representation in NVS

2.1.1 NeRFs

One of the major breakthroughs in view synthesis was made by [7] in 2020 with

neural radiance field scene representation – NeRF. In NeRF, a scene is represented

as a continuous volumetric field of particles which emit and block light. To learn the

function of the field, it uses a multilayer perceptron (MLP) whose input consists of a

location x ∈ R3 and a viewing direction d ∈ R2. NeRF renders each pixel of a camera

as follows (see schema in Figure 2.1).

1. A ray r(t) = o+ t
−→
d is emitted from the camera’s center of projection o along the

direction vector determined from d such that it passes through the pixel.

2. A sampling strategy is used to determine a vector of sorted distances t between

the camera’s predefined near and far planes tn and t f . For each distance tk = t(k),
we compute its corresponding 3D position along the ray xk = r(tk).

5
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3. Each position is then transformed using a positional encoding PE(·) (more on

positional encodings is discussed in Section 2.2.1). The positional encoding of

each ray position PE(r(tk)) is provided as input to an MLP parameterised by

weights w, which we denote Fw.

4. The output of the MLP is an emitted colour c = (r,g,b) and volume density α

for each input pair (x,d). Finally, these function values are composited into an

image using volume rendering techniques [8].

Figure 2.1: Pipeline of NeRF [7]. The 5D coordinates are sampled along camera rays and fed

into a multilayer perceptron Fw (FΘ on the schema) which outputs color (RGB) and volume

density (σ). Using volume rendering techniques, this output is transformed into the output

image.

The radiance field F describing the volumetric scene can be defined as

F = {(c(x,d),α(x)) : x ∈ R3, d ∈ R2}, (2.1)

where the volume density depends only on the spatial location. Since the publication of

the original paper, many variations of NeRF have been presented – aiming to improve

fidelity, runtime, memory consumption or generalisation to unseen objects. To this day,

the fundamental approach of NeRF is a very popular research topic, and it has found

applications beyond computer vision.

2.1.2 3D Gaussian Splatting

Another approach for view synthesis is 3D Gaussian Splatting (3DGS), a novel ras-

terisation technique that uses 3D Gaussians to represent scenes instead of continuous

volumetric radiance fields. This means a scene is defined a set of millions of points,

where each point is a 3D Gaussian with its own unique parameters that are fitted per
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scene [9]. A 3D Gaussian is defined as

G(x) = exp

(
− x⊺Σ−1x

2

)
, (2.2)

where Σ is the covariance matrix. Representing the Gaussians as discrete ellipsoids with

opacity and view-dependent color information contributes to better efficiency, while the

representation’s differentiability makes it suitable for optimisation.

(a)

(b) (c)

Figure 2.2: Pipeline of 3D Gaussian Splatting (Figure 2.2a). First, Structure from Motion is

used to estimate a point cloud from a set of images, followed by converting each point to a

Gaussian. The model is trained using SGD, differentiable Gaussian rasterisation and automated

densification and pruning (pictured in Figure 2.2b). Example of a rendered view with each

Gaussian rasterised fully opaque is shown in Figure 2.2c [9].

While 3DGS has significant training acceleration compared to NeRF and real-time

rendering, it requires much higher memory capacity than NeRF-based models and it is

not compatible with current, most popular rendering techniques (the official implemen-

tation suggests using the System for Image-Based Rendering viewer). Furthermore, it

also struggles with low-detail, splotchy artifacts that are usually different from NeRF –

more coarse and anisotropic, and especially noticeable in the case of sparse inputs like

in Figure 2.3.
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Figure 2.3: Example of a 3DGS rendering with 8 training views. The artifacts can be clearly

seen in the center and bottom left.

2.2 Challenges with few-shot NVS

State of the art NVS solutions can achieve great fidelity and accuracy when given a large

amount of input views – the original NeRF implementation assumes 100-150 inputs

available per object [10]. However, these solutions struggle when it comes to few-shot

NVS (e.g. 3 to 10 input views, as presented in Figure 2.4). Multiple modifications have

been designed with the idea to require less inputs but retain output quality: leveraging

extra information using external models, training on large, curated datasets, or geometry

regularisation. These methods noticeably increase the computational complexity of the

baseline NeRF model.

Figure 2.4: Example of NeRF’s outputs when trained on three views per object [11].

A notable flaw of deep networks is the appearance of spectral bias – bias towards

learning low frequency functions. Over-parameterised networks prioritise learning

simple patterns that generalise across data samples1. This is especially evident in NeRF

1For a more detailed mathematical explanation on the spectral bias using Fourier analysis, see [12].
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for few-shot scenarios, as the model is even more sensitive to susceptible noise since

there are fewer images to learn coherent geometry.

2.2.1 Positional encoding

One way NeRF heuristically allows its MLP to better fit data that contains high frequency

variation is using positional encoding: instead of Fw operating directly on the input,

the coordinates are first mapped to a higher dimensional space using a high frequency

function, which in this case was a simple sinusoidal mapping PE : Rd → R2L·d with

PE(p) =
[

sin
(
20

π ·p
)
,cos

(
20

π ·p
)
, . . . ,sin

(
2L−1

π ·p
)
,cos

(
2L−1

π ·p
)]
, p ∈ Rd.

The inputs were normalised to the [−1,1] interval first, and the value of L was em-

pirically set to 4 for the viewing direction values and to 10 for the location vector.

We can express this addition as reformulating Fw as a composition of two functions,

Fw = fw ◦PE, where fw is the learnable function of the MLP.

This encoding is a special case of Fourier features [13]. While a Fourier feature

mapping can be used to overcome the spectral bias of coordinate-based MLPs towards

low frequencies by allowing them to learn much higher frequencies, bringing noticeable

improvement as in Figure 2.5, the over-fast convergence on high-frequency components

that this mapping defines impedes NeRF from exploring low-frequency information,

making the model significantly biased towards undesired high-frequency artifacts.

Figure 2.5: Influence of the positional encoding on NeRF outputs – more high-frequency details

are present [13].

Furthermore, stationary positional encodings are difficult to configure without
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adequate prior knowledge, which is why they still often remain ineffective in retaining

high-frequency components. This makes having the positional encoding’s number of

components and corresponding frequencies dependant on the inputs extremely desirable.

To address this issue, [14] proposes the Adaptive Positional Encoding whose frequency

parameters are trainable. More formally,

γ(p) = [γ0(p),γ1(p), . . . ,γL−1(p)]⊺, (2.3)

where γk(p) = [sin(ωkp),cos(ωkp)], and [ω1,ω2, . . . ,ωL]
⊺ are the trainable frequency

parameters. The parameters are adjusted during training and converge to the proper

frequency bands of the scene representations, ensuring a better frequency search space

for the current scene [14]. The downside of this approach is that the learning task for

training these parameters is non-trivial and requires learning high dimensional functions

in an unbounded domain.

2.3 Baseline model

2.3.1 FreeNeRF

The state of the art base model for few-shot novel view synthesis is FreeNeRF, devel-

oped as an enhancement to NeRF’s performance under data-scarce conditions while

performing comparable to the original model, but with with far fewer inputs [15]. As

of now, there have not been any adaptations of 3DGS for sparse inputs, with the basic

model performing significantly worse than FreeNeRF.

FreeNeRF introduces two important additions to the model that are simple to

implement and do not significantly increase the model’s training or inference time. The

first is a frequency regularisation mechanism: initially, the model is restricted to learning

low-frequency details, which ensures stable training and prevents overfitting to noise. As

training advances, higher frequencies are progressively introduced through a frequency

mask, enabling the model to capture finer details such as edges, textures, and subtle

lighting variations. The other regularisation mechanism FreeNeRF introduces is for

occlusion. When parts of the scene are obscured from certain viewpoints, NeRFs usually

produce artifacts or incorrect reconstructions since the data in those areas is incomplete.

The occlusion regularisation term is applied during training, particularly near the

camera’s position, where dense fields of information may be lacking. By discouraging

the model from overfitting to sparse or noisy data in these regions, FreeNeRF reduces
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the likelihood of artifacts and improves the overall quality of novel view synthesis, even

in challenging occluded scenes [15].

The model performs 200 thousand training steps, with 8 input (training) views and

25 output (test) views. We set the frequency regularisation mask to gradually decrease

to 0% over the course of first 50% (100,000) of the steps.

2.3.2 Experimenting with positional encoding

We replace the standard PE with the novel Sinusoidal Positional Encoding (SPE) [16]

which can be simply represented as

SPE(x) = sin(ωPE(x)),

where the ω is a trainable vector that represents the learned features. This is equivalent

to applying the function sin(·) by a sinusoidal activation on the first layer of the MLP

(after the positional encoding):

sin(WSPEPE(x)) =
[

sin
(
ω
⊺
1 sin(πx)

)
,sin

(
ω
⊺
2 cos(πx)

)
,

. . . ,sin
(
ω
⊺
2L−1 sin(2L−1

πx)
)
,sin

(
ω
⊺
2L cos(2L−1

πx)
)]⊺

, (2.4)

where WSPE = [ω1, . . . ,ω2L]
⊺ is the trainable matrix of the weights of the first fully con-

nected layer in the MLP. The benefit of this approach, besides its simple implementation

and plug-and-go nature, is that it is designed to adaptively learn frequency features that

are closely aligned with the true underlying function. It essentially has the standard PE

as a subcase (so if the PE manages to capture the appropriate features, SPE can easily

approach PE), but it can also learn the number and frequencies of Fourier series of the

encoding from the inputs, making it more tailored to the data.

As mentioned in the introduction, although this baseline performs the best in

the environment of [16], small changes in its components like overall loss function,

discriminator network type, or even different weight initialisations, can affect the model

performance. We run experiments both with SPE and without (i.e. with the standard

PE) to support our evaluation.

2.4 Why uncertainty matters?

While we have touched upon the importance of quantifying model uncertainty for

enhancing models or making accurate comparisons between models, it is important
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Figure 2.6: Example of ground truth vs baseline that despite all the improvements continues to

struggle with learning high-frequency colour and geometry.

to showcase that knowing a model’s uncertainty is also a critical aspect of practical

applications of NVS models.

Several works have shown that the 3D representations learned by NeRF can be used

for different downstream tasks that have relevant applications in fields such as robotics

or augmented reality: previously explored examples include camera-pose recovery, 3D

semantic segmentation, and depth estimation [17]. In these tasks, providing information

about the confidence associated with the model outputs is crucial and would expand

the possible real-life applications. By incorporating uncertainty-aware mechanisms,

systems can manage visual artifacts more effectively and allow users to understand the

limitations of the synthesised views, helping them adjust their expectations and interpret

the views more accurately [5]. Systems that incorporate uncertainty can also highlight

regions of high uncertainty, which is particularly valuable in applications that require

real-time feedback and adjustments from users based on the model’s confidence levels.

Another example is the possible high-stakes applications of NeRF or other NVS model

in general, such as medical diagnostics [18] or autonomous driving [19]. In such fields,

quantifying uncertainty is vital for risk management and decision-making. Accurate

uncertainty estimates enable more informed and safe decisions, as they provide insights

into the potential risks associated with the synthesised views. Managing these risks

is crucial for ensuring the reliability and safety of systems that rely on novel view

synthesis [1].

It is clear that understanding and addressing uncertainty in novel view synthesis

models is essential for improving model reliability, enhancing user experience, enabling

adaptive systems, supporting model evaluation, and managing risks. Research in the

field of model uncertainty enables progress and evolution of possible applications of

NVS models.
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2.5 Previous work

One of the first and simplest methods developed for accurate measurement of predictive

uncertainty in neural networks was the Deep Ensembles method [20]. This method

involves training multiple instances of the same model architecture, each initialised with

different random weights – it is expected that these models converge over a very large

number of steps to the same model – and the variance between the obtained predictions

of the individual models is interpreted as the level of uncertainty. The method is simple

to implement and requires almost no tuning for the training process. However, the

primary drawbacks of Deep Ensembles are their computational and resource demands:

training and maintaining several models simultaneously require significantly more

processing power and memory than single-model approaches [5]. Still, the ensemble

learning approach to uncertainty measurement remains a foundation of many newer

solutions.

There have not been many publications specifically targeting uncertainty measure-

ment in NeRF, but we highlight the two main directions from the same group of authors.

S-NeRF (Stochastic NeRF, [3]) extends NeRF by modeling the radiance field as a

distribution rather than a deterministic value. It uses a Bayesian learning approach to

estimate the posterior distribution over all possible radiance fields for a given scene by

modeling radiance-density pairs as stochastic variables following a distribution whose

parameters are optimised during learning. In this manner, uncertainty estimations can be

obtained during inference by computing the variance over multiple predictions obtained

from different radiance fields sampled from this distribution.

Figure 2.7: Pipeline of Stochastic NeRF, presented in [3].

The current state-of-the-art CF-NeRF (Conditional-Flow NeRF, [1]) uses a similar

strategy to S-NeRF – it also learns a parametric distribution approximating the posterior,

but it avoids the limitations of S-NeRF by not imposing that the distribution can

be fully factorised. Instead, it incorporates latent variable modeling to jointly learn
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radiance and density distributions for all points in the scene. The radiance-density joint

distribution is efficiently modeled using Conditional Normalising Flows: a class of

machine learning models used to transform samples from a simple known distribution to

variables following an arbitrary, more complex probability density function by applying

a series of invertible (bijective) transformations. The similarities and differences in the

approaches of these two methods can be more clearly seen in Figure 2.7 and Figure 2.8.

Figure 2.8: Pipeline of Conditional-Flow NeRF, presented in [1].

Both of the aforementioned methods have fundamental flaws in their approaches.

S-NeRF’s distribution approximation assumes a simple and fully-factorised distribution

for qw, as well as (conditional) independence of the radiance and density for each

location-view pair in the scene, which is usually not true for adjacent spatial locations

and leads to noisy or low-quality images and depth maps [3]. On the other hand, CF-

NeRF can be viewed as a more complex and computationally heavy ensemble method,

with the full training taking up to 50 hours. Finally, both CF-NeRF and S-NeRF rely on

extra information in the form of depth maps, so their performance is not reproducible

when it comes to a dataset like nerf synthetic and the results obtained have no real

interpretation or meaning, such as in Figure 2.9.

Figure 2.9: Example of an extremely poor quality result using CF-NeRF.
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Quantifying uncertainty

Model uncertainty in machine learning can be classified into two types: aleatoric

and epistemic. Commonly, those uncertainties are assumed to be additive, and their

sum describes the model’s predictive uncertainty. Aleatoric uncertainty describes the

variability of an experiment outcome due to inherently random effects that cannot be

reduced by any additional source of information (for example, data generation has a

stochastic component). Epistemic uncertainty refers to uncertainty caused by a lack

of knowledge about the best model, which can in theory be reduced using additional

information. Simply put, epistemic uncertainty refers to the reducible part, while

aleatoric uncertainty refers to the irreducible part of the predictive uncertainty [21, 22].

The goal of this chapter is to deepen the reader’s understanding of what is uncertainty

and how its interpretations using probability, statistics and information theory will drive

the logic behind our solution.

3.1 Why epistemic uncertainty?

Our method, along with the vast majority of the research in the field of novel view

synthesis, focuses on epistemic uncertainty, as we know that with sufficient inputs, like

in standard NeRF or 3DGS, we can achieve (close to) perfect accuracy with standard

datasets (such as nerf synthetic). Therefore, few-shot NVS models can improve

their knowledge using additional input, and we expect that most types of input data do

not bring any aleatoric uncertainty as they have little to no stochastic components.

We still empirically verify this assumption by observing output of the deterministic

model when random Gaussian noise is added to the input. The noise was added to the

input vectors before applying positional encoding. The two methods of noise addition

15
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Figure 3.1: Examples of outputs produced using noise concatenation of different dimensions

and variance to the input.

that we implemented were noise concatenation and adding a noise ’dimension’ to the

input tensor. We also considered different variances of the noise, as well as different

noise lengths/number of layers added. Adding input to the noise either deteriorated

the fidelity of all outputs significantly (such as in Figure 3.1) or produced close to no

variation, which means inputs themselves have no significant noise or uncertainty for

the model.

3.2 Mathematical interpretation of uncertainty

Predictive uncertainty is traditionally modeled using a probabilistic approach, by infer-

ring the predictive distribution p(y|x) of outcomes y for inputs x. One way to learn a

predictive distribution is to learn a distribution over functions, i.e. model parameters

[23]. If our machine learning model has parameters w, then the predictive distribution

under the model is denoted as p(y|x,w). In the case of NeRF, w are simply the weights

of the neural network. From now on, we assume that the true model can be represented

by our chosen model class: for example, a multilayer perceptron in NeRF. For the true

model parameters w∗ we have that p(y|x,w∗) = p(y|x).
Diving deeper into the probabilistic formulation, we can further describe predictive

uncertainty and its components with the help of a distribution that depends on the

training dataset D = {X,Y}: that is, the posterior probability p(w|D) ∝ p(D|w)p(w)

of certain model parameters w being the true model parameters w∗ given the training

datset. This posterior captures the set of plausible model parameters given the data [22].

To relate the posterior and the predictive distribution, we can use Bayesian model

averaging (BMA). BMA is a statistical method designed to account for model uncer-

tainty. Rather than relying on a single model to make predictions, we consider a set of
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candidate (plausible) models based on the observed data, each representing different

hypotheses about the underlying data-generating process, and average their results to

obtain a more robust prediction [24, 25]. BMA is particularly useful in applications

with several plausible models, which is appropriate for our setup.

The Bayesian model average predictive distribution is defined as

p(y|x,D) =
∫

w
p(y|x, w̃)p(w̃|D)dw̃, (3.1)

i.e. the likelihood p(y|x,w) is weighted by its corresponding posterior probability

p(w|D) (the “plausibility” of the model) and summed over all possible values of w
in the parameter space [26]. Equivalently, this marginal probability over w can be

rewritten using the properties of a continuous variable’s expectation:

p(y|x,D) = Ep(w|D)[p(y|x,w)]. (3.2)

Now we can introduce the predictive uncertainty of our model using tools from

information theory [27, 28]. One of the most common measures of predictive uncertainty

is the Shannon entropy H (also known as the average level of information, surprise

or uncertainty inherent to the variable’s possible outcomes) of the BMA predictive

distribution:

H(p(y|x,D)) = H
(
Ep(w|D)[p(y|x,w)]

)
,

which can be further decomposed into aleatoric and epistemic components [23]:

H(p(y|x,D)) = Ep(w|D)

[
H
(

p(y|x,w)
)]

︸ ︷︷ ︸
aleatoric

(3.3)

+Ep(w|D)

[
KL
(

p(y|x,w)||p(y|x,D)
)]︸ ︷︷ ︸

epistemic

, (3.4)

where KL(p||q) denotes the Kullback-Leibler (KL) divergence from the probability

distribution p to the probability distribution q, defined as

KL(p||q) = ∑
x∈X

p(x) · log
p(x)
q(x)

. (3.5)

The KL-divergence is also called the relative entropy, and it measures the inefficiency of

assuming that the distribution is q when the true distribution is p [29]. In our application,

we can interpret the KL-divergence as the epistemic uncertainty created from sampling

according to some model’s predictive distribution instead of the true model’s predictive

distribution. The aleatoric uncertainty is the uncertainty in the outcome y given the true
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model, which can be represented by the entropy of the predictive distribution under the

true model w∗. However, since we do not know the true model parameters, we compute

the expected aleatoric uncertainty by averaging over the posterior distribution of the

model parameters.

Unfortunately, except in trivial cases, p(w|D) is intractable. Therefore, we seek to

find an approximation p(w|D)≈ q(w;φ) from a family of simpler distributions with

parameters φ whose probability density functions have a known closed form.

For clarity, we return to the related work (Section 2.5). The parametric distribution

approximation used by S-NeRF can be written as

pw(F |D)≈ qw(F ) = ∏
x∈R3

∏
d∈R2

qw(c|x,d)qw(α|x), (3.6)

where the chosen distributions are logistic normal over the radiance values, and rectified

normal for the volume density. Variational inference approximates a conditional density

of latent variables given observed variables using optimisation over a family of densities

over the latent variables, choosing the one that is closest in KL-divergence to the

conditional of interest [30].

Similarly, CF-NeRF models the radiance-density joint distribution as

qw(F ) =
∫

qϑ(z) ∏
x∈R3

∏
d∈R2

qw(c|x,d,z)qw(α|x,z) dz, (3.7)

where qϑ(z) denotes the learnable Gaussian prior from which the latent variable z is

sampled. The likelihood of different samples according to the transformed distribution

can be computed using the change-of-variables formula from calculus [1].
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Methodology

Now that we are equipped with the required background and understanding of the

fundamentals of epistemic uncertainty, we can lay out the design of our solution and

provide well-supported reasoning for each component. We also discuss our experimental

environment and evaluation methods.

4.1 Inference time dropout

As mentioned in Section 3.2, the BMA predictive distribution is usually intractable

and requires approximation. One of the most common and simple approximation

techniques is Monte Carlo sampling of model parameters, implemented using the so-

called dropout technique that was first proposed in [31] (see schema in Figure 4.1).

Originally, dropout was presented for training only: that is, a unit at training time that is

present with probability p, while at inference time it is always present (with its weights

being scaled by p).

Figure 4.1: Dropout technique random neurons are set to zero during training [31].

However, activating dropout at inference time makes the output of the network no

longer deterministic. Each dropout configuration corresponds to a different sample from

19
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the approximate parametric posterior distribution, which means multiple simulations

will approximate the parametric posterior. Formally, inference time dropout results in

the approximation

q(w;Φ) = Bern(w;Φ)≈ p(w|D) (4.1)

where Bern(·; ·) denotes the Bernoulli distribution and Φ is the dropout rate (probability)

on the weights.

This approach of introducing inference time dropout alongside training dropout

is also known as the Monte Carlo (MC) dropout technique [32]. However, instead of

traditional MC dropout, we chose to implement inference time only dropout, also called

the dropout injection technique. The uncertainty measured by this approach is known

as post-hoc model uncertainty, as it measures uncertainty after the model has already

been trained and tested [33].

We chose this method over traditional MC dropout for several key reasons. Dropout

during training is typically employed to prevent overfitting. However, when used for

uncertainty quantification it is no longer conceived as a regulariser, which means that

activating dropout layers during training is redundant. This removal also makes our

method model-agnostic, and we only need to train our model once which significantly

reduces tuning and training costs as the computional overhead only impacts inference

time. Furthermore, our goal with NeRF is to encourage overfitting on the training set,

so using dropout during training for regularisation and overfit prevention would directly

combat our baseline model and negatively impact the performance. We will refer to our

solution in the rest of the report as InjectNeRF (dropout injection with NeRF).

Figure 4.2: Schema of inference-time dropout approach presented in [33].

It is important to emphasise that with this approach, the model whose uncertainty
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we are approximating is no longer the same model that was trained. The inference time

dropout is equivalent to removing neurons from the model after training, making the

architecture of the InjectNeRF model slightly different than the trained baseline. We

can still use the same logic due to the sparse nature of our inputs – since the scene

has more parameters than the model can infer from few views, the network develops

redundant representations. Therefore, as long as dropout is optimised so that InjectNeRF

captures/learns approximately the same information as the baseline, we can consider

the models sufficiently close and treat them as almost equivalent.

4.2 Measuring uncertainty

To compute our uncertainty, we complete T forward passes during inference per each

novel view, with injected dropout. Based on similar published experiments concerning

approximations of statistical measures [34], we sample 30 times – that is, we run the

inference pipeline 30 times with a fixed dropout rate. The output of the model is the

mean of the samples

yi =
1
T

T

∑
t=1

yi,t , (4.2)

and we save the standard deviation of each channel of each pixel as a separate image

representing the model uncertainty [35]. We use standard deviation because it is directly

comparable to the data and therefore better for visualisation since it can directly be

interpreted as RGB values. It also fits naturally into many statistical frameworks such as

confidence intervals, and it provides a more intuitive sense of the variability present in a

dataset. As our images are represented as three-dimensional tensors (image height ×
image width × three colour channels), the mean and standard deviation are calculated

separately for each of the elements in the tensor.

4.3 Dropout position

The position of the dropout is another key parameter in our setup. Traditionally, dropout

is positioned before every layer of the neural network. However, dropout position in

our application provides crucial additional context: the uncertainty of which model

component are we measuring.

We briefly overview the standard NeRF model architecture, as depicted in Figure 4.3.

The positional encoding of the input location is passed through 8 fully-connected ReLU
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layers, each with 256 channels. In the fifth layer, the encoded input is concatenated to its

activation. An additional layer outputs the volume density and a 256-dimensional feature

vector, which is concatenated with the positional encoding of the input viewing direction

and is processed by an additional fully-connected ReLU layer with 128 channels. A final

layer (with a sigmoid activation) outputs the emitted RGB radiance [7]. As mentioned,

the sinusoidal positional encoding simply replaces the ReLU activation of the first layer

with a sine activation function.

We can now determine two potential positions for the dropout that are of high

interest: the first layer (after the Sinusoidal/Regular PE is applied), and the last layer

(corresponding to the neurons that predict the RGB values). Our hypothesis is that

dropout in the layer of the PE will produce higher uncertainty in high-frequency details,

while the dropout before RGB prediction will be more visible on blurry or inconsistent

colour patches or larger surfaces that have limited information due to occlusion. We

perform experiments with dropout in only one of the layers.

Figure 4.3: NeRF architecture with our proposed dropout additions, used during inference only

(based on schema provided in [7]). The architecture of FreeNeRF with and without SPE is the

same except for the change of activation function in the first layer.

4.4 Selecting the appropriate dropout rate

We now face the challenge of finding the optimal dropout rate Φ for approximating

the epistemic uncertainty. In MC dropout, the optimal dropout rate is taken to be the

minimiser of the distance between the real and the hypothesis weight distribution [33].

That is,

Φ = argmin
φ

KL(p(w|D) || q(w;φ)). (4.3)

This expression is intractable, so we must derive an approximation, but also adapt

it to be independent from the training procedure. One such method from variational
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inference is minimising an approximation of the NLL over a set of N input samples – a

validation set, for example. Instead of a separate validation set, we use the training set

to maintain our goal of matching the baseline’s training set accuracy.

While the equation defined in [33] is meant for one dimensional output:

Φ = argmin
φ

N

∑
i=1

(
logσ2

i (φ)

2
+

(ygt
i − yi)

2

2σ2
i (φ)

)
, (4.4)

we can adjust it for our purposes. Introducing σ
2
i as the mean of all the values of the

variance tensor, we can restate the equation as

Φ = argmin
φ

N

∑
i=1

(
logσ

2
i (φ)

2
+

MSE(ygt
i ,yi)

2σ
2
i (φ)

)
. (4.5)

The one-dimensional approximation of Equation (4.4) can be derived under the

normality assumption on the predictive distribution and the model’s approximation (for

a short proof, see Appendix B.1). However, our modification can independently be

interpreted as a suitable goal regardless of the distribution of the output.

• The network is trained without dropout, so significant increase in the dropout rate

after training poses risk of removing neurons beyond the model’s redundancy,

which will result in noticeable decrease of prediction quality. We also want to

keep our InjectNeRF model close in accuracy to the baseline, as discussed in

Section 4.1.

• For very small values of the dropout rate, the variability induced on the network

predictions is almost unnoticeable (close to zero, especially considering the layer

dimensions) and therefore it does not accurately represent the model’s uncertainty.

Having the variance term as both a denominator and numerator in the expression,

as well as including the effect of the output error, encapsulates our aims in an elegant

manner. Once the optimal value of Φ is found, the approximate distribution can be used

for computing a prediction and associated predictive uncertainty as described earlier.

4.5 Dataset

The main dataset we use for our evaluations is the nerf synthetic1 which consists of

eight objects rendered in Blender. Our experiments use four of these objects, chosen to
1Provided by authors of [7] at www.matthewtancik.com/nerf.

www.matthewtancik.com/nerf
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cover a wide range of complexity (high frequency inputs, intricate patterns or details).

For more details on the full dataset and its authors, see Figure A.1 in the Appendix.

(a) drums (b) chair (c) ship (d) lego

Figure 4.4: The four Blender objects used in experiments.

The dataset includes camera intrinsics and extrinsics, necessary for accurate 3D

scene reconstruction. Since the objects are synthetically rendered, they have clean

geometric structures, as well as fine details, textures, and lighting variations, making

the dataset the most frequent choice for benchmarking NeRFs.

4.6 Fidelity metrics

The standard metric used in novel view synthesis tasks is the Peak Signal-to-Noise Ratio

(PSNR). The PSNR (in decibel) is the ratio between the maximum possible power of a

signal, and the power of corrupting noise that affects the fidelity of its representation.

In our application, we take the noisy image to be the output of our model. For each

ground truth/model output pair, the PSNR is calculated as the average of the metric’s

channelwise value. We give the equations for one channel below.

Setting G to be the ground truth and M to be the output of the model, both of

dimensions m×n, the PSNR is defined as

PSNR(G,M) = 10 · log10

(
2562

MSE

)
= 20 · log10(256)−10 · log10(MSE), (4.6)

where

MSE(G,M) =
1

mn

m

∑
i=1

n

∑
j=1

(
G(i, j)−M(i, j)

)2 (4.7)

is the Mean Squared Error. The higher the PSNR, the higher is the quality of the model

output [36].

Another popular metric is the SSIM (Structulary Similarity Index Measure), which

also considers important perceptual phenomena like luminance masking and contrast
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masking terms. SSIM is calculated on various windows of an image. The measure

between two windows X and Y of common size N ×N is

SSIM(X ,Y ) =
(2µX µY + c1)(2σXY + c2)

(µ2
X +µ2

Y + c1)(σ
2
X +σ2

Y + c2)
.

where µX ,σ
2
X ,µY ,σ

2
Y denote the corresponding pixel sample means and variances of x

and y and σx,y is the covariance. The two variables c1 and c2 are defined to stabilize the

division with weak denominator: c1 = (k1L)2, c2 = (k2L)2 where L is the dynamic range

of the pixel-values (typically taken as 2bits per pixel − 1) and k1 = 0.01 and k2 = 0.03

by default. The Mean SSIM (MSSIM) is calculated by the average SSIM over all the

windows [37]. The standard size of the windows is 7×7. The value of the metric ranges

between -1 and 1, where 1 denotes a complete match with the original image.

The metrics are implemented as a part of the skimage.metrics library. The

evaluations of the two baseline models are given below in Table 4.1.

Model: FreeNeRF

Object Train PSNR Test PSNR Train SSIM Test SSIM

chair 38.4798 27.005 0.9901 0.9253
ship 33.0575 23.3482 0.9213 0.7761
drums 32.4471 20.271 0.9755 0.8525
lego 36.2977 25.199 0.9802 0.8866

Model: FreeNeRF + SPE

Object Train PSNR Test PSNR Train SSIM Test SSIM

chair 39.3806 26.9811 0.9919 0.9204
ship 33.384 23.4326 0.9154 0.77
drums 33.7015 20.3036 0.978 0.8489
lego 32.9735 23.1805 0.9571 0.8482

Table 4.1: Evaluation of the baseline models on the chosen objects. We see that with our

computational environment, the two models perform quite similarly on the testset with marginal

differences, except in the case of lego. In most cases, SPE does help the model fit better to the

training views.
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Evaluation

In this chapter, we evaluate the proposed method through a series of experiments. Our

main focus are the following research questions.

• Is our proposed method effective in quantifying uncertainty of our baseline?

• Does the dropout position in the network impact the evaluated uncertainty?

• How does our method impact the fidelity of generated views?

Additionally, we discuss the visualisation of our outputs, which is a key component

in interpreting uncertainty. The results demonstrate that the method can effectively

capture uncertainty, particularly in areas of high variability or artifacts, and often

improves upon the baseline model.

5.1 Obtaining the optimal dropout rate

Using Equation (4.5), we perform a sweep over seven possible values of the dropout

rate in the interval [0.02,0.3] – separately for each dropout position. We decided on

these boundaries and the chosen values based on the analysis of the impact of dropout

increase that was discussed in Section 4.4: considering the SPE layer has 256 neurons

and the RGB layer has 128, less than 2% dropout is insignificant, and we still want to

keep the majority of the neurons active.

The results presented in Figure 5.1 and Table 5.1 show that the optimal dropout

rate for the (S)PE layer is in most cases smaller than the RGB optimal rate. This is not

surprising, as the positional encoding’s goal is to perfectly learn the frequency functions

present in the training set, making each component key for the model’s performance on

26
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Figure 5.1: Detailed results of the dropout rate sweeps.

Model: FreeNeRF

Object ΦSPE ΦRGB

chair 0.02 0.30
ship 0.02 0.30
drums 0.02 0.30
lego 0.02 0.15

Model: FreeNeRF + SPE

Object ΦSPE ΦRGB

chair 0.05 0.30
ship 0.15 0.30
drums 0.05 0.30
lego 0.20 0.15

Table 5.1: Optimal dropout rates based on training set sweep, per object, for both baselines.

the same set of views. We also verify the performances of the InjectNeRF models on

the training set are indeed sufficiently close to the baselines’, as displayed in Figure 5.2.

5.2 Uncertainty visualisation

Naturally, we want to be able to show the uncertainty of our model per each generated

view. To aid the uncertainty visualisation and metric evaluation, we created a set of
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Figure 5.2: Inference time dropout’s performance on the trainset, compared to the baselines.

visualisation functions (see examples on the lego object in Figure 5.3). The first option

is a separate plot of the standard deviation, as well as the standard deviation relative to

the ground truth pixel value. The second option overlays the standard deviation on top

of the (mean) model output and separately highlights the values in the top 10% of all

of the pixelwise standard deviations in the testset. For a cleaner display, the standard

deviation is taken to be averaged per pixel, i.e. the mean of the channels is taken.

5.3 RGB and (S)PE dropout comparison

We empirically confirm our hypothesis that there is a clear difference in the uncertainties

created by the two different dropout positions. Dropout in the (S)PE layer results in

higher uncertainty of the fine, high frequency details of the object: its outline, edges,

detailed patterns. We can strengthen our argument further by analysing Figure 5.4,

which shows a comparison between the SPE dropout uncertainty and the Daubechies 4

wavelet decomposition on one of the test views of the drums with the SPE baseline.

The Daubechies 4 (Db4) wavelet decomposition is a multiresolution analysis tech-

nique, derived from the Daubechies family of orthogonal wavelets that define a discrete

wavelet transform. It systematically decomposes a signal into its frequency components
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Figure 5.3: The two different visualisation styles of the uncertainty outputted by InjectNeRF.

by applying successive low-pass and high-pass filters, with the number 4 in the name

signifying it has four wavelet and scaling function coefficients. At each level of decom-

position, the signal is divided into an approximation (low-frequency component) and a

detail (high-frequency component), with the approximation being further decomposed

in subsequent levels. This process creates a hierarchical structure where each level

isolates distinct frequency bands, allowing for the analysis of the signal’s frequency

content across different scales [38]. The wavelet coefficients in the high-frequency

sub-bands quantify the strength of high-frequency details at different scales and orienta-

tions. Larger coefficients correspond to stronger high-frequency details, such as more

prominent edges or sharper textures.

Comparing the three levels of the Db4 decomposition with our model’s output, we

see that the details of darker colour (meaning higher uncertainty) appear in the higher

levels of the wavelet decomposition, meaning dropout in the SPE layer indeed quantifies

the uncertainty of the model about the set of frequency functions learnt during training.

On the other hand, dropout in the RGB layer shows higher uncertainty in the inside

areas of the object, particularly in areas of low quality in the model output, such as

back of the chair in Figure 5.5 which in the model output is a mix of beige, yellow and

green pixels (as opposed to a monochrome backing in the ground truth). Furthermore,
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Figure 5.4: Comparison of the epistemic uncertainty from InjectNeRF with SPE dropout and

the Db4 discrete wavelet decomposition.

we observe high uncertainty in areas with unwanted artifacts, such as random floating

pixels and missing parts of the ship model’s base in Figure 5.6.

Figure 5.5: InjectNeRF - RGB dropout correctly displays high uncertainty.

Finally, the visualisation reveals a meaningful difference between the model’s

uncertainty between FreeNeRF with regular PE and Sinusoidal SPE, particularly when

the dropout is applied at the relevant PE layer (an example is shown in Figure 5.7).
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Figure 5.6: InjectNeRF correctly captures high uncertainty around undesirable artifacts and low

quality patches.

While the overall performance might not be better, the addition of Sinusoidal Positional

Encoding reduced the model’s uncertainty in the captured frequency components that

in regular FreeNeRF manifest as random off-white pixels around the object.

(a) PE dropout – regular PE (b) PE dropout – SPE

Figure 5.7: Addition of Sinusoidal Positional Encoding benefits the model’s confidence.

5.4 Fidelity comparison

Finally, we evaluate the output generated by InjectNeRF (i.e. the sample mean) against

the baseline. From Figure 5.8 in more detail, we see that InjectNeRF can outperform

our FreeNeRF + SPE baseline in PSNR in almost all test views with SPE dropout – with

three of them having at least 24 out of 25 views showing better performance. With RGB

dropout, the score is significantly lower, but with 96% outperformance on the most

difficult object drums. We see less success with the SSIM metric, with InjectNeRF -

SPE dropout still obtaining better results than the baseline in the majority of views.

In the baseline with the regular PE, whose results are outlined in Figure 5.9, we

still observe a large number of PSNR improvements with either RGB or PE dropout,

most noticeable in the drums and ship objects. However, the performance in SSIM is
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Figure 5.8: The difference in performance between InjectNeRF’s mean outputs and the baseline:

FreeNeRF with SPE.
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Figure 5.9: The difference in performance between InjectNeRF’s mean outputs and the baseline:

FreeNeRF.
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noticeably worse, with only notable gains being with the ship object. An interesting

observation is that for both baselines, we see the most improvements with the two more

complex objects.

The output of our model is a mean of 30 samples, which means some samples

performed better than the mean on some (or perhaps all) views, and some performed

worse – therefore, we could even further improve our gains over the baseline by

choosing the best sample rather than the mean. These results empirically confirm

that there exist multiple continuous functions that fit the training views well, but have

different performances on the test views. This phenomenon has been observed in several

studies such as [2, 20] (not specifically for NVS), where it is further discussed why

ensemble methods may work better than a single model. The two main arguments in our

experimental setup are statistical and representational (depicted in Figure 5.10). First,

considering our training dataset is small, the learning algorithm can find many different

hypotheses from the same family that all have the same accuracy on the training data,

so the construction of an ensemble out of all of these accurate classifiers reduces the

risk of choosing the worst performing one in inference. Furthermore, as mentioned in

the introduction, the true function of a 3D scene may not be a continuous function, but

rather a combination of multiple components of different types (discrete, continuous,

. . . ). Forming weighted sums of hypotheses might expand the space of representable

functions which can bring us closer to the true function.

Figure 5.10: Possible benefits of using ensembles rather than a singular model [2].

5.5 Evaluating the method as an uncertainty measure

It remains to evaluate how well our solution represents epistemic uncertainty. This can

be done by quantifying the relationship between the model’s pixelwise mean squared

error and the returned pixelwise standard deviation. Generally, we expect that pixels

with higher error will have higher uncertainty, therefore, we consider methods and
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metrics for measuring correlation between two random vectors - the flattened tensors of

the error and uncertainty. Our evaluation consists of two rank-correlation metrics, since

they do not assume any specific distribution of the data or a concrete type of relationship

(linear, polynomial, . . . ) between the data. While S-NeRF [3] and CF-NeRF [1] use the

Pearson correlation coefficient, we believe this is not a suitable measure as the data we

are trying to correlate is not normally distributed – this can be easily checked via the

Kolmogorov-Smirnov test for goodness of fit – which is one of the necessary conditions

for the Pearson coefficient to be a meaningful measure of a linear relationship [39, 40].

Spearman’s ρ (also known as Spearman’s rank correlation coefficient) is a non-

parametric measure of the strength and direction of association between two ranked

(ordinal) variables. It assesses how well the relationship between two variables can be

described using a monotonic function. The coefficient is calculated by first converting

the raw data into ranks. Given a set of n pairs (Xi,Yi), where X and Y are the two

variables being compared, the ranks of Xi and Yi are denoted as rank(Xi) and rank(Yi),

respectively. Finally, using the Pearson correlation formula applied to the ranks, we

arrive at

ρ =
cov(rank(X), rank(Y ))

σrank(X)σrank(Y )
,

where cov(rank(X), rank(Y )) is the covariance of the ranks and σrank(X) and σrank(Y )

are the standard deviations of the ranks.

Spearman’s ρ does not take into account possible ties, i.e. pairs of observations

with the same value, so the score might be significantly higher than the realistic result.

Therefore, we utilise Kendall’s τ (tau) coefficient, another rank correlation coeffficient

that measures the ordinal association between two measured quantities, to support our

results. Specifically, we use the τb coefficient which is an extension of the standard

coefficient designed to handle ties more effectively.

Given a set of n pairs (Xi,Yi), where X and Y are the two variables being compared,

τb is calculated based on the number of concordant and discordant pairs. A pair (Xi,Yi)

and (X j,Yj) is concordant if both Xi > X j and Yi > Yj, or if both Xi < X j and Yi < Yj.

Similarly, a pair (Xi,Yi) and (X j,Yj) is discordant if Xi > X j and Yi < Yj, or if Xi < X j

and Yi > Yj.

Let P be the number of concordant pairs, Q the number of discordant pairs, TX the

number of ties only in variable X and TY the number of ties only in variable Y . Then,

Kendall’s τb coefficient is given by:

τb =
P−Q√

(P+Q+TX) · (P+Q+TY )
.
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Both coefficients attain values in the [−1,1] interval: value greater than 0 indicates a

positive association, less than 0 indicates a negative association, and equal to 0 suggests

no association between the variables [41]. Results in Table 5.2 and Table 5.3 show that

across all objects, both coefficients show strong (> 0.68 for ρ and > 0.49 for τb) or

even very strong positive association, which is exactly the result we expected from a

good uncertainty measure.

Correlation coefficients, baseline = FreeNeRF

InjectNeRF - SPE dropout InjectNeRF - RGB dropout

Object Spearman’s ρ Kendall’s τb Spearman’s ρ Kendall’s τb

chair 0.8524 0.7374 0.9466 0.8547
ship 0.7848 0.6315 0.8398 0.6696
drums 0.921 0.8091 0.8326 0.7036
lego 0.7445 0.6165 0.8373 0.6935

Table 5.2: Results showing success of our uncertainty measure on FreeNeRF.

Correlation coefficients, baseline = FreeNeRF + SPE

InjectNeRF - SPE dropout InjectNeRF - RGB dropout

Object Spearman’s ρ Kendall’s τb Spearman’s ρ Kendall’s τb

chair 0.8648 0.7854 0.9334 0.8425
ship 0.7964 0.6577 0.8287 0.6615
drums 0.8314 0.7353 0.9059 0.7962
lego 0.8538 0.7324 0.833 0.6914

Table 5.3: Results showing success of our uncertainty measure on FreeNeRF with SPE.
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Conclusion

6.1 Possible improvements

While our method is simple and effective, the dropout rate optimisation process and

final uncertainty evaluation introduce noticeable additional computational overhead.

Although we implemented a coarse search over dropout values and reduced the number

of forward passes in the optimisation process from 30 to 25, on average the runtime

of InjectNeRF is around 3.5 hours – which is still a large saving compared to the

costly Deep Ensembles method (200,000 iterations of FreeNeRF training take close

to 7 hours) or CF-NeRF. Still, for real-time applications, this overhead might be a

bottleneck, particularly in scenarios requiring immediate feedback. We include an

implementation of InjectNeRF with an option to skip the optimisation process by

passing the desired dropout rate as an input flag to reduce the runtime to 90 minutes.

Further improvements can be made by parallelising the optimisation and evaluation

process, so each InjectNeRF instance runs on a separate GPU, and gathering and

comparing the results at the end to select the optimal dropout rate. With the right high

performance computing resources (i.e. enough GPUs), the parallelisation can reduce

the runtime to real-time rendering of the baseline. These improvements would also

allow for a finer search grid for the optimal dropout rate, as well as more samples for

variance estimation, which could potentially bring more improvements to our results.

Additionally, our testing dataset is rendered by software, so it would be beneficial

for the model to be tested on more challenging scenarios to strengthen our arguments.

Real-world application may present further challenges due to increased complexity in

lighting, texture, and occlusions. This can be done by running InjectNeRF on more

37
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complex, real-world datasets such as Local Light Field Fusion (LLFF, Figure 6.1)1.

Incorporating additional modalities, such as depth maps or a complex background,

could give us further valuable insight into the epistemic uncertainty of the model.

Future iterations of this research could focus on improving model generalisation in

more challenging scenarios, such as dynamic scenes or environments with significant

occlusions.

Figure 6.1: Objects horns and flower from the LLFF dataset.

6.2 Future work

Since our results show that InjectNeRF can improve the performance of its baseline,

this opens several further research directions for applications of our method. One

of the major advantages of our method is its model-agnostic nature, so applying this

uncertainty measurement framework to a variety of NVS models (3D Gaussian Splatting

or more complex, newer architectures like Diffusion Models), would be the next

biggest milestone – we expect similar results as with NeRFs. With multiple different

baseline structures, we can expand our ensemble and further improve the accuracy of

outputs by combining pixels outputted by different models based on their confidence

levels. The simplicity of the method implementation would allow us to integrate the

uncertainty measure quickly, and after parallelisation is implemented, we would have a

computationally efficient output enhancement method using pre-trained models.

Another benefit of our approach is that we can further break down the epistemic

uncertainty using the position of the dropout, which gives us deeper insight into our

model’s behaviour. We can use this to further explore NeRF’s components, or the

components of any other NVS model, which could lead to more curated improvement

suggestions for the baselines themselves.

1https://www.kaggle.com/datasets/arenagrenade/llff-dataset-full

https://www.kaggle.com/datasets/arenagrenade/llff-dataset-full
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6.3 Summary of key points

This thesis has introduced a novel, model-agnostic approach for measuring epistemic

uncertainty in few-shot novel view synthesis, with neural radiance fields as the main fo-

cus. Through the implementation of inference-time dropout, we successfully quantified

the uncertainty of state-of-the-art (SOTA) NVS models. We empirically proved that

InjectNeRF provides meaningful uncertainty estimates, while bringing no additional

training costs and therefore outperforming various previously published uncertainty

measurement techniques. Our experiments also show that our method can efficiently

bring fidelity improvements to the model outputs, which opens possibility for further

research using this work as foundation. We utilised our method to further research the

structure of NeRF models and its behavior based on the dropout position or change in

the positional encoding approach.

In conclusion, our method has shown significant promise in improving the robust-

ness and reliability of NVS models, particularly in sparse input scenarios. We believe

that this work can serve as a foundation for further advancements in uncertainty quan-

tification within computer vision and related fields, ultimately enhancing the accuracy

and reliability of novel view synthesis models in both academic research and practical

applications.
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Appendix A

Computational environment

Here we give details of the environment used to obtain the results presented in the

dissertation. This also serves as a guide for result reproduction.

A.1 Technical specifications

All the training and testing was done on the Edinburgh ML-Systems Group’s Gala

server cluster (gala1). The technical specifications of Gala are as follows.

• 4U server - PCIe 4.0

• CPU: 2 x 28 CPU cores (AMD EPYC Zen 3, 7453)

• GPU: 8 x NVIDIA A5000 (NVLinked, 4 pairs)

• Memory: 1TB DDR4 3200MHz (16 x 64GB)

• NVMe SSD: 2 x 3.84TB (Intel P5510, PCIe 4.0)

• SATA SSD: 1.92TB (Intel S4510)

• 1 Gbps NIC

A.2 Full details of NeRF Synthetic dataset

The renders are from modified Blender models located on blendswap.com.

(a) drums by bryanajones (CC-BY): https://www.blendswap.com/blend/13383
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(b) chair by 1DInc (CC-0): https://www.blendswap.com/blend/8261

(c) ship by gregzaal (CC-BY-SA): https://www.blendswap.com/blend/8167

(d) mic by up3d.de (CC-0): https://www.blendswap.com/blend/23295

(e) hotdog by erickfree (CC-0): https://www.blendswap.com/blend/23962

(f) materials by elbrujodelatribu (CC-0): https://www.blendswap.com/blend/

10120

(g) lego by Heinzelnisse (CC-BY-NC): https://www.blendswap.com/blend/11490

(h) ficus by Herberhold (CC-0): https://www.blendswap.com/blend/23125

All the respective renders are depicted in Figure A.1.

(a) drums (b) chair (c) ship (d) mic

(e) hotdog (f) materials (g) lego (h) ficus

Figure A.1: nerf synthetic dataset – object breakdown

https://www.blendswap.com/blend/8261
https://www.blendswap.com/blend/8167
https://www.blendswap.com/blend/23295
https://www.blendswap.com/blend/23962
https://www.blendswap.com/blend/10120
https://www.blendswap.com/blend/10120
https://www.blendswap.com/blend/11490
https://www.blendswap.com/blend/23125
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Theoretical work

B.1 Proof of NLL approximation

We aim to prove that minimising

KL(p(w|D) || q(w;φ))

is equivalent to minimising
N

∑
i=1

(
logσ2

i (φ)

2
+

(ygt
i − yi)

2

2σ2
i (φ)

)
.

We expand on the proof provided in [42]. Assume we have a successfully trained

network pnet(y|x,w) that can predict the ground truth very well. That is, using BMA

properties,

pgt(y|x)≈ ppred(y|x,D) =
∫

w
pnet(y|x, w̃)p(w̃|D)dw̃

where ppred(y|x,D) is the prediction of our successful model. However, we do not have

the true p(w|D), and instead we approximate p(w|D) with q(w;φ). The real predicted

distribution is actually:

p̂pred(y|x;φ) =
∫

w
pnet(y|x, w̃)q(w̃;φ)dw̃.

From these two equations, considering the integrals have pnet(y|x, w̃) in common, we

can infer that

argmin
φ

KL(p(w|D) || q(w;φ))⇔ argmin
φ

KL(pgt(y|x) || p̂pred(y|x;φ)).

If we take both pgt and p̂pred to be normally distributed, that is pgt ∼ N (µgt ,σ
2
gt) and

p̂pred ∼ N (µpred,σ
2
pred), the KL divergence between the two distributions is given by:

KL(pgt(y|x) || p̂pred(y|x;φ)) =
1
2

(
log

(
σ2

pred

σ2
gt

)
+

σ2
gt +(µgt −µpred)

2

σ2
pred

−1

)
.
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Finally, as ground truth is (quasi-)deterministic, σ2
gt → 0 i.e. the ground truth

distribution effectively has no variance, and it can be treated as a constant. Therefore,

since it does not affect the point in which the minimum is attained, we can remove it

from consideration for minimising our expression to obtain

1
2

(
log(σ2

pred)+
(µgt −µpred)

2

σ2
pred

−1

)
.

Removing the constant 1
2 and summing over all model predictions and ground truths

from the dataset gives us exactly Equation (4.4).
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