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Abstract

This dissertation addresses the challenges of developing efficient Automatic Speech

Recognition systems for low-resource languages without any manual transcription

by focusing on accelerating the decipherment process through modern computational

techniques.

We propose a GPU-accelerated approach to decipherment to enhance processing

speed and overall performance. By transitioning the decipherment model to a GPU

framework, we can efficiently accelerate the processing of complex tasks, including

high-order n-gram computations and advanced sequence alignment operations. This

transition resulted in a significant performance boost, with processing speeds improved

by over 30 times compared to traditional CPU-based methods while achieving the same

accuracy.

Our work demonstrates the feasibility of applying advanced GPU-accelerated tech-

niques to the development of Automatic Speech Recognition systems for low-resource

languages decipherment, reducing the computational demands and enabling more

efficient and scalable solutions. The results underscore the potential of modern compu-

tational frameworks to overcome the limitations of traditional approaches, offering a

promising path forward in the field of speech recognition.
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Chapter 1

Introduction

An Automatic Speech Recognition (ASR) system can transcribe text or phone sequences

from speech, recognize speakers, and even detect emotions [2, 25]. Given the rapid

advancements in ASR technology, it is now possible to develop robust ASR systems

through supervised learning from vast amounts of data. Many contemporary ASR

models achieve exceptional accuracy in high-resource languages like English, with

Word Error Rates (WER) falling below 10% [21]. For example, OpenAI’s Whisper [41]

and NVIDIA’s Canary [38] have achieved state-of-the-art performance across multiple

languages. However, they require substantial amounts of labeled data for training—for

instance, Whisper [41] was trained on over 680,000 hours of labeled audio data (with

the large-v31 version exceeding 5 million hours). Therefore, cost-effectively building

ASR systems while addressing the linguistic diversity of the world remains a significant

challenge, especially for low-resource languages.

Low-resource languages (or dialects) often lack annotated resources or even a

standardized written form. The manual annotation and collection of such vast amounts

of data are labor-intensive and costly, leading to a time-consuming and challenging task.

Furthermore, with over 7,000 languages spoken globally [49], supporting linguistic

diversity is becoming increasingly crucial for the speech and language community.

A study published in 2020 [17] highlighted that nearly 90% of the global population

communicates in languages with extremely limited resources, which means they do not

benefit from language technologies. Even traditional machine learning methods that

rely on statistical modeling techniques such as Hidden Markov Models (HMMs) [39] or

Deep Neural Networks (DNNs) for acoustic modeling require extensive training data to

ensure reliable parameter estimation. Consequently, there has been a growing interest in

1https://huggingface.co/openai/whisper-large-v3
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Chapter 1. Introduction 2

cross-lingual and multilingual speech processing within the research community [49].

Some research [49, 54] leverage similarities between different languages, training

on high-resource languages to assist in recognizing low-resource languages. However,

most multilingual ASR models still require transcribed training data to some extent.

For example, they might pretrain on unlabeled data and then fine-tune on labeled data.

Additionally, studies [3] have shown that training on standard Arabic and its diverse

dialects results in a 27% difference in WER between standard Arabic and its dialects,

highlighting the challenge of recognizing dialectal variations within the same language.

Moreover, some research [13, 24, 2] have focused on unsupervised ASR training us-

ing non-parallel speech and text, referred to as distant supervision or indirect grounding

[2]. This approach, which uses cross-modal data (text and speech), allows each modal-

ity to consider its context and discover alignment patterns. In unsupervised learning,

repeated patterns and relationships in speech can be identified, while textual data can

be used to construct language models. Some studies [24] have employed Generative

Adversarial Networks (GANs) to recognize phoneme sequences from speech through un-

supervised learning. [13] proposed “decipher-based” systems that enable ASR training

using entirely untranscribed speech alongside unpaired text data. Decipherment refers

to the process of converting a cipher (e.g., the universal phonetic sequence obtained

from speech) into plain natural language. These methods offer a significant advantage

in that, for languages with a substantial online presence, both resources are likely to be

relatively abundant without requiring human annotation efforts. [22] proposed a method

using untranscribed speech and text in the target language to decipher the speech and

obtain corresponding transcriptions. This approach has shown promising results with as

little as 20 minutes of speech data in low-resource languages. However, this method

relies heavily on parallel CPU computation and requires high Random Access Memory

(RAM) capacity. In this dissertation, we aim to accelerate the decipherment process to

enhance the accessibility of training ASR models for low-resource languages.

Considering the above discussion, the current challenges for ASR in low-resource

languages are as follows: (1) In supervised learning approaches, the scarcity of sufficient

paired training data for low-resource languages poses a significant obstacle to developing

effective ASR models. (2) In unsupervised learning approaches, the training process

remains slow and inefficient due to substantial computational and storage demands.

Our approach seeks to address these challenges by implementing a GPU-accelerated

cross-lingual ASR system, adapted from the work of [22]. While the original work

achieved cross-lingual transfer using a zero-resource method, where zero-resource refers
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to the approach of seeking to uncover linguistic concepts solely from audio data without

relying on text or lexicons [27], its extensive computational requirements hindered

performance and efficiency. Our project aims to enhance this by implementing the core

algorithm on GPUs, leveraging GPU-compatible toolkits such as CuPy [30] and K2

[19] to achieve faster and more effective results. This advancement can greatly assist

the low-resource language community in more easily developing robust ASR systems,

and facilitate the efficient and cost-effective creation of ASR systems for any language.

1.1 Contribution

The contributions of this dissertation are as follows:

1. Inspired by [22], we redesigned the architecture of the decipherment algorithm

based on HMMs. Our implementation supports GPU-accelerated matrix oper-

ations and includes all the functionalities of [22]. Furthermore, the parameters

trained within our framework can be directly transferred to the original framework

of [22].

2. Our GPU-accelerated algorithm achieves over 30 times the speed-up compared to

the CPU-based version in [22] across most languages tested in our experiments.

This enhanced computational efficiency does not compromise accuracy. Our

algorithm supports higher-order n-grams and implements batch processing for

efficient data handling.

3. In contrast to [22], which uses only MFCC features, we extract features using the

pretrained self-supervised model XLS-R [7] as suggested in [43]. These features

include additional cross-lingual phone recognition information, resulting in a

significant improvement in WER.

4. We have migrated the overall framework from Kaldi [35] to a more modern

framework based on NumPy [14] and K2 [19], reducing the complexity and

lowering the barriers to usage.

1.2 Overview

The main focus of this dissertation is on accelerating the decipherment model. In

Chapter 2, we will provide a brief overview of the essential background, covering
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key developments in the field of ASR, the evolution of decipherment problems, and

advancements in GPU acceleration for ASR. In Chapter 3, we start with solving a

simple substitution cipher, where the encryption rule follows a one-to-one mapping

between cipher letters and text letters. Specifically, we constructed a letter substitution

decipherment system and enhanced its deciphering effectiveness using high-order n-

gram models, making it feasible to run computations on a GPU. In Chapter 4, we

expanded this system into a more advanced decipherment system that supports three

operations: insertion, deletion, and substitution, as well as an optional silence state.

By incorporating these sequence alignment operations, our system can better support

the decipherment of phone sequences into target language text. In Chapter 5, we will

summarize the findings of the entire study and discuss potential directions for future

research.



Chapter 2

Background

Automatic speech recognition is defined as the process of automatically identifying

patterns (e.g., the textual transcription of the spoken content) in a speech waveform

[25, 53, 2]. In general, ASR primarily focuses on the task of transcribing speech into

text. Traditional ASR systems typically consist of three components: an acoustic model

(AM), a language model (LM), and a pronunciation dictionary. The AM estimates

the probabilities of acoustic units, such as phones, by employing Gaussian Mixture

Models (GMMs) or DNNs in conjunction with HMMs. In this framework, GMMs or

DNNs are used to calculate the probability distribution of an acoustic event (e.g., phone)

corresponding to a specific state, while HMMs determine the transition probabilities

between states. The model parameters are generally trained using the expectation-

maximization (EM) technique, and Viterbi decoding is applied to find the optimal

sequence of states in the HMMs. The LM estimates the likelihood of a word sequence

and enhances the precision of acoustic models by integrating linguistic insights obtained

from extensive text corpora. To ensure that the phonetic transcriptions produced by

the acoustic model align with the raw text used in the language model, a pronunciation

dictionary is employed to convert sequences of phonemes into corresponding words.

Although these components are trained separately, they are later merged to construct

a search graph using Weighted Finite-State Transducers (WFST) [29]. The decoder

uses this graph to produce lattices, which are then evaluated and ranked to determine

the final word sequences. Traditional ASR algorithms actually fall under the category

of supervised learning. [2] defines supervised ASR as relying on any form of manual

labeling created by humans, including pronunciation dictionaries, transcription of utter-

ances, and word boundaries. Supervised ASR offers the benefit of implicitly managing

several sub-problems that are not explicitly modeled, including word segmentation,

5



Chapter 2. Background 6

adaptation to speaker and environmental variations, and categorization into text labels.

In low-resource scenarios, training AMs, LMs, and pronunciation dictionaries presents

significant challenges. Pronunciation dictionaries face significant limitations as they are

often manually constructed, requiring specialized phonetic and linguistic expertise and

substantial human effort. Limited data hampers the ability to accurately estimate the

parameters of AMs, which are further constrained by the pronunciation dictionaries to

map phones to corresponding words in the target language. Similarly, LMs struggle

to generalize effectively due to insufficient textual data, resulting in poor linguistic

coverage and reduced accuracy. The remainder of this chapter will provide essential

background knowledge, covering key subfields of ASR that attempt to address the

aforementioned low-resource scenarios, including unsupervised ASR, which reduces

data requirements by eliminating the need for labeled data, and multilingual ASR,

which studies the application of ASR models across multiple languages. Moreover,

it will explore the evolution of the decipherment problem, which is the core solution

discussed in this chapter, and advancements in GPU-accelerated ASR systems, which

can accelerate decipherment algorithms.

2.1 Unsupervised Automatic Speech Recognition

When transcribed text is unavailable to supervise the modeling of speech, the sub-

problems implicitly addressed in supervised ASR become significant challenges. Un-

supervised ASR focuses on discovering repeated patterns in speech and modeling the

relationships between them in the absence of direct supervision. This process often

requires additional steps to align these patterns with text. The identification of mean-

ingful recurring patterns in speech is known as acoustic unit discovery [2]. These

acoustic units do not directly correspond to orthographically valid units. In contrast,

for supervised learning, the classification categories for each input unit are explicitly

defined, providing direct grounding. In such cases, indirect grounding can be employed.

This approach involves utilizing a related but unaligned context from another modality

(e.g., text or images) to establish grounding for the discovered patterns by identifying

correlations between the cross-modal contexts. Some studies on semantic alignment

[2] aim to map word embeddings from the speech domain to the text domain, but their

accuracy has been relatively low. Furthermore, self-supervised learning of speech repre-

sentations [27] is another example of unsupervised learning. This emerging field holds

considerable promise, as models based on self-supervised learning can be applied to
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various downstream tasks, including different aspects of ASR. For instance, large-scale

multilingual pre-trained models like XLS-R [7] can be used to extract speech features

for tasks such as recognition or synthesis.

2.2 Multilingual Automatic Speech Recognition

Multilingual ASR research aims to develop ASR systems that can adapt to multiple lan-

guages by leveraging the similarities between different languages to improve recognition

accuracy across various languages, particularly enhancing performance in low-resource

languages by utilizing data from high-resource languages. Multilingual ASR models

used for cross-lingual transfer can be divided into two categories [54]: (i) ASR models

trained using labeled data in one or multiple languages, and (ii) ASR models that are

first pre-trained using unlabeled data from one or multiple languages and then fine-tuned

using labeled data. For models that rely solely on labeled data, researchers such as

[15, 50, 20, 52] have implemented multilingual ASR using various methods, and [37]

have found that similar languages are advantageous for ASR systems. For models that

utilize unlabeled data, researchers including [11, 8, 16] have found that pre-training on

similar languages significantly improves model performance compared to using more

target language data.

2.3 Deciphering Speech

Deciphering speech involves treating the discrete representations obtained from speech

audio as ciphertext, and then searching for the most likely decipherment result, which

corresponds to the plain text in the target language. The decipherment algorithm requires

us to obtain a sufficient number of observations (ciphertext) in order to estimate the

probability of the hidden sequences (the possible deciphered sequences). The basic

structure is illustrated in Figure 2.1. For low-resource languages, we can obtain feature

representations from speech using unsupervised and multilingual ASR methods, such as

a phone sequence corresponding to a phonetic alphabet. However, the phonetic alphabet

may not necessarily support the target language. We treat this phone sequence as a

cipher and use deciphering methods to determine the most likely decipherment result in

the target language.
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Cipher

Speech

Deciphering

Figure 2.1: The basic structure of deciphering speech. ”Cipher” refers to the discrete

feature representations (such as phones) extracted from speech. During deciphering,

each cipher may correspond to multiple decipherment states. We assume that the most

likely decryption result is indicated by the red arrows at each time step in the figure.

The history of decipherment extends back quite far. [23] was among the first to

systematically discuss various issues related to decipherment in languages, including

phonetic decipherment. They explored solutions to these problems based on the noisy

channel framework and investigated techniques such as random restarts and cubing

learned channel probabilities, which were also utilized by [22]. Following this, [42]

applied decipherment techniques to develop translation models in the field of machine

translation. [31] further optimized these methods to support larger vocabularies. [13]

outlined scenarios in which decipherment algorithms could be used with non-parallel

text data in the ASR domain, framing the decipherment-based approach as a challenge

within unsupervised ASR. [22]’s work implemented a decipher-based system trained

on non-paired text and speech, which was initially proposed by [13].

2.4 GPU Acceleration for ASR

The literature on GPU acceleration for ASR-related computations has emerged with the

recent advancements in deep learning. The acceleration of matrix operations on GPUs

allows for highly efficient updates to deep learning model parameters. Calculations for

HMMs can also be considered as matrix operations, which will be discussed in detail in

Chapter 3. Research on GPU computations for the Baum-Welch algorithm in HMMs,

utilizing modern deep learning frameworks such as TensorFlow [1], is documented in

studies such as [32, 48]. They vectorize the parameters of HMMs, enabling matrix
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computations and batch processing.

Finite-state transducers (FSTs) [28, 29] also play a crucial role in speech recog-

nition, serving as finite automata where state transitions are labeled with both input

and output symbols, thereby encoding a mapping from an input sequence to an output

sequence. When extended to weighted finite-state transducers, these models incorporate

weights such as probabilities on transitions, which accumulate along paths to quantify

the overall cost or probability of mapping an input string to an output string. This

results in weighted transducers particularly well-suited for representing the probabilistic

finite-state models commonly employed in speech processing, such as HMMs and

n-gram language models used in large-vocabulary speech recognition. Unlike matrices,

FSTs are heterogeneous in structure by integrating information from various sources at

different levels of granularity. In the context of speech recognition, FSTs are crucial

for combining word-level language models, phoneme-level lexicons, and acoustic mod-

els that operate on sub-phonetic states [46]. This integration is achieved through the

composition of FSTs, an essential operation for connecting multiple levels of represen-

tation in ASR. Composition is the key algorithm for constructing complex weighted

transducers from simpler ones, though it remains computationally intensive. [6] was

the pioneer in applying GPU acceleration to WFST composition. It conceptualizes

composed FSTs as sparse graphs, where many state pairs lack transitions. To address

this, the approach constructs only the reachable states using a traversal method akin

to breadth-first search to avoid the storage and computation of extraneous elements.

Then a format similar to compressed sparse row (CSR) [5] is developed to store FST

transition functions on GPUs and parallelizes the algorithm. Similarly, the approach

in [5] starts with a sequential composition method but extends it to support epsilon

transitions. It subsequently designs a data storage structure called the structure of arrays

(SoA) layout for the transducer data, followed by parallelizing the algorithm.

Another computationally intensive aspect of WFST is decoding, typically performed

using the Viterbi algorithm to identify the most probable output sequence. [5] introduces

a hybrid representation of FSTs combining CSR format and coordinate format, which

accommodates sparse finite automata. This method enables efficient processing by

leveraging these formats for representation. [46] enhances [5] by addressing limitations

such as basic Viterbi decoding without integrating acoustic model posteriors and beam

search. It refines the algorithms for exact lattice generation and lattice pruning to

improve parallelization efficiency. K2 [19] employs ragged tensor data structures,

which facilitate rapid parallel processing of irregularly sized objects on GPUs.
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Letter Substitution Decipherment

Substitution ciphers are encryption algorithms that work by substituting the individual

tokens of plaintext with corresponding ciphertext units, typically according to a specific

mapping scheme or a predetermined set of rules. This method is generally exclusive,

meaning each letter in the plaintext corresponds to a single letter in the ciphertext. In

this chapter, we explore the use of an English letter substitution decipherment problem

to illustrate the implementation of GPU-accelerated decipherment techniques.

3.1 Noisy Channel Model

Suppose we have a cipher X = {x1,x2, ...xT} and the corresponding text in English

Y = {y1,y2, ...,yT}. The decipherment using the noisy channel framework [26] follows

the manner:

Ŷ = argmax
y

P(X |Y )P(Y ) (3.1)

where P(Y ) is an English character language model and P(X |Y ) is an lexical model

mapping cipher letters to English letters. The language model can be trained on various

text corpora, and the lexical model can undergo unsupervised training using the Baum-

Welch algorithm [9]. In the context of HMMs training problem [40], the parameters of

language models correspond to transition probabilities, while the parameters of lexical

models correspond to emission probabilities. We can leverage the forward-backward

algorithm to efficiently compute the likelihood of the model generating the data X :

P(X) =∑
S
j=1 P(X ,yt = j|λ), where the joint probability P(X ,yt = j|λ) is the probability

of being in state j at time t and producing X , λ is the parameters of the model and S

is the number of state. This joint probability can be further decomposed into forward

10



Chapter 3. Letter Substitution Decipherment 11

probabilities α and backward probabilities β:

P(x1, ...,xt ,yt = j|λ) = αt( j) (3.2)

P(xt+1, ...,xT |yt = j,λ) = βt( j) (3.3)

P(X ,yt = j|λ) = αt( j)βt( j) (3.4)

Given the transition probability matrix A = [a ji] (i.e., the language model) where a ji

denotes transition probability from state i to j, and b denotes the observation probability

(i.e., the lexical model), we can compute the forward probabilities α and backward

probabilities β recursively:

αt( j) =
S

∑
i=1

b j(xt)a jiαt−1(i) (3.5)

βt( j) =
S

∑
i=1

bi(xt+1)ai jβt+1(i) (3.6)

where S represents the number of states and b j(xt) represents the probability of ob-

serving xt in state j at time t. The computational complexity is O(S2T ) for the whole

sequence with length T . We call this method as a Baseline approach.

Once the forward and backward probabilities are computed, we can proceed with

updating the parameters of the HMMs. The update for observation probabilities remains

consistent with the standard HMM approach [18]. It is important to note that we

do not update the parameters of our language model, as it is a pre-trained n-gram

model on the target language text. In other words, the transition probabilities remain

fixed. Our focus is on learning the lexical model to obtain the decipherment mapping,

which involves updating the observation probability parameters. According to the

Baum-Welch algorithm, the objective function we aim to maximize to find the optimal

parameter λ̂ is as follows:

λ̂ = argmax
λ

∑
Y

P(X ,Y |λ)logP(X ,Y |λ) (3.7)

where λ is the model parameters and λ represents the parameters known prior to the

update. We can iterate multiple times until the model converges. Specifically, in

each iteration, we compute the state occupation probabilities γ using the forward and
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backward probabilities and then proceed with parameter updates as follows:

γt(i) = P(yt = i|X ,λ) =
P(X ,yt = i|λ)

P(X |λ)
=

αt(i)βt(i)
S
∑
j=1

αt( j)βt( j)
(3.8)

b j(ck) =

T
∑

t=1
P(X ,yt = j|λ)I(xt = ck)

T
∑

t=1
P(X ,yt = j|λ)

=

T
∑

t=1
γt( j)I(xt = ck)

T
∑

t=1
γt( j)

(3.9)

where ck represents one of the symbols from the complete set of possible cipher symbols

and I denotes an indicator function. Specifically, I(xt = k) equals 1 if the observation xt

at time t is k, and equals 0 otherwise.

3.2 Matrix-based Approach and High-order N-gram

We introduce the notation:

αt =


αt(1)

...

αt(S)

 ,βt =


βt(1)

...

βt(S)

 ,bt =


b1(xt)

...

bS(xt)

 (3.10)

Then Equations 3.5 and 3.6 can be expressed in vector form to be computed as matrix

multiplications, which share same format with [32, 48]:

αt = bt⊙Aαt−1 (3.11)

βt = A⊤(bt+1⊙βt+1) (3.12)

where ⊙ denotes an element-wise multiplication. It has the same computational com-

plexity as the baseline approach, but vectorization eliminates the need for iterative

computations.

When our language model A (n-gram model with V symbols) uses an order n > 2,

if A remains a two-dimensional matrix with the shape V n−1×V n−1 to track all possible

n−1 states, then A is a sparse matrix with only V n nonzero elements. The computational

complexity is O(V 2(n−1)T ) and the Baseline approach is a special case when n = 2.

To speed up computation and optimize storage, we follow [47] and transform A into

a block-diagonal matrix with V n−2 blocks, where each block is a V ×V dense matrix.

In Figure 3.1, we provide a visual representation that uses trigrams and a vocabulary

limited to just two letters, “A” and “B”. We consider the state transitions between
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two adjacent time steps as an n-dimensional tuple (w1,w2, ...,wn), which satisfies

p(w1|w2...wn) = p(w1...wn−1|w2...wn) for the n-gram. Note that here w represents an

element in the n-gram model. Thus, w1 is the element obtained from n-gram with

probability and yet w1...wn−1 is the state obtained after the transition. We redefine the

state at time t as q, replacing the original state y that was limited to transitions between

individual elements, so that:

qt−1 = (w2...wn) = w2:n (3.13)

qt = (w1...wn−1) = w1:n−1 (3.14)

Here, the last n-2 elements of qt match the first n-2 elements of qt−1 (meaning they

share the same w2:n−1). It can also be formally expressed as satisfying qt−1[i] = qt [i+1]

for 1≤ i≤ n−2, where we use square brackets for tuple indexing. In this way, both

the source and target states are (n-1)-dimensional tuples, allowing us to explicitly

involve high-order n-gram in the state sequence. Most importantly, this approach allows

us to eliminate the redundant zero values in the sparse matrix by excluding invalid

transitions. Using the tuple indexing, the forward and backward probabilities, as well

as the transition matrix probabilities, are represented as follows:

P(x1, ...,xt ,qt = ( j...)|λ) = αt [ j, ...] (3.15)

P(xt+1, ...,xT |qt = (... j),λ) = βt [..., j] (3.16)

P(qt = ( j...)|qt−1 = (...i)) = A[ j, ..., i] (3.17)

We can compute all possible values of w2:n−1 in one step, as indicated by “...” in the

above formula. Then we can rewrite Equations 3.5 and 3.6 as follows:

αt [ j, ...] =
V

∑
i=1

b j(xt)A[ j, ..., i]αt−1[..., i] (3.18)

βt [..., j] =
V

∑
i=1

bi(xt+1)A[i, ..., j]βt+1[i, ...] (3.19)

Note that A is a dense matrix and we sum over i from [1,V ] instead of [1,V n−1] used

in a sparse matrix. The computational complexity is O(V nT ), which is significantly

reduced compared to O(V 2(n−1)T ), especially as n increases. In contrast to [47], which

considers that different w2:n−1 may yield varying observation probabilities for the same

xt , our formulae explicitly express that the observation probability for all possible

w2:n−1 is uniform given xt and only differs based on w1. This ensures that in our lexical

model, each letter corresponds to one probability value for a given cipher symbol.
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Equations 3.18 and 3.19 can be seamlessly extended for computation as an n-

dimensional matrix, and the computation formulas remain similar to Equations 3.11

and 3.12, with the addition of axis transpositions during the process. Refer to [47] for a

more formal expression.

AA

BA

AB

BB

AA BA AB BB

AA

AB

BA

BB

AA BA AB BB

Figure 3.1: The sparse matrix is transformed into multiple diagonal dense matrices,

where the black blocks indicate nonzero values. Letters that appear earlier in the order

(toward the left) represent later time steps. Rows correspond to the source state, while

columns correspond to the target state. A transition can only occur when the first letter

of a row matches the second letter of a column, indicating that they share the same

context.

3.3 Batch Processing

When dealing with large datasets, batch processing can significantly accelerate com-

putations by dividing the data into smaller segments, allowing for maximum par-

allel efficiency. Inspired by [48], we can retain the dense matrix A and further

extend Equations 3.11 and 3.12 to batch operations by stacking the vectors [48]:

αt =
[
αt

1 . . .αt
B
]
,βt =

[
βt

1 . . .βt
B
]
,bt =

[
bt

1 . . .bt
B
]
, so that:

αt = bt⊙Aαt−1 (3.20)

βt = A⊤(bt+1⊙βt+1) (3.21)

If the lengths of the ciphers in the batch are different, we need to pad with zeros.

During the forward process, we pad at the end of the sequences, and during the backward

process, we pad at the beginning of the sequences. We consider padding a sequence of

length T within a batch with a zero-sequence of length ∆. Each sequence in the batch

has different values for T and ∆, but the sum T +∆ is the same for all sequences in the



Chapter 3. Letter Substitution Decipherment 15

batch:

{01, . . . ,0∆,y1, . . . ,yT}→ {β′1, . . . ,β′∆,β1, . . . ,βT} (3.22)

{y1, . . . ,yT ,01, . . . ,0∆}→ {α1, . . . ,αT ,α
′
1, . . . ,α

′
∆} (3.23)

Then we can discard the unnecessary elements by setting them to zero to compute the

occupation probability.

3.4 Preventing Underflow/Overflow

When calculating forward and backward probabilities, if the sequence is too long,

numerical instability can arise due to overflow or underflow caused by excessively

large or small values. Allowing batch operations enables splitting the cipher when it

is very long, which not only speeds up computation but also prevents floating-point

underflow/overflow. Another method to enhance numerical stability is to use a log scale

during computation. We logarithmize all parameters and then define the logarithmic

operator as follows:

x⊕ y = log(ex + ey) (3.24)

x⊗ y = x+ y (3.25)

x⊖ y = log(ex− ey) (3.26)

x⊘ y = x− y (3.27)

However, logarithmic operations cannot be directly executed using matrix operations

and must instead rely on broadcasting to achieve similar calculations, which may result

in slower performance on the GPU. We use a normalization approach, where each

computation is rescaled based on the current maximum value and then converted to

linear scale for matrix operations, before converting back to log scale. In Algorithm 1,

we present the pseudocode of the normalization approach under the log-scale. Specifi-

cally, we store all parameters on a log scale and perform any basic operation using the

operators defined in Equations 3.24, 3.25, 3.26, and 3.27. For matrix operations, we

first divide the two vectors or matrices involved by their respective maximum values

based on the log operator. Then, we convert them to a linear scale to perform the matrix

operations. Afterward, we convert the result back to a log scale and apply the log oper-

ator’s multiplication, multiplying by the maximum values again. This normalization

method is the same as pomegranate1 [44].
1https://github.com/jmschrei/pomegranate/blob/master/pomegranate/hmm/dense hmm.py
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Algorithm 1 Normalization under log-scale during forward pass
1: Input: A (Transition probability matrix), alphas (Forward probabilities),

b (Observation probabilities)

2: Output: alphas (Updated forward probabilities)

3: max A←max(A)

4: A← exp(A -⃝ max A)

5: alpha max←max(alphas[t−1])

6: alphas[t−1]← exp(alphas[t−1] -⃝ alpha max)

7: alphas[t]← log(b[t]⊙ (A · alphas[t−1])) +⃝ max A +⃝ alpha max

All the methods described above from Section 3.1 to 3.4 can be implemented using

common numerical computation packages. We will primarily use NumPy2 [14] as our

main tool, which allows arrays to be transferred to CuPy3 [30] for GPU acceleration. It

is important to note that when using the Baum-Welch algorithm for parameter updates,

we do not update the transition probability matrix A, which means the language model

parameters will remain fixed.

3.5 Evaluation Criteria

Before conducting the experiments, it is essential to outline the evaluation criteria. The

WER is a widely used metric for evaluating the performance of ASR systems. It is

calculated by taking the ratio of incorrectly recognized words to the total number of

words processed [21]:

WER =
S+D+ I

N
=

S+D+ I
H +S+D

(3.28)

In this formula, I, D, S, H and N represent the number of insertions, deletions, sub-

stitutions, correct hits, and input words, respectively. We will also employ Character

Error Rate (CER), following the similar evaluation methodology as WER. For runtime

measurements, we focus solely on the total time spent on forward and backward com-

putations, as these involve matrix operations that can fully leverage GPU acceleration,

allowing us to observe the performance improvements. In practice, GPU acceleration

also benefits broadcast operations, which is reflected in Viterbi decoding. This will be

discussed in the experiments section 3.6.

2https://numpy.org/
3https://cupy.dev/
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3.6 Experiments

We encrypt The Ring Verse from The Lord of the Rings [51] using a one-to-one letter

mapping with only English characters and special symbols (ˆ) and ($) for start and

end markers, along with spaces. This serves as our cipher, comprising 363 letters.

The n-gram language model is trained on English text4 sourced from the internet,

specifically from TED Talks. We employ seven different configurations: config 1 serves

as the baseline method without matrix multiplication, configs 2, 3, 4 operate on CPU

with matrix multiplication, log scale, and log scale with normalization, respectively,

while configs 5, 6, 7 utilize a GPU T4 for these operations. The main difference

between “log scale config” and “log scale with normalization config” is that, in the

latter, operations are performed by first converting back to linear scale for matrix

computations, as described in Algorithm 1. In contrast, “log scale config” achieves

similar matrix operations using broadcasting techniques. The experiments are conducted

on Google Colab5, which provides a CPU with 2 threads. Each configuration ran 10

iterations, and we repeated this process five times to average the time. The results

are shown in Figure 3.2. It is evident that matrix operations significantly reduce

computation time, and the normalization method enhances efficiency on the log scale.

As the n-gram order increases, the GPU acceleration effect becomes more pronounced.

Furthermore, when using Viterbi decoding, we observed that traversing each state to

perform the calculations takes over 10 seconds per n-gram. However, when leveraging

GPU broadcast computations, the average time is reduced to less than 1 second.

4http://homepages.inf.ed.ac.uk/oklejch2/data/english text
5https://colab.google/
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Figure 3.2: Running time for different configurations. It is observed that the Baseline

configuration requires the most computational time, while the log configuration, accel-

erated by broadcasting on both CPU and GPU, shows slightly better results. For the

matrix-based and norm-included configurations, a significant reduction in computation

time is evident. The log+norm configuration incurs a minor overhead due to the additional

log scale to linear scale conversions compared to the matrix configuration. Notably, all

GPU-based configurations demonstrate at least a 50% reduction in computation time

compared to their CPU counterparts.

We also computed the WER and CER for the decipherment results. For configu-

rations that did not use log scale, floating-point underflow issues occurred during the

forward process around the 200th letter of the cipher, making it impossible to decipher

the final result. Therefore, we adopted a log-scale approach and employed batch pro-

cessing, conducting a total of 20 iterations for each n-gram. We present the WER/CER

results for different n-gram models on the log scale in Table 3.1. Additionally, we

display the probability heatmap of the lexical model in Figure 3.3, where the vertical

axis corresponds to cipher letters and the horizontal axis represents decrypted letters.

The diagonal indicates correct decryption mappings. We also present the ciphertext and

decipherment results in 3.4, along with the ground truth.
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N-gram WER(%) CER(%)

2-gram 52.63 18.48

3-gram 51.39 18.47

4-gram 44.74 20.73

5-gram 23.68 11.76

Table 3.1: WER/CER results. As the n-gram order increases, there is a noticeable

decline in the WER. However, the CER rises because some sequences, although closer

to resembling actual words, do not correspond to the correct decipherment target words.
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Figure 3.3: The heatmap of lexical model probabilities updates with increasing iterations,

based on a 4-gram LM. The vertical axis corresponds to cipher letters and the horizontal

axis represents decrypted letters. The diagonal indicates correct decryption mappings.

As the number of iterations increases, the model becomes increasingly confident in

mapping the ciphertext to the deciphered text, gradually converging toward the correct

solution.
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Ground Truth:

THREE RINGS FOR THE ELVEN KINGS UNDER THE SKY SEVEN
FOR THE DWARF LORDS IN THEIR HALLS OF STONE NINE FOR
MORTAL MEN DOOMED TO DIE ONE FOR THE DARK LORD ON
HIS DARK THRONE IN THE LAND OF MORDOR WHERE THE
SHADOWS LIE ONE RING TO RULE THEM ALL ONE RING TO FIND
THEM ONE RING TO BRING THEM ALL AND IN THE DARKNESS
BIND THEM IN THE LAND OF MORDOR WHERE THE SHADOWS
LIE

Cipher:

NQIJJ ILZFY DPI NQJ JRUJZ KLZFY MZHJI NQJ YKW YJUJZ DPI
NQJ HSBID RPIHY LZ NQJLI QBRRY PD YNPZJ ZLZJ DPI TPINBR
TJZ HPPTJH NP HLJ PZJ DPI NQJ HBIK RPIH PZ QLY HBIK NQIPZJ
LZ NQJ RBZH PD TPIHPI SQJIJ NQJ YQBHPSY RLJ PZJ ILZF NP
IMRJ NQJT BRR PZJ ILZF NP DLZH NQJT PZJ ILZF NP GILZF NQJT
BRR BZH LZ NQJ HBIKZJYY GLZH NQJT LZ NQJ RBZH PD TPIHPI
SQJIJ NQJ YQBHPSY RLJ

Deciphered (with 3-gram):

THREE MINGS FOR THE EXPEN KINGS ANDER THE WAY WEVEN
FOR THE PLARS WORDS IN THEIR HALLS OF SIONE ZINE FOR
CORTAL YOU GOOKED TO DIS QUE FOR THE PARE WORD ON HIS
PARK THRONE IN THE CAND OF COMPOR THERE THE WHAVOLD
LIS QUE MING TO MAKE THEY ALL QUE MING TO FING THEY
QUE MING TO BRING THEY ALL AND IN THE PARENESS BING
THEY IN THE CAND OF COMPOR THERE THE WHAVOLD LIS

Deciphered (with 4-gram):

THREE MINGS FOR THE ENVEN KINGS UNDER THE SKY SEVEN
FOR THE STARY WORKS IN THEIR HUNDS OF STONE NING FOR
COMPAN CAN LOOKED TO DIE ONE FOR THE PART WORK ON HIS
PART THRONG IN THE BACK OF COMPUT THERE THE SHAKING
BIG ONE MING TO MADE THEY AND ONE MING TO FIND THEM
ONE MING TO BRING THEY AND AND IN THE PARTNESS WILL
THEY IN THE BACK OF COMPUT THERE THE SHAKING BIG

Deciphered (with 5-gram):

THREE MINDS FOR THE SEVEN KINDS UNDER THE SKY SEVEN
FOR THE SCARY WORDS IN THEIR HANDS OF STONE NINE FOR
MORTAL MEN LOOKED TO DIE ONE FOR THE DARK YOUD OF HIS
DARK THROPY IN THE KIND OF COUPLE WHERE THE SHADOWS
YOU ONE RING TO MAKE THEM ALL ONE RING TO FIND THEM
ONE RING TO BRING THEM ALL AND IN THE DARKNESS KIND
THEM IN THE KIND OF COUPLE WHERE THE SHADOWS YOU

Figure 3.4: Deciphering The Ring Verse
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Decipherment with Substitutions,

Insertions and Deletions

In phonetic decipherment, the challenge with letter substitution is that the mapping

between acoustic units and graphemes is often not one-to-one. A single grapheme can

represent a sequence of phonemes, such as the grapheme “x”, which is pronounced

as “K S”. On the other hand, a single phoneme may also correspond to a sequence of

graphemes, as seen in the word “knight”, where the phoneme “N” is represented by the

graphemes “kn”. Thus, insertions and deletions are crucial for accurate decipherment.

Additionally, obtaining phonetic ciphers from speech relies on another recognition

model, such as the Universal Phone Recognizer used in [22] and the XLS-R model [7]

that we will employ later. First, the phonetic sequence recognition model may have

accuracy issues. Second, the correct identification of word boundaries (i.e., silence) can

significantly impact our decipherment model. Therefore, incorporating optional silence

is necessary to allow the decipherment process to learn effectively.

For comparison, we briefly review the decipherment system from [22], illustrated

in Figure 4.1. It includes a lexical model, a language model, and an alignment model,

which correspond to the observation probability matrix, transition probability matrix,

and additional state weights (i.e., insertion and deletion) in an HMM model. The

main difference between the method from [22] and ours is that [22] utilizes WFST

based on Kaldi for implementation, resulting in a distinct model structure compared to

ours. Additionally, [22] is entirely CPU-based, whereas our approach leverages GPU

acceleration.

21
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Language Model Lexical Model

Decoded Phones from UPR

Text Data

Alignment Model

Baum-Welch
Training

Viterbi decoding

WFST
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Decoded
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from UPR Pseudo
Labels

Training

Decipher

Figure 4.1: The overall structure of decipherment system from [22]. The language model

is a n-gram trained on the target language text.

4.1 Model Structure

The forward-backward computation framework, as discussed in Section 3.1, largely

remains unchanged. However, we have to account for the increased number of states at

each time step due to the inclusion of different operations such as insertion, deletion,

substitution, and optional silence. Figure 4.2 illustrates the topology for advancing one

time step in the forward computation. When only substitution is retained, this structure

simplifies to a standard HMM.

Each operation is represented by a circle containing all the states discussed in

Section 3.1. The following rules are established: during substitution and insertion, the

transition matrix is required. In contrast, deletion does not require a transition matrix,

effectively allowing us to skip a time step. Insertion, deletion, and substitution each

have associated weights, whereas the optional silence carries a fixed weight of 1, with

any state being able to transition to silence. At each time step, there will be only one

substitution or one deletion. Many insertions may occur alongside a substitution. After

all operations are completed, there may be an optional silence. Additionally, the number

of consecutive deletions across multiple time steps will not exceed a predefined upper

limit. Self-loops for each operation are not considered. Below, we provide a more
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Figure 4.2: The topology of forward step in the decipherment system that enables

insertion, deletion, substitution and optional silence. The lines represent possible

transition paths, where black lines indicate substitution operations, red lines indicate

deletion operations, blue lines indicate insertion operations, and green lines indicate

optional silence insertion. The arc weights leaving each node sum to 1. The figure

only shows up to 2 possible insertions at a single time step and up to two consecutive

deletions across time steps. Note that each circle in the figure represents a state q, and

each state q has multiple possible w2:n−1 when the n-gram order is greater than 2.

formal description of each operation:

SUB: α
(1)
t ( j) =

N

∑
i=1

b j(xt)a ji

K

∑
k=1

α
(k)
t−1(i)w

(k)
SUB 1≤ k ≤ K (4.1)

INS: α
(k)
t ( j) =

N

∑
i=1

a jiα
(k−1)I(k=m+2)
t (i)w(k−1)I(k=m+2)

INS m+2≤ k ≤ K−1 (4.2)

DEL: α
(k)
t ( j) =

N

∑
i=1

d j(xt)α
(k−1)
t−1 (i)w(k−1)

DEL 2≤ k ≤ m+1 (4.3)

SIL: α
(K)
t ( j) =

N

∑
i=1

a ji

K−1

∑
k=1

α
(k)
t (i) 1≤ k ≤ K−1 (4.4)

In this context, K represents the total number of operations. Given a deletion limit of m
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and an insertion limit of n, the total number of operations K = m+n+2. When k = 1, it

corresponds to a substitution. b denotes the observation probability, while d represents

the deletion probability, which has the same shape as b. The backward probabilities are

analogous to the forward probabilities. Then each operation can be expressed in the

form of a dense matrix multiplication.

4.2 Parameter Updating

Now we turn our attention to parameter updates. The update for observation probabilities

remains consistent with Equation 3.9. The transition probabilities are kept fixed. Our

focus is on updating the weights associated with each operation. As discussed in Section

3.1, we aim to maximize Equation 3.7 as the objective function. For the sake of clarity,

we first consider the substitution state at time step t within its corresponding circle. At

this circle, we can either perform an insertion at the same time step or proceed to the

next time step with a deletion or substitution operation. For consistency in notation, we

represent transitions from the current time step t to the next time step t +1, where k

denotes a specific operation. We only consider starting from a substitution circle, so for

qt , k is fixed at 1 and there are total K = 3 valid operations. For each state q, we denote

the tuples of adjacent time steps as Si = (...i) and S′j = ( j...), where each possible w2:n−1

is represented as s and s′ respectively. We now maximize the expectation function:

L(λ,λ) =
K

∑
k=1

T−1

∑
t=1

V

∑
j=1

V

∑
i=1

P(X ,q(1)t = Si,q
(k)
t+1 = S′j(k)|λ)log wSi,S′j(k)

(4.5)

such that

K

∑
k=1

wSi,S′j(k)
= 1 (4.6)

According to the method of Lagrange multipliers, the Lagrangian function to be maxi-

mized for wSi,S′j(k)
is given by:

L(λ,λ,γ) =
K

∑
k=1

T−1

∑
t=1

V

∑
j=1

V

∑
i=1

P(X ,q(1)t = Si,q
(k)
t+1 = S′j(k)|λ)log wSi,S′j(k)

+ γ(
K

∑
k=1

wSi,S′j(k)
−1)

(4.7)
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where γ is the Lagrange multiplier. Taking the partial derivative of the above expression

with respect to wSi,S′j(k)
and setting the result to zero, we obtain:

T−1

∑
t=1

V

∑
j=1

V

∑
i=1

P(X ,q(1)t = Si,q
(k)
t+1 = S′j(k)|λ)+ γwSi,S′j(k)

= 0 (4.8)

Let k range from 1 to K in above expression and then sum these K equations yields:

K

∑
k=1

T−1

∑
t=1

V
j=1

V

∑
i=1

P(X ,q(1)t = Si,q
(k)
t+1 = S′j(k)|λ)+ γ = 0 (4.9)

and then eliminate the Lagrange multiplier γ:

wSi,S′j(k)
=

T−1
∑

t=1

V
∑
j=1

V
∑

i=1
P(X ,q(1)t = Si,q

(k)
t+1 = S′j(k)|λ)

T−1
∑

t=1

K
∑

k=1

V
∑
j=1

V
∑

i=1
P(X ,q(1)t = Si,q

(k)
t+1 = S′j(k)|λ)

(4.10)

=

T−1
∑

t=1

V
∑
j=1

V
∑

i=1

|Si|
∑
s

|S′j(k)|
∑

s′(k)
P(X ,q(1)t = s,q(k)t+1 = s′(k)|λ)

T−1
∑

t=1

V
∑
j=1

V
∑

i=1

K
∑

k=1

|Si|
∑
s

|S′j(k)|
∑

s′(k)
P(X ,q(1)t = s,q(k)t+1 = s′(k)|λ)

(4.11)

=

T−1
∑

t=1

V
∑
j=1

V
∑

i=1

|Si|
∑
s

|S′j(k)|
∑

s′(k)
αt [s]as,s′(k)βt+1[s′(k)]

T−1
∑

t=1

V
∑
j=1

V
∑

i=1

K
∑

k=1

|Si|
∑
s

|S′j(k)|
∑

s′(k)
αt [s]as,s′(k)βt+1[s′(k)]

(4.12)

where as,s′(k) = ws,s′(k)As,s′(k) and As,s′(k) is the transition probability from n-gram when

the operation is insertion (assuming k = 3). as,s′(k) = ws,s′(k)As,s′(k)b j(xt+1) if the oper-

ation is substitution when k = 1. as,s′(k) = ws,s′(k)d j(t +1) if the operation is deletion

(assuming k = 2).

Thus, for the three operations starting from a substitution state, the updating rules
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for their operation weights are:

SUB: wSi,S′j(1)
=

T−1
∑

t=1

V
∑
j=1

V
∑

i=1

|Si|
∑
s

|S′j(1)|
∑

s′(1)
αt [s]ws,s′(1)As,s′(1)b j(xt+1)βt+1[s′(1)]

T−1
∑

t=1

V
∑
j=1

V
∑

i=1

K
∑

k=1

|Si|
∑
s

|S′j(k)|
∑

s′(k)
αt [s]as,s′(k)βt+1[s′(k)]

(4.13)

INS: wSi,S′j(3)
=

T−1
∑

t=1

V
∑
j=1

V
∑

i=1

|Si|
∑
s

|S′j(3)|
∑

s′(3)
αt [s]ws,s′(3)As,s′(3)βt+1[s′(3)]

T−1
∑

t=1

V
∑
j=1

V
∑

i=1

K
∑

k=1

|Si|
∑
s

|S′j(k)|
∑

s′(k)
αt [s]as,s′(k)βt+1[s′(k)]

(4.14)

DEL: wSi,S′j(2)
=

T−1
∑

t=1

V
∑
j=1

V
∑

i=1

|Si|
∑
s

|S′j(2)|
∑

s′(2)
αt [s]ws,s′(2)d j(t +1)βt+1[s′(2)]

T−1
∑

t=1

V
∑
j=1

V
∑

i=1

K
∑

k=1

|Si|
∑
s

|S′j(k)|
∑

s′(k)
αt [s]as,s′(k)βt+1[s′(k)]

(4.15)

For arcs originating from an insertion state or a deletion state, the form of their weight

updates is similar to that given above. Furthermore, for both insertion states and deletion

states, there are only two outgoing arcs.

4.3 Dataset and Setup

We conducted experiments using speech data from seven low-resource languages,

specifically Bulgarian (BG), Czech (CZ), Hausa (HA), Portuguese (PO), Swahili (SA),

Swedish (SW), and Ukrainian (UA). The data was sourced from the GlobalPhone [45]

multilingual corpus that encompasses 22 languages. For each language, we selected 20

minutes of speech data.

We trained all language models using text data from CommonCrawl[10]. Following

the methodology outlined in [22], we preprocessed the data as follows: we tokenized

the text at the word level and excluded tokens composed solely of non-alphanumeric

characters. Words containing characters not present in the target language’s alphabet or

letters repeated consecutively three or more times were mapped to <unk>. Additionally,

we removed sentences that contained any word longer than 20 characters or included

three consecutive single-letter words.

To obtain phonetic sequences from speech, we trained a multilingual phone recog-

nizer. Our training data comprised 20 hours of English speech from the LibriSpeech

[33], and an additional 20 hours each of German, French, Spanish, Polish, and Russian
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from the GlobalPhone [45]. Specifically, the multilingual phone recognizer was trained

following the methodology outlined in [22, 43], utilizing a small time-delayed neural

network [34] acoustic model implemented in Kaldi [35]. This model contains 18 hidden

layers, each with 798 units and a bottleneck size of 90. The lattice-free maximum

mutual information objective function [36] was employed, with phones mapped to the

X-SAMPA (Extended Speech Assessment Methods Phonetic Alphabet). These mapped

phone sequences were then used as training targets. The features extracted from the

pretrained self-supervised model XLS-R [7] were used instead of traditional MFCC fea-

tures used in [22] to enhance the robustness of cross-lingual phone recognition. XLS-R

[7], similar to BERT’s masked language modeling [12], learns contextualized speech

representations by randomly masking feature vectors before processing them through a

transformer network during self-supervised pretraining. Specifically, we utilized the

300M parameter version of XLS-R, with representations from the 18th layer being used,

as [43] identified this layer as containing the most relevant information for cross-lingual

phone recognition. During decoding, a bi-gram phone language model, trained on

the phonetic transcripts of the multilingual phone recognizer’s training dataset, was

employed.

4.4 Experiments

We conducted our experiments using one RTX 2080 Ti GPU, one A40 GPU, and eight

CPUs with 32 threads. In our decipherment model, we utilized a batch size of 10

and performed 20 iterations for each language, training across different n-gram. We

set the limits for both insertion and deletion to 1, with initial weights for insertion

and deletion both initialized to 0.1. All model computations were executed on GPUs.

We compared the performance between the two GPU types and, for comparison, also

ran [22]’s decipherment model without pruning, training each n-gram configuration

separately (with OpenFST [4]). The results of the runtime are presented in Table 4.1.

The reported runtimes focus exclusively on the forward and backward computations. As

observed, our decipherment model demonstrates a more pronounced speed advantage

on the GPU as the n-gram order increases, because the GPU can more effectively utilize

its streaming multiprocessors to parallelize computations. For lower n-gram orders, the

GPU’s performance is slightly inferior to that of the CPU, which may be attributed to

data transfer limitations.
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Language n-gram NumPy/CuPy (min) OpenFST (min) Speed-up
RTX 2080 Ti A40 8 CPU 32 threads (CPUs/A40)

BG 2-gram 3.909 2.435 1.087 0.446

3-gram 4.794 3.190 17.605 5.519

4-gram 7.917 5.585 167.041 29.909

CZ 2-gram 3.645 2.316 1.704 0.736

3-gram 4.568 3.023 30.509 10.092

4-gram 14.206 10.933 362.003 33.111

HA 2-gram 2.402 1.511 0.720 0.477

3-gram 2.955 1.951 12.043 6.173

4-gram 7.593 3.622 118.497 32.716

PO 2-gram 4.497 2.859 1.424 0.498

3-gram 5.522 3.633 19.189 5.282

4-gram 28.416 11.515 192.396 16.708

SA 2-gram 2.404 1.531 0.682 0.445

3-gram 2.963 1.953 11.552 5.915

4-gram 4.602 2.976 126.356 42.458

SW 2-gram 4.553 2.912 1.358 0.466

3-gram 5.648 3.691 26.623 7.213

4-gram 9.133 6.198 323.952 52.267

UA 2-gram 2.393 1.522 0.940 0.618

3-gram 2.937 1.922 15.853 8.248

4-gram 5.179 3.748 177.538 47.369

Table 4.1: GPU and CPU execution times for different n-gram models across languages

We also present decoding runtimes with 4-gram LM in Table 4.2. Here, “Baseline”

refers to the state traversal decoding method using loop, same as the Baseline approach

in Section 3.1. The term “K2” represents an alternative Kaldi framework based on

the K21/Kaldifst2/pynini3 toolkits, which we used for Python execution. K2 supports

GPU-accelerated composition and decoding of WFSTs. It can be observed that the

efficiency of K2 is comparable to that of GPU-accelerated broadcasting computations.

However, compared to the K2 method, broadcasting offers superior optimization and

1https://github.com/k2-fsa/k2
2https://github.com/k2-fsa/kaldifst
3https://www.openfst.org/twiki/bin/view/GRM/Pynini



Chapter 4. Decipherment with Substitutions, Insertions and Deletions 29

efficiency on GPUs, in which broadcasting simplifies the implementation by allowing

for element-wise operations across arrays. The broadcast implementation is straightfor-

ward yet efficient: similar to Equation 3.11, it involves first vectorizing the parameters

and then computing the product of the parameters rather than performing matrix multi-

plication. Afterward, the maximum value and its index are identified from all source

states. OpenFST, on the other hand, operates with 32 parallel jobs on the CPU. A

comparative analysis of all results highlights the substantial performance advantage

of GPUs. Specifically, in the case of 4-gram models, a single GPU demonstrates over

30 times the efficiency of multi-CPU parallel processing, both for forward-backward

computations and decoding tasks.

Language Baseline (s) Broadcast (s) K2 (s) OpenFST (s) Speed-up

BG 1496 11 32 557 50.636

CZ 1733 43 50 1114 25.907

HA 1095 10 31 325 32.500

PO 1885 46 35 588 12.783

SA 975 8 22 365 45.625

SW 1822 12 47 850 70.833

UA 1287 9 24 507 56.333

Table 4.2: Time cost for viterbi decoding with 4-gram LM on RTX 2080 Ti. “Speed-

up” indicates the performance improvement of broadcasting over OpenFST. Except

for OpenFST on the CPU, all other approaches are conducted on the GPU. For the

baseline, since it does not involve matrix operations, the GPU does not provide significant

acceleration benefits.

Finally, we present the WER/CER results in Table 4.3. The outcomes are comparable

to those obtained using the WFST method, with a maximum discrepancy of only 2%.

This also validates the effectiveness of our decipherment approach. Moreover, the

performance represents a significant improvement over the results reported by [22],

largely attributed to the multilingual phone recognizer XLS-R. Moreover, there are

more techniques to further enhance WER/CER metrics, such as through word-level

LM decoding and the use of random restarts. These potential improvements will be

discussed in the next section.
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Language Decoded with 4-gram Decoded with Word LM Trained with Word LM
WER(%) CER(%) WER(%) CER(%) WER(%) CER(%)

BG 65.25 20.29 39.48 15.30 30.61 12.07

CZ 73.26 27.44 47.53 19.29 42.83 16.49

HA 81.03 43.47 58.11 27.55 45.30 19.60

PO 79.82 35.05 55.25 27.47 42.81 20.65

SA 73.51 20.68 38.21 12.90 31.93 10.27

SW 96.83 57.66 86.47 53.13 71.09 38.67

UA 56.42 20.71 30.55 12.94 23.29 9.83

Table 4.3: WER/CER results for different decoding and training methods. In all three

methods, the Lexical model and Alignment model (i.e., observation probability and oper-

ation weights) were trained using a 4-gram Language model. The method “Decoded with

4-gram” involves Viterbi decoding with the same 4-gram model. In contrast, “Decoded

with Word LM” uses a word language model of order 3 for decoding. The method “Trained

with Word LM” takes this further by continuing training for an additional 20 iterations

using the word language model as the language model (i.e., transition probability) before

decoding with the same word language model.

4.5 Further Improvement on WER

Although incorporating word-level semantic information into the current decipherment

model structure remains challenging, we can leverage K2 to train and decode WFSTs

on the GPU, thereby integrating a word-level language model. In [22]’s approach, the

lexicon model and alignment model correspond to our observation probability matrix

and the weights of various operations, respectively. We can initialize the parameters of

the lexicon model and alignment model using the parameters obtained from training

with CuPy, and use Kaldi scripts4 to create both word and character language models.

This allows us to either use [22]’s original method to train and decode with the word

language model or to employ K2 to migrate all WFST operations to the GPU. However,

due to memory constraints, we were unable to use the word language model on the

GPU with K2. Even though, using kaldifst for composition on the CPU proved to be

inefficient. As an alternative, we utilized original [22]’s method based on Kaldi to train

and decode with word LM. After initializing the lexicon model and alignment model

4https://github.com/unmute-tech/deciphering-speech/blob/main/local/lang/prepare lang.sh
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parameters with our code and composing them with a word language model of order 3

created from [22]’s work, followed by decoding, we observed a notable improvement

in WER, as shown in Table 4.3. Further, after training with the word language model

for 20 iterations on CPUs, and decoding, we observed a slight additional improvement

in WER compared to decoding with the word language model alone, as detailed in

Table 4.3. We anticipate similar performance improvements if we apply K2, which also

supports differentiable WFSTs, enabling gradient-based training on the GPU.

Additionally, other techniques, such as random restarts and power tricks discussed

in [23], can enhance WER/CER. Some of our experiments revealed that employing

[22]’s random restarts and progressive training with n-grams could further improve

WER by 5-10%. Although these are not the focus of this study, they offer additional

avenues for potential improvements.



Chapter 5

Conclusions and Future Work

In this dissertation, we have addressed significant challenges in developing efficient

and effective ASR systems for low-resource languages by focusing on accelerating

the decipherment process using modern computational techniques and toolkits. Our

primary objective was to overcome the limitations associated with traditional CPU-

based decipherment methods, which are often constrained by high memory demands and

computational inefficiency. By transitioning to a GPU-accelerated approach, we have

demonstrated substantial improvements in processing speed and overall performance.

The adoption of GPU-compatible toolkits such as CuPy and K2 has enabled us to

handle complex decipherment tasks more efficiently, making it faster to work with

larger n-gram models and execute advanced sequence alignment operations.

Future research can explore the effectiveness of our decipherment approach on a

broader range of low-resource languages, extending its applicability and testing its

robustness across different linguistic contexts. Additionally, techniques such as random

restarts could be employed to further enhance the model’s performance, potentially

yielding significant improvements in accuracy. A complete evaluation and training on

the K2 framework with GPU instead of using Kaldi is also warranted, as K2 inherently

does not require pruning, which suggests that it could deliver even better results without

compromising computational efficiency. Although our GPU-accelerated model already

achieves impressive speeds, further optimizations, such as implementing beam search,

could improve runtime efficiency. This would allow for faster processing without a

significant loss in accuracy, making the system even more practical for real-world

applications.
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