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Abstract

The thesis investigates the advantages of combining the strengths of sequential

pattern learning with robust contextual understanding of large language models (LLMs)

to outperform state-of-the-art foundational recommendation baselines. It introduces

IDentityRec, a novel recommendation architecture designed to integrate the collabora-

tive information from item IDs with the powerful semantic modelling capabilities of an

LLM to address pertinent challenges in the space of sequential recommender systems.

Leveraging pre-trained ID embeddings and textual prompts from an instruction tuned

large language model, IDentityRec harnesses a unified collaborative embedding space

to ensure that the model generates comprehensive, nuanced and personalised ranking

lists of recommendations in a single forward iteration. It involves efficiently training

a minimal number of modular parameters to fine-tune the model on the downstream

recommendation task, without incurring any additional overhead in terms of inference

time and storage space. The sophisticated architectural design of IDentityRec ensures

that the predictions remain within relevant candidate lists, thus mitigating the issue of

out-of-vocabulary recommendations.

Through comprehensive experiments, it is observed the model demonstrates quantifi-

able improvements in performance to the tune of 35% when assessed on standard evalu-

ation metrics across benchmark datasets. Empirical results highlight that IDentityRec

fares exceedingly well in cross-domain generalisation tasks, showing an impressive 43%

gain when the knowledge learned from one domain was adapted to another, without

retraining it from scratch. The model achieves its objective of generating contextually

relevant recommendations in data sparse scenarios, attaining a competitive nDCG score

in situations where a limited number of interactions were available. The effectiveness

of the architecture allows the robustness of IDentityRec to translate across domains,

successfully circumventing the cold start problem in unseen datasets, which is a major

challenge for traditional ID based recommendation systems.

The ability to generate optimal recommendations within a fixed vocabulary in a

single forward iteration positions IDentityRec as a robust solution for deployment in

modern recommender systems where performance and user experience are paramount.

The innovative architecture addresses the limitations of traditional LLM-based ap-

proaches in terms of efficiency, scalability and practicality, thus paving the way for

more personalised and context-aware recommendations on e-commerce platforms.
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Chapter 1

Introduction

1.1 Motivation

Sequential recommender systems [46] are software tools that suggest which item a

user is likely to interact with next, given a recorded sequence of items the user has

interacted with previously, in the form of ratings, clicks, or purchases [46]. They

are ubiquitous in modern businesses, allowing companies to discern user preferences

and offer tailor-made recommendations, resulting in improved customer experiences

and boosting company revenue. Online retail giant, Amazon, directly credited their

recommender system accounting for 35% of all sales, driving the company’s turnover

to touch a billion dollars [22].

Recently, with the emergence of Large Language Models, there has been a marked

increase in research aimed at utilizing LLMs for recommendation tasks [27]. Unlike

traditional systems that follow the two-tower architecture [10], LLM-based approaches

[3, 14, 23, 64] frame the recommendation task as an open-domain natural language

generation problem that requires generating a textual description or list of recommended

items with respect to an input prompt. However, LLMs, which are optimised for

text processing, struggle to extract semantic information from discrete, alphanumeric

identifiers like user and item IDs that do not convey linguistic meaning. Without proper

ID modelling, LLM-based strategies lack the ability to interpret collaborative signals

and fail to harness the relationship between users and items established through ID

interactions, leading to a decline in recommendation quality.

Owing to the nature of auto-regressive language models which generate text sequen-

tially, existing recommendation methods that use LLMs typically generate only one

recommendation result at a time [6]. Therefore, large-scale recommendation systems

1



Chapter 1. Introduction 2

that deal with millions of items and users require multiple generation attempts to obtain

optimal recommendation results. This further exacerbates the latency and concurrency

issues, making it slow, inefficient and difficult to scale. Such systems fail to efficiently

handle large volumes of user requests simultaneously within acceptable time frames. A

longer inference time due to multiple recommendation generations is a bottleneck that

could potentially translate into higher infrastructure and operational costs for businesses.

Existing approaches [50, 25] predict the next item by evaluating the likelihood over

all possible items in the vocabulary, including those which are irrelevant to the user’s cur-

rent context and outside his interest scope. Such a problem definition leads to irrelevant

and out-of-range recommendations which do not match the user’s demonstrated prefer-

ences [23]. This may be detrimental to customer engagement and reduce conversion

rates, directly impacting the revenue for businesses relying on recommendation-driven

sales. Thus, it is imperative to limit the candidate set based on the user’s current

interaction history in order to generate relevant and personalised recommendations.

For ID-based collaborative filtering approaches [29], it becomes challenging to

accurately predict user preferences when most users interact with only a small subset of

items. Presenting newly added items as recommendations when user-item interactions

are sparse, allows for increased item visibility to relevant users. Meanwhile, the ability

to provide high-quality recommendations for new users with little to no prior interaction

history, allows for increased customer purchases and retention [1]. So, generating high

quality recommendations in the presence of limited interaction data, while alleviating

the issues of data sparsity and cold-start forms a motivation of this thesis. The challenge

of enabling models to effectively apply learnt knowledge across unseen domains with

different data distributions also presents a compelling avenue for research.

1.2 Contribution

The dissertation delves into the discussion of combining the strengths of sequential

pattern learning with robust contextual understanding to outperform state-of-the-art

recommendation methods on publicly available datasets. We present an innovative

solution, IDentityRec, which bridges the gap between traditional ID-based collabora-

tive filtering methods and the advanced large language model based recommendation

architectures. Through the proposed architecture, we pioneer an effective strategy to

address the unique challenge of integrating IDs in LLMs for efficient and controllable

generation of recommendations.
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IDentityRec is a novel recommendation framework which ensures that the model

retains both the natural language understanding and collaborative filtering capabilities,

addressing the limitations of open-domain generation. It identifies the most relevant

items which are aligned with the user’s current interaction history and presents them to

the user, resulting in highly personalised recommendations. By training a lightweight

linear projection layer, the architecture retains the core objective of modelling joint

probability distributions over candidate items, enabling the efficient computation of

prediction scores across a well defined item vocabulary in a single forward iteration.

Filtering and refining the candidate set of items by incorporating additional contextual

information via LLMs before generating the final recommendation helps mitigate the

issue of out-of-vocabulary recommendations. The robust, domain-agnostic architecture

of IDentityRec generalizes well across different types of datasets due to its pre-training

on a diverse set of tasks.

The effective design alleviates the issues in traditional methods to ensure that

the model is extensible and can handle large-scale recommendation tasks efficiently,

meeting the performance requirements for deployment in production-level e-commerce

environments. To validate the robustness of the model in sparse data scenarios, empirical

evidence is gathered by conducting comprehensive experiments across prominent

sequential recommendation datasets. The results demonstrate the superiority and

effectiveness of the proposed model in terms of performance and scalability, while an

in-depth analysis underscores its efficiency and extensibility in real-world applications.

1.3 Thesis Structure

This dissertation consists of seven chapters. Chapter 2 explains the necessary back-

ground literature on traditional and LLM-based recommender systems which are most

relevant to this dissertation. Chapter 3 discusses the methodology adopted for the

project, the model’s architecture and its novelty, while Chapter 4 provides an overview

of the experiments undertaken to substantiate the hypotheses. The results from these

experiments are presented and analysed in Chapter 5. Chapter 6 discusses these results

and argues that they are evidence for the conclusions outlined later in Chapter 7. It also

mentions the limitations of the proposed model and potential future work.



Chapter 2

Background

In this chapter, we conduct a literature review of the recent advancements in sequential

recommendation systems. We begin by examining their evolution from traditional

approaches to attention-based architectures. Then, we proceed to explore the integration

of large language models in recommendation systems. Further, the discussion elucidates

the prevalent challenge posed by integrating IDs into modern recommendation systems.

2.1 Traditional Recommendation Systems

Traditional recommender systems have been foundational in personalising user expe-

riences, shaping the e-commerce landscape by anticipating user preferences with an

almost prescient accuracy. From the days of the Netflix Prize challenge [5], recom-

mendation systems have evolved through groundbreaking innovations. Two primary

paradigms form the bedrock of traditional recommender systems. Collaborative filter-

ing [17, 28, 47] recommends items based on the preferences of similar users, whereas

content-based filtering [49, 39] utilizes the intrinsic attributes of items to recommend

items that are similar to those a user had previously interacted with. Hybrid approaches

[40, 4] have been designed in literature to elegantly unify these two paradigms.

2.2 Sequential Recommendation Systems

Sequential recommendation plays a crucial role in personalised recommendation sys-

tems, focusing on understanding dynamically evolving user preferences by modelling

the latent temporal patterns encoded in their historical activity sequences. Marked a

significant departure from traditional recommender systems, they have evolved into

4



Chapter 2. Background 5

sophisticated engines, deftly guiding users through vast product assortments, while

working under the principle that the past actions of a user influence his future behaviour.

Preliminary research to address sequential recommendation leveraged Markov Chain

models [16, 44], which capitalise on the assumption that the next item a user interacts

with depends primarily on the most recent items they have engaged with. Techniques

like FPMC [45] combined matrix factorisation with the Markov Chain framework

to adeptly model sequential dynamics and personalised preferences. However, the

limitations of such models in capturing complex behavioural patterns and long-term

dependencies prompted the adoption of more advanced techniques.

With the advent of deep learning, sequential recommendation models pivoted to

using deep neural architectures to generate context-aware recommendations. Seminal

models like GRU4Rec [19] and Caser [54] emerged as a notable improvement over their

predecessors, attempting to solve the sequential recommendation task by employing

Gated Recurrent Units and Convolutional Neural Networks to capture the high-order

interactions and user behaviour embedded in latent spaces.

In recent years, SASRec [25] has revolutionised the field by capturing both short-

term and long-term dependencies in the sequence more effectively by utilising a self-

attention mechanism [59], allowing the model to learn complex patterns and critical

relationships from the most relevant parts of the sequence while predicting the next item.

BERT4Rec [52] further pushed the boundaries by employing the Cloze [56] objective

to predict the masked item, thereby modelling bi-directional dependencies by capturing

the contextual information from both past and future items in a sequence.

2.3 LLM Based Recommendation Systems

In the ever-evolving tapestry of recommender systems, Large Language Model (LLM)-

based recommender systems, with their unparalleled prowess of natural language

understanding, have emerged as the frontrunner of personalization, to forge deeper

connections between users and content [12, 61]. Early approaches such as U-BERT

[41], which treated LLMs primarily as feature extractors, were constrained by their

inability to fully exploit the generative capabilities of LLMs, limiting their potential

in dynamic recommendation scenarios. However, with the inception of LLMs like

GPT [6], T5 [43], and LLaMA [57], next-generation recommender systems harness

the inherent knowledge of pre-trained LLMs [51, 62] to comprehend the dynamically

evolving user-item relationships and produce context-aware recommendations.



Chapter 2. Background 6

The core premise in such systems is to reshape sequential recommendation as a

language modeling task by converting the behavioral sequence into the textual input

prompt to directly generate recommendation results [61]. To align LLMs with the

domain of generative recommendation, initial research leveraged prompting [13, 53]

and in-context learning [11, 34]. However, foundational models which were trained on

a specific recommendation task using dedicated data, continued to outperform these

methods. Therefore, fine-tuning was explored to adapt LLMs to recommendation.

P5 [14] utilized a prompt-based learning technique, fine-tuning the FLAN-T5

[43], to address five downstream recommendation tasks by framing them as language

generation problem. Based on a similar paradigm, InstructRec [64] adapted the FLAN-

T5 model to recommendation tasks by employing instruction tuning with a broader

range of texts. TALLRec [3] and GenRec [23] pushed the frontiers of generative

recommendations further by instruction tuning on the LLaMA model, creating a holistic

and deeply personalized recommendation experience.

2.4 Relevant Challenges

Recommendation systems based on the two-tower architecture [10] have long been

dominated by the ID-based paradigm, where users and items are represented by unique,

continuous ID embeddings denoting their semantic similarity. However, the reliance

on IDs alone introduces certain limitations, such as a lack of generalization to unseen

items and an inability to capture rich contextual information about them [2]. Existing

approaches [3, 14, 23, 64] have predominantly converted the recommendation task into

a natural language generation problem to align it with the inherent capabilities of LLMs.

Although impressive progress has been achieved, fundamental dichotomies between

these domains remain to be addressed.

Item IDs, being abstract identifiers devoid of semantic content, do not align well

with the text-centric operations of LLMs, leading to a loss of contextual richness and

limiting the model’s ability to generate nuanced recommendations [37]. In cold start

scenarios involving new users or items, LLMs cannot effectively predict preferences

based on discrete IDs alone [32]. The inefficiency in handling sparse data further

limits the system’s ability to provide personalized recommendations in situations with

limited user-item interactions [7, 32]. To compensate for the lack of semantic content,

additional computational overhead may be required, increasing the complexity and

resource demands of the system [18, 65].



Chapter 3

Methodology

In this section, we provide a holistic view of IDentityRec’s architecture, outlining the

novel components involved in the design of our proposed model and how they integrate

to mitigate the issues plaguing modern recommendation systems.

3.1 Overview

The proposed model uses a pre-trained sequential recommendation system to obtain

high-quality ID embeddings for items and effectively capture sequential patterns and

collaborative information. A backbone LLaMA model is instruction-tuned to efficiently

adapt the LLM for recommendation related tasks. Through Parameter Efficient Fine

Tuning techniques like Low Rank Adaptation, only a small subset of parameters in the

LLM are trained, while others remain frozen, thus adapting the recommendation task for

a given dataset in a computationally efficient manner. By using a softmax in the output

layer, the architecture computes a joint probability distribution over all candidate items

in a single forward pass, evaluating and scoring all candidates simultaneously, rather

than one at a time. In the inference stage, the model utilises an item linear projection

that maps the output embeddings from the LLM into a space where a nearest neighbour

search can yield personalised recommendations that are within the candidate set. By

leveraging efficient embedding, tuning and projection techniques, the proposed model

effectively leverages the collaborative information along with the LLM’s contextual

knowledge to handle large candidate sets. The sophisticated design allows IDentityRec

to generate recommendations quickly and scale effectively to meet the demands of

contemporary recommender systems. A concise schematic diagram of IDentityRec’s

architecture is presented in Figure 1 for enhanced clarity and comprehension.

7



Chapter 3. Methodology 8

Figure 1: An illustration of the IDentityRec’s model training architecture

3.2 Input Processing and Encoding

In a sequential setting, the chronological user-item interaction sequence is represented

as Su = [iu1, iu2, ... , iuT ], where T is the number of items the user u has interacted with,

ordered by the timestamp. During training, at any time step t, the task entails predicting

the next item that the user would engage with, depending on the previous t−1 items.

We begin by transforming the training sequence into a fixed-length sequences, S =

s1, s2, ... , sn, where n ∈ N represents the maximum length of sequences that our model

can handle. Since users may have varying numbers of interactions, sequences need to be

padded or truncated to a fixed length. Maintaining consistency with [42], the sequences

are truncated to include only the 50 most recent interactions. However, if the sequence

length is less than the desired length, we repeatedly add a ‘PAD’ token from the left

until its length is n. So the final sequence for each user becomes Su = [iuT−50+1, ... , iuT ]

for truncated sequences and Su = [PAD, ... , PAD, iu1, ... , iuT ] for padded sequences.

The processed input sequence is to be fed into a sequential recommendation model

for obtaining conceptualised item embeddings. Each item in the sequence, iuj , is mapped

to a corresponding dense embedding vector eu
j of dimensionality d, using an embedding

matrix E ∈R|I|×d , where |I| is the total number of items. A constant zero vector is used

as the embedding for the padding item. So, for a sequence S′u = {iu1, iu2, . . . , iuT}

Eu = [eu
i1,e

u
i2, . . . ,e

u
iL ] where eu

j = E[iuj ] are the corresponding embeddings (3.1)
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3.3 Input Layer

The central premise of this section is to create a unified input representation which

ensures that the model benefits from both the collaborative filtering patterns deciphered

from IDs and the contextual information present in textual prompts, thus providing a

holistic approach to recommendation. To achieve this, a sequential recommendation

model like SASRec is pre-trained, the LLM is instruction-tuned and the ID embeddings

and textual prompts are projected together as input to the LLM.

3.3.1 Pre-training SASRec for ID Embeddings

As discussed in Section 1.1, Large Language Models are unable to infer the semantic

meanings of numeric IDs in the absence of textual features. However, the collaborative

information contained in IDs is very effective and crucial in personalised recommender

systems. To overcome this limitation, we propose obtaining ID embeddings by directly

extracting them from a pre-trained sequential recommender model without modification.

In this thesis, SASRec (Self-Attentive Sequential Recommendation) [25] is chosen

as the desired model from which we extract ID embeddings, owing to its superior

generalisation ability and effectiveness in sequential recommendation. SASRec, which

leverages self-attention mechanisms and transformer blocks to model user-item interac-

tion sequences, is pre-trained on the Amazon Reviews dataset. The item embedding

layer in SASRec learns embeddings for each item ID, while the self-attention blocks

capture the temporal dependencies and sequential patterns between users and items.

Since the transformer-based SASRec model is order-invariant, positional encodings

are added to the item embeddings to capture the sequential order of interactions. As-

suming that the positional encoding matrix is P ∈ RL×d and p j denotes the positional

encoding for position j, the final input representation to the self-attention layer is the

sum of the item embedding and its corresponding positional embedding, given by:

Xu = Eu +P or xu = eu
j +p j (3.2)

During the training loop, for each batch, the encoded user interaction sequences

are fed into the SASRec and the self-attention is computed over each pair of item

embeddings in the sequence to capture the dependencies between different items. These

scores determine the contribution of each item in the sequence towards the prediction
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of the next item. The self-attention score α jk between items iuj and iuk :

A(Q,K,V )= softmax
(

QKT
√

d

)
V or α jk = softmax

(
(eu

j +p j)WQ · (eu
k +pk)W⊤

K√
d

)
V

(3.3)

where WQ, WK , WV ∈Rd×d are learnable weight matrices for query, key and value

transformations respectively and d is the dimensionality of embeddings.

Then, a point-wise feed-forward network (FFN) is applied independently to each po-

sition in the sequence. The FFN has two linear transformations with a ReLU activation

in between, for adding non-linearity to the model. Mathematically, it is computed as:

FFN(x) = ReLU(xW1 +b1)W2 +b2 (3.4)

where W1 and W2 are weight matrices, b1 and b2 are bias vectors and ReLU(x) is

the Rectified Linear Unit activation function applied to the input x.

As we stack self-attention blocks, the network grows deeper. To circumvent the

vanishing gradient problem and improve training stability, we employ dropout and layer

normalisation after each sub-layer (self-attention and feed-forward). While dropout

helps mitigate overfitting, Layer Norm normalises the inputs and improve training

convergence. Residual connections are added around the self-attention and feed-forward

layers to propagate the low-layer features to higher layers. Self-attention layer g is:

g(x) = x+Dropout(g(LayerNorm(x))) LayerNorm(x) = α · x−µ√
σ2 + ε

+β (3.5)

where · is an element-wise dot product, µ and σ are mean and variance of x and α

and β are scaling factor and bias. To ensure that predictions for time step t only depend

on previous time steps, a causal mask is used to set the weights to −∞ for future time

MaskedAttention(Q,K,V ) = softmax
(

QKT +M√
dk

)
V (3.6)

The predicted probability for the next item in the sequence is generated using the

output layer using a softmax function over the dot product between the hidden state hu
t

and the embedding of all possible items:

ŷu
t+1 = softmax(hu

t ·E⊤) (3.7)

where E ∈ R|I |×d is the embedding matrix containing embeddings for all items in

the catalog and ŷu
t+1 is a vector of predicted probabilities over all items. The learning
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objective is to minimise the cross-entropy loss between the predicted probabilities ŷu
t+1

and the true next item iut+1. Substituting the probability with the softmax output:

L =− ∑
u∈U

Tu−1

∑
t=1

log ŷu
t+1[i

u
t+1] (3.8)

where ŷu
t+1[i

u
t+1] is the predicted probability of the true next item iut+1.

During training, the loss L is backpropagated, while the model parameters are

updated until convergence using the Adam optimiser. The hyper-parameters such as

learning rate, embedding size and number of attention heads are adjusted based on

validation performance. These details are covered in Section 4.3.2. Once the loss on the

validation set has stabilised and SASRec has been pre-trained to optimal performance,

the attention-weighted sum of values generates the output embeddings for each ID:

hu
j =

L

∑
k=1

α jk · (eu
k +pk)WV (3.9)

The model generates hidden representations (or embeddings) for each item in the

sequence after passing through a stack of self-attention layers. For each item iuj in the

sequence Su, the final hidden embedding is denoted as hu
j . After training SASRec, the

item embeddings can be extracted from the final hidden state using the item embedding

matrix E′ which contains the learned embeddings for all items in the item set, as:

E′[iuj ] = hu
j (3.10)

The item embedding matrix E′ ∈ RN×ds contains the embeddings of items in a

high-dimensional space, where N is the number of unique items and N×ds represents

the number of dimensions in which each item is represented. For a specific item i,

its embedding can be found in the i-th row of the matrix E′. These item embeddings

which are extracted from the item embedding layer of the trained SASRec capture the

sequential dependencies and behavioural patterns learned during training, which are

then used in the ID injection explained in Section 3.3.4 to enhance the recommendations.

3.3.2 Instruction Tuning the LLM Backbone

The extracted SASRec item ID embeddings encode domain-specific knowledge about

user-item interactions that are relevant to recommendation tasks. LLMs, however, are

not inherently equipped to handle specific tasks such as recommendation based on

structured item embeddings. Instruction tuning [60] is a crucial step in the pipeline
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that incorporates the collaborative contextual information from the embeddings into

LLM’s decision-making process and aligns it with the specific objective of providing

contextually relevant recommendations based on historical interactions.

This dissertation follows the Stanford Alpaca template [55] which is designed to

provide a structured way to fine-tune a language model using a series of instruction-

following examples. These instructions include a clear task description, followed by

the relevant input data and the expected output. Using the Alpaca template, instruction-

following examples guide the LLM on how to use the provided embeddings. In our

context, the instruction part of the template describes the recommendation task, while

the input is a sequence of item IDs representing the user’s interaction history. The

output is a list of recommended items based on user preferences or past behavior. An

example of the Alpaca style prompt is illustrated in Table 1.

Instruction Input

### Instruction: Given the user’s purchase history, predict the next possible

item to be purchased.

### Input: User has interacted with items 32, 198 and 76

Instruction Output

### Response: Based on the user’s history, item 615 is recommended

Table 1: An instance of the Alpaca template for instruction tuning

The LLaMA [57] has already been trained on a large corpus of text and has a

good understanding of language. We implement the Platypus setting [30] by focusing

on high-quality, diverse instruction-response pairs. This involves selecting examples

that are representative of the types of recommendation tasks the model would be

expected to perform, ensuring the instructions are clear and unambiguous and providing

responses that are accurate and contextually appropriate. The Platypus setting allows us

to combine model ensembles, diverse and augmented data, parameter efficiency, and

iterative self-instruction paradigms to fine-tune LLaMA, thus improving its performance

on instruction-following tasks while optimizing for resource efficiency and robustness.

We train the LLM iteratively with each example, helping the model improve its

ability to understand and generate outputs based on the item ID embeddings. Then

we fine-tune it on a dataset of instruction-response pairs to enhance its ability to

follow prompts effectively. Supervised fine-tuning minimised the difference between
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the model’s outputs and the correct responses, refining its ability to predict accurate

answers. To further improve the model, a ”self-instruct” paradigm was employed,

where the model generated additional training data iteratively, enhancing its capacity to

handle complex instructions. The fine-tuning leveraged internal attention mechanisms,

activation functions like GELU and layer normalisation to ensure stable and efficient

training. AdamW [35] was used to optimise the model’s parameters. At inference time,

the model generates responses to new prompts by associating the provided embeddings

with the appropriate textual responses. In this thesis, instruction tuning is conducted for

one epoch using the Alpaca template using the auto-regressive objective:

max
Φ

∑
(x,y)∈Z

|y|

∑
t=1

log(PΦ(yt | x,y<t)) (3.11)

where x and y represent the textual instruction input and corresponding output responses

in the self-instruct data respectively. yt is the t-th token, y<t represents the tokens

preceeding yt , Φ is the original parameters of the LLM and Z is the training set.

The instruction-tuned LLM generates responses based on the learned patterns from

the fine-tuning process and is ready to be integrated into the recommendation system.

3.3.3 Item Representation

The textual prompts are crucial for leveraging the inherent knowledge within large

language models. For an item i and its corresponding textual prompt txti, the tokens are

of the form ⟨embi
t ⟩ = LLM Tok(txti), where the function LLM Tok() represents the

word embedding layer of an LLM. The pre-trained SASRec ID embeddings for an item

i can be expressed as ei
s = SR Emb(txti;Θe), where ei

s ∈ Rd is the item represented i in

d-dimensions and SR Emb() is the function that extracts the embedding from SASRec.

Unlike the textual prompts that are easily understood by LLMs, the item ID represen-

tations may not align well when integrated into prompts. To circumvent this bottleneck,

we map SASRec’s ID-based item representation, es
i , into the language space of LLMs

using a trainable projector. This projection results in the creation of a behavioral token

⟨embi
s ⟩ = Proj ( ei

s ;Θp), where Θp are the parameters of the projection. The textual

and behavioural tokens are concatenated to obtain a holistic definition of an item i:

⟨embi
c⟩= Concat(⟨embi

t⟩,⟨embi
s⟩) (3.12)

Therefore, the LLM can comprehend an additional modality encapsulated in item

IDs along with textual data from prompts to improve sequential recommendation.
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3.3.4 Linear Projection: Creating the ID Injection

The ID embeddings extracted from the SASRec have lower dimensionality (ds = 64) as

compared to the word embeddings in LLMs (dk = 5120 in LLaMA2-13B). However,

to create a unified input, each low dimensional item ID must be treated similar to

a high dimensional word in the LLM. To address this, the IDs are projected using

a specialised ID injection component, which is a linear projection represented by a

trainable weight matrix. It converts the item IDs into the same dimensionality as the

word embeddings by multiplying the pre-trained ID embeddings with a learnable weight

matrix WInput ∈Rds×dk . Such a representation preserves the original positions of the ID

and word embeddings in the sequence, ensuring the contextual and sequential integrity

of the input and maintaining the temporal order.

A standard approach is followed to train the linear projection layer. For each training

sample, the input is prepared by concatenating the projected ID embeddings and the

textual prompt. The linear projection layer is initialised randomly and the parameters of

the LLM are frozen to prevent them from being updated during training. During the

forward propagation phase, the concatenated embeddings are passed through the LLM

to compute the output predictions using a softmax layer. The optimisation objective is

to minimise the cross-entropy loss between the predictions and the ground truth. The

loss is backpropagated to update only the weights of the linear projection layer.

This approach of focusing the training efforts on adapting the ID embeddings to

match the LLM’s input format minimises the risk of disrupting the learned knowledge

in both the LLM and the recommendation model. Only the linear projection component

is trainable. This helps integrate the collaborative information from the SASRec while

simultaneously ensuring that the LLM does not forget previously learned information.

3.4 Large Language Model Layer

The LLM layer takes as input the projected item embeddings and textual representations

associated with user-item interactions. It processes the input sequences through its

multiple layers of transformers, where each layer applies self-attention mechanisms to

capture complex relationships and dependencies between different parts of the input,

thus encoding contextual information about items or user preferences. Self-attention

mechanisms are used to weigh the importance of different parts of the input sequence,

allowing the LLM to focus more on relevant features or words that are more predictive
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of user preferences, thereby improving the quality of the output embeddings. The output

from the LLM layer is a set of dense, high-dimensional embeddings that encapsulate

the semantic meaning and context of the input items. These embeddings are richer

and more informative due to the LLM’s ability to understand and incorporate complex

language patterns and relationships. The item representations are crucial for making

accurate recommendations, as they enable the model to understand nuanced preferences

and item characteristics. The LLM’s ability to generate context-aware embeddings

ensures that recommendations are more personalised and aligned with user preferences.

3.4.1 Selecting the Backbone LLM

Currently, there are numerous LLMs available, for instance the GPT series, Gemini,

PaLM and LLaMA [6, 9, 57]. However, many of them have restricted the access to their

model parameters or APIs, making them difficult to use for research applications. Owing

to data security concerns which are of utmost importance in the field of recommendation

systems, relying on third-party APIs like ChatGPT to harness LLMs is infeasible. To

address real-world recommendation challenges, we aim to simulate the practical use of

a public LLM by updating its parameters for recommendation tasks. After thorough

evaluation, the LLaMA2-13B model, which is currently among the top-performing open-

source LLMs, was selected as the backbone LLM due to its exceptional generalisation

capabilities and publicly accessible training data [57].

3.4.2 Parameter Efficient Fine Tuning using LoRA

Large contemporary LLMs like LLaMA are pre-trained on vast amounts of data and

full fine-tuning could sometimes lead to the model forgetting some of the valuable pre-

trained knowledge. Parameter-Efficient Fine-Tuning (PEFT) [36] approaches enable

fine-tuning in a way that allows the model to preserve a majority of its pre-trained

parameters while adapting to the task of personalizing recommendations effectively,

thus mitigating the risk of catastrophic forgetting.

The core principle behind lightweight tuning postulates that although modern LLMs

have an exceedingly large number of parameters, their information is concentrated

in a low intrinsic dimension [21]. Therefore, tuning only a minimal subset of its

parameters, while preserving the others in their frozen state, may help us achieve

performance comparable to that of the full model [36, 31, 33]. This thesis utilises

Low Rank Adaptation (LoRA) [21], which optimises efficient fine-tuning by injecting
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task-specific knowledge via trainable low-rank decomposition matrices into specific

layers of the model architecture, keeping all other parameters of the pre-trained model

frozen. Therefore, the learning objective for LoRA modifies equation 3.11 as:

max
Θ

∑
(x,y)∈Z

|y|

∑
t=1

log(PΦ+Θ(yt | x,y<t)) (3.13)

where Θ is the LoRA parameters that are updated during the training process [21].

In the proposed model, we want to determine which layers of LLaMA can be

effectively fine-tuned to help the model follow the instructions provided in the prompts

and adapt to generate relevant recommendations with a significantly high accuracy. In

the preliminary investigation, an empirical evaluation was conducted using techniques

like Sensitivity Analysis to determine the impact of modifying each layer on the overall

performance. We began by applying LoRA to the attention layers only and evaluated

the performance. Then, based on the results, we shifted focus to apply LoRA to the

weight matrices in the feed forward layers and tested different configurations to find the

best balance between performance and efficiency. Although this was time consuming, a

valuable insight was derived that applying LoRA on layers closer to the input and output

of the transformer is more effective as they contain more task-specific information.

Then, we used gradient-based methods to identify which layers or modules of

LLaMA contribute most to the loss during fine-tuning on the recommendation task.

A few epochs of fine-tuning were performed across all layers of LLaMA with small

learning rates. The gradient norms in each layer were computed, recorded and analysed

to identify the layers with higher gradient magnitude. These layers were more sensitive

to task-specific fine-tuning, suggesting they should be targeted for LoRA.

During the fine-tuning process, we abide by the settings in Platypus [30] to apply

LoRA on the gate proj, down proj and up proj modules and some attention heads

of LLaMA (Appendix B). Selectively applying LoRA on these layers while keeping

the rest of the model’s parameters frozen showed faster convergence and statistically

significant improvement in recommendation metrics, whereas, freezing them led to a

quantifiable performance degradation. The modified parameters account for less than

1% of the total parameters of the original LLM, thereby improving training efficiency.

3.5 Prediction Layer

The prediction layer of the model plays a crucial role in translating the rich, context-

aware output embeddings produced by the LLM into actionable recommendation
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scores. The proposed approach redefines the recommendation task as a joint probability

distribution modelling problem, generating an N-dimensional vector that contains

prediction scores for all candidate items in a forward pass. It represents the likelihood

of each item being the next recommendation, optimizing for a one-shot computation of

prediction results for a given sequence across all candidate items.

The key component of the prediction layer is an item linear projection, which

transforms the LLM’s high-dimensional output embeddings into an item space where

each dimension corresponds to a candidate item in the recommendation list. This

transformation is achieved through a learnable weight matrix WOutput ∈ Rdk×N , where

dk is the dimension of the LLM’s output embeddings and N is the number of candidate

items. The output embeddings are multiplied by WOutput, resulting in an N-dimensional

prediction vector ŷ ∈ RN , where each element ŷi represents the predicted probability

score for a corresponding candidate item i. These scores can be used to rank the

candidate items, with higher scores indicating higher likelihood of user preference.

If h ∈ Rdk is the hidden state output from the LLM, the prediction computed via the

item linear projection can be represented as:

ŷ = WT
Out puth (3.14)

The output of the item linear projection is passed through a softmax function to

convert the raw scores into a probability distribution. During training, the model

learns to adjust the weight matrix WOutput by minimizing the cross-entropy loss, which

is the difference between the predicted scores ŷ and the ground-truth of actual user

interactions. A full softmax computation ensures proper gradient updates for the model

to learn accurate mappings from input sequences to item recommendations by using a

probability distribution. The loss function is defined as:

L =−
N

∑
i=1

yi log(ŷi) (3.15)

where yi is the binary ground-truth label indicating if item i is indeed the next item in

the sequence and ŷi represents the predicted probability or score for item i.

Projecting the LLM’s output directly into the item space allows the model to

generate a recommendation score for all candidate items in a single forward pass,

making it efficient for large-scale recommendation tasks. By using a fixed candidate

set represented in the trainable weight matrix WOutput, the model ensures that all

recommendations are valid items within the candidate set, avoiding out-of-range results.
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3.6 Inference Layer

The inference mechanism encompasses the entire process of using the trained model

to generate recommendations for users on new, unseen sequential data in real time.

It starts with leveraging the pre-trained SASRec model to obtain ID embeddings and

projecting and combining them with textual prompts to serve as input into the LLaMA

model. The LLM processes this input to generate an output embedding, which is then

passed through an item linear projection to get scores for each candidate item. However,

unlike the training phase, during inference, the prediction layer replaces the expensive

softmax function with a nearest neighbour search in the item embedding space to swiftly

compute probabilities and rank the top N items which are most similar to the user’s

historical interactions and current context. This process, shown in Figure 2, guarantees

that the most relevant recommendations are generated in a single forward pass.

Figure 2: An illustration of the IDentityRec model inference architecture

3.6.1 Nearest Neighbour Search

Softmax normalisation is computationally expensive, especially in practical scenarios

where the number of candidate items is very large. Therefore, the architecture focuses

on finding the closest matches in a high-dimensional candidate item space without being

constrained by the probabilistic interpretation imposed by softmax. An approximate

nearest neighbour (ANN) search is employed using efficient KD-Trees data structure and

the Annoy algorithm [58] to efficiently generate a ranked list of recommended items.

It reduces the computational overhead and speeds up the recommendation process,

meeting the low latency criteria of real-world systems and scaling the architecture to

handling large candidate item sets. The candidate set is populated by selecting a subset

of items that are closest to the user’s query embedding in the entire item vector space.
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3.6.2 Generating recommendations for unseen sequences

In the proposed inference architecture, the nearest neighbour search calculates the cosine

similarity score between the output embedding of the LLM, O, which encapsulates the

user’s behavioural patterns, and the projected candidate item embedding Êi. Then, the

prediction layer ranks the candidate items based on their similarity to the user’s context,

with higher scores indicating a higher likelihood for an item to be recommended. This

method is scalable as it evaluates all candidate items simultaneously, making it suitable

for large-scale recommendation systems with extensive candidate sets.

For each candidate item i in the prediction layer, the cosine similarity score, Si:

Si =
O · Êi

∥O∥∥Êi∥
(3.16)

The similarity scores form a joint probability distribution over the candidate set.

Ranking them based on the descending order of scores gives the top-N results.

3.7 Model Deployment

The proposed model can be deployed in an extremely efficient and lightweight manner.

The backbone large language model serves as a universally shareable foundation for

various sequential recommendation tasks, implying that it is sufficient to instruction

tune the LLM only once, after which it can be reused across all subsequent tasks.

The use of Low-Rank Adaptation allows the model to be efficient in terms of

parameter usage, focusing on adapting key parts of the model with minimal overhead.

When dealing with new sequential recommendation datasets, only a minuscule fraction

of components need to be trained and stored for deployment. The trainable components

include the item ID embeddings E from a pre-trained sequential recommendation model,

the linear projection weights Winput in the input layer that unify the ID embeddings and

textual prompts, the LoRA weights Θ in the LLM layer and the item linear projection

weights Woutput in the output layer. These account for roughly 0.07% of the total

parameter count, when compared to the 13 billion parameters of LLaMA. Moreover, all

the trainable elements are fully modular, allowing the recommender system to quickly

adapt to a specific dataset by simply swapping out or updating these interchangeable

components, without extensive retraining. This efficiency is critical when deploying

models in resource-constrained environments.

The training and deployment pipeline of the proposed recommendation system has

been encapsulated step-wise in the algorithm in Appendix A.
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Experiments

In this chapter, we introduce the datasets utilised in this study, followed by a detailed

discussion on the pre-processing techniques implemented to ensure the integrity and

suitability of the data, particularly addressing the critical issue of data leakage. Then,

we proceed to provide an in-depth account of the model’s implementation, including

relevant configuration details and hyper-parameter tuning strategies for optimizing

model performance. This chapter goes on further to outline the metrics selected for

performance evaluation and briefly describes the baseline models used for a comparative

analysis. The last section mentions how we design and perform a series of experiments

to thoroughly assess the model’s effectiveness, focusing on challenging scenarios such

as data-sparse environments and cold start situations. These experiments are crucial for

understanding the model’s adaptability in real-world applications.

4.1 Datasets

Reviewing sequential recommender systems literature [25, 8, 52] prompted us to select

two popularly used real-world datasets of varying domains, namely Amazon Reviews

and Yelp. The Amazon Reviews dataset [38, 20] is a comprehensive, multi-domain,

e-commerce dataset comprising of a large corpora of reviews, ratings, product metadata

and customer information crawled from the Amazon.com website. For our analysis, we

concentrate on three specific categories, ‘Beauty’, ‘Sports and Outdoors’ and ‘Toys and

Games’ which are notable for their high sparsity and variability.

The Yelp dataset [67] is a comprehensive collection of data from the popular online

review platform Yelp. It includes detailed information about businesses, their attributes,

user profiles and reviews. In our experiments, only the data generated in or after 2019

20
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is used. The Yelp dataset serves the purpose of an unseen dataset on which IDentityRec

has not been pre-trained, to test the cross-domain performance of our model. This

assessment aids in determining the model’s ability to transfer the learned features to a

different domain and generalise across varying levels of data sparsity.

Dataset #Users #Products #Interactions Sparsity

Beauty 22,363 12,101 198,502 99.93%

Sports 25,598 18,357 296,337 99.95%

Toys 19,412 11,924 167,597 99.93%

YELP 30,431 20,033 316,354 99.95%

Table 2: Dataset Statistics

The selected datasets vary not only in their domain, but also in terms of their size

and number of user-item interactions. As evident from Table 2, all the datasets exhibit

extremely high sparsity, indicating that a vast majority of user-product pairs have no

recorded interactions. Since our model deals with IDs, it is specifically trained and tested

on such datasets to compare its robustness against traditional collaborative filtering

methods which struggle in sparse data scenarios. It also provides a scope to investigate

the cold-start problem, which arises when the data is insufficient to recommend new

or less popular products. By choosing datasets of varying characteristics and spanning

different domains, we hope to increase the confidence that any pattern observed across

all of them is indeed a general trend and not a result of specific properties of the data.

4.2 Data Pre-processing

We followed the common practices in literature [45, 52] to prepare each dataset. Explicit

ratings were converted into implicit feedback by considering that the presence of a

review or rating indicated a user’s interaction with the item. The dataset was extensively

pre-processed by deleting the items with ratings below 0.0 and removing all transactions

which were either duplicates or had corrupted item IDs. Transactions related to items

or users with missing attributes were also rejected. To mitigate bias and deal with

memory issues while modelling, a smaller, representative subset of the data was taken

by randomly sampling the transactions of the original dataset. Henceforth, the terms

dataset and data have been used interchangeably in this thesis to refer to this dataset.
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For robust evaluation, we applied the 5-core setting and discarded unpopular items

having lesser than 5 related actions. Then, the interactions were sorted in an ascending

order of their timestamps. We retained the last 50 interactions (most recent) as the

historical sequence, padding or truncating sequences with fewer or more than 50

interactions respectively, to ensure a fixed length.

The dataset was split into training, validation and test sets using a leave-one-out

strategy to adapt to evolving user preferences. For each user, the most recent item in the

sequence history was reserved for testing, the second most recent item was utilised for

validation and the remainder was used for training. The 8:1:1 split resulted in a training

set containing 80% of the data, with validation and test sets making up 10% each.

4.2.1 Addressing Data Leakage Concerns

In our sequential recommendation task, we aggregated user-wise data to construct their

interaction history and then used the strategy discussed above to determine the train,

test and validation splits. However, when we pivot to other recommendation tasks like

rating prediction, 80% of the dataset is randomly allocated for training and 10% each

for validation and testing. As a result, we may encounter certain interactions that appear

simultaneously in the training data of one downstream task and in the test set of another

recommendation task, leading to data leakage [24]. In multitask scenarios, we reused

the splits after removing the overlapping interactions in the training and test sets to

ensure that any test data did not leak into the training set.

Using the embeddings generated by pre-training a SASRec model on the same

dataset that we would be using for evaluating IDentityRec also raises potential concerns

about data leakage, compromising on the model’s ability to generalise to truly unseen

data. To mitigate this, we enforced a strict temporal split, training SASRec only on the

interactions that have occurred before a cut-off time. To procure a consistent test set

that would ensure the integrity of our experiments, our validation and test sets were

curated to contain future interactions that occurred after this timestamp.

During the IDentityRec training phase, we fine-tuned SASRec’s pre-trained embed-

dings, ensuring that the item and user embeddings were updated and fine-tuned solely

based on historical interactions that the model would have observed during the actual

training phase of IDentityRec. Once fine-tuning was completed, the embeddings were

frozen, thereby disallowing further updates when evaluating on the validation or test set.

By effectively forgetting any information that might have been learned from the future
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interactions during the initial SASRec pre-training, we avoid embedding leakage.

This maintains the chronological integrity of the user-item interactions and assures

a fair comparison with recommendation baselines, allowing us to assess the model’s

ability to predict future interactions based on historical data.

4.3 Implementation Details

In this section, we delve into the technical details of how we implement the proposed

model and briefly discuss the foundational recommendation models against which we

want to compare our model’s performance.

4.3.1 Baseline Recommendation Models

The baseline methods chosen for comparison are grouped into three categories, which

include heuristic-based non-sequential methods like Popularity (POP) and Bayesian

Personalised Ranking (Matrix Factorisation), traditional transformer-based sequential

recommendation methods like GRU4Rec [19] and SASRec [25] and self-supervised

sequential methods like BERT4Rec [52]. However, methods that employ data augmen-

tation [68, 69] are orthogonal to our model and have been excluded from our evaluation

to ensure an unbiased comparison. A summary of the underlying working principles of

each of these models has been discussed in Appendix C.

All the foundational baselines have been implemented using PyTorch 2.0.1. The

maximum sequence length was set to 50 for every model on all the datasets. While

the RecBole library [66] was referenced to implement the vanilla BERT4Rec model,

other methods including GRU4Rec were implemented using the code from their official

public repositories [19]. All the hyper-parameter configurations were the same as that

mentioned by their respective authors. We used Xavier initialisation [15] to initialise the

model parameters and tuned the hyper-parameters on the validation set by monitoring

the performance over a maximum of 20 epochs, post which training terminated. A

learning rate of 0.001, batch size of 256 and an embedding dimension of 64 were used

with Adam [26] as the optimiser for optimal results.

4.3.2 IDentityRec Training Details

From existing literature [25, 52], it was deciphered that using longer input sequences

marginally increases the model performance. So, to suit our computational budget, we
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limited ourselves to using moderately long input sequences (n = 50 items) which were

either truncated or padded to ensure that the sequences were of uniform length.

To obtain item ID embeddings from a pre-trained sequential recommendation model,

a vanilla version of the SASRec architecture was trained on the highly sparse subsets

of Amazon Reviews data with the maximum sequence length set to 50. The model

was implemented in TensorFlow using two self-attention blocks and learned positional

embeddings. The learning rate was set to 0.001. We trained the model with a fixed batch

size of 128 and a dropout rate of 0.5, using the Adam optimiser [26]. As discussed

in Section 3.3.1, we directly extracted the item ID embeddings from this pre-trained

SASRec model without any modification.

The LLaMA2-13B model, which serves as the backbone LLM for the IDentityRec,

was accessed from the HuggingFace library [48]. We conducted Alpaca based instruc-

tion tuning on the LLM using the extracted item IDs for one epoch. To circumvent

the memory bottleneck while fine-tuning the 13 billion parameter version of LLaMA,

an optimised LLaMA-LoRA architecture was employed. In an attempt to reduce the

training time even further, we adopted a data parallel technique, leveraging a GPU

cluster for conducting the experiments.

Parameter Beauty Sports Toys

Training Epochs 3 3 2

Warmup Steps 100 200 100

Learning Rate 3e-4 2e-4 2e-4

Learning Rate Scheduler Cosine Scheduler

Weight Decay 0.1

Batch Size 16

LoRA Modules [gate proj, down proj, up proj]

LoRA Rank 16

LoRA Alpha 16

LoRA Dropout 0.05

Table 3: Optimal hyper-parameter configurations for different datasets

The hyper-parameter settings for achieving optimal performance using IDentityRec

were obtained by conducting a grid search of training configurations on the validation

set. The optimum values of the model parameters listed in Table 3 ensured that the
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model generalised well across datasets. To mitigate the impact of randomness, we

reported the average outcomes of five runs using different random seeds in Section 5.1.

In general, the values of learning rate and the number of training epochs were

found to vary with respect to the dataset. Training the model for 2-3 epochs on four

NVIDIA A100 GPUs using the Adam Optimiser yielded optimal performance. Batch

sizes greater or lesser than 16 were prone to failure in convergence. A warm-up strategy

initiated with 1/100 of the maximum learning rate was gradually adjusted over the first

few hundred steps using a Cosine Learning Rate Scheduler to facilitate stabilisation of

the training process towards the end. A uniform weight decay of 0.1 was applied to

penalise large weights and prevent overfitting through regularisation.

The rationale behind selecting the specific layers of LLaMA on which the LoRA

adaptors were applied has been extensively discussed in section 3.4.2. Through experi-

mentation, it was observed that although the rank and alpha parameters of Low Rank

Adaptation did not impact the model much, it was very sensitive to the LoRA dropout

value. Changing it caused severe fluctuations in model performance. The alpha value of

16 was used to scale the LoRA layers while a moderately low-rank (r = 16) achieved a

balance between model efficiency and flexibility. LoRA’s dropout rate was set to 0.05

to ensure adequate regularisation and prevent overfitting.

4.4 Evaluation

This section outlines the evaluation metrics that have been used to measure the model’s

performance, including their mathematical formulation and theoretical description.

4.4.1 Hit Rate

Hit Rate has commonly been used in recommendation literature [25] to measure the

proportion of test cases wherein the top N items recommended by the system contain

the ground truth item which the user has actually interacted with. The Hit Rate is:

HitRate@N =
1
|D| ∑

u∈D
I(Ranku(iu)≤ N) (4.1)

where D is the set of all user sequences in the test set, Ranku(iu) is the rank of

the actual item iu in the recommendation list for user u and N is the cutoff rank for

considering a recommendation a hit. I(·) represents a binary indicator function (1 if
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true, 0 otherwise) and Ranku(iu)≤ N means that the rank of the actual item iu is within

the top N recommended items. Higher the hit rate, better is the model performance.

4.4.2 Normalised Discounted Cumulative Gain

NDCG measures the effectiveness of a recommendation model by comparing the

predicted ranking of items against an ideal ranking based on their relevance to the

user. The metric penalises relevant items that appear lower in the recommendation list

because users are more likely to pay attention to the items at the top. For a ranked

list of items {i1, i2, . . . , iN}, with corresponding relevance scores {r1,r2, . . . ,rN}, the

Discounted Cumulative Gain (DCG) at rank N and IDCG, which is the DCG of the

ideal ranking where items are perfectly ordered by relevance is given by:

DCG@N =
N

∑
k=1

rk

log2(k+1)
IDCG@N =

N

∑
k=1

r∗k
log2(k+1)

NDCG =
DCG
IDCG

(4.2)

where r∗k is the relevance score of the item at position k in the ideal ranking.

Mathematically, NDCG is a value between 0 and 1, where 1 indicates a perfect

ranking, which is the case when the predicted ranking matches the ideal one.

4.5 Experimental Design

In this subsection, we discuss several experimental setups which have been designed to

assess and evaluate the holistic performance of our model. While the experiments are

elucidated in this section, their results, insights and analyses are discussed in Section 5.

4.5.1 Performance Analysis through Negative Sampling

In addition to a regular performance analysis using the aforementioned metrics, we

evaluated the ranking ability of our recommendation model using negative sampling

[25, 68]. It involved drawing a reliable and representative sample of 99 negative

items that the user has not interacted with, sampled according to their popularity, for

every positive ground truth item. Popularity sampling makes them harder negatives as

popular items are more likely to be relevant or attractive to users, thereby pushing the

model to distinguish better. The objective is to maximise the difference in predicted

scores between positive (relevant) and negative (irrelevant) samples using a binary

cross-entropy loss. Mathematically, the learning objective for a user u is defined as:
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Lu =− ∑
i∈I+

u

log(σ(ŷu(i)))− ∑
j∈I−u

log(1−σ(ŷu( j))) (4.3)

where σ(·) is the sigmoid function which maps the predicted scores to probabilities and

ŷu(i) and ŷu( j) are the predicted scores for the positive item i and the negative item j.

4.5.2 Robustness Analysis and Cold Start

To analyse IDentityRec’s effectiveness in addressing data sparsity, the users in each

dataset are grouped into three categories based on their number of interactions with items.

Having removed all transactions with less than 5 interactions during pre-processing,

users with exactly 5 interactions were allocated to the “sparse” group, those with

6-9 interactions were assigned to the “medium” group and users with more than 9

interactions were designated as the “dense” group. The performance of IDentityRec

was evaluated in the cold start scenario by comparing the evaluation metrics for each user

group against the SASRec baseline. By plotting the nDCG@5 scores of IDentityRec

when the number of interactions were gradually increased from 5 to 11, we analysed

the IDentityRec’s performance as a function of increasing sparsity .

4.5.3 Creating Ablations and Model Variants

An ablation study was designed to evaluate the contribution of each novel component in

the architecture. We compared the performance of the IDentityRec against its variants

which were created by selectively altering or removing certain elements of the model.

We started with the SASRec + LLaMA variant, which is the IDentityRec itself, that

uses the SASRec ID embeddings and fine-tuned LLaMA for generating recommenda-

tions. Then, we removed the injected IDs and used only textual prompts as the LLM’s

input. The next variant, BPR+LLAMA, replaced the pre-trained item ID embeddings

from SASRec with the embeddings from a non-sequential, matrix factorisation based

model like Bayesian Personalised Ranking (BPR). Another ablation called SASRec +

BERT was created by replacing the LLaMA2-13B with a BERT-base-uncased (110M)

model in the LLM layer. The final version, SASREC w/o LLM, was an LLM-free vari-

ant that utilised only the SASRec for ID injection and linear projections for prediction.

For each ablation, we used the same dataset and followed the same training protocol

to conduct an unbiased evaluation. The HR@20 score of each variant was analysed to

comprehend the effect of removing or altering a component.
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Results and Analysis

This chapter presents a comprehensive analysis of the experimental results, highlighting

the performance of the proposed model across various scenarios and benchmarks.

It describes how the proposed model compares against baseline methods in terms

of performance, drawing key insights to analyse its strengths. This is followed by

an elaborate discussion about the results of an ablation study which validates the

contribution of the novel components in the model to its overall effectiveness.

The chapter also examines the model’s robustness in challenging recommender

system scenarios, including data-sparse environments and cold start situations. The

results of cross-domain generalisation are studied to observe how the model adapts to

different domains. In addition to these evaluations, we conduct a detailed analysis of

the model’s time and space complexity, providing a holistic view of its computational

efficiency and scalability. Through these analyses, this chapter aims to offer a thorough

understanding of the model’s superior capabilities and practical applicability.

5.1 Performance Analysis

The performance of the proposed IDentityRec model was evaluated on the three Amazon

Reviews data subsets, Beauty, Sports and Toys, using Hit@k (H@k) and nDCG@k

(N@k) metrics, where k represents the number of recommended items considered for

evaluation. By evaluating our model against popular recommendation baselines at

different values of k (= 5, 10 and 20), we attempt to gain insights into its performance

at different levels of recommendation depth. Too large values of k, might consider a

broader range of recommendations and give us a better score, but it dilutes the impact

of highly relevant candidate items and hence, it is ignored.

28
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Dataset Metric POP BPR
(MF)

GRU4
Rec

SAS
Rec

BERT4
Rec

IDentity
Rec

Improve

Beauty

H@5 0.007 0.012 0.016 0.033 0.019 0.053 60.6%

H@10 0.011 0.036 0.029 0.058 0.041 0.076 31.0%

H@20 0.019 0.059 0.478 0.091 0.059 0.117 28.5%

N@5 0.004 0.006 0.008 0.017 0.018 0.035 94.4%

N@10 0.005 0.012 0.014 0.026 0.025 0.043 65.3%

N@20 0.007 0.018 0.017 0.034 0.036 0.051 41.6%

Sports

H@5 0.005 0.009 0.014 0.017 0.017 0.028 64.7%

H@10 0.009 0.188 0.027 0.029 0.032 0.041 28.1%

H@20 0.015 0.026 0.044 0.048 0.049 0.071 44.8%

N@5 0.004 0.005 0.009 0.009 0.010 0.019 90.0%

N@10 0.005 0.008 0.014 0.013 0.015 0.023 53.3%

N@20 0.006 0.012 0.017 0.017 0.019 0.029 52.6%

Toys

H@5 0.006 0.012 0.009 0.044 0.027 0.056 27.2%

H@10 0.008 0.021 0.019 0.069 0.046 0.079 14.5%

H@20 0.011 0.031 0.030 0.099 0.069 0.118 19.1%

N@5 0.003 0.008 0.006 0.023 0.017 0.040 73.9%

N@10 0.006 0.012 0.009 0.032 0.023 0.048 50.0%

N@20 0.006 0.014 0.011 0.039 0.029 0.055 41.0%

Table 4: Performance comparison of models on the Amazon Reviews dataset. The best

performance is highlighted in bold while the second best performance is underlined.

The evaluation results, presented in Table 4, provides us valuable insights into the

performance of the proposed model. IDentityRec outperforms all the popular foun-

dational recommendation baselines on each metric and in every dataset. A general

pattern emerges with non-neural methods like POP and BPR performing consistently

worse on all the datasets, underscoring the need for models that capture the temporal

dynamics and evolving preferences of users. While sequential models like SASRec and

BERT4Rec perform comparatively better, the IDentityRec outperforms them signifi-

cantly, owing to its strength in capturing the users’ interaction patterns.

An average improvement of approximately 35% on HR@k and 62% on nDCG@k

over the best baseline demonstrates the effectiveness of our model. A substantially high
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performance gain under both the metrics highlights the fact that IDentityRec not only

recommends relevant items, but does so in a way that prioritises placing the most relevant

items in optimal positions within the recommendation list. This propels higher levels

of user engagement, especially in e-commerce platforms, where customers are more

likely to interact with the top-ranked items in the recommendation list. Another related

observation is that the IDentityRec has more pronounced performance improvements

on smaller values of k. This implies that even in scenarios where the model is allowed

to provide only a few recommendations, IDentityRec effectively identifies the most

contextually relevant items based on the history and recommends them to the user.

The most significant performance gain (≈ 40% in HR@k) is evident in the Beauty

dataset. This is likely because it contains a diverse range of products, each with specific

attributes that appeal to different sets of users. Users in this category exhibit distinct

and strong preferences based on brand loyalty or product types. Our model benefits

from learning these interaction patterns from the collaborative and contextual signals

and excels in capturing the nuanced preferences of users in such a diverse category.

5.1.1 Evaluating Ranking Performance through Negative Sampling

The use of negative samples help to test the model’s ability to distinguish relevant

(positive) items from irrelevant (negative) ones, which is critical for high-precision

recommendation systems. Metrics like HR@1 and nDCG@5 have been used to measure

the model’s ability to place the most relevant item at the top of the recommendation list.

Beauty Sports Toys

Model H@1 H@5 N@5 H@1 H@5 N@5 H@1 H@5 N@5

POP 0.06 0.21 0.13 0.07 0.23 0.15 0.06 0.19 0.13

BPR 0.04 0.14 0.09 0.04 0.16 0.10 0.02 0.09 0.06

GRU4Rec 0.13 0.31 0.22 0.11 0.30 0.21 0.09 0.27 0.19

SASRec 0.18 0.37 0.28 0.14 0.34 0.25 0.18 0.36 0.28

BERT4Rec 0.15 0.36 0.26 0.12 0.33 0.23 0.12 0.33 0.23

IDentityRec 0.22 0.40 0.32 0.17 0.37 0.27 0.20 0.39 0.31

Improve 21.6% 9.2% 13.1% 19% 7.3% 8.1% 10.5% 6.1% 10.4%

Table 5: Performance comparison of methods with sampled negative items. The best

performance is highlighted in bold while the second best performance is underlined.
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The experimental design of negative sampling has been outlined in Section 4.5.1.

As illustrated in Table 5, our proposed model can still exceed all the baseline models

with a significant margin, proving the superiority of IDentityRec in ranking ability. The

model shows superior hit rates, particularly in HR@1 and HR@5, demonstrating its

effectiveness in ranking relevant items higher. By effectively identifying relevant items

and filtering out non-pertinent ones, our model can provide more personalised recom-

mendations. This is crucial in e-commerce for generating the top-5 recommendations.

5.2 Ablation Study

To gain deeper insights into the contribution of different components in IDentityRec, we

conducted a series of ablation studies by systematically eliminating or modifying spe-

cific aspects of the architecture and assessing their impact on performance. Throughout

this section, we have referred to IDentityRec and SASRec + LLaMA interchangeably,

since those are the two most important components in IDentityRec’s architecture. Table

6 presents the results of the study described in Section 4.5.3, using the HR@20 metric

for evaluation. The analysis has revealed several significant insights.

Model Variant/Ablation Beauty Sports Toys

Full IDentityRec Model (SASRec + LLaMA) 0.117 0.071 0.118
- Remove Positional Embedding 0.036 0.017 0.059

- Remove Pre-trained Sequential ID Embedding 0.051 0.046 0.072

- Remove Sequential ID Embedding (BPR + LLaMA) 0.097 0.062 0.092

- Remove LLM (SASRec w/o LLM) 0.022 0.023 0.018

- Replace LLM with BERT (SASRec + BERT) 0.084 0.058 0.105

Table 6: Ablations and their corresponding HR@20 values on Amazon Reviews Data

Removing the positional encodings led to a catastrophic drop in performance of

about 65.1% on average across all the datasets. This underscored the importance of

encoding sequential information in the model as IDentityRec relies on understanding

the temporal order of sequences to make accurate recommendations. Taking a step

further, we examined the necessity of incorporating ID information in the input layer of

the model. Removing the ID embeddings completely and passing only textual prompts

as input resulted in a 43% degradation in HR@20, justifying that the collaborative
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information contained in the IDs is essential for generating relevant recommendations.

The next ablation probed further into the magnitude of the impact of the pre-trained

IDs from SASRec. The performance analysis in Figure 3 revealed a marginal drop in

performance of the BPR + LLAMA variant compared to IDentityRec, indicating that

SASRec’s ID injection mechanism is slightly more effective than that of BPR. This is

explained by the effectiveness of SASRec in capturing sequential patterns in user-item

interactions compared to a non-sequential, matrix factorisation technique like BPR.

Figure 3: Ablation Studies on Amazon Reviews data across HR@k, k= 5, 10, 20

Now that the importance of using a pre-trained SASRec ID injection has been

established, we shift our focus towards studying the need for an LLM in the model’s

architecture. We observed that the HR@k values plummeted sharply for the SASRec

w/o LLM ablation, attaining consistently low scores across all domains, suggesting that

the fine-tuned LLM component is crucial for enhancing recommendation performance.

We investigate deeper by comparing this LLM-free variant against the LLM-based

ablations like IDentityRec and BPR + LLaMA. The performance gain achieved while

using LLM-inclusive model variants decisively accentuates the critical role of the LLM

in leveraging its inherent knowledge to capture complex patterns and decipher semantic

and contextual information to provide more personalised recommendations.

To specifically assess the significance of the LLaMA LLM in the architecture, we

contrast the performance of SASRec + BERT with that of the SASRec + LLaMA variant.

It is evident from Figure 3 that although SASRec + BERT comfortably outperforms the

non-LLM ablation, it falls short of surpassing the SASRec + LLaMA on the HR@k

metric, asserting the dominance of a fine-tuned LLaMA over pre-trained language

models like BERT. This substantiates our claim that the LLaMA-LoRA architecture is
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more adept at grasping the nuances and complexities of the recommendation task.

The IDentityRec model, referred to as the SASRec + LLaMA variant, maintains a

clear performance advantage on the HR@k metric in varying domains (Beauty, Sports,

Toys) across all tested configurations (H@5, H@10, H@20). This reinforces the fact that

SASRec’s sequential modelling capabilities and LLaMA’s language modelling strengths

complement each other effectively, yielding the most accurate recommendations. While

the SASRec ID embeddings provide crucial collaborative filtering information, the

LLM augments it by capturing complex patterns and contextual details that IDs alone

cannot provide, emphasizing the merit of both the components in the architecture.

5.3 Cross-Domain Generalisation

From the results in Table 7, it is evident that IDentityRec, which was originally trained

on the Amazon Reviews dataset, is remarkably well-suited for cross-domain general-

isation through transfer learning on an unseen target domain like YELP. The key to

leveraging our model for cross-domain tasks lies in its ability to adapt to new domains

by only requiring minimal updations to its pluggable parameters based on the data from

the new domain. Without having to retrain the entire model from scratch, IDentityRec

ensures efficient resource utilisation and reduces the computational overhead.

Model HR@5 HR@10 nDCG@5 nDCG@10 nDCG@20

Popularity 0.56 0.83 0.36 0.43 0.56

GRU4Rec 1.52 2.63 1.04 1.37 1.45

SASRec 1.61 2.65 1.02 1.34 1.79

BERT4Rec 1.86 2.91 1.21 1.71 2.23

IDentityRec 2.66 4.18 1.89 2.38 2.97

Improvement 43.1% 43.6% 56.1% 39.1% 33.2%

Table 7: Results of cross-domain performance on YELP. The best score is in bold

IDentityRec outperformed the foundational sequential recommender baselines by an

impressive margin of 43% on an average, indicating how well the knowledge learned in

one domain transfers to another. By generalizing across domains, contextual knowledge

and insights gained from user preferences in the source domain (Amazon Reviews)

enhanced the recommendation quality in the target domain (Yelp).
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The sequential nature of purchase sequences in the Amazon dataset helps the

model to capture behavior trends encapsulated in temporal patterns and transfer this

learned knowledge to related domains like YELP, where similar sequential dynamics

are incorporated in the target data, to make more cohesive recommendations. Moreover,

both the source and target datasets contain consumer-centric items, whose reviews

encode individual preferences. The high-quality ID embeddings of our model exploits

this commonality between the datasets to help the model transfer learned collaborative

information between domains. A convergence in performance patterns between the

source and target domains further corroborates IDentityRec’s robust learning capability

and aids in determining which domains can effectively share the model.

By leveraging knowledge and patterns from related domains, the system can make

informed recommendations even when direct data is sparse, alleviating data sparsity

concerns in cross-domain scenarios. The adaptability of such models that generalise

well across diverse e-commerce domains reinforces the model’s potential for broad

applicability in businesses looking to expand their recommendation systems to new

markets or product categories without starting from scratch.

5.4 Robustness Analysis: Data Sparsity and Cold-Start

The graphs in Figure 4 are the result of an experiment conducted in section 4.5.3 to

analyse the robustness of our proposed model in sparse data scenarios. IDentityRec

consistently outperforms SASRec on the nDCG@5 metric on all datasets across the

three user groups (sparse, medium and dense), conforming to the claim that the model is

supremely robust and provides accurate recommendations, irrespective of data sparsity.

It is evident that the quantum of performance improvement is most pronounced

in the sparsest user group having only 5 interactions, indicating that IDentityRec is

better at generating viable and relevant recommendations in cold-start situations. The

superiority in performance holds true for the YELP dataset as well, underscoring its

robustness to generalise well across domains, even in sparse data scenarios.

As we transition to the user groups with moderate to dense interactions, the general

trend suggests that both the models show an improvement in their nDCG score. However,

IDentityRec scales better with increasing number of interactions, as evidenced by

the sharp elbow in the graphs of the Beauty and Sports domains. Its sophisticated

architecture allows the model to leverage additional data to learn user preferences better.

The plateauing performance gain with increased data availability suggests that while
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most baselines handle data-rich environments reasonably, IDentityRec has a significant

advantage in capturing latent behavioural patterns when the interaction data is sparse.

Figure 4: Performance of user groups based on length of interaction sequences

Although the trends within a user group remains consistent, the margin of im-

provement varies across datasets due to their intrinsic nature and difference in user

engagement patterns. Niche categories like Beauty and Toys show the largest relative

improvements in sparse data scenarios, suggesting that the model is particularly effec-

tive in domains where user preferences are likely to be diverse and less well-defined

when the number of interactions are limited. IDentityRec’s superiority in capturing

fine-grained item similarities through its ID embeddings, makes it adept at modelling

long-tail distributions with fewer interactions.

These results underscore the potential of IDentityRec to exhibit a much more

stable and robust performance across all interaction levels, suggesting that it is less

sensitive to data sparsity and well equipped to handle the cold-start problem. Its

superior performance can be attributed to the few-shot learning ability of the instruction-

tuned LLM, which extracts more meaningful information from a limited user history

and effectively combines it with the injected collaborative signals to provide relevant

recommendations in sparse-data settings. This characteristic is especially valuable in

e-commerce systems where data can often be sparse, especially for new users or items.
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5.5 Efficiency Analysis

Thus far, our analysis has proven how the proposed model is effective in perform-

ing sequential recommendation. In this section, we further argue that IDentityRec

demonstrates competitive efficiency in terms of time and space constraints as well. To

substantiate this claim, in Table 8, we have presented a comparative study of the infer-

ence time and storage requirements of the proposed model against the LLaMA2-13B.

As discussed in Section 3.7, IDentityRec postulates plugging in only a minimal set

of lightweight, trainable parameters to the backbone LLM during deployment. While

LLaMA2-13B is computationally intensive, the use of low rank adaptors helps to

mitigate this overhead by allowing efficient fine-tuning, without having to retrain the

entire model from scratch. The trainable linear projections in the architecture are simple,

lightweight matrix operations that can be computed relatively fast, without acquiring

much cost. Additionally, by replacing the computationally expensive softmax operation

by an efficient nearest neighbour search during inference, we ensure that the inference

time of IDentityRec is approximately identical to that of the LLM backbone.

Model Inference Time Storage Space

LLAMA2-13B 0.21 seconds/instance 12 GB

IDentityRec 0.27 seconds/instance 12 GB

Table 8: Time and space requirements of IDentityRec compared to the backbone LLM

ID embeddings do not consume significant storage space as they are typically

low dimensional. However, LLaMA2-13B, whose size is in the order of tens of GB,

inherently requires substantial storage space for its parameters. Although LoRA adapters

introduce some additional parameters (< 1% of total LLM), they are designed to be

storage-efficient. The linear projections add relatively small weight matrices, which

when compared to the size of the LLM itself, are considered lightweight in terms of

storage. So, the only contributor to storage requirements is the LLaMA model itself.

This attests to the high storage efficiency of IDentityRec, relative to the LLM model.

Through our qualitative and quantitative analyses, it is evident that the proposed

solution incurs a time and storage cost which is almost identical to that of the vanilla

LLM. We extrapolate this observation to conclude that the inference time and storage

space requirements of IDentityRec can be attributed solely to the underlying LLaMA

model. However, improving the performance of LLMs is beyond the scope of the thesis.
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Discussions

This chapter delivers a thorough analysis and interpretation of the IDentityRec’s perfor-

mance, offering key insights from the experimental outcomes. Initially, we elaborate

on the novel elements that amplify the model’s performance across various product

categories, emphasizing on the strategy of leveraging instruction-tuned language models,

adept sequential modelling and effective integration of collaborative and contextual

signals. Subsequently, we delve into a brief discussion of how extensible IDentityRec

is, underscoring the crucial role of lightweight fine-tuning. The chapter also discusses

the shortcomings of our approach, such as the high computational demands and limited

use of item metadata. Finally, we explore potential avenues of research that could be

undertaken to push the boundaries of generative recommendations.

6.1 Interpreting the Model Performance

The experimental findings reveal that IDentityRec consistently surpasses cutting-edge

baselines by 35% on average (HR@k) across various product categories, testifying to the

model’s effectiveness in sequential recommendation. The amalgamation of user-specific

collaborative interaction patterns captured through pre-trained ID embeddings and item-

specific semantic information encapsulated in textual prompts of an instruction-tuned

LLM, enables the model to provide accurate and contextually relevant recommendations.

IDentityRec is adept at effectively capturing niche user preferences, exhibiting a

40% performance gain in the Beauty dataset where interactions are sparse, diverse and

strongly influenced by user specific attributes. This justifies the effectiveness of the

LLM, which interprets the nuanced textual information and contextual relationship

between products and user preferences in this category. For larger datasets like Sports

37
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which has the maximum number of interactions (Table 2), IDentityRec leverages the

additional data and benefits from more consistent patterns of user behavior captured

in the ID embeddings, thereby maintaining a significantly high performance (≈ 46%).

The superior performance of the model across datasets of different sizes and interaction

volumes can be attributed to its scalable architecture.

IDentityRec’s strength lies not only in recommending a large number of relevant

items (high HR@k), but also in its ability to accurately rank items, as evidenced by

its superior performance in nDCG metrics, particularly for smaller values of k. Our

experiment of negative sampling aligns the evaluation process with real-world situations,

where a recommender system often needs to sift through a large number of irrelevant

items to find the most relevant ones.

The use of LoRA for fine-tuning the LLM is a strategic design choice that balances

performance and computational efficiency. By targeting specific modules within the

LLaMA, the adapters effectively tailor the model to the recommendation task, enhanc-

ing its performance. The memory footprint, inference time and the training cost of

IDentityRec is significantly low compared to fully fine-tuned models because LoRA

updates only a small subset of parameters, specifically within low-rank sub-spaces.

IDentityRec exhibits exceptional cross-domain generalisation, effectively transfer-

ring the collaborative information and contextual knowledge learned from the Amazon

dataset to apply them to a new, yet related domain like YELP. Such an adaptable model

is crucial for practical applications where user data might be fragmented across different

contexts or where new users and items are frequently introduced (Appendix D).

The use of pre-trained item IDs serves as a self-supervised learning mechanism,

helping the model generalise better, especially in scenarios with limited historical data.

IDentityRec’s ability to prioritise highly relevant items even in sparsely populated user

groups elucidates its robustness in handling the cold-start problem. The correlation be-

tween sequence length and model performance suggests that while richer data improves

outcomes, there is a point at which the benefits plateau, underscoring the importance of

balancing data quality and quantity in recommendation systems.

6.2 Extensibility of IDentityRec

In real-world applications, a recommendation system must be able to efficiently adapt

to unseen datasets and perform different downstream tasks on it like ranking and next

item retrieval. Even the assumption that the original dataset would remain unchanged is
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erroneous because it deviates from industrial scenarios where new items are constantly

introduced into recommender systems on a daily basis. This necessitates that the model

must be flexible enough to adapt to new datasets and easily accommodate new items in

the same dataset without having to retrain the recommendation system each time.

Having analysed the exceptional cross-domain performance of IDentityRec, we can

reason that the model effectively generalises to new datasets through transfer learning.

By simply training the ID embeddings, LoRA weights and the linear projection matrices

of the input and prediction layers, the IDentityRec can be tailored to adapt to specific

datasets. These model attributes do not interfere with the core functionality of the LLM,

thereby facilitating lightweight model deployment through a universally shareable

backbone LLM that requires instruction tuning only once, irrespective of the task.

Given that the pluggable components are ID-agnostic, integrating a new items into

the existing dataset only warrants updating the linear projection layer with an additional

row. This eliminates the need to retrain the entire model, thereby significantly enhancing

the system’s extensibility and adaptability to new items, making IDentityRec versatile.

6.3 Limitations and Future Scope

The performance of IDentityRec is heavily dependent on the quality and relevance of

the pre-trained SASRec model and the LLM. In the absence of optimal pre-training

on the specific domain of the dataset, IDentityRec’s generated recommendations may

be sub-optimal. Since the nearest neighbour search is constrained by a candidate item

space, it might provide less diverse recommendations, favouring popular or frequently

interacted items over more niche or diverse options that could interest the user. Incorrect

instruction tuning of the LLM might lead to overfitting on specific patterns in the

training data. Another evident bottleneck is the large space required to store the model.

A promising direction of research could be exploring strategies like model pruning

and quantisation to reduce the computational overhead associated with LLMs. In future,

incorporating explainability into IDentityRec through behaviour alignment [63] may

help explain the black-box recommendations, allowing for the creation of customisable

explanations that can be adapted to individual user preferences. Another avenue for

future work could be adapting IDentityRec to handle multi-modal inputs such as visual

and audio data to create contextually rich recommendation systems. Exploring federated

learning methods to train the model on decentralised data sources while maintaining

user privacy could find applicability in privacy-sensitive domains.
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Conclusion

The IDentityRec model represents a significant advancement in the integration of Large

Language Models (LLMs) within the realm of sequential recommendation systems. It

addresses the key challenges associated with traditional LLM-based recommendation

methods, such as inefficiency, limited extensibility and the generation of out-of-range

results. IDentityRec offers a robust, lightweight, scalable and efficient solution that is

well-suited for practical applications in various domains, particularly in e-commerce.

The model’s innovative approach of learning collaborative patterns from item IDs and

unifying them with rich semantic information from prompts ensures that it can deliver

highly personalised recommendations that align with a user’s long-term preferences as

encoded in the ID embeddings, while also adapting to recent changes in user behaviour

as described in a textual input.

The superior performance of the proposed model has been rigorously tested against

foundational baseline methods by conducting a comparative analysis of evaluation

metrics across four datasets. Extensive experiments and their empirical analysis have

reinforced the superiority of our model in data-sparse scenarios and attested to its robust

generalisation capabilities when adapting to unseen datasets and new domains. Ablation

studies have underscored the effectiveness of incorporating item ID embeddings and

justified the need for using an LLM which has been effectively instruction-tuned using

domain-specific data to deliver unprecedented performance on the downstream tasks of

next-item retrieval and ranking.

However, despite its promising results, IDentityRec is not without limitations. Partic-

ularly concerning is its dependency on pre-trained models and the lack of explainability

in recommendations. Overall, it lays a strong foundation for future research in this field,

offering valuable insights for advancing the state of LLM-based recommender systems.
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Appendix A

Algorithm of IDentityRec

Algorithm 1 IDentityRec solution
Require: Recommendation dataset D , Instruction dataset Dins, Pre-trained LLM MLLM

Ensure: IDentityRec model M
Train a sequential recommendation model Mseq on D .

Extract item ID embeddings E .

Instruction tune the LLM model MLLM on Dins.

Prompt tune MLLM on item ID embeddings and metadata using curriculum learning

// Model Training using pluggable components

Initialise Θ, input linear projection, LoRA weights and item linear projection

for T← 0 to Tmax iterations do
Sample an instance for training.

Obtain the corresponding ID embeddings from E
Project ID embeddings into same dimension as MLLM using input linear projection

Feed ID embeddings and prompt to MLLM for output

Predict candidate items using item linear projection.

Compute the cross-entropy loss L and update Θ using L .

end for
Deploy backbone model MLLM.

Deploy the model for dataset D with M = MLLM← E ,Θ.
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Appendix B

Description of modified LoRA Layers

Layer Purpose served in the model Benefit of Fine-Tuning the layer

gate proj Controls flow of information

through the network

Adjusts extent to which injected ID

embeddings and contextual informa-

tion influence final representation

down proj Reduces the dimensionality of

data before processing further

Optimises how the critical informa-

tion is retained when compressing

temporal user-item interactions

up proj Increases dimensionality back

to the original size to process

richer detailed information

Refines final output representations,

reconstructing and highlighting im-

portant relationships in the data.

Attention
Heads

Captures the relationships and

dependencies in data

Helps model to focus more on rele-

vant parts of the input, when combin-

ing item IDs with word embeddings

Table B: LoRA layers and Fine-Tuning Benefits
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Appendix C

Baseline Methods and their Working

Principle

Popularity (POP) is a heuristic method that recommends those items which have the

highest interaction counts to all users, regardless of individual preferences. Bayesian

Personalised Ranking (BPR) utilises matrix factorisation with a pairwise ranking loss

to learn user and item embeddings, optimizing for the ranking of relevant items over

irrelevant ones. GRU4Rec leverages Gated Recurrent Units to model sequential user

behavior, predicting the next item in a sequence based on the user’s previous interactions.

SASRec uses a self-attention mechanism with multi-head attention to model complex

sequential user behavior, focusing on the importance of different items in a user’s

interaction history for predicting the next item. BERT4Rec adapts the BERT transformer

model for recommendation by using bidirectional self-attention with the Cloze objective

to predict masked items in a sequence. CL4SRec combines contrastive learning with

self-supervised pre-training to enhance sequential recommendation, by maximizing

the agreement between positive sequence pairs and distinguishing them from negative

pairs. ICLRec utilises a latent intent variable to capture the intent distribution of a

user from unlabeled item sequences, optimizing for both item-level and sequence-level

representations to improve the quality of transformer-based sequential recommendations

through more robust user-item interaction modelling.
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Appendix D

Application in E-Commerce

IDentityRec holds significant potential for revolutionizing recommendation systems

within the e-commerce sector by providing more accurate, efficient and scalable solu-

tions for personalised recommendations. In e-commerce, where vast amounts of user

interaction data are generated daily, IDentityRec’s ability to handle large-scale sequen-

tial recommendation tasks through efficient ID-based processing facilitates controllable

generation of relevant product suggestions, thereby enhancing user experience and

driving sales. The model’s extensibility allows it to be easily integrated into existing

e-commerce platforms without requiring extensive retraining, thus making it a practical

choice for businesses looking to leverage cutting-edge recommendation technologies.

In e-commerce, user interactions such as browsing history, cart additions and pur-

chases are often sequential. Extracting item IDs from a pre-trained, transformer-based

sequential recommender model helps IDentityRec capture these patterns and generate

personalised recommendations based on the user’s recent interactions. Instruction-

tuning the LLaMA language model on domain-specific data, like a large dataset of

product descriptions, reviews and customer interactions specific to the e-commerce

domain, renders IDentityRec the ability to understand product attributes and user pref-

erences within the e-commerce context. Using such an instruction-tuned LLM in our

model enables it to effectively capture patterns and nuances relevant to this domain.

E-commerce settings require handling massive datasets and generating real-time pre-

dictions. Optimizing the model’s architecture for scalability by incorporating techniques

like Low-Rank Adaptation reduces the computational load without sacrificing accuracy.

Moreover, IDentityRec’s capability to generate the entire ranking list in a single forward

process, coupled with the use of pluggable parameters, ensures that the system can

perform real-time inference while maintaining high levels of performance. By guar-
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anteeing that the generated recommendations fall within a candidate list, IDentityRec

minimises the risk of irrelevant or out-of-range recommendations, thereby improving

customer satisfaction and loyalty. This makes the model particularly well-suited for

large e-commerce platforms with extensive product catalogues and user-bases.

Recommender systems in e-commerce can impact purchasing decisions, so model

interpretability assumes great importance. Providing clear explanations for recommen-

dations to users enhances user trust and satisfaction. By carefully adapting the model

to fit the e-commerce context, considering scalability and user-centric features, we

enhance IDentityRec’s effectiveness in driving personalised, relevant and trustworthy

recommendations that meet the needs of online shoppers.


