
Web development of MyNewsScan Platform for

the Creation of Sustainable User Community

Yuhang Tang
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2024



Abstract

This study aims to develop online communities through the MyNewsScan news ag-

gregator platform to address the problem of information filter bubbles and the spread

of fake news. The project focuses on fixing previous bugs, adding new site features,

strengthening user engagement mechanisms, building a community-driven content

ecosystem, and ensuring sustainability. By introducing a reward system, enhancing

user interaction on the platform and building a strong moderation system, it aims to

enhance the diversity and authenticity of news content, thereby promoting democratic

values and critical thinking. In technical realisation, the dissertation discusses how to

improve the performance and security of the website through the application of new

technology and the technical reconstruction of the old code and system design from the

perspective of back-end. Moreover, the project achieves sustainability goals by referring

to design patterns, using cloud platforms, container technologies such as Docker, and

maintaining a good documentation. By achieving these goals, the project is expected

to have a positive impact on the way the public accesses information and promote the

greater social good.

i



Research Ethics Approval

This project obtained approval from the Informatics Research Ethics committee.

Ethics application number: 135752

Date when approval was obtained: 2024-06-05

The participants’ information sheet and a consent form are included in the appendix.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Yuhang Tang)

ii



Acknowledgements

In Edinburgh’s embrace, my journey found its start,

A city rich with knowledge, a haven for the mind.

This thesis now complete, a work close to my heart,

With gratitude I pen these lines, my thanks to bind.

First of all, I would like to thank the city of Edinburgh and the University of Edinburgh.

Studying for a master’s degree and living here for one year is the most wonderful year

in my life. It is the first time for me to leave my home and country alone and come to a

place so far away to live and study alone. The city embraced me and made me feel like

a second home in a place with a completely different language and culture. I’ve seen a

lot, learned a lot and grown a lot here.

To professors wise, who guided me with care,

Your insight, like a lantern, lit my way.

In moments of confusion and despair,

Your words and wisdom brought the light of day.

And then I want to thank my mentor, Dr. Gedi Luksys and Dr. Robin Hill have given me

this opportunity to work on this project. For the first time, I independently undertook

a complete back-end project including database and operation and maintenance work,

which was not a small challenge for me. But they trusted me very much and gave me a

lot of freedom to play and design and reconstruct. I learned a lot from this project and

made a lot of progress.

To friends beside me, through thick and thin,

Your laughter and your strength were always near.

In libraries long, and through the city’s din,

Together we have grown, and conquered fear.

At the same time, I want to thank all the MyNewsScan team for their efforts this summer,

especially Yichen Li, who independently undertook all the parts of front-end project,

user experience and interface design, and cooperated with me to do a lot of front-end

adjustment work.

I also want to thank my friends in Edinburgh, your friendship has been the most

precious gift I have received this year. The time I spent with you will be the best

memories of my life

iii



To family afar, your love a constant beam,

Though miles apart, your support remained my dream.

Finally, I would like to thank my family, who are far away in China to give me all-round

support and ensure that I successfully complete my master’s degree.

Last of last, I want to thank myself. Thanks to my own efforts and perseverance

in the face of difficulties, I have been able to come this far. I also believe that I will

continue to work hard to move towards a brighter future.

iv



Table of Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.3 Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 Project Description . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Completion Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Web Development Technology . . . . . . . . . . . . . . . . . 7

2.2.2 B/S Architecture and MVC . . . . . . . . . . . . . . . . . . . 9

2.2.3 Separating Front-end and Back-end . . . . . . . . . . . . . . 10

2.3 Web Security Technology . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Secure Socket Layer (SSL) and Transport Layer Security (TLS) 12

2.3.2 JSON Web Token (JWT) . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Spring Security . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.4 Combining JWT with Spring Security . . . . . . . . . . . . . 13

2.4 Java Web Development Specification . . . . . . . . . . . . . . . . . . 14

3 Previous Work and Design 16
3.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Problems Remain . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Project Refactor . . . . . . . . . . . . . . . . . . . . . . . . 18

v



3.2.2 Automated Testing . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.4 New Functions . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.5 Enhancing Security . . . . . . . . . . . . . . . . . . . . . . . 21

4 Implementation 23
4.1 Project Refactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.2 Project Structure . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.3 Log Management . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.4 Exception Handling . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Automated Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5.1 Back-end Security . . . . . . . . . . . . . . . . . . . . . . . 28

4.5.2 HTTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 New Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6.1 Moderation System . . . . . . . . . . . . . . . . . . . . . . . 31

4.6.2 User Community Forum . . . . . . . . . . . . . . . . . . . . 33

4.6.3 User experience optimisation . . . . . . . . . . . . . . . . . . 34

5 Limitations 36

6 Conclusions and Future Work 38
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 41

A Code Appendix 44
A.1 Dockerfile and Docker-compose . . . . . . . . . . . . . . . . . . . . 44

A.1.1 The back-end Dockerfile . . . . . . . . . . . . . . . . . . . . 44

A.1.2 The front-end Dockerfile . . . . . . . . . . . . . . . . . . . . 44

A.1.3 docker-compose.yml . . . . . . . . . . . . . . . . . . . . . . 45

A.2 Spring Security related full code . . . . . . . . . . . . . . . . . . . . 46

A.3 HTTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



B Participants’ information sheet 57

C Participants’ consent form 59

vii



Chapter 1

Introduction

1.1 Motivation

1.1.1 Background

The rapid evolution of the Internet and digital technologies has transformed the way

news is produced, distributed, and consumed. This transformation has led to un-

precedented access to information, but it has also brought significant disruption to the

traditional media sector [13]. This disruption is particularly evident with the emergence

of various platforms and aggregators like Google News and Facebook, leading to a

notable shift in how consumers engage with news content. Rather than relying solely

on individual news sources, consumers are now inclined toward accessing aggregated

and personalised news offerings. In the United States, while conventional news outlets

struggle to adapt to the digital landscape, news aggregators have become the preferred

means of accessing news for most Americans [13].

1.1.2 Problem Statement

The problem of filter bubbles, a term popularised by [18], refers to algorithmic biases in

online platforms that create echo chambers, isolating users from contrasting viewpoints.

Similarly, the spread of fake news, which gained considerable attention during the 2016

U.S. Presidential elections, represents a critical threat to informed public discourse

[1]. Both phenomena undermine the democratic process, manipulate public opinion,

and exacerbate polarisation. Some argue that personalised algorithms used by social

networks and aggregators to select what to show individual users can decrease the

diversity of information presented [16]. Concerns have been raised that these algorithms

1



Chapter 1. Introduction 2

could limit people’s exposure to information that offers varying perspectives and shared

knowledge [4].

1.1.3 Importance

The importance of tackling these issues cannot be overstated. As societies become

increasingly reliant on digital news sources, the need for mechanisms that promote

diverse perspectives and factual content becomes paramount. Balancing content cus-

tomisation with the promotion of diverse viewpoints is a noteworthy topic of discussion.

Previous research has indicated that various news consumption can mitigate the effects

of filter bubbles and misinformation [3].

1.1.4 Project Description

The project we undertake is to develop a sophisticated platform and real-world envi-

ronment, the MyNewsScan news aggregation platform, which will allow for a wide

range of experiments and analyses that can address these intertwined challenges. The

MyNewsScan project, a research project launched by Dr. Hill and Dr. Luksys’ team,

aims to address this problem. At the beginning, the team developed a prototype website

using PHP technology and aggregated a certain number of articles. In this prototype

site, they collected feedback and comments from volunteers in different countries after

reading articles on it. This feedback is collected through questionnaires and is used to

analyse how different attributes of the articles readers read (such as topic, length, and

popularity) affect their choices. After the initial phase, the project migrated the site to

SpringBoot + Vue technology because of the obsolescence of PHP technology and the

inability to find the next developer and maintainer. But for technical reasons, there have

been so many bugs in the site that it cannot be put into use. Therefore, the project first

needs to make bug fixes so that the website can be used normally. Thereafter, the project

aims to enhance existing features and introduce the idea of an online community. This

concept encourages users to become not just consumers of content, but also producers

of content on the platform. Users can access content and also propose and annotate

articles within the site. In addition, the user’s behaviour will be spontaneous and guided

by the manager to produce a community culture, influence other users in the community,

and thus establish a good community ecology. In addition, the project is being used to

support Dr. Robin Hill’s Eye Movement Lab experiments on monitoring eye movement

focus and emotion recognition while browsing web news content.



Chapter 1. Introduction 3

1.2 Aims and Objectives

The primary aim of the project is to develop a community-driven news aggregator

platform back-end that prioritizes user engagement and ease of use, addressing the

challenges of content moderation and user interaction. The platform will focus on

improving the MyNewsScan system back-end through comprehensive moderation, user

feedback incentivised, and robust community features.

To achieve the above goal, the project will pursue the following objectives.

1. Bugs Fixing: As mentioned earlier, the project’s website has been only a work-

in-progress, with a lot of major bugs, and at the beginning of the project almost

completely unusable. Therefore, the primary objective is to resolve all urgent bugs

and follow the specification in subsequent development to avoid bugs. Developers

and other team members also need to continuously test the site and report bugs to

ensure the stability and reliability of the site.

2. Implement Comprehensive Article Moderation: Develop a complete article

moderation system to ensure the health and quality of content. This system will

involve the collaborative efforts of human moderators (eventually also platform

algorithms) to assess and provide feedback on articles and associated questions.

The goal is to create a reliable and credible news source by mitigating the spread

of misinformation and promoting diverse viewpoints. Implement effective mod-

eration and content management strategies to maintain a safe, respectful, and

constructive environment. Protect users from inappropriate content and harass-

ment, ensuring that the platform remains a trusted space for news consumption

and discussion.

3. Encourage Active User Involvement: Enhance user engagement through a user

point system that incentivizes feedback and participation. Users will be rewarded

for providing feedback after reading articles and for submitting articles they’ve

discovered. This system aims to foster an active and involved user community,

where feedback is promptly integrated to improve the overall user experience.

At the same time, establish a separate discussion board, establish a sound group,

posting, and commenting mechanism, to further encourage users to participate in

the discussion and express their views.

4. Develop a Community Forum: Establish a comment section beneath each

article, including associated questions, to promote content-driven discussions.



Chapter 1. Introduction 4

This section will support hierarchical nesting of comments to facilitate in-depth

exploration of specific points without cluttering the discussion space. The aim

is to build a community where users can engage in meaningful conversations

directly related to the content.

5. Enhance Usability and Accessibility: Utilize modern web technologies and user

experience design principles to create a platform that meets the diverse needs of

the user community. Emphasise usability, accessibility, and user engagement to

ensure a seamless and intuitive user experience.

6. Ensure User Privacy and Website Security: By updating modern web tech-

nology, adding security components, etc., to ensure that the user’s personal

information is not leaked, to ensure that the user’s account security is not illegally

infringed, so that users can use the website with confidence.

7. Standards and Sustainability: Since this project is currently the dissertation of

the taught master’s program, all related codes must follow the code specification

and develop documentation in order to ensure the sustainability of the project.

This ensures that the team that takes over the project can more easily understand

the project and carry out subsequent development and maintenance.

By achieving these objectives, the project aims to transform MyNewsScan into a vibrant

and engaging community platform that not only aggregates news but also fosters user

interaction and trust.

1.3 Completion Status

The project went through two iterations over a full project development cycle of about

three months.

1. First Iteration:

• Bug Fixing: In the first iteration, the most urgent task is to fix the major

bugs left behind before, so that the website can normally let users perform

basic functions such as registration, login, submit articles, browse articles.

• Reasonable, user-friendly moderation system: The original moderation

system prototype was improved to stage moderation to reduce user burden.



Chapter 1. Introduction 5

• System Refactor: Change the project code to a canonical form as much as

possible and upgrade the version of the language, framework, and related

dependencies to avoid exposing vulnerabilities in the project.

• Standards and Sustainability: A part of the code documentation was

written. And the project’s deployment was changed to Docker Compose to

simplify deployment [21].

2. Second Iteration:

• Usability and Accessibility: Continuously optimize various instances of

web logic to enhance ease of use.

• Community Forum: New development of a user community forum includ-

ing group, post, comment, like and other functions.

• Security: Ensure the security of your website by deploying Spring Security,

JSON Web Token (JWT), Cross-origine resource sharing configuration, and

other technologies, and through periodic backup to ensure that user’s data

will not be lost [5, 7, 9].

Overall, the project has made great progress in this phase of development, making it

from an unusable standstill to a viable restart, and adding a lot of new features to bring

it closer to a mature web system.

In addition, there are still some issues that need to be optimized by the next developer,

such as the stability of user-submitted articles, the richness of community features, and

more advanced security.



Chapter 2

Literature Review

2.1 Background

The phenomena of filter bubbles and misinformation have received significant academic

attention in recent years. The concept of ”filter bubbles,” introduced by Pariser and Eli

[18], underscores the risk that personalised algorithms pose by potentially isolating users

from diverse perspectives. This concept has set the stage for a deeper understanding of

how algorithmic curation can impact the consumption of news and information.

Allcott et al. [1], provided a detailed examination of the proliferation of fake

news, particularly focusing on its implications for democratic processes. Their work

highlighted the need for empirical research aimed at developing and testing interventions

to counter these challenges. This foundational research has paved the way for subsequent

studies exploring the intersection of misinformation and media consumption.

In an empirical study, Bakshy et al. [3], demonstrated that while algorithms con-

tribute to ideological segregation, the choices individuals make in selecting their news

sources play an even more crucial role. This insight suggests that platforms that fa-

cilitate more user-driven content selection and foster interaction can help mitigate the

impacts of filter bubbles and misinformation.

Recent studies have continued to emphasise the critical nature of addressing misin-

formation, especially in the context of upcoming elections and significant public events.

For example, Aslett et al.[2], explored how misinformation thrives in ’information

voids,’ situations where the scarcity of reliable information can lead to a higher accep-

tance of false news. Their research found that even users trying to verify the facts can

inadvertently lend credibility to misinformation due to the prevalence of low-quality

sources in search engine results [2]. This issue is exacerbated by the rise of generative

6



Chapter 2. Literature Review 7

AI technologies capable of producing realistic but fabricated multimedia content, posing

new challenges for digital news platforms.

The role of community-driven platforms in promoting diverse news consumption

has also been examined, particularly within social media contexts. Studies such as those

by Gillani et al.[8], highlight the potential of online communities to cultivate a more

inclusive and critically engaged news ecosystem.

Moreover, the implementation of reward systems to incentivize user engagement

and enhance diversity in news exposure has gained traction. Research by Shao et al.

[22], aligns with this approach, advocating for mechanisms that reward user participa-

tion in news annotation and discussions. Such strategies resonate with our project’s

objectives to boost user interaction and ensure a broader range of perspectives within

the MyNewsScan platform.

Building on these foundations, our project aims to integrate and expand upon these

insights within the MyNewsScan platform. By incorporating community features and

reward mechanisms, we aspire to contribute meaningfully to the ongoing discourse on

effectively combating filter bubbles and misinformation in the digital era.

2.2 Technologies

2.2.1 Web Development Technology

Since the widespread adoption of the Internet in 1989, web technology has undergone

significant evolution. Tim Berners-Lee developed Web 1.0 technology based on HTML

(Hypertext Markup Language) in 1989 [29]. During the Web 1.0 era, users were limited

to viewing static pages created by programmers, with no ability to interact or modify

the content. Building on the foundational global network architecture of Web 1.0, web

technology evolved from static to dynamic, marking the advent of Web 2.0.

PHP, a server-side scripting language, became widely used in web development,

especially in early Web 2.0 forums [27]. Its open-source nature, ease of learning,

and large developer community made it a popular choice. PHP is highly flexible and

compatible with various web servers and operating systems [25]. However, PHP faces

challenges in handling large volumes of data and is not as secure as other programming

languages such as JSP [11].

Java Server Pages (JSP) allows developers to create dynamic web pages by integrat-

ing static content with dynamic data processing. JSP facilitates the maintenance and



Chapter 2. Literature Review 8

updating of web applications. Furthermore, portability of JSP ensures that it can be used

with a variety of web servers and operating systems [11]. The shift to dynamic Web

technology enabled interactive database integration, transforming Web systems from

static document repositories to interactive, user-centred platforms. This shift paved

the way for the development of social networks, blogs, and video-sharing sites that

prioritize human interaction [11, 29].

However, JSP has several limitations, such as high complexity and cumbersome

code, particularly for intricate pages. Its coupling of dynamic and static resources

prevents true separation, necessitating frequent collaboration between front-end and

back-end developers, which can decrease efficiency. This is where the Spring framework

becomes significant—a more advanced, Java-based framework that has become central

to modern Java enterprise development.

Spring is a Java Web Development framework, offers a comprehensive suite of tools

and modules for building web applications, including Spring MVC for creating web

controllers and views, Spring Boot for simplify configuration of Spring applications,

and Spring Security for handling authentication and authorization [15]. Spring’s robust

and active developer community provides ample resources and support, enhancing its

accessibility and usability.

The classic modern Java enterprise development framework is often referred to

as SSM, which stands for Spring, Spring MVC, and Mybatis. Mybatis is a database

persistence layer framework that simplifies Java database connectivity (JDBC), enabling

developers to manage databases in Spring projects using straightforward Java methods

or SQL statements with placeholders [15]. Compared to other Database connectivity

framework such as Hibernate and JPA, Mybatis offers improved flexibility and database

access efficiency. The synergy between Spring MVC and Mybatis enhances system

development efficiency, reduces complexity, and strengthens security, stability, and

robustness [15, 30].

By integrating Spring, Spring MVC, and Mybatis, developers can build a powerful

and efficient web development framework. Spring provides a lightweight and flexible

container for object management, while Spring MVC offers a robust and adaptable

approach to building web applications. Mybatis complements these technologies by

offering a streamlined and effective method for database interaction, which is crucial

for many web applications. Collectively, these technologies form a potent and efficient

framework for developing modern web applications that are maintainable and extendable

[30].



Chapter 2. Literature Review 9

However, the SSM framework has one notable drawback: As projects grow in size

and complexity, the configuration can become highly cumbersome and intricate. To

address this issue, Spring Boot, a module within the Spring framework, offers rapid

application development (RAD) capabilities. Spring Boot simplifies configuration by

leveraging aspect-orientated programming and other concepts to facilitate quick access

to project information. One of its key advantages for developers is the minimal Spring

configuration required to run applications, eliminating the need for mandatory XML

configuration files [26].

2.2.2 B/S Architecture and MVC

The B/S (Browser/Server) architecture is a web application design model that divides

a system into a browser and a server. This architecture has gained popularity with

the rise of the Internet and web-based applications because it allows users to access

applications through a web browser without needing to install additional software on

their devices[14]. The B/S architecture is a design concept, whereas in practice the

SSM framework encompasses the technology used in application development, namely

Spring, Spring MVC, and Mybatis, covering the three layers of the B/S architecture[30]:

1. Presentation Layer (Client: Browser): This layer is responsible for displaying

the application’s user interface and handling user interaction. It is implemented

using web front-end technologies that run in the user’s web browser. The pre-

sentation layer communicates with the application layer by sending user input,

requesting data, and receiving updates.

In the practice of B/S architecture, the presentation layer is handled by Spring

MVC (Model-View-Controller), which follows the MVC design pattern to sep-

arate the user interface, application logic, and data management concerns[30].

In Spring MVC, the controller handles user input and manages the flow of data

between the model (application data) and the view (user interface). Processes

incoming HTTP requests, maps them to appropriate application logic methods,

and generates the corresponding HTTP responses. Typically, views are developed

using JSP, Thymeleaf, FreeMarker, etc., and are responsible for rendering the

user interface based on the data provided by the controller [12].

2. Application Layer (Server Side): Also known as the business logic layer, this

layer processes user requests, manages data, and enforces application rules and



Chapter 2. Literature Review 10

policies. The application layer uses server-side technologies such as PHP, JSP,

and Spring, as mentioned above. It communicates with the presentation layer

to receive user input and update the user interface, while also interacting with

the data layer to store, retrieve, and manipulate data. This layer handles most

of the application’s processing and decision-making and coordinates the overall

operation of the application [26, 12].

The core Spring framework focuses on the application layer of the B/S archi-

tecture. Spring is a comprehensive framework that simplifies the development

of Java applications by offering features such as dependency injection, inver-

sion of control, and integration with various data access technologies. Spring’s

dependency injection feature allows for easy configuration and management of

application components, promoting modularity and maintainability. Utilising

Spring’s features, developers can build applications with a clear separation of

concerns, ensuring that business logic remains independent of the presentation

and data layers [12].

3. Data Layer (Server Side): This layer is responsible for storing, retrieving, and

managing the application’s data. It consists of databases, data storage systems,

and data access components that enable applications to interact with data. The

data layer is usually implemented using a database management system such as

MySQL, PostgreSQL, Oracle, or SQL Server [26, 30].

MyBatis is an open-source lightweight persistence framework that simplifies

database access and data management in Java applications. It maps Java objects

to SQL statements, enabling developers to work with relational databases without

writing complex JDBC code. In the data layer of the B/S architecture, MyBatis is

responsible for communicating with the database, executing SQL queries, and

mapping the results to Java objects. It provides a flexible and efficient way to

interact with the database, allowing developers to focus on the application logic

without dealing with the details of access to the underlying data [30].

2.2.3 Separating Front-end and Back-end

In modern development practices, the front-end and the server are typically developed by

different programmers. The front end constitutes the view layer in the MVC architecture.

Given the need for complex functions such as web design, layout, and user interaction,



Chapter 2. Literature Review 11

Browser (Client)

服务器 (Server)

Presentation LayerController

Application LayerService

Data LayerDAO/Mapper

 Database

Figure 2.1: B/S Architecture with MVC Model

various frameworks and technologies have emerged, including Vue.js, React, and

Angular. Vue.js, a JavaScript framework for building user interfaces, offers a cleaner

and more flexible approach to building interactive web applications than other front-end

frameworks. It follows a component-based development pattern, enabling developers to

split the interface into reusable components[26, 19].

In the SSM framework, Vue.js can replace the view part of Spring MVC, working in

conjunction with Spring MVC’s controller to handle the user interface and interaction

with the back end. Vue.js enables developers to create responsive, high-performance

front-end applications and extend their functionality with the many plugins and tools

available in the Vue.js ecosystem [26].

Additionally, Spring Boot has been mentioned for server-side development within

the SSM framework. Spring Boot simplifies configuration by reducing the need for

manual setup. It allows developers to quickly get applications up and running without

dealing with extensive XML configuration files and boilerplate code[26, 19]. Spring

Boot enables developers to focus on writing business logic without worrying about the

complexity of framework configuration.

By integrating these technologies, developers can create modern web applications

that are efficient, maintainable, and extendable, leveraging the strengths of each compo-

nent within the B/S architecture.



Chapter 2. Literature Review 12

2.3 Web Security Technology

Web security is an area that developers must focus on. Web security technologies are

critical to protecting applications from a variety of threats, including data breaches,

unauthorised access, and cyber attacks.

2.3.1 Secure Socket Layer (SSL) and Transport Layer Security (TLS)

SSL and its successor TLS are cryptographic protocols designed to provide secure

communication over computer networks [17]. These protocols use encryption to protect

the confidentiality and integrity of data transmitted between the client and the server.

SSL/TLS is widely used to secure network traffic and is prefixed with https:// on the

URL. SSL/TLS also supports authentication mechanisms that ensure data is sent to and

received from trusted parties. Studies have shown that the implementation of SSL / TLS

can significantly reduce the risk of data interceptation and man-in-the-middle attacks

[17].

2.3.2 JSON Web Token (JWT)

JWT is an open standard (RFC 7519) for the transfer of information between parties in

a compact and self-contained manner [10]. The main features of JWT are the following.

• Compactness: Because JWT is URL-safe and can be sent via URL, POST param-

eter, or HTTP header, it is suitable for scenarios such as single sign-on (SSO).

• Self-inclusion: JWT contains the necessary information to reduce the dependence

on the server database and improve performance.

The JWT usually consists of three parts: the Header, the Payload, and the Signature.

The header contains the token type and signature algorithm, the payload contains

claims, such as user identity and permissions, and the signature is used to verify the

authenticity and integrity of the token. Since JWT uses the HMAC(Hash-based message

authentication code) or RSA algorithm for signature, it ensures that the token has not

been tampered with [10].

2.3.3 Spring Security

Spring Security is a powerful Java security framework that provides comprehensive

security services to protect applications based on the Spring Framework [24]. Its core



Chapter 2. Literature Review 13

Browser
Server
with 

Storage Token

POST /user/login

JWT

Response

JWT

Figure 2.2: JWT Token Work Flow

capabilities include authentication, authorisation, security context management, and

protection against common web attacks.

• Authentication: Spring Security supports multiple authentication mechanisms,

including form login, HTTP basic authentication, OAuth2 and LDAP(Lightweight

Directory Access Protocol). It can be integrated with various user storage (such

as database, LDAP, memory) to provide flexible authentication methods [24].

• Authorisation: Spring Security controls user access to application resources by

defining security policies. Role-based access control (RBAC) and permission

expressions are common authorization methods [24].

• Security context management: The security context contains the security infor-

mation of the current user, allowing the application to access the user identity and

permission information throughout the request process [24].

• Protect against common Web attacks: Spring Security has built-in mechanisms to

protect against XSS(Cross Site Scripting), CSRF(Cross-site request forgery), and

session fixation attacks. For example, Spring Security automatically generates

CSRF tokens and validates them on every request, effectively preventing CSRF

attacks [24].

2.3.4 Combining JWT with Spring Security

Combining JWT with Spring Security can enhance the security of Web applications.

Spring Security’s authentication and authorisation mechanisms can be extended using



Chapter 2. Literature Review 14

JWT to enable stateless distributed authentication. In this mode, after the user logs in,

the server generates the JWT and returns it to the client. The client carries this JWT in

subsequent requests, and the server identifies the user by verifying the JWT signature

without storing session information on the server side. This stateless design improves

the scalability and performance of the system [24].

2.4 Java Web Development Specification

In order to ensure the code quality, maintainability and system stability, it is very impor-

tant to make and follow the development specification. A development specification

is a set of standards and best practices that guide developers to write code. Good

development specifications can improve the readability, maintainability, and reusability

of code, reduce errors, and improve the efficiency of team collaboration [23]. For

projects that use Spring Boot for Java backend development, developing and following

development specifications is especially important because these frameworks provide a

wealth of features and configuration options that require a unified standard to ensure

project consistency and reliability [23].

• Project structure: Follow the standard Maven or Gradle project structure, clearly

separating different modules and layers, such as Controller, Service, data access

layer (Repository), etc. The control layer is used to write code related to API

interface data interaction without writing business logic, the data access layer is

used to connect with the database to obtain SQL query data, and the service layer

is used to write business logic code.

• Dependency management: Use the dependency management provided by Spring

Boot and try to use the versions recommended by Spring Boot to avoid version

conflicts and compatibility problems. You should also avoid using dependent

versions exposed with vulnerabilities.

• Log management: SLF4J and Logback are used to record logs at different log

levels (such as INFO, DEBUG, and ERROR) to ensure that important information

is documented.

• Exception handling: Unified exception handling, using Spring Boot’s @Con-

trollerAdvice annotation set to handle global exceptions and provide a consistent



Chapter 2. Literature Review 15

error response format. For security, you must ensure that error exceptions are not

returned to the front end.

• RESTful API design: Following the principles of RESTful API design, HTTP

verbs (GET, POST, PUT, DELETE) are used to represent different operations,

and reasonable status codes are used to return results, ensuring the ease of use

and consistency of the API.



Chapter 3

Previous Work and Design

3.1 Previous Work

When the original MyNewsScan project went live in 2018, the site used traditional

PHP development methods to integrate and configure MySQL databases as shown in

Figure 3.1. Article display, article filtering, user log-in and registration management,

article-related survey, reward points according to browsing activities, and other core

functions were implemented.

After that, the project underwent an update that included re-sizing the user interface

and introducing new features that allowed users to post new articles. Users can submit

articles they want to share and attach some questions related to the content to other

visitors.

At this stage, although the site has only some basic functions, it can still run normally

and stably. Therefore, the MyNewsScan website carried out preliminary development

at this stage, accumulated a portion of the user and article database, and carried out

several eye movement and emotion monitoring experiments.

However, due to the declining popularity of PHP and the need for newer extensions,

the last upgrade rebuilt the code architecture and used a front-end back-end separation

project architecture, using SpringBoot as the server-side framework for the project and

Vue as the front-end framework.

3.1.1 Problems Remain

However, while the project addressed some of the issues with previous versions of PHP

and integrated many new features, there is no denying that the project still had many

16



Chapter 3. Previous Work and Design 17

Figure 3.1: Previous database

issues that needed to be addressed urgently. Because the website completely refactored

the code, only a small part of the basic functions were completed in the functional

section, and a large number of bugs and defects were left behind. Therefore, the main

direction of work after that has been to fix bugs and add features to make the site fully

functional and working.

1. Bugs

Before the author began to take over this project, more than 30 bugs had been

reported by other project staff, and there were critical bugs such as failure to

register and login, which caused the website to completely fail to run normally.

After the actual operation and functional testing of the project, as well as the

careful observation of the project code, we finally confirmed the actual existence

of these bugs. Also, the project lacked many features and many features did not

work properly, such as comments, avatar uploads, registration verification, and so

on. In addition, there was a very serious problem that the project backend would

return all user information, including unencrypted passwords, to the browser.

2. Code Irregularities

There were many irregularities in the previous version of project. First, the wrong



Chapter 3. Previous Work and Design 18

package reference, the previous programmer referenced the old ’sun.misc’, which

caused the project to fail. Second, the project wrote the business logic in the con-

troller layer, which was very irregular and logically confusing. Furthermore, the

project referenced very old dependency packages that warned of vulnerabilities

in the Maven package management framework.

3. Lack of development documentation and automated testing

When the author first took over the project, there were no handover documents,

project descriptions, or code comments to help the author understand the project

code. In addition, there were no unit tests or automated tests.

3.2 Design

3.2.1 Project Refactor

In order to improve the maintainability and extensibility of the code, we refactor the

project. Specifically, we include the following aspects:

1. Project structure optimisation: Follow the standard Maven project structure to

separate different modules and layers. Even though this has been done formally

in the previous work, the next step is to make the project actually follow this

standard. For example, clear separation of control layer (Controller), Service layer

(Service), data access layer (Repository), etc., to ensure that the code structure is

clear.

2. Dependency management: Use the Spring Boot dependency management func-

tion to ensure the consistency of dependency packages’ version and avoid version

conflicts and compatibility problems. Upgrade dependency packages with secu-

rity vulnerabilities in a timely manner.

3. Log management: Integrates SLF4J and Logback to set different log levels (such

as INFO, DEBUG, ERROR) to ensure that important information is recorded.

4. Exception handling: Use Spring Boot’s @ControllerAdvice annotation to uni-

formly handle global exceptions, provide a consistent error response format, and

ensure that sensitive error messages are not returned to the front end.



Chapter 3. Previous Work and Design 19

3.2.2 Automated Testing

With limited manpower and energy, we focused on interface testing to ensure that

the core functions of the system were functioning properly. The specific steps are as

follows:

1. Test tool selection: We chose Postman as the primary tool for interface testing.

Postman is powerful and easy to use, making it easy to test and debug API

interfaces.

2. Test case design: For each API interface, we designed detailed test cases, includ-

ing normal cases, exception cases, and boundary cases. Each test case contains

information about the request method, request parameters, expected response,

and so on.

3. Test execution: Use Postman to execute all designed test cases to verify that the

function of the API interface meets the expectations. During testing, emphasis is

placed on interface correctness, response time, and stability.

4. Test report generation: Through Postman’s reporting function, test reports are

generated to record the execution results of each test case. Test reports can help

us quickly locate problems and provide reference for subsequent development

and maintenance.

3.2.3 Documentation

In order to ensure the sustainability and easy maintenance of the project, we design

and write detailed development documentation and user instructions. Specific contents

include:

1. Project Overview: Describes the background, objectives, and main functions of

the project.

2. Environment configuration: Describes the configuration steps for the develop-

ment environment and production environment, including the operating system,

dependency packages, and database.

3. Code structure: Explain the code structure of the project and the function of

each module, to help developers quickly understand the project.



Chapter 3. Previous Work and Design 20

4. API documentation: Use tools like Swagger to generate API documentation

detailing the functionality, parameters, and return values of each interface.

5. Test description: Describes how to use Postman to test the interface to ensure

the quality of the code.

6. Deployment Guide: Provides detailed deployment steps, including Docker

Compose configuration, to ensure a project can be successfully deployed to

production.

3.2.4 New Functions

Building on the existing MyNewsScan platform, we have added several new features

to optimise the user experience and improve the interactivity and usefulness of the

platform.

3.2.4.1 Moderation System in Stages

We have improved the review system of articles and adjusted the process of one-time

review to phased review. First, after the user submits the article, the system will conduct

a preliminary review. Articles that pass the initial review will go to the next stage,

where users can upload relevant questions for the article, which will be reviewed by the

system. The phased moderation process not only reduces the mental burden of users,

but also improves the accuracy and efficiency of the moderation.

3.2.4.2 User Experience Optimisation

We have also made a number of user experience optimisations, including:

1. Notification system: The new notification function, when the user’s article or

question passed the review, or the discussion group has a new post, will notify

the user in time, enhance the user’s sense of participation.

2. Email system: When an important message needs to be notified, an email is sent

to the user to ensure that the user can receive the information.

3. Points and rewards system: Points and rewards are introduced to encourage users

to actively participate in platform activities, such as posting articles, commenting,

and participating in discussions. Points can be redeemed for rewards, increasing

user engagement and loyalty.



Chapter 3. Previous Work and Design 21

By introducing these new features, we not only enhance the usefulness and engage-

ment of the MyNewsScan platform, but also enhance user interactivity and a sense of

community, further driving diversity and authenticity in news.

3.2.4.3 User Community Forum

We have developed a new user forum that allows users to create public and private

discussion groups. In discussion groups, users can make posts and discuss articles and

other topics. This feature greatly enhances the platform’s interactivity, allowing users

to more freely share opinions, discuss news, and participate in community events. A

public discussion group allows all users to participate, while a private discussion group

can set access permissions to allow only certain members to join and discuss, thus

meeting the needs of different users.

3.2.5 Enhancing Security

In order to ensure the Security of MyNewsScan platform, we introduced a security mech-

anism that combined Spring Security and JSON Web Token (JWT) and implemented a

role-based access control (RBAC) permission management model.

SecurityFilterChain

ExceptionTranslationFilter

FilterFilter

Filter
JWT

1
Continue Processing Request

Normally

Security
Exception

Start Authentication

SecurityContextHolder

RequestCache

AuthenticationEntryPoint

Access Denied

AccessDeniedHandler

2

3

Figure 3.2: Spring Security Work Flow



Chapter 3. Previous Work and Design 22

3.2.5.1 Spring Security and JWT

By integrating Spring Security and JWT, we have implemented a stateless authentication

system. After the user logs in successfully, the system generates a JWT and returns it to

the client. The client carries the JWT in subsequent requests, and the server identifies

the user by verifying the validity and integrity of the JWT, without storing session

information on the server, thus improving the scalability and performance of the system.

3.2.5.2 Role-based Access Control (RBAC)

We adopted the RBAC permission management model, assigning different permissions

based on the user’s role (such as administrator, regular user, moderator, etc.). Each role

has specific access and operation rights, ensuring that users can access and operate only

the resources and functions allowed by their role. Through detailed permission control,

we effectively protect user data and platform resources, prevent unauthorized access

and operation, and enhance the security of the system.

Through these security measures, MyNewsScan platform not only ensures the

security and privacy of user information, but also improves the reliability and anti-

attack capability of the overall system, providing users with a safe and trusted news

aggregation platform.



Chapter 4

Implementation

4.1 Project Refactor

First of all, the project needs to be reconstructed to better carry out subsequent develop-

ment and bug repair. The content of reconstruction includes the upgrade and adjustment

of dependent components, the optimization of project structure, the addition of logs,

error handling and so on

4.1.1 Dependencies

Common Vulnerabilities and Exposures (CVE), is a database related to information

security, collecting various information security weaknesses and vulnerabilities and

giving numbers for public access [6]. The Maven repository will automatically collect

CVE vulnerability information for each dependent component and report it to each

project that uses the dependency, so it is best to upgrade the dependency that is reported

to be vulnerable to a non-vulnerable version when the cost of upgrading the dependent

component is not high.

Therefore, the updated main dependencies we used are listed below:

• Java Development Kit: 21

• SpringBoot Framework Dependencies: 3.3.0

• Lombok: 1.18.30

• MySQL: 8.0.33

• JSON Web Token: 0.9.1

23



Chapter 4. Implementation 24

• Fastjson2: 2.0.32

• MyBatis plus: 3.5.6

4.1.2 Project Structure

In the case of the previous code, all the logic was written in the controller, which

works, but does not conform to MVC conventions and is difficult to maintain. Here’s an

example:

1 @RequestMapping(”/moderating−article”)

2 public JSONObject moderatingArt(@RequestBody JSONObject obj) {
3 int articleId = ( int )obj . get (” articleId ”) ;

4 int approved = ( int )obj . get (”approved”);

5 int status = ( int )obj . get (”status”) ;

6 int moderator = ( int )obj . get (”moderator”);

7 ArrayList<Article> articles = ( ArrayList<Article>) articleService . getArticleAllById ( articleId ) ;

8 int moderating = articleService .moderating( articleId , approved, status , moderator) ;

9 int uid = articles . get (0) .getUid() ;

10 if (approved == 1) {
11 pointService .newPoints( articleId , uid , 5,

12 ”Your−article−is−approved.”, new Timestamp(System.currentTimeMillis()) ) ;

13 int currentPoints = userService .getUser(uid) . getPoints () ;

14 userService . updatePoints ( currentPoints +5, uid) ;

15 }
16 JSONObject json = new JSONObject();

17 json . put(”res”, moderating) ;

18 return json ;

19 }

Now let the controller handle only the data interaction with the front end, leaving

the specific business logic to the service layer.

1 @PostMapping(”/moderating−article”)

2 public JSONObject moderatingArt(@RequestBody JSONObject obj) {
3 int articleId = obj . getIntValue (” articleId ”) ;

4 String approvedStatus = obj . getString (”approved status”);

5 int moderator = obj . getIntValue (”moderator”);

6 return adminService.moderatingArt( articleId , approvedStatus , moderator) ;

7 }

4.1.3 Log Management

In the current project, all logging is implemented using system printing and there is no

way to redirect logs to files, databases or other log processing systems. Worst of all,



Chapter 4. Implementation 25

heavy use of System.out.println affects performance because every call is a blocking IO

operation.

Now we use the SLF4J logging portal system that comes with the SpringBoot

framework and use its default Logback logging.

For example:

1 @Service

2 public class LoginService {
3 private static final Logger logger = LoggerFactory.getLogger(LoginService . class ) ;

4 ...

5 logger . info (”userDetails:{}” , userDetails ) ;

6 logger . info (”jwtToken:{}” , jwtToken);

7 logger . error (”User−authentication−failed”, ex) ;

4.1.4 Exception Handling

Since the previous project sent error messages back to the front end, we needed to add

unified error handling. In a SpringBoot project, all you need to do is configure it.

1 @RestControllerAdvice(basePackages = ”com.mns.mnsback.controller”)

2 @ResponseBody

3 @Slf4j

4 public class GlobalExceptionHandler {
5 @ExceptionHandler(Exception.class)

6 public Result exceptionHandler (Exception ex) {
7 log . error (ex.getMessage()) ;

8 return Result . error (”Internal−server−error.Please−try−again−later−or−contact−the−administrator.”);

9 }
10 }

4.2 Deployment

Prior to this project, the deployment approach for this project was the most primitive

installation, manually setting up the server environment, installing dependencies, config-

uring databases and other services, and deploying program code. This approach, while

intuitive, is prone to problems. For example, an inconsistent environment configuration

between different servers can cause an application to not run properly on some servers.

In addition, manual operation steps are numerous, increasing the possibility of error

and maintenance costs.

Therefore, the deployment mode of this project is modified into Docker-Compose,

that is, Docker container is used to deploy various services and programs, and Docker-



Chapter 4. Implementation 26

Compose is used to orchestrate services. Docker-compose enables rapid deployment and

management of applications and their dependencies by defining simple configuration

files.

The following diagram in Figure 4.1 shows the architecture of the project on the

server.

Linux Server

Docker Engine

MySQL Redis

Nginx

Front-End

Back-End

Docker
Virtual
Internal
Network

Users

Figure 4.1: Overall Architecture of MyNewsScan Project

For specific operations, a Dockerfile needs to be written for both the front-end

and back-end to package them into two Docker images and upload them to the Dock-

erhub repository. Then we only need to add the docker image coordinates to the

Docker-compose.yml file in the server, which can be pulled to the server. The specific

configuration code is listed in Appendix A1.

Every time this project needs to be deployed an upgrade, there are only three steps

in the server: ’docker-compose down’ to close the service, ’docker-compose pull’ to

pull new images automatically, and ’docker-compose up -d’ to start the new services.



Chapter 4. Implementation 27

4.3 Documentation

This project creates a separate folder and several markdown files for documentation.

Each document clearly explains how the various parts of the system work.

Figure 4.2: Documentation

The main.md file describes the system, along with some key information and

considerations. The Deployment.md writes every step of system deployment in detail,

as well as considerations.

In addition, due to the large number of APIs on the system, the Swagger, OpenApi,

and Knife4J components are used to automate the production of API documentation.

When this component is introduced and configured by the SpringBoot project. The

document can be accessed at doc.html on port 8888.

Figure 4.3: API Documentation Page

4.4 Automated Testing

Since there are not enough developers and professional test engineers, it is extremely

difficult to write unit tests in the limited time available. So we only use Postman for the



Chapter 4. Implementation 28

API automation testing. Specifically, I created a collection in postman and sorted all

apis into different folders in the collection. Best of all, subsequent programmers can

test the collection directly with one single sharing operation.

Figure 4.4: Postman Interface

4.5 Security

As mentioned before, security is a very important part of the proper functioning of a

web system. Before the project deployed security measures, only a simple JWT was

used as a measure to verify the user’s identity. And as mentioned earlier, the password

is also incorrectly returned to the front end. Such a system is highly insecure. Also, the

website is still http but not https, which is not secure for users.

4.5.1 Back-end Security

Therefore, this project adopts a comprehensive approach of Spring Security, combined

with JWT authentication, and the RBAC model to manage user permissions.

First, the permission model needed to be reformed. The project previously used the

admin field in the user table to specify the levels of level 0, 1, 2, 3. Their permissions

range from low to high, with level 0 being normal users who can only submit articles,

questions, and comments. Level 1 is a junior administrator who can review articles and

issues and manage comment rights; level 2 is a senior administrator who can increase

or decrease user rights on the basis of level 1; level 3 is a super administrator who can



Chapter 4. Implementation 29

delete user rights at all levels and change all operations. In order to avoid confusion

caused by excessive reconstruction, this field was used to represent roles in the RBAC

model. The final tables from the RBAC database are shown in Figure 4.6.

Figure 4.5: Database refactor for RBAC

The next configuration is more complicated; first, we need to replace the original

encoder with Spring Security’s encoder, implement Spring Security’s UserDetails class,

and finally configure Spring Security’s filter and various interceptors.

Here is a simplified example of the UserDetails implementation. All the codes

below are demo; the specific codes are in Appendix A2.

1 @Service

2 public class UserLoginDetailsServiceImpl implements UserDetailsService {
3 ...

4 @Override

5 public UserDetails loadUserByUsername(String username){
6 User userEntity = userMapper.selectOne(new QueryWrapper<User>().eq(”username”, username));

7 List<Permission> authorities = permissionMapper.selectAuthorityByUsername(username);

8 StringJoiner stringJoiner = new StringJoiner (”,” , ””, ””) ;

9 authorities . forEach( authority −> stringJoiner .add( authority .getName()));

10 return new org.springframework. security . core . userdetails .User( userEntity .getUname(), userEntity .getUpwd(),

AuthorityUtils .commaSeparatedStringToAuthorityList( stringJoiner . toString () )

11 ) ;

12 }
13 }

The implementation constructs Spring Security’s own User type by querying the user

table and the Permission table for permissions, so that the Spring Security framework

can recognize the user’s permissions.

After that, the original login method should be rewrite, the UserDetails permission

is obtained and written into the GrantedAuthority collection, and then loaded into the

security context of SecurityContextHolder, so that the system can normally identify and

distinguish the permissions of the login user.



Chapter 4. Implementation 30

1 public Object doLogin(String username, String password){
2 UsernamePasswordAuthenticationToken auth = new UsernamePasswordAuthenticationToken(username, password);

3 Authentication authentication = authenticationManager . authenticate (auth) ;

4 SecurityContextHolder . getContext () . setAuthentication ( authentication ) ;

5 UserDetails userDetails = ( UserDetails ) authentication . getPrincipal () ;

6 // Get user permission information

7 StringJoiner authorityString = new StringJoiner(”,” , ””, ””) ;

8 Collection<? extends GrantedAuthority> authorities = userDetails . getAuthorities () ;

9 for (GrantedAuthority authority : authorities ) {
10 authorityString .add( authority . getAuthority () ) ;

11 }
12 // User authentication successful ,

13 String md5Pass = DigestUtils .md5DigestAsHex(password.getBytes());

14 User user = userMapper.check(username, md5Pass);

15 // JWT token generated

16 String jwtToken = JWTUtils.createToken( user .getUid() , user .getUname(), authorityString . toString () ) ;

17 return ...;

Now that the token has been generated, Spring Security can recognise and parse

the token to obtain permission information for the user when the current end requests

the token. The next step is to do the overall configuration including filters, encoder,

authentication provider, and other detailed configuration.

1 @Configuration

2 @EnableWebSecurity

3 public class SecurityConfiguration {
4 // Injection here

5 ...

6 @Bean

7 public PasswordEncoder passwordEncoder() {
8 return new SecurityEncoder() ;

9 }
10 @Bean

11 public AuthenticationManager authenticationManager ( AuthenticationConfiguration configuration ){
12 return configuration . getAuthenticationManager () ;

13 }
14 @Bean

15 public AuthenticationProvider authenticationProvider () {
16 DaoAuthenticationProvider daoAuthenticationProvider = new DaoAuthenticationProvider () ;

17 daoAuthenticationProvider .setPasswordEncoder(passwordEncoder());

18 daoAuthenticationProvider . setUserDetailsService ( userDetailsService ) ;

19 return daoAuthenticationProvider ;

20 }
21 @Bean

22 public SecurityFilterChain defaultSecurityFilterChain ( HttpSecurity httpSecurity ){
23 httpSecurity . authorizeHttpRequests ( authorizeHttpRequests −> authorizeHttpRequests

24 . requestMatchers (”/admin/**”).hasAnyAuthority(”admin”)

25 // set filter rules here

26 ) ;

27 httpSecurity . authenticationProvider ( authenticationProvider () ) ;

28 // Set more configuration here



Chapter 4. Implementation 31

29 httpSecurity .....

30
31 AuthenticationManager authenticationManager = SpringContextUtils .getBean(”authenticationManager”);

32 httpSecurity . addFilterBefore (new JwtAuthenticationFilter ( authenticationManager ) ,

UsernamePasswordAuthenticationFilter . class ) ;

33
34 httpSecurity . exceptionHandling(exceptionHandling −> exceptionHandling

35 .accessDeniedHandler(authAccessDeniedHandler)

36 . authenticationEntryPoint ( authEntryPointHandler )

37 ) ;

38 return httpSecurity . build () ;

39 }
40 }

4.5.2 HTTPS

In order to ensure the security of the MyNewsScan platform, we needed to upgrade the

HTTP protocol to HTTPS protocol to encrypt the data transfer between the user and the

server. HTTPS uses the SSL/TLS protocol to effectively prevent data interception and

tampering, ensuring user privacy and security.

We needed to obtain the SSL certificate from the server provider and configure it in

Nginx. After HTTPS is configured, an error occurred between the front and back ends.

Since the back end receives HTTP requests instead of HTTPS, we needed to forward

the front-end HTTPS request to the back end through Nginx as an HTTP request. The

specific configuration code is shown in Appendix A3.

4.6 New Functions

4.6.1 Moderation System

The previous MyNewsScan platform required users to submit a link to an article and

write relative questions all at once. Then, the moderation system will display them for

the moderators. However, writing questions has a very large mental burden, in case the

articles/news are not approved, the user spent mental writing questions will be wasted.

Therefore, the new moderation system was restructured to separate the two stages and

divide them into different states.

The detailed logic of the system is as follows and Figure 4.4:

1. To upload an article, the frontend call the /article/add-article API only by

passing the url, and save the article into the database, the article’s stauts is



Chapter 4. Implementation 32

User Upload Article Moderate Article

User Write and
Upload Questions

article_approved disapproved
X

Moderate Questions

under_assessment

question_uploaded

OK

all_approved
Some

question
disapproved

Figure 4.6: Moderation Progress

under assessment.

2. To review an article, call the /admin/pending-article API to get a list of pending

articles.

3. Click Approved and call the /admin/moderating-article API, status change to

article approved. If the article is rejected, the user cannot change the article and

the process is closed.

4. After that, the user uploads the question, calls the /question/add-question API,

and saves the question to the database. All questions’ status = 0, article’s status is

question uploaded.

5. To review the question, call the /admin/pending-article API and /admin/pending-

question API to get a list of pending questions.

6. Click all approved button, call /admin/moderating-question API, all questions’

status = 1, call /admin/moderating-article API, article status is all approved. Now,

the process is over.

During the above reconstruction process, the name of the status field in the arti-

cle table of the database is reconstructed to approve status and the data structure is

reconstructed to varchar to more accurately express different moderate states.



Chapter 4. Implementation 33

4.6.2 User Community Forum

The User Forum is a newly designed module for users to post and discuss customised

topics. The forum database is as Figure 4.7 shows.

Figure 4.7: Forum’s Database

The fr group table is designed to store information about groups, and each group

is a broad discussion area where users can post discussion posts on similar topics.

And groups can be set to private and public to facilitate public discussion and group

discussion with specific users. The fr membership table is used to store the user

members of a private group separately.

The fr post table is used to store posts posted by users, users can fill in the title,

content, tags and other content, and users can like the post. In addition, the table has

a creation time and an update time for sorting. The fr comment table is similar to

the previous comment table, but because it is a post comment rather than an article

comment, it should be distinguished separately.

After the tables of the database are set up, the API that interacts with the data in the

front-end also needs to be written. The implementation of these APIs is similar to the

previous work, using MyBatis to do Create, Read, Update, and Delete operations in the

database, and wrap the data in the front-end.



Chapter 4. Implementation 34

4.6.3 User experience optimisation

4.6.3.1 Notification System

In order to improve the user experience, when the status of the user’s article changes,

or points change, or other situations need to be notified, there is no system to notify

the previous work. Therefore, a message notification system and an email notification

system were developed.

The message notification system depends on the newly created tables in the

database. Use the receiver id field in the table to send information to the user.

The mail system is relatively complex. Spring Boot Mail is a module provided by

the Spring Framework for creating mail content, sender, receiver, and other information,

and then sending the mail to the specified SMTP server. Simple Mail Transfer Protocol

(SMTP) is an email transfer protocol used to transfer emails on a network [20]. The

SMTP server is provided by the mail server. When MyNewsScan’s server sends mail to

the SMTP server, it automatically helps us find and send the mail to the recipient.

4.6.3.2 Points and Reward System

The project incentivises users to become more active in the community by creating

points and rewards. The project keeps track of user points earned by maintaining a

points table, and the operation field is used to record how to obtain the points. Also,

there is a field total point in the user table to record the total point of the user.

There are the following rules for users to obtain points:

• Open Article: point+2; operation = open article

• Answer Questions: point+7 * each question; operation = answer question

• Article Approved: point+25; operation = article approved

• Article Disapproved: point+5; operation = article disapproved

• Question Approved: point+20 per question; operation = question approved

These rules are meant to encourage users to read articles and answer questions, and

specifically encourage users to submit article and write good questions for them. In

order not to discourage users, they can earn a small amount of points even if the

uploaded articles are rejected,



Chapter 4. Implementation 35

4.6.3.3 Other Optimisations

In addition to the main optimizations mentioned above, there are many other optimiza-

tions carried out in this project.

• In order to help experimenters for user browsing and other data analysis needs,

we provide the administrator with the function of data downloading to csv files.

• Articles are displayed in random order and refreshed at a fixed time, to ensure

that users get fair information and to break the information filtering bubble. In

order to assist the experimental needs of the eye tracking lab, that is, to record the

user’s eye focus on the news, a new database table was created to record the user

name, time, and article order at each refresh of the random order, and we added

the form’s data to the download page.



Chapter 5

Limitations

Although the goal of the project has been achieved, there are still many limitations that

can be improved.

In terms of user experience, there are still many areas that need to be improved on

the website, which require front-end and back-end cooperation to improve:

• Tags for read articles are missing, it is recommended to implement a system to

tag or filter read articles.

• Article sorting is inconsistent and confusing, it is recommended to maintain a

consistent and logical article sorting, or provide the option to sort by date or

popularity.

• The login system is not diverse enough and needs to be improved to allow users

to log in with other social media accounts, such as Facebook or Google, to reduce

the hassle of registering. It is recommended to introduce social sharing options for

articles, provide summaries or brief descriptions of articles, add audio versions,

and other accessibility features such as font sizing options.

• Lack of mobile side adaptation, currently the project only web page, and no

adaptation for mobile browser web page. This may limit user acquisition and

subsequent development of the project.

From a backend development perspective, the project still has some areas for

improvement:

• Detailed documentation: although the project has written explanatory documenta-

tion for each system and automatically generated documentation for each API,

36



Chapter 5. Limitations 37

there is still a lack of detailed explanation of each interface in the auto-generated

documentation, parameter requirements, and return data structure samples.

• Lack of automated unit testing and integration testing. Since there is no profes-

sional test engineer, all the tests of this project are carried out by Postman API

testing and manual web function testing. This may cause frequent bugs in the

system.

• In the absence of concurrent optimization, the only way to optimize user access

is to put articles into the memory-based redis database and quickly return them to

the user in a cached manner. However, the disadvantage of this approach is that

once the number of articles is too large, the server memory may not be enough.

• Lack of disaster recovery means that the current project only runs on a single

server, once the IP address of the server is attacked or the server operator has an

unexpected problem, there are no means to quickly restore the website.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

This project aims to address the problem of information filter bubbles and the spread of

fake news by improving and expanding the MyNewsScan news aggregation platform

to create a sustainable user community. Through the efforts of the following aspects, I

have achieved the main objectives of the project:

1. Fixing vulnerabilities: At the beginning of the project, I focused on fixing a

large number of critical vulnerabilities that affected the normal operation of the

platform, and restored the basic functions of the website, such as registration,

login, article submission and browsing.

2. Improving the Moderation System: I have designed and implemented a phased

article moderation system, which effectively reduces the psychological burden of

users and improves the accuracy and efficiency of the moderation.

3. User Community Forums: I have developed a new user forum that allows users to

create public and private discussion groups, enhancing the interactivity and user

engagement of the platform.

4. Security Enhancements: By integrating Spring Security and JWT technologies

and adopting a role-based access control (RBAC) model, I have significantly

improved the security of our platform and the protection of user data.

5. User Experience Optimization: I have introduced a message notification sys-

tem, an email system, and a points and rewards system to further enhance user

engagement and loyalty.

38



Chapter 6. Conclusions and Future Work 39

6. Documentation and Automated Testing: In order to ensure the sustainability and

easy maintenance of the project, we wrote detailed development documentation

and user guides, and conducted automated interface testing through Postman.

7. Deployment and Maintenance: In addition, I assumed all deployment and mainte-

nance operations and database management responsibilities. Ensure the normal

iteration of each release and the special needs of database modifications.

Although we have made significant progress in the project and achieved most of

the goals described in the Introduction, we still leave some limitations that need further

improvement.

6.2 Future Work

In order to further enhance the functionality and user experience of the MyNewsScan

platform, the following are the next steps that we recommend:

Improve the user experience:

1. Implement a more easy to use tagging or filtering system for read articles so that

users can more easily manage reading progress.

2. Provide multiple sorting options for articles, such as sorting by date or popularity,

to maintain a consistent and logical sorting of articles.

3. Improve the login system to allow users to log in with other social media accounts,

such as Facebook or Google, to reduce the hassle of signing up. We can use

OAuth2.0 with implemented Spring Security to implement this function [5].

4. Add social sharing options for articles, provide summary or brief descriptions,

add audio versions, and other accessibility features, such as font sizing options.

5. Adapt to mobile, develop mobile browser-friendly web pages, expand user cover-

age. We can use Flutter to develop both IOS and Android apps at the same time

[28].

Strengthen background development:

1. Supplement detailed API documentation, including detailed descriptions of each

interface, parameter requirements, and examples of returned data structures, to

facilitate subsequent development and maintenance.



Chapter 6. Conclusions and Future Work 40

2. Automated unit testing and integration testing are introduced to reduce frequent

bugs in the system and improve system stability and reliability.

3. Optimise concurrent processing and consider caching articles in a memory-based

Redis database to quickly return user requests while avoiding the problem of

running out of memory.

4. Establish a disaster recovery mechanism, deploy the project on multiple servers,

improve the disaster recovery capability of the system, and ensure that the website

can be quickly restored when the server encounters problems.

Through the implementation of these follow-up efforts, the MyNewsScan platform

will be able to provide a better user experience, further enhance user engagement and

loyalty, and ultimately achieve the sustainable development goals of the project. We

look forward to future work that will continue to advance the MyNewsScan platform

and provide users with a diverse and trusted news aggregation platform.”



Bibliography

[1] Hunt Allcott and Matthew Gentzkow. Social media and fake news in the 2016

election. 31(2):211–236.

[2] Kevin Aslett, Zeve Sanderson, William Godel, Nathaniel Persily, Jonathan Nagler,

and Joshua A. Tucker. Online searches to evaluate misinformation can increase its

perceived veracity. 625(7995):548–556. Publisher: Nature Publishing Group.

[3] Eytan Bakshy, Solomon Messing, and Lada A. Adamic. Political science. exposure

to ideologically diverse news and opinion on facebook. 348(6239):1130–1132.

[4] Engin Bozdag and Jeroen van den Hoven. Breaking the filter bubble: democracy

and design. 17(4):249–265.

[5] Brian Campbell, C. Mortimore, and Michael B. Jones. JSON web token (JWT)

bearer token profiles for OAuth 2.0.

[6] Steve Christey and Robert A Martin. Vulnerability type distributions in cve. Mitre

report, May, 2007.

[7] Marten Deinum, Koen Serneels, Colin Yates, Seth Ladd, and Christophe Van-

fleteren. Spring security. In Marten Deinum, Koen Serneels, Colin Yates, Seth

Ladd, and Christophe Vanfleteren, editors, Pro Spring MVC: With Web Flow,

pages 477–533. Apress.

[8] Nabeel Gillani, Ann Yuan, Martin Saveski, Soroush Vosoughi, and Deb Roy.

Me, my echo chamber, and i: Introspection on social media polarization. In

Proceedings of the 2018 World Wide Web Conference, WWW ’18, pages 823–831.

International World Wide Web Conferences Steering Committee.

[9] Rajesh Gunasundaram and Randall Goya. CORS essentials : Cross origin resource

sharing.

41



Bibliography 42

[10] Michael Jones, John Bradley, and Nat Sakimura. Json web token (jwt). Technical

report, 2015.

[11] Josh Juneau. Servlets and JavaServer pages. In Josh Juneau, editor, Jakarta EE

Recipes: A Problem-Solution Approach, pages 1–93. Apress.

[12] Shameer Kunjumohamed, Hamidreza Sattari, Alex Bretet, and Geoffroy Warin.

Spring MVC: Designing real-world web applications. Packt Publishing Ltd, 2016.

[13] Angela M. Lee and Hsiang Iris Chyi. The rise of online news aggregators:

Consumption and competition. 17(1):3–24. Publisher: Routledge eprint:

https://doi.org/10.1080/14241277.2014.997383.

[14] Qin Li, Huibiao Zhu, and Jifeng He. An inconsistency free formalization of b/s

architecture. In 31st IEEE Software Engineering Workshop (SEW 2007), pages

75–88, 2007.

[15] Dashrath Mane, Namrata Ojha, and Ketaki Chitnis. The spring framework: An

open source java platform for developing robust java applications. International

Journal of Innovative Technology and Exploring Engineering, 3(2), 2013.

[16] Sayooran Nagulendra and Julita Vassileva. Understanding and controlling the

filter bubble through interactive visualization: a user study. In Proceedings of the

25th ACM conference on Hypertext and social media, HT ’14, pages 107–115.

Association for Computing Machinery.

[17] Rolf Oppliger. SSL and TLS: Theory and Practice. Artech House, 2023.

[18] Eli Pariser. The Filter Bubble: What the Internet Is Hiding from You. The Penguin

Group.

[19] Jawwad Z Raja, Mehmet Chakkol, Mark Johnson, and Ahmad Beltagui. Or-

ganizing for servitization: examining front-and back-end design configurations.

International Journal of Operations & Production Management, 38(1):249–271,

2018.

[20] Vladimir V Riabov. Smtp (simple mail transfer protocol). River College, 2005.

[21] Richard Senington, Balazs Pataki, and Xi Vincent Wang. Using docker for factory

system software management: Experience report. 72:659–664.



Bibliography 43

[22] Lu shao, Mahendar Goli, Abatihun Sewagegn, and Anoop Sahu. Impact of

social media usage on civic engagement towards societal problems: Qualitative

modelling approach. 2022:1–10.

[23] Sourabh Sharma. Modern API Development with Spring and Spring Boot: Design

highly scalable and maintainable APIs with REST, gRPC, GraphQL, and the

reactive paradigm. Packt Publishing Ltd, 2021.

[24] Laurentiu Spilca. Spring security in action. Simon and Schuster, 2020.

[25] Scott Trent, Michiaki Tatsubori, Toyotaro Suzumura, Akihiko Tozawa, and Tamiya

Onodera. Performance comparison of PHP and JSP as server-side scripting

languages. In Valérie Issarny and Richard Schantz, editors, Middleware 2008,

pages 164–182. Springer.

[26] Craig Walls. Spring Boot in action. Simon and Schuster, 2015.

[27] Luke Welling and Laura Thomson. PHP and MySQL Web development. Sams

publishing, 2003.

[28] Eric Windmill. Flutter in action. Simon and Schuster, 2020.

[29] Komilova Zulxumor Xokimovna. WEB 1.0, WEB 2.0, WEB 3.0

TEXNOLOGIYALARI RIVOJLANISHINING QISQACHA TARIXI. 2(16):196–

200. Number: 16.

[30] Dandan Zhang, Zhiqiang Wei, and Yongquan Yang. Research on lightweight

mvc framework based on spring mvc and mybatis. In 2013 sixth international

symposium on computational intelligence and design, volume 1, pages 350–353.

IEEE, 2013.



Appendix A

Code Appendix

A.1 Dockerfile and Docker-compose

A.1.1 The back-end Dockerfile

1 FROM openjdk:21−jdk

2
3 WORKDIR /

4
5 ADD target/mns−back−0.0.1−SNAPSHOT.jar app.jar

6
7 EXPOSE 8888

8
9 ENTRYPOINT [”java”, ”−jar”]

10
11 CMD [”app.jar”]

A.1.2 The front-end Dockerfile

1 # Use an official Node.js runtime as a parent image

2 FROM node:16−alpine

3
4 # Set the working directory

5 WORKDIR /app

6
7 # Copy package.json and package−lock.json

8 COPY package*.json ./

9
10 # Install dependencies

11 RUN npm install

12
13 # Copy the rest of the application code

14 COPY . .

44



Appendix A. Code Appendix 45

15
16 # Build the application

17 RUN npm run build

18
19 # Use an official Nginx image to serve the application

20 FROM nginx:stable−alpine

21
22 # Copy the built files from the previous stage

23 COPY −−from=0 /app/dist /usr / share /nginx/html

24
25 # Expose port 80

26 EXPOSE 80

27
28 # No CMD is needed as nginx image has its own CMD

A.1.3 docker-compose.yml

1 version : ’3.8’
2
3 services :

4 mysql:

5 image: mysql:8.0

6 container name: mysql

7 environment:

8 MYSQL ROOT PASSWORD: 2000123

9 MYSQL DATABASE: db765814530

10 ports :

11 − ”3306:3306”
12 volumes:

13 − mysql−data:/ var / lib /mysql

14 − /home/mns−dump.sql:/docker−entrypoint−initdb .d/ init . sql

15 networks:

16 − app−network

17
18 backend:

19 image: yuhang19/mns−backend

20 container name: backend

21 ports :

22 − ”8888:8888”
23 environment:

24 SPRING DATASOURCE URL: jdbc:mysql://mysql:3306/db765814530?serverTimezone=UTC&useUnicode=true&

characterEncoding=utf8

25 SPRING DATASOURCE USERNAME: root

26 SPRING DATASOURCE PASSWORD: 2000123

27 SPRING REDIS HOST: redis

28 SPRING REDIS PORT: 6379

29 # SPRING REDIS PASSWORD: 123456

30 SPRING REDIS DATABASE: 0

31 depends on:

32 − mysql

33 − redis



Appendix A. Code Appendix 46

34 networks:

35 − app−network

36
37 frontend :

38 image: yuhang19/mns−frontend

39 container name: frontend

40 restart : always

41 expose:

42 − ”80”
43 networks:

44 − app−network

45
46 nginx:

47 image: nginx: latest

48 container name: nginx

49 restart : always

50 ports :

51 − ”80:80”
52 − ”443:443”
53 volumes:

54 − ./ nginx.conf :/ etc /nginx/nginx.conf

55 − ./ ssl :/ etc /nginx/ ssl

56 depends on:

57 − backend

58 networks:

59 − app−network

60
61 redis :

62 image: redis : alpine

63 container name: redis

64 command: [”redis−server”, ”−−bind”, ”redis” , ”−−port”, ”6379”]

65 restart : always

66 ports :

67 − ”6379:6379”
68 networks:

69 − app−network

70
71 networks:

72 app−network:

73 driver : bridge

74
75 volumes:

76 mysql−data:

A.2 Spring Security related full code

1 package com.mns.mnsback.config;

2
3
4



Appendix A. Code Appendix 47

5 import com.mns.mnsback.handler.AuthAccessDeniedHandler;

6 import com.mns.mnsback.handler.AuthEntryPointHandler;

7 import com.mns.mnsback.handler. JwtAuthenticationFilter ;

8 import com.mns.mnsback.service. security . UserLoginDetailsServiceImpl ;

9 import com.mns.mnsback.utils . SecurityEncoder ;

10 import jakarta . annotation .Resource;

11 import org.springframework. context . annotation .Bean;

12 import org.springframework. context . annotation . Configuration ;

13 import com.mns.mnsback.utils . SpringContextUtils ;

14 import org.springframework. http .HttpMethod;

15 import org.springframework. security . authentication .AuthenticationManager;

16 import org.springframework. security . authentication . AuthenticationProvider ;

17 import org.springframework. security . authentication .dao. DaoAuthenticationProvider ;

18 import org.springframework. security . config . annotation . authentication . configuration . AuthenticationConfiguration ;

19 import org.springframework. security . config . annotation .method. configuration .EnableMethodSecurity;

20 import org.springframework. security . config . annotation .web. builders . HttpSecurity ;

21 import org.springframework. security . config . annotation .web. configuration .EnableWebSecurity;

22 import org.springframework. security . config . annotation .web. configurers . AbstractHttpConfigurer ;

23 import org.springframework. security .web. SecurityFilterChain ;

24
25 import org.springframework. security . crypto .password.PasswordEncoder;

26 import org.springframework. security .web.access .AccessDeniedHandler;

27 import org.springframework. security .web. authentication . UsernamePasswordAuthenticationFilter ;

28
29 @Configuration

30 @EnableWebSecurity

31 public class SecurityConfiguration {
32
33 @Resource

34 private UserLoginDetailsServiceImpl userDetailsService ;

35
36 @Resource

37 private AuthAccessDeniedHandler authAccessDeniedHandler;

38
39 @Resource

40 private AuthEntryPointHandler authEntryPointHandler ;

41
42 @Bean

43 public PasswordEncoder passwordEncoder() {
44 return new SecurityEncoder() ;

45 }
46
47 @Bean

48 public AuthenticationManager authenticationManager ( AuthenticationConfiguration configuration ) throws Exception

{
49 return configuration . getAuthenticationManager () ;

50 }
51
52 @Bean

53 public AuthenticationProvider authenticationProvider () {
54 DaoAuthenticationProvider daoAuthenticationProvider = new DaoAuthenticationProvider () ;

55 daoAuthenticationProvider .setPasswordEncoder(passwordEncoder());

56 daoAuthenticationProvider . setUserDetailsService ( userDetailsService ) ;



Appendix A. Code Appendix 48

57 return daoAuthenticationProvider ;

58 }
59
60 @Bean

61 public SecurityFilterChain defaultSecurityFilterChain ( HttpSecurity httpSecurity ) throws Exception {
62 httpSecurity . authorizeHttpRequests ( authorizeHttpRequests −> authorizeHttpRequests

63 . requestMatchers (HttpMethod.POST, ”/login/**”). permitAll ()

64 . requestMatchers (HttpMethod.POST, ”/register/**”) . permitAll () /

65 . requestMatchers (”/admin/**”).hasAnyAuthority(”admin”)

66 . requestMatchers (”/ activity /browse−history”).hasAnyAuthority(”user”)

67 . requestMatchers (”/ activity /**”) . permitAll ()

68 . requestMatchers (”/ article /add−article”) .hasAnyAuthority(” article ”)

69 . requestMatchers (”/ article /change−article”) .hasAnyAuthority(” article ”)

70 . requestMatchers (”/ article /get− article −order”).hasAnyAuthority(”admin”)

71 . requestMatchers (”/ article /**”) . permitAll ()

72 . requestMatchers (HttpMethod.GET,”/comment/**”).permitAll()

73 . requestMatchers (HttpMethod.POST,”/comment/**”).hasAnyAuthority(”comment”)

74 . requestMatchers (”/email/**”) . permitAll ()

75 . requestMatchers (”/ file /**”) .hasAnyAuthority(”admin”)

76 . requestMatchers (”/message/**”).hasAnyAuthority(”message”)

77 . requestMatchers (”/point/**”) .hasAnyAuthority(”point”)

78 . requestMatchers (”/question/**”) . permitAll ()

79 . requestMatchers (”/ reject /get−by−article”) . permitAll ()

80 . requestMatchers (”/ reject /add”).hasAnyAuthority(”admin”)

81 . requestMatchers (”/user/ leaders”) . permitAll ()

82 . requestMatchers (”/user/**”) .hasAnyAuthority(”user”)

83 . requestMatchers (”/forum/**”).hasAnyAuthority(”forum”)

84 .anyRequest() . permitAll ()

85 // .anyRequest() . permitAll ()

86 ) ;

87 httpSecurity . authenticationProvider ( authenticationProvider () ) ;

88
89 httpSecurity . formLogin(AbstractHttpConfigurer :: disable ) ;

90
91 httpSecurity . logout ( AbstractHttpConfigurer :: disable ) ;

92
93 httpSecurity .sessionManagement(AbstractHttpConfigurer :: disable ) ;

94
95 httpSecurity . httpBasic ( AbstractHttpConfigurer :: disable ) ;

96
97 httpSecurity . csrf ( AbstractHttpConfigurer :: disable ) ;

98
99

100 AuthenticationManager authenticationManager = SpringContextUtils .getBean(”authenticationManager”);

101
102 httpSecurity . addFilterBefore (new JwtAuthenticationFilter ( authenticationManager ) ,

UsernamePasswordAuthenticationFilter . class ) ;

103
104
105 httpSecurity . exceptionHandling(exceptionHandling −> exceptionHandling

106 .accessDeniedHandler(authAccessDeniedHandler)

107 . authenticationEntryPoint ( authEntryPointHandler )

108 ) ;



Appendix A. Code Appendix 49

109 return httpSecurity . build () ;

110 }
111 }

1 package com.mns.mnsback.handler;

2
3 import com.fasterxml . jackson . databind .ObjectMapper;

4 import com.mns.mnsback.domain.Result;

5 import com.mns.mnsback.service.normal.UserService ;

6 import com.mns.mnsback.service. security . UserLoginDetailsServiceImpl ;

7 import com.mns.mnsback.utils .JWTUtils;

8 import com.mns.mnsback.utils . SpringContextUtils ;

9 import io . jsonwebtoken.Claims;

10 import jakarta . servlet . FilterChain ;

11 import jakarta . servlet . ServletException ;

12 import jakarta . servlet . http . HttpServletRequest ;

13 import jakarta . servlet . http . HttpServletResponse ;

14 import org. slf4j .Logger;

15 import org. slf4j .LoggerFactory;

16 import org.springframework. security . authentication .AuthenticationManager;

17 import org.springframework. security . authentication .UsernamePasswordAuthenticationToken;

18 import org.springframework. security . core . Authentication ;

19 import org.springframework. security . core . authority .SimpleGrantedAuthority;

20 import org.springframework. security . core . context . SecurityContextHolder ;

21 import org.springframework. security . core . userdetails . UserDetails ;

22 import org.springframework. security .web. authentication .www. BasicAuthenticationFilter ;

23 import org.springframework. util . StringUtils ;

24
25 import java . io . IOException;

26 import java . util .Arrays;

27 import java . util . Collections ;

28 import java . util . List ;

29 import java . util . stream. Collectors ;

30
31 public class JwtAuthenticationFilter extends BasicAuthenticationFilter {
32
33 private static final Logger logger = LoggerFactory.getLogger( JwtAuthenticationFilter . class ) ;

34
35 public JwtAuthenticationFilter (AuthenticationManager authenticationManager ) {
36 super(authenticationManager ) ;

37 }
38
39 @Override

40 protected void doFilterInternal ( HttpServletRequest request , HttpServletResponse response , FilterChain

filterChain ) throws IOException, ServletException {
41 try {
42 String jwtToken = null ;

43 String header = request .getHeader(”Authorization”);

44 if ( StringUtils . hasText(header) && header.startsWith (”Bearer ”)) {
45 jwtToken = header . substring (7) ;

46 } else {
47 jwtToken = header ;



Appendix A. Code Appendix 50

48 }
49 if (! StringUtils .hasLength(jwtToken)) {
50 filterChain . doFilter ( request , response) ;

51 return;

52 }
53
54 JWTUtils jwtUtils = SpringContextUtils .getBean(”JWTUtils”);

55 if ( jwtUtils == null ) {
56 throw new RuntimeException();

57 }
58
59
60 Claims claims = jwtUtils .checkToken(jwtToken);

61 // logger . info (”claims: {}”, claims) ;

62
63 String username = (String) claims . get (”username”);

64
65 String authorityString = (String) claims . get (”authorityString”) ;

66 // logger . info (”username: {}, authorityString : {}”, username, authorityString ) ;

67
68 List<SimpleGrantedAuthority> authorities = Arrays.stream( authorityString . split (”,”))

69 .map(SimpleGrantedAuthority::new)

70 . collect ( Collectors . toList () ) ;

71
72 Authentication authentication = new UsernamePasswordAuthenticationToken(

73 username, null , authorities

74 ) ;

75
76 SecurityContextHolder . getContext () . setAuthentication ( authentication ) ;

77
78
79 } catch (Exception ex) {
80 // response .setCharacterEncoding(” utf −8”);

81 // response . setContentType(” application / json ; charset=utf−8”);

82 // String value = new ObjectMapper(). writeValueAsString ( Result . error(”User is not logged in ! The token

has expired ! Or unknown Token resolution error !”) ) ;

83 // response . getWriter () . write (value) ;

84 // logger . error(”error : {}”, ex) ;

85 logger . error (”Token validation error: {}”, ex.getMessage()) ;

86 }
87 filterChain . doFilter ( request , response) ;

88 }
89 }

1 package com.mns.mnsback.handler;

2
3 import com.fasterxml . jackson . databind .ObjectMapper;

4 import com.mns.mnsback.domain.Result;

5 import jakarta . servlet . http . HttpServletRequest ;

6 import jakarta . servlet . http . HttpServletResponse ;

7 import org.springframework. security . core . AuthenticationException ;

8 import org.springframework. security .web. AuthenticationEntryPoint ;



Appendix A. Code Appendix 51

9 import org.springframework. stereotype .Component;

10
11 import java . io . IOException;

12
13 @Component

14 public class AuthEntryPointHandler implements AuthenticationEntryPoint {
15
16 @Override

17 public void commence(HttpServletRequest request , HttpServletResponse response , AuthenticationException

authException) throws IOException {
18 response . setCharacterEncoding (”utf−8”);

19 response . setContentType(”application /json; charset=utf−8”);

20 String value = new ObjectMapper().writeValueAsString( Result . error (”No token!”));

21 response . getWriter () . write (value) ;

22 }
23 }

1 package com.mns.mnsback.handler;

2
3 import com.fasterxml . jackson . databind .ObjectMapper;

4 import com.mns.mnsback.domain.Result;

5 import jakarta . servlet . http . HttpServletRequest ;

6 import jakarta . servlet . http . HttpServletResponse ;

7 import org.springframework. security . access .AccessDeniedException;

8 import org.springframework. security .web.access .AccessDeniedHandler;

9 import org.springframework. stereotype .Component;

10
11 import java . io . IOException;

12
13 @Component

14 public class AuthAccessDeniedHandler implements AccessDeniedHandler {
15
16 @Override

17 public void handle( HttpServletRequest request , HttpServletResponse response , AccessDeniedException

accessDeniedException) throws IOException {
18 response . setCharacterEncoding (”utf−8”);

19 response . setContentType(”application /json; charset=utf−8”);

20 String value = new ObjectMapper().writeValueAsString( Result . error (”Lack of authority!”));

21 response . getWriter () . write (value) ;

22 }
23 }

1 package com.mns.mnsback.service. security ;

2
3
4 import com.baomidou.mybatisplus.core. conditions .query.QueryWrapper;

5 import com.mns.mnsback.domain.normal.User;

6 import com.mns.mnsback.domain.security.Permission ;

7 import com.mns.mnsback.mapper.PermissionMapper;

8 import com.mns.mnsback.mapper.UserMapper;

9 import jakarta . annotation .Resource;



Appendix A. Code Appendix 52

10 import lombok.RequiredArgsConstructor;

11 import org. slf4j .Logger;

12 import org.springframework. security . core . GrantedAuthority ;

13 import org.springframework. security . core . authority . AuthorityUtils ;

14 import org.springframework. security . core . authority .SimpleGrantedAuthority;

15 import org.springframework. security . core . userdetails . UserDetails ;

16 import org.springframework. security . core . userdetails . UserDetailsService ;

17 import org.springframework. security . core . userdetails .UsernameNotFoundException;

18 import org.springframework. stereotype . Service ;

19
20 import java . util . List ;

21 import java . util .StringJoiner ;

22
23 @Service

24 public class UserLoginDetailsServiceImpl implements UserDetailsService {
25
26 private final Logger logger = org . slf4j .LoggerFactory.getLogger(UserLoginDetailsServiceImpl . class ) ;

27
28 @Resource

29 private UserMapper userMapper;

30 @Resource

31 private PermissionMapper permissionMapper;

32
33 @Override

34 public UserDetails loadUserByUsername(String username) throws UsernameNotFoundException {
35 User userEntity = userMapper.selectOne(new QueryWrapper<User>().eq(”username”, username));

36 logger . info (”userEntity: {}”, userEntity ) ;

37 List<Permission> authorities = permissionMapper.selectAuthorityByUsername(username);

38 StringJoiner stringJoiner = new StringJoiner(”,” , ””, ””) ;

39
40 authorities . forEach( authority −> stringJoiner .add( authority .getName()));

41 logger . info (” authorities : {}”, stringJoiner ) ;

42
43 return new org.springframework. security . core . userdetails .User( userEntity .getUname(), userEntity .getUpwd(),

44 AuthorityUtils .commaSeparatedStringToAuthorityList( stringJoiner . toString () )

45 ) ;

46 }
47 }

1 package com.mns.mnsback.service. security ;

2
3 import com.alibaba . fastjson2 .JSONObject;
4 import com.mns.mnsback.domain.Result;

5 import com.mns.mnsback.domain.normal.User;

6 import com.mns.mnsback.mapper.PermissionMapper;

7 import com.mns.mnsback.mapper.UserMapper;

8 import com.mns.mnsback.utils .JWTUtils;

9 import org. slf4j .Logger;

10 import org. slf4j .LoggerFactory;

11 import org.springframework.data . redis . core .RedisTemplate;

12 import org.springframework. security . authentication .UsernamePasswordAuthenticationToken;

13 import org.springframework. stereotype . Service ;



Appendix A. Code Appendix 53

14 import org.springframework. util . DigestUtils ;

15 import org.springframework. security . authentication .AuthenticationManager;

16 import org.springframework. security . core . Authentication ;

17 import org.springframework. security . core . GrantedAuthority ;

18 import org.springframework. security . core . context . SecurityContextHolder ;

19 import org.springframework. security . core . userdetails . UserDetails ;

20
21
22 import jakarta . annotation .Resource;

23
24 import java . util . Collection ;

25 import java . util .HashMap;

26 import java . util .Map;

27 import java . util .StringJoiner ;

28
29 @Service

30 public class LoginService {
31
32 private static final Logger logger = LoggerFactory.getLogger(LoginService . class ) ;

33 @Resource

34 private UserMapper userMapper;

35
36 @Resource

37 private RedisTemplate<String,String> redisTemplate;

38
39 @Resource

40 private AuthenticationManager authenticationManager ;

41
42 public Object doLogin(String username, String password){
43 try {
44 UsernamePasswordAuthenticationToken auth = new UsernamePasswordAuthenticationToken(username, password

);

45 Authentication authentication = authenticationManager . authenticate (auth) ;

46 SecurityContextHolder . getContext () . setAuthentication ( authentication ) ;

47 UserDetails userDetails = ( UserDetails ) authentication . getPrincipal () ;

48 // logger . info (” userDetails :{}”, userDetails ) ;

49 // Get user permission information

50 StringJoiner authorityString = new StringJoiner(”,” , ””, ””) ;

51 Collection<? extends GrantedAuthority> authorities = userDetails . getAuthorities () ;

52 for (GrantedAuthority authority : authorities ) {
53 authorityString .add( authority . getAuthority () ) ;

54 }
55 // logger . info (” authorityString :{}”, authorityString ) ;

56
57 // User authentication successful ,

58 String md5Pass = DigestUtils .md5DigestAsHex(password.getBytes());

59 User user = userMapper.check(username, md5Pass);

60
61 // jwt token generated

62 String jwtToken = JWTUtils.createToken( user .getUid() , user .getUname(), authorityString . toString () ) ;

63 // logger . info (”jwtToken:{}” , jwtToken) ;

64
65 JSONObject json = new JSONObject();



Appendix A. Code Appendix 54

66 json . put(”token”, jwtToken);

67 json . put(”user”, user ) ;

68 return json ;

69 } catch (Exception ex) {
70 logger . error (”User authentication failed” , ex) ;

71 // User authentication failed , return login failure message

72 return Result . error (”The user name or password is incorrect!”);

73 }
74 }
75 }

1 package com.mns.mnsback.domain.security;

2
3 import lombok.AllArgsConstructor;

4 import lombok.NoArgsConstructor;

5 import org.springframework. security . core . GrantedAuthority ;

6 import org.springframework. security . core . userdetails . UserDetails ;

7
8 import java . util . Collection ;

9
10 @NoArgsConstructor

11 @AllArgsConstructor

12 public class UserDetailsEntity implements UserDetails {
13
14 private String username;

15 private String password;

16 private Collection<? extends GrantedAuthority> authorities ;

17
18 @Override

19 public Collection<? extends GrantedAuthority> getAuthorities () {
20 return authorities ;

21 }
22
23 @Override

24 public String getPassword() {
25 return password;

26 }
27
28 @Override

29 public String getUsername() {
30 return username;

31 }
32
33 @Override

34 public boolean isAccountNonExpired() {
35 return true ;

36 }
37
38 @Override

39 public boolean isAccountNonLocked() {
40 return true ;

41 }



Appendix A. Code Appendix 55

42
43 @Override

44 public boolean isCredentialsNonExpired () {
45 return true ;

46 }
47
48 @Override

49 public boolean isEnabled () {
50 return true ;

51 }
52
53 @Override

54 public String toString () {
55 return ”UserDetailsEntity{” +

56 ”username=’” + username + ’\’’ +

57 ”, password=’” + password + ’\’’ +

58 ”, authorities =” + authorities +

59 ’}’ ;

60 }
61 }

1 package com.mns.mnsback.domain.security;

2
3 import com.baomidou.mybatisplus.annotation . TableId ;

4 import com.baomidou.mybatisplus.annotation .TableName;

5 import lombok.AllArgsConstructor;

6 import lombok.Data;

7 import lombok.NoArgsConstructor;

8
9 import java . io . Serializable ;

10
11 @Data

12 @AllArgsConstructor

13 @NoArgsConstructor

14 @TableName(”permission”)

15 public class Permission implements Serializable {
16 @TableId

17 private Integer id ;

18 private String name;

19 private String url ;

20 private String parentId ;

21 private String type ;

22 private String permit ;

23 private String remark;

24 }

A.3 HTTPS

1 events {



Appendix A. Code Appendix 56

2 worker connections 1024;

3 }
4
5 http {
6 server {
7 listen 80;

8 server name mynewsscan.eu;

9
10 # Redirect HTTP to HTTPS

11 location / {
12 return 301 https : // $host$request uri ;

13 }
14 }
15
16 server {
17 listen 443 ssl ;

18 server name mynewsscan.eu;

19
20 ssl certificate / etc /nginx/ ssl /mynewsscan. eu ssl certificate . cer ;

21 ssl certificate key / etc /nginx/ ssl / .mynewsscan.eu private key .key;

22 ssl trusted certificate / etc /nginx/ ssl / .mynewsscan.eu ssl certificate INTERMEDIATE.cer;

23
24 ssl protocols TLSv1.2 TLSv1.3;

25 ssl ciphers HIGH:!aNULL:!MD5;

26
27 location / api / {
28 # Forward all requests to backend

29 proxy pass http : // backend:8888/;

30 proxy set header Host $host ;

31 proxy set header X−Real−IP $remote addr;

32 proxy set header X−Forwarded−For $proxy add x forwarded for;

33 proxy set header X−Forwarded−Proto $scheme;

34 }
35
36 location / {
37 # If you have static files served by frontend , you can set it up here

38 proxy pass http : // frontend :80;

39 proxy set header Host $host ;

40 proxy set header X−Real−IP $remote addr;

41 proxy set header X−Forwarded−For $proxy add x forwarded for;

42 proxy set header X−Forwarded−Proto $scheme;

43 add header Cache−Control ”no−cache, no−store, must−revalidate”; add header Pragma ”no−cache”;

add header Expires 0;

44 }
45 }
46 }



Appendix B

Participants’ information sheet

57



Appendix B. Participants’ information sheet 58

 
 

PARTICIPANT INFORMATION SHEET 
 
PROJECT TITLE Investigating factors motivating engagement with a news 

aggregator platform using biometrics 

PRINCIPAL INVESTIGATOR Robin Hill, Gedi Luksys 

SECONDARY INVESTIGATOR(S) Clara López Velasco, Yuhang Tang, Yichen Li, Maizi Fang, 
Yining Yang, Mary Hronska, Yiyang Zhang, Haiyun Kong 

 
You are being invited to take part in a research project. Before you decide whether or not to take 
part, it is important for you to understand why the research is being done and what it will involve. 
Please take time to read the following information carefully. Ask questions if anything is not clear or 
you would like more information. Take your time to decide whether or not to take part. 
 

WHAT IS THE PURPOSE OF THE PROJECT? 
The purpose of this project is to investigate the motivational factors that underlie engagement with 
a news aggregator platform. Specifically, we will be looking at the underlying physiological correlates 
of engagement and motivation in the form of biometric data such as eye-tracking, heart rates and 
emotional expressions while engaging with the platform.  
 

WHY HAVE I BEEN INVITED TO PARTICIPATE? 
The research target group is the general adult public, individuals who are 18 year old or older. 
 

DO I HAVE TO TAKE PART? 
No – participation in this study is entirely up to you. You can withdraw from the study at any time, 
without giving a reason. After this point, all personal data will be deleted and anonymised data will 
be deleted too if you made the request early enough, before data analyses started. Your rights will 
not be affected. If you wish to withdraw, contact the principal investigators. We will keep copies of 
your original consent, and of your withdrawal request. 
 

WHAT DOES TAKING PART INVOLVE? 
The experiment will take place in the eye-tracking lab of the School of Informatics at a time that is 
convenient for you and will last approximately 40-60 minutes.  

1. A quick briefing at the start of the experiment about the biometric equipment. 
2. A pre-questionnaire asking about your background, current mental states and traits. 
3. Biometric experiment where you will be shown a presentation about our news aggregator 

platform and will get to interact with it and read articles while we collect eye-tracking, heart-
rate, skin conductance, and facial expression data. 

4. A post-questionnaire about your experience with the platform and a debrief where you are 
asked to engage with the news aggregator platform in your own time (for as long or as little 
as you like) for the opportunity of earning points through reading and/or proposing articles, 
answering and/or proposing questions.  

 
ARE THERE ANY POSSIBLE RISKS OR DISADVANTAGES IN TAKING PART? 
There are no significant risks anticipated from participation in this research project. 
 

WHAT ARE THE POSSIBLE BENEFITS OF TAKING PART? 
By participating, you will be helping our labs and the University to better understand the process of 
engagement in news and help set up an effective news aggregator platform that could be used for 
addressing various research questions, e.g. the roles of schemas and emotion in news-related 
decision making. You will also be financially rewarded for your participation in this experiment. 

Figure B.1: MyNewsScan Participants’ information sheet 2024



Appendix C

Participants’ consent form

59



Appendix C. Participants’ consent form 60

 

  

 

PARTICIPANT CONSENT FORM 
 
PROJECT TITLE Investigating factors motivating engagement with a news 

aggregator platform using biometrics 

PRINCIPAL INVESTIGATOR(S) Robin Hill, Gedi Luksys 

SECONDARY INVESTIGATOR(S) Clara López Velasco, Yuhang Tang, Yichen Li, Maizi Fang, 
Yining Yang, Mary Hronska, Yiyang Zhang, Haiyun Kong 

 

1. I confirm that I have read and understood the Participant 
Information Sheet for the above study. 

 
 

2. I have been given the opportunity to consider the information 
provided, ask questions and have had these questions answered to my 
satisfaction. 

 
 

3. I understand that my participation is voluntary and that I can ask to 
withdraw at any time without giving a reason and without my 
medical care or legal rights being affected. 

 
 

4. I understand that my anonymised data will be stored for a minimum of 
5 years and may be used in future ethically approved research. 

 
 

5. I agree to take part in this study. 
 
 

6. I agree to be contacted for potential related future experiments. 
 
If agreed, please provide email address:  _______________________________ 

 
 
 

 

 

Name of person giving consent Date Signature 

 
     

 
   

 
     

Name of person taking consent Date Signature 

 
     

 
   

 
    

Figure C.1: MyNewsScan Participants’ consent form 2024


