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Abstract

This thesis investigates the performance of multiple models for tree species detection

and health assessment in dense, heterogeneous forests (Forest of Dean). Models

explored include traditional algorithms like Random Forest and Neural Networks,

Extreme Gradient Boosting alongside advanced architectures such as Faster Region-

based Convolutional Neural Network (Faster RCNN). Notably, this work innovatively

applies the latest You Only Look Once (YOLO) model, with a particular focus on its

YOLOv10x variant, marking its first application in this complex domain. Through

comprehensive comparative analysis, the study examines the model’s performance

across varying hyperparameters (learning rates and epochs) and assesses the impact

of data augmentation.We observed, YOLOv10x model exhibited a unique blend of

strengths and limitations, particularly within the challenging environment of dense

forests. We also proved that pixel-based classification models benefitted significantly

from the integration of Vegetation Indices (VI), with the neural network model achieving

a remarkable accuracy. And for tree health prediction, the regression model yielded

strong results, with Leaf Area Index (LAI) as the health indicator. Finally, the findings

emphasize the superior performance of the YOLOv10x in object detection and the

Neural network model in pixel-based classification, illustrating the potential for these

models to advance the accuracy and efficiency of environmental monitoring in complex

forest ecosystems.
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Chapter 1

Introduction

1.1 Motivation

The rapid advancements in artificial intelligence (AI) over the past decades have been

significantly shaped by the concurrent evolution of both hardware and software tech-

nologies. AI has progressed beyond merely executing predetermined programs, as it

now possesses the capability to learn and autonomously adjust its parameters to enhance

task performance. This ability to mimic human intelligence has enabled AI to not only

perform complex tasks but also to iteratively improve its efficiency based on the data it

gathers. Today, AI is being leveraged across a wide array of fields, including computer

vision [46], natural language processing (NLP) [9], recommendation systems [37], and

beyond, aiding in more informed decision-making processes due to its exceptional

performance.

Simultaneously, advancements in remote sensing technologies, particularly in multi-

spectral satellite imagery, have provided unprecedented opportunities for environmental

monitoring and resource management. Multispectral imagery, capturing data across

various wavelengths, has proven invaluable in fields such as agriculture, forestry, and

environmental science [10]. The detailed spectral information allows for the differentia-

tion of various objects and materials on the Earth’s surface, including vegetation, soil,

and water bodies. Fig 1.1a,1.1b are the spectral images from planet (see section3.2,

section 2.4). Among the various applications, the classification of tree species from

satellite imagery has emerged as a critical task, given its implications for biodiversity

conservation, forest management, and climate change studies [48].

Tree species classification using multispectral satellite imagery presents a unique set

of challenges due to the complex spectral signatures of different species and the spatial

1



Chapter 1. Introduction 2

(a) Multi-spectral (8-band) imagery

from Planet

(b) Uni-spectral (1-band) imagery from

Planet, containing LAI scores.

Figure 1.1: SuperDove mosaic images

resolution limitations of satellite data. Traditional models such as Random Forest (RF),

Neural Networks, and XGBoost have demonstrated effectiveness in handling large-scale

datasets and complex classification tasks, making them suitable for this domain [50].

Additionally, recent advancements in object-based detection techniques, particularly

with the advent of models like YOLO (You Only Look Once), have opened new avenues

for accurate and efficient tree species identification [12]. YOLO’s ability to detect and

classify objects within images in real-time offers promising potential for improving the

accuracy and speed of species classification from satellite imagery.

Moreover, the health of tree species is an equally critical factor that needs to be

addressed in environmental monitoring. Identifying not just the species but also their

health status is crucial for assessing forest vitality, monitoring the spread of diseases, and

implementing timely conservation strategies. The incorporation of health assessment

into species classification adds another layer of complexity to the problem but also

increases the relevance and impact of the research. AI-driven methods, particularly those

rooted in computer vision, offer a promising solution for simultaneously addressing

both species identification and health assessment in tree populations.

Therefore, the motivation behind this research lies in the potential to enhance the

accuracy and efficiency of tree species classification and health assessment using a

combination of traditional models and modern object-based detection techniques. By
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applying these AI-driven methodologies to multispectral satellite imagery, this thesis

aims to contribute to more effective forest management and conservation efforts, ulti-

mately supporting global biodiversity and environmental sustainability. The utilization

of traditional models like RF, Neural Networks, and XGBoost and object-based de-

tection techniques such as YOLO, CNN models offers a novel approach that could

significantly advance the field of remote sensing and environmental monitoring.

1.2 Problem Statement

The accurate mapping of tree species within UK forests is a crucial yet challenging

task, offering invaluable insights for forest management and conservation efforts. Forest

Research has traditionally relied on Sentinel-2 multispectral imagery [15], which is

freely available and provides a spatial resolution of 10 x 10 meters. These images,

combined with training labels derived from the comprehensive Sub-Compartment

Database—containing detailed species information across many forests in England

and Scotland—have formed the foundation for tree species classification. However,

this pixel-level classification approach, while effective in homogenous, monospecies

stands, encounters significant limitations in more complex and heterogeneous forest

environments. The coarse spatial resolution of Sentinel-2 imagery often leads to the

blending of spectral signatures from different species, undermining the accuracy of the

classification, particularly in diverse forest settings [43].

In response to these limitations, the advent of higher resolution multispectral data

from Planet Labs’ 8-band ”SuperDove” Cubesats, with a daily revisit time and an

approximately 3.7-meter pixel resolution, presents a promising alternative. The finer

spatial scale of SuperDove imagery [40] holds potential for improved species dis-

crimination, especially in heterogeneous forests where individual tree species may

occupy smaller areas than the Sentinel-2 pixels can resolve. This advancement necessi-

tates a re-evaluation of current methodologies, comparing pixel-level approaches with

object-based detection techniques that could better leverage the increased resolution

of SuperDove data. Additionally, alongside species classification, the assessment of

tree health within these forests emerges as a critical sub-problem, as accurate health

monitoring is essential for effective forest management and conservation efforts.

Given these developments, there is a pressing need to explore the efficacy of high-

resolution multispectral data for tree species classification and health detection, particu-

larly in the UK’s complex forest landscapes. This exploration is crucial to advancing



Chapter 1. Introduction 4

the current capabilities of remote sensing in forest management, potentially leading to

more accurate and actionable insights for forest practitioners .

1.3 Aims and Objectives

This project aims to leverage advanced artificial intelligence techniques to enhance the

accuracy and efficiency of tree species classification and health detection in UK forests

using multi-spectral satellite imagery. Specifically, it will explore the application of

both traditional models (Random Forest, Neural Networks, XGBoost) and object-based

detection methods (YOLOv10, Faster RCNN) to classify tree species and assess their

health within complex, species-diverse forest landscapes. The research will evaluate

the effectiveness of high-resolution data from Planet Labs’ ”SuperDove” Cubesats

in addressing the limitations of existing methodologies that rely on lower resolution

Sentinel-2 imagery.

The objectives of this project are: 1. Develop and compare traditional machine

learning models and object-based detection techniques for the classification of tree

species using multispectral satellite imagery. 2. Assess the potential of high-resolution

”SuperDove” data and latest YOLOv10 in improving classification accuracy, particularly

in heterogeneous forest environments. 3. Innovatively integrate tree health detection

into the classification process to provide comprehensive insights for forest management.

4. Analyze the performance of various AI models and discuss the implications for future

advancements in remote sensing-based forest monitoring.

1.4 Key Findings

In this study, we explored various models for tree species detection, applying models

like Random Forest, Neural Networks, XGBoost and Faster R-CNN, as well as the

innovative YOLOv10 model. To the best of our knowledge, this study marks the

first application of YOLOv10 in detecting tree species within dense, heterogeneous

forests. While the YOLOv10x model demonstrated high precision, it also exhibited a

tendency to predict fewer tree objects due to the effects of confidence and IoU thresholds.

Additionally, the integration of Vegetation Indices (VI) in pixel-based classification

significantly enhanced model performance, with the neural network model achieving

an accuracy of 89%. Finally, the regression model for health prediction showed robust

performance with high R² values and low error metrics, validating its effectiveness
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in predicting Leaf Area Index (LAI). Our findings suggest that YOLOv10x, with its

adaptability and fine-tuning capabilities, holds the potential to be a leading model in

challenging object detection scenarios, despite the conservative prediction approach

imposed by its thresholds.

1.5 Structure of the Dissertation

This dissertation is organized into seven chapters. Chapter 2 will review the existing

literature on tree species classification using multispectral satellite imagery, focusing on

both traditional machine learning models (Random Forest, Neural Networks, XGBoost)

and modern object-based detection techniques (YOLO). The chapter will also cover

advancements in remote sensing technologies, particularly the use of high-resolution

”SuperDove” data. Chapter 3 will provide detailed information about the datasets

utilized in this research, including the Sentinel-2 imagery and the high-resolution

SuperDove data, as well as the Sub-Compartment Database for training labels. In

Chapter 4, the methodologies employed in this study will be presented, encompassing

the models, classification approaches, and evaluation metrics used for both tree species

identification and health detection. Chapter 5 will describe the experimental design,

followed by a presentation of the results. Chapter 6 will offer a detailed discussion

and analysis of the findings, evaluating the effectiveness of different models and data

types. Finally, Chapter 7 will conclude the dissertation, summarizing key insights with

Chapter 8, proposing directions for future research.



Chapter 2

Literature Review

The classification of tree species and detection of tree health using multispectral satellite

imagery involve intricate challenges that intersect remote sensing, machine learning, and

environmental science. This chapter provides a comprehensive review of the methodolo-

gies and advancements relevant to these tasks, focusing on traditional machine learning

models, emerging deep learning architectures, and object detection techniques. We also

explore the role of high-resolution imagery and the application of transfer learning to

improve classification accuracy and health detection in forest environments.

2.1 Traditional Machine Learning Models

Neural Networks (NN)
Neural Networks (NN) [3], particularly Multi-Layer Perceptrons (MLPs), have been

widely used in classification tasks due to their ability to model complex, non-linear

relationships [4]. The backpropagation algorithm, introduced by Rumelhart et al. [38],

enables the training of multi-layer networks by adjusting weights through gradient

descent. This foundational work established NN as a robust tool for various predictive

tasks, including those in remote sensing.

In remote sensing, NNs have been employed for classifying vegetation types and tree

species from satellite imagery. Hogland et al. [19] applied NN techniques to Landsat

imagery for tree species classification, revealing the model’s strength in capturing

intricate relationships between spectral bands and tree characteristics. The NN’s capacity

to learn non-linear mappings between input features and target classes is advantageous

in differentiating between species with subtle spectral differences.

Despite their effectiveness, traditional NNs often face challenges related to overfit-

6
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ting and computational demands. To address these issues, researchers have explored

advanced NN architectures and regularization techniques to enhance model performance

and generalization [33]. These advancements have made NN a valuable tool in remote

sensing applications, particularly when dealing with high-dimensional and complex

datasets.

Random Forest (RF)
Random Forest (RF) is a powerful ensemble learning method that constructs multiple

decision trees during training and outputs the mode of the classes (classification)

or mean prediction (regression) of the individual trees. Breiman L [8] introduced

RF, emphasizing its ability to handle large datasets and manage high dimensionality

effectively. RF’s robustness to overfitting and its capability to handle noisy data make it

particularly suitable for complex classification tasks in remote sensing.

In the context of tree species classification, RF has demonstrated notable success.

For instance, Gislason et al. applied RF to land cover classification using satellite

imagery and found that it outperformed traditional single decision trees and other

classifiers. Their study highlighted RF’s efficacy in dealing with the diverse spectral

signatures present in remote sensing data, as well as its resilience to data noise and

variability [17]. This characteristic is especially useful for classifying tree species in

heterogeneous forest environments, where the spectral signatures of different species

can overlap and blend.

Clarke et al. [13] extended the application of RF to the classification of tree species

in tropical rainforests using Landsat imagery. Their research demonstrated RF’s ca-

pability to distinguish between species with similar spectral profiles, underscoring its

effectiveness in diverse forest conditions. The RF model’s performance was attributed

to its ensemble approach, which aggregates predictions from multiple trees to improve

overall classification accuracy.

XGBoost
XGBoost (Extreme Gradient Boosting) is an ensemble learning technique that builds

on the principles of gradient boosting. Chen and Guestrin [11] introduced XGBoost

as a scalable and efficient implementation of gradient boosting, incorporating both

regularization and optimization techniques to enhance model performance. XGBoost’s

flexibility and high performance have made it a popular choice for various classification

tasks.
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Figure 2.1: Alexnet architecture framework, from Krizhevsky et al. [25].

In the realm of tree species classification, XGBoost has been successfully applied

to hyperspectral data. Los et al. utilized XGBoost to classify tree species in a mixed

forest using hyperspectral imagery, achieving high classification accuracy of 94%.

Their study highlighted XGBoost’s ability to handle large feature sets and complex

data distributions, making it suitable for remote sensing applications where spectral

information is rich and varied [30].

XGBoost’s effectiveness is attributed to its boosting mechanism, which sequentially

builds trees to correct errors made by previous ones. This approach enhances the model’s

accuracy and robustness, particularly in scenarios where the data may be imbalanced

or contain noise. The integration of XGBoost and Random forest with remote sensing

data has proven to be a powerful strategy for improving tree species health detection,

with an overall accuracy improved by 16.1% [20].

2.2 Emerging Architectures

Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs) have revolutionized image classification

tasks by automatically learning hierarchical features from raw image data. The seminal

work by LeCun et al. [27] on the LeNet architecture demonstrated CNNs’ ability to

process and classify images effectively. This work laid the foundation for subsequent

advancements in CNN architectures, including AlexNet [25] and ResNet [18], which

have set new benchmarks in image classification performance . Alexnet architectute is

shown in Fig 2.1, which ended up winning second place in ILSVRC-2012 competition.

CNNs have been applied to tree species classification with promising results. Janne
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Figure 2.2: Model modified-overview, from Dosovitskiy et al. [14].

Mäyrä et al. used 3D-CNNs to classify tree species from high-resolution aerial imagery

with best model having 91% F1-score, showcasing the model’s capability to learn

complex spatial patterns and spectral features. The CNN’s ability to extract detailed

features from images allows it to distinguish between tree species with similar spectral

signatures [31]. The hierarchical feature extraction process of CNNs enables the model

to capture both low-level and high-level features, improving classification accuracy.

CNNs offer several advantages for remote sensing applications, including their abil-

ity to handle large-scale data and their robustness to variations in image quality. Faster

RCNN is one such model, that obtained the highest F1-score of 94.99%, for oil palm

tree detection[52]. However, the training of CNNs can be computationally intensive,

and the models require substantial labeled data to achieve optimal performance. Recent

advancements in CNN architectures and training techniques continue to address these

challenges, making CNNs a powerful tool for tree species classification [51].

Transformer Models
Transformer models, introduced by Vaswani et al. [44], have brought significant

advancements to natural language processing and are increasingly being adapted for

computer vision tasks. Unlike CNNs, Transformers use self-attention mechanisms to

capture long-range dependencies and contextual information, which can be advanta-

geous for complex image classification tasks.

Vision Transformers (ViTs) have also been explored for image classification, with

promising results. Dosovitskiy et al. demonstrated the application of ViTs to high-
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resolution images directly without using self-attention, shown in Fig 2.2, showcasing

their ability to handle varying resolutions and complex relationships [14]. The Trans-

former’s ability to process global context and manage large-scale data makes it a

compelling choice for tree species classification, particularly in heterogeneous forest

environments where traditional methods may struggle.

The integration of Transformers with remote sensing data presents opportunities

for enhanced classification accuracy and efficiency. The self-attention mechanism of

Transformers allows for better handling of spatial and spectral variations, making them

a valuable addition to the toolkit for tree species classification and health detection [6].

2.3 Object-Based Detection Techniques

YOLO (You Only Look Once)
YOLO (You Only Look Once) is a state-of-the-art object detection model introduced

by Redmon et al. [36] that processes images in real-time by predicting bounding boxes

and class probabilities in a single pass through the network. YOLO’s architecture is

designed for both speed and accuracy, making it suitable for applications requiring

real-time processing and high precision.

In the context of tree species classification and health detection, YOLO’s object

detection capabilities can be leveraged to identify and classify individual trees within

high-resolution imagery. Xiao et al. applied YOLO to aerial imagery for urban tree

detection, achieving high accuracy of 79% in identifying tree locations and species.

YOLO’s ability to handle overlapping objects and varied scales is particularly useful

for complex urban-forest environments, where trees may be densely packed or partially

obscured [45]. But unfortunately, there are no evidences to them being used in pure

forest environments which is surprising, especially when YOLOv8 being the SOTA

model for object detection.

YOLO’s real-time processing capability allows for efficient analysis of large-scale

imagery, making it suitable for monitoring extensive forest areas. YOLOv10 outper-

forms previous YOLO versions and other state-of-the-art models in terms of accuracy

and efficiency [47]. The model’s ability to detect and classify objects within images en-

ables detailed analysis of tree species distribution and health status, providing valuable

insights for forest management and conservation efforts.
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2.4 Benefits of High-Resolution Imagery

The advent of high-resolution multispectral imagery, such as that provided by Planet

Labs’ ”SuperDove” Cubesats, offers significant advantages for tree species classification

and health detection. The 3.7-meter pixel resolution of SuperDove data provides finer

spatial detail compared to the 10 x 10 meter resolution of Sentinel-2 imagery, allowing

for more precise identification of individual trees and their species [42].

High-resolution imagery improves classification performance by enhancing the

ability to distinguish between tree species with subtle spectral differences. Siham

Acharki [5] demonstrated that high-resolution imagery from drones and satellites led

to better classification accuracy compared to lower resolution data with mean absolute

error of 6%. The increased spatial detail facilitates more accurate detection of tree

health indicators, such as leaf discoloration or canopy density, which are crucial for

effective forest management.

The ability to analyze fine-scale features and detect subtle changes in tree health

with high-resolution imagery provides valuable insights for monitoring forest vitality

and implementing conservation strategies. The integration of high-resolution data

with advanced classification and detection techniques holds promise for improving the

accuracy and effectiveness of tree species classification and health assessment.

2.5 Transfer Learning in Remote Sensing

Transfer learning involves leveraging pre-trained models on related tasks to enhance

performance on new, but similar, tasks. This approach has gained prominence in remote

sensing due to the high computational cost of training deep learning models from

scratch. Pan et al. [34] provided an overview of transfer learning techniques and their

applications, emphasizing their potential for improving model performance with limited

labeled data.

In tree species classification, transfer learning can be utilized by fine-tuning pre-

trained CNNs or Transformer models on remote sensing datasets. Shi et al. [41] applied

transfer learning with CNNs to hyperspectral data, achieving improved classification

accuracy of 76.70% by leveraging models pre-trained on large-scale image datasets.

This approach reduces the need for extensive labeled data and accelerates the training

process and improve low-performance classification models, making it a valuable

strategy for applying deep learning to remote sensing tasks[23].
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Transfer learning enables researchers to benefit from the knowledge embedded

in pre-trained models, facilitating more efficient and accurate classification of tree

species and health detection. The application of transfer learning in remote sensing

continues to evolve, offering opportunities for enhanced model performance and reduced

computational requirements.

2.6 Health Detection in Trees

The detection of tree health involves identifying indicators of disease, stress, or other

adverse conditions through the analysis of spectral signatures and spatial features.

Techniques for health detection often incorporate both spectral and spatial analysis to

assess tree vitality and detect early signs of deterioration [49].

Vegetation indices, such as the Normalized Difference Vegetation Index (NDVI),

are commonly used for assessing vegetation health based on red and near-infrared

reflectance [21]. NDVI provides a measure of vegetation vigor and can indicate changes

in tree health. However, NDVI alone may not be sufficient for detailed health assess-

ment, especially when dealing with complex tree species and varying environmental

conditions.

Recent research has explored the use of advanced spectral indices and machine

learning models to improve health detection accuracy. Bergmüller et al. [7] integrated

spectral indices with machine learning classifiers to enhance the detection of tree

diseases, demonstrating improved sensitivity and specificity compared to traditional

methods. The combination of spectral data and advanced classification techniques

enables more precise assessment of tree health and facilitates timely intervention.

The integration of high-resolution imagery and advanced machine learning models

holds promise for improving tree health detection and providing valuable insights for

forest management. By leveraging these technologies, researchers can enhance their

ability to monitor and manage forest ecosystems effectively.



Chapter 3

Data Collection, Integration, and

Feature Extraction

The accuracy and effectiveness of tree species classification and health detection hinge

on the quality and comprehensiveness of the data used. This chapter details the area of

study , methodologies employed for data collection, integration, and feature extraction

in the context of this research. The approach integrates high-resolution multispectral

imagery, LiDAR data, field observations, and advanced data processing techniques to

build a robust dataset for machine learning and object detection models. And a constant

data split of 70% train, 20% validation and 10% test was opted for all the models used.

3.1 Area of study (Forest of Dean)

The Forest of Dean (Fig 3.1), located in Gloucestershire, England, is one of the oldest

surviving ancient woodlands in the UK [32]. Spanning over 110 square kilometers, it

is a biologically rich area, offering a diverse range of habitats and species. The forest

is a mixed woodland, primarily consisting of oak, beech, and sweet chestnut, but also

includes a variety of other tree species like birch, ash, Scots pine and so on, totalling

upto 14 different species.

The Forest of Dean is managed by Forestry England, and their efforts in sustainable

forestry practices contribute to the maintenance of this complex ecosystem. The total

number of trees in the Forest of Dean is challenging to quantify due to its extensive

area and density, but estimates suggest millions of trees thrive here. This environment’s

rich biodiversity, alongside human management, offers a compelling case study for

applying tree species classification methods, potentially enhancing conservation efforts

13
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Figure 3.1: Forest of Dean sub-compartment data with colors denoting different species.

and forest management strategies.

3.2 Data Collection

Planet Data Acquisition
To capture the temporal and spectral variability of tree species, high-resolution

multi-spectral imagery was obtained from Planet Labs. Planet’s SuperDove Cubesats

provided the multi-spectral data with a resolution of approximately 3.7 meters per pixel.

This high-resolution imagery is crucial for distinguishing between individual trees

and capturing fine details necessary for accurate species classification. By collecting

these images, the dataset encompasses variations in spectral properties, which can be

instrumental in identifying tree species and assessing their health.

LiDAR and Field Data Collection
LiDAR (Light Detection and Ranging) data and field observations were acquired

from the UK Forest Department to supplement the multi-spectral imagery. LiDAR data

offers detailed three-dimensional information about the forest canopy [29], including

tree height, canopy structure, diameter breast height, volume, crown area and topography.

This data is essential for creating accurate spatial models and for integrating tree-specific

measurements with the multi-spectral imagery.

Field data included detailed measurements of individual trees, including species

identification, and canopy characteristics. This comprehensive field dataset serves as

ground truth for the machine learning models and provides a basis for assessing the

accuracy of the species classification.
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3.3 Data Integration and Mapping

GIS Mapping with QGIS
Geographic Information System (GIS) technology was employed to integrate and

map the collected data using QGIS, an open-source GIS software [26]. The integration

process involved aligning the multispectral imagery, LiDAR data, and field observations

to create a comprehensive spatial dataset.

The integration began with converting the northing-easting coordinates from the

field data to latitude-longitude coordinates, ensuring precise spatial alignment with

the satellite imagery. This conversion was crucial for accurate geo-referencing and

subsequent analysis. Each tree in the study area was individually referenced, allowing

for detailed spatial mapping and alignment of the various data layers.

Field and LiDAR Data Combination
To create a detailed dataset (of 837731 unique values) for analysis, field data was

combined with LiDAR data to produce a comprehensive table containing species names

and corresponding spatial coordinates, along with tree characteristics. The same process

was followed for generating health detection dataset, with an additional column called

LAI being extracted using another 1-band SuperDove imagery, provided by the UK

forestry. This integration provided a robust foundation for analyzing tree species

distribution and health.

For data points where direct matches between field data and imagery were not

available, nearest-neighbor techniques were used to assign species names. This approach

ensured that all areas within the study region were covered, even if direct spatial

correspondence was lacking. By assigning the nearest species names, the dataset

achieved comprehensive coverage, which is essential for accurate classification and

modeling. And for outlier detection, Isolation forest algorithm was utilized, as it was

particularly developed for forest data due to volume constraints [28].

3.4 Feature Extraction

Raster Value Calculation
Raster value extraction involved calculating spectral values for individual trees

from the multispectral imagery. This process facilitated the analysis of changes in tree

reflectance and enabled the identification of variations in spectral properties. By ex-
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tracting raster values, it was possible to analyze how different tree species’s reflectance

patterns change and how these changes can be leveraged for classification.

Spectral Indices and Reflectance Calculation
In addition to raw spectral values, various spectral indices were calculated to en-

hance the differentiation between tree species. Notable index included the Normalized

Difference Vegetation Index (NDVI). NDVI, calculated from the red and near-infrared

bands, is a widely used indicator of vegetation health and biomass [21]. The calcula-

tion of this index provided additional features that were instrumental in distinguishing

between species and assessing their health.

Other relevant indices, such as the Triangular Vegetation Index (TVI) and the Soil-

Adjusted Vegetation Index (SAVI), were also considered. These indices help mitigate

the effects of soil background and atmospheric conditions, further improving the accu-

racy of species classification and health assessment [2].

3.5 Data preparation for Object Detection

In addition to supervised learning models, YOLO (You Only Look Once) and Faster

RCNN was used for object detection and species classification.

Annotation with Roboflow
The first step in applying YOLO, involved annotating images with bounding boxes

around individual trees and labeling them with species names. The images used were

random snapshots of the satellite map. It was also overlayed on multi-spectral 8-band

imagery with 300dpi and 1:300 zoom resolution. This manual annotation was performed

using Roboflow software [1], which facilitated the creation of a training dataset for the

object detection models. Manual annotation was opted instead of using segementation

models because, they did not yeild expected results. Fig 3.2b below shows one of the

best segemented image by the-state-of-art SAM (Segment Anything Model) model

[24], which misinterprets same species as different ones and the rest were even more

fallacious. Given the time-intensive nature of manual annotation, a sampling strategy

was employed to annotate 250 images with unique 22365 annotations of tree species,

6,583-CP, 6,269-NS, 2,161-OK, 4,887-DF, 1,297-BE, 1,168-BI, respectively.
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(a) Original (b) Segmented

Figure 3.2: SAM output

(a) Original (b) AE enhanced and resized

Figure 3.3: AE output

Data Augmentation
To enhance the diversity and robustness of the dataset, data augmentation techniques

were applied. These included transformations such as rotation, scaling, flipping, and

color adjustments, namely Adaptive equalization (AE) , where it adjusts image contrast

by analyzing local pixel values, enhancing areas with varying contrast to improve

overall visibility and balance without losing detail (Fig 3.3b). Data augmentation helps

to improve the generalization of the object detection model and ensures that it performs

well under varying conditions [35].
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Methodology

4.1 Models

In this section, we will see in detail about the frameworks of the models used and how

data flows through them, in our case.

4.1.1 YOLOv10

YOLOv10 (Fig 4.1a) enhances its predecessors with several key innovations [39]. Its

backbone features an advanced version of CSPNet (Cross Stage Partial Network),

optimizing gradient flow and reducing computational redundancy. The neck component

aggregates features from various scales using PAN (Path Aggregation Network) layers,

which improves multiscale feature fusion and processing.

For predictions, YOLOv10 employs two types of heads. The One-to-Many Head

generates multiple predictions per object during training, providing rich supervisory

signals that enhance learning accuracy. During inference, the One-to-One Head pro-

duces a single, optimal prediction per object, eliminating the need for Non-Maximum

Suppression (NMS). This approach not only reduces latency but also improves over-

all efficiency by streamlining the prediction process. These innovations collectively

contribute to YOLOv10’s superior performance and efficiency.

4.1.2 Faster RCNN

Faster R-CNN [16](Fig 4.1b) is a two-stage object detection model with a streamlined

architecture. The model begins with a backbone network, often a pre-trained CNN such

18
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(a) YOLOv10 architecture [22] (b) Faster RCNN architecture [16]

Figure 4.1: Object detection models architecture.

as ResNet, which performs feature extraction. This backbone generates feature maps

that are essential for the subsequent stages of detection.

The second component is the Region Proposal Network (RPN), a fully convolutional

network that operates on these feature maps. The RPN slides a small network over the

feature maps, predicting multiple region proposals at each location, along with their

”objectness” scores, which indicate the likelihood of each region containing an object.

The final stage is the Fast R-CNN detector. It takes the proposed regions from the

RPN and uses RoI (Region of Interest) pooling to extract fixed-size feature maps for

each proposal. These feature maps are then processed through fully connected layers to

predict the object’s class and refine the bounding box. By sharing convolutional features

between the RPN and Fast R-CNN detector, Faster R-CNN achieves high efficiency in

object detection.

4.1.3 Random Forest

Random Forest is an ensemble learning method that combines multiple decision trees to

improve predictive performance. The architecture of Random Forest involves training

several decision trees, each built on a random subset of the data and features. This

process ensures that the model captures a diverse range of patterns and reduces the risk

of overfitting.

A key aspect of Random Forest is Bootstrap Aggregating, or Bagging. Each decision

tree is trained on a bootstrap sample, which is a random sample of the data drawn with

replacement. This technique ensures that each tree is trained on slightly different data,

contributing to the overall robustness of the model. In constructing these trees, Random

Forest does not prune them, allowing each tree to grow to its maximum depth. For

predictions, the model aggregates the outputs from all trees. In classification tasks, it

uses the majority vote of all trees to determine the final class.
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4.1.4 Neural networks

A basic feed-forward neural network is structured with an input layer, one or more

hidden layers, and an output layer. The input layer receives the initial data, which is

then passed through subsequent layers for processing. Each layer consists of nodes, or

neurons, which are interconnected with nodes in adjacent layers. In the hidden layers,

each neuron processes information by applying a weighted sum of its inputs, followed

by an activation function. This process introduces non-linearity to the model, allowing

it to learn complex patterns. The output layer generates the final prediction based on

the processed information.

The network’s performance is influenced by weights and biases, which are learnable

parameters adjusted during training to minimize prediction errors. Activation functions,

such as ReLU or sigmoid, are applied to the weighted sums at each neuron to introduce

non-linearity.

4.1.5 XGBoost

XGBoost (Extreme Gradient Boosting) is a powerful implementation of gradient-

boosted decision trees designed for regression tasks. Its architecture is based on the

concept of sequentially adding weak learners, specifically decision trees, to improve the

performance of the model by addressing the errors made by the existing trees.

The core components of XGBoost include decision trees as base learners, which

are typically shallow to ensure flexibility and prevent overfitting. Gradient boosting is

used to train each new tree to predict the residuals, or errors, of the current ensemble,

effectively refining the model incrementally.

To prevent overfitting, XGBoost incorporates regularization with L1 and L2 terms

in its objective function. Additionally, it calculates feature importance scores to assess

and leverage the impact of each feature. The model also benefits from parallel and

distributed computing, which accelerates the training process. Tree pruning is handled

using a ’max depth’ parameter, allowing the model to prune trees backward to optimize

performance. Furthermore, XGBoost includes a built-in method for handling missing

values, enhancing its robustness and adaptability.
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4.2 Evaluation methods

In this section we will discuss in brief, the evaluation metrics we will be using to

understand our model’s performance for object detection, pixel based detection and

health prediction.

• Precision (P): Precision is the ratio of true positive detections to the total number

of detections made (true positives + false positives). It measures the accuracy of

the model in identifying relevant objects in images. The formula is:

Precision =
True Positives (TP)

True Positives (TP)+False Positives (FP)
(4.1)

• Recall (R): Recall is the ratio of true positive detections to the total number of

actual objects (true positives + false negatives). It evaluates the model’s ability to

detect all relevant objects in an image. The formula is:

Recall =
True Positives (TP)

True Positives (TP)+False Negatives (FN)
(4.2)

• Mean Average Precision (mAP):mAP is the mean of the Average Precision (AP)

scores across all classes in an image detection task. AP measures the area under

the precision-recall curve for a specific class. mAP provides a comprehensive

evaluation by considering both precision and recall across different detection

thresholds. The formula is:

AP =
∫ 1

0
Precision(r)dr (4.3)

mAP =
1
N

N

∑
i=1

APi (4.4)

where N is the number of classes and APi is the average precision for the i-th

class.

• Accuracy: Accuracy is the ratio of correctly predicted pixels (both true posi-

tives and true negatives) to the total number of pixels. It measures the overall

correctness of the pixel classification in the image:

Accuracy =
True Positives (TP)+True Negatives (TN)

Total Pixels
(4.5)
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• Mean Squared Error (MSE): MSE measures the average squared difference

between the predicted and actual values. It penalizes larger errors more severely,

making it sensitive to outliers:

MSE =
1
N

N

∑
i=1

(Predictedi −Actuali)2 (4.6)

where N is the number of observations.

• Mean Absolute Error (MAE): MAE is the average of the absolute differences

between predicted and actual values. Unlike MSE, it treats all errors equally and

is less sensitive to outliers:

MAE =
1
N

N

∑
i=1

|Predictedi −Actuali| (4.7)

• R-squared (R²): R² represents the proportion of variance in the dependent vari-

able that is predictable from the independent variables. It provides an indication

of the goodness of fit of the model, with values closer to 1 indicating better

performance:

R2 = 1− ∑
N
i=1(Actuali −Predictedi)

2

∑
N
i=1(Actuali − ¯Actual)2

(4.8)

where ¯Actual is the mean of the actual values.
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Experiment and Results

5.1 Experiment Environment

In this project, the classification of tree species and the detection of tree health utilized

several models, including Random Forest (RF), XGBoost, and Neural Networks (NNs),

as well as models for object detection. These models were implemented using Python,

leveraging libraries such as Scikit-learn for RF and XGBoost, and TensorFlow 2.17

with its Keras library for the neural network approaches. The YOLO object detection

model was applied using the Roboflow platform for annotation and dataset preparation.

All experiments were conducted on an NVIDIA GeForce RTX 2060 GPU with CUDA

11.4, which facilitated efficient processing and training of the models.

5.2 Experiment Setting

This section details the experimental setup used to evaluate and compare different

object detection models, including versions of the YOLO (You Only Look Once) model

and Faster R-CNN. The focus was on assessing model performance across various

scenarios, such as learning rate variations, data augmentation, model size differences,

and training duration. All experiments were conducted using the AdamW optimizer

with 200 epochs, incorporating early stopping with a patience of 50 epochs to avoid

overfitting. Default settings were maintained for other parameters. And for pixel-based

classification, Random forest classifer and tri-layer Neural network was tranined on

datasets with and without vegetation indices namely, NDVI, TVI, SAVI.

We first compared the YOLOv10 model to its predecessor, YOLOv8, to assess

improvements in accuracy and efficiency. Key metrics like mean Average Precision

23
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(mAP), precision, recall, and inference time were used to evaluate both models over

200 epochs. The comparison, was later visualized through performance curves.

Next we wanted to examine the impact of model size on YOLOv10’s performance

by comparing its small and large variants, revealing the trade-offs between performance

and resource consumption. The results were visualized with graphs to show how model

size influences YOLOv10’s effectiveness.

Another important hyperparameter to be fine-tuned is learning rate, so we tested

the impact of different learning rates (1e-3, 1e-4, and 1e-5) on YOLOv10 and Faster

R-CNN, focusing on convergence speed, final accuracy, and stability. Both models were

trained with the AdamW optimizer for 200 epochs. The results, later were summarized,

to identify the optimal learning rate for each model, aiding in fine-tuning for better

performance.

Increase in the number of epochs trained, a model’s performance may vary positive

or negative. To assess the impact of prolonged training, both YOLOv10 and Faster

R-CNN were trained for up to 200 epochs with early stopping disabled. This experiment

provided insights into convergence behavior, final performance, and potential overfitting.

The fifth experiment evaluated the effects of data augmentation on YOLOv10 and

Faster R-CNN. Techniques like rotation, flipping, and color adjustments (AE) were

applied to the dataset. Performance was compared between original (250 images) and

augmented (954 images) datasets, with the impact visualized through performance

curves, showing changes in mAP, precision, and recall.

The final experiment involved a species-wise analysis of the best-performing model

from the previous tests. This model was evaluated on its ability to correctly identify

and classify different species. An image was generated to visualize the model’s species-

wise detection capabilities, offering insights into its practical application for specific

detection tasks.

These experiments provided valuable insights into the performance of YOLO and

Faster R-CNN models, guiding improvements in object detection models.

For pixel-based classification, the datasets used in these experiments were divided

into two categories: one with vegetation indexes (such as NDVI, TVI, etc.) and one

without them. Vegetation indexes are often used in remote sensing and environmental

monitoring to quantify vegetation cover, health, and other characteristics. And the RF

model was used with default configuration, whereas the 3-layered NN model was used

without adding regularizations, as it was tested and model did not converge with them.

And finally for health prediction, the XGBoost model was tested on data which



Chapter 5. Experiment and Results 25

(a) Precision (b) Recall

(c) mAP

Figure 5.1: YOLOv8 vs YOLOv10

Models Precision Recall mAP

YOLOv8 0.374 0.465 0.381

YOLOv10 0.424 0.475 0.399

Table 5.1: Models comparison. Both models were trained on original data with default

configuration.

included LAI values and ran on default configuration, with n estimators alone set to

400.

5.3 Results

5.3.1 Results for different YOLO versions

In this experiment, different YOLO versions namely v8 and v10 (latest YOLO version)

was tested with default parameter configuration on non-augumented original data.
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(a) Precision (b) Recall

(c) mAP

Figure 5.2: YOLOv10x vs YOLOv10n

Models Precision Recall mAP

YOLOv10n 0.437 0.435 0.384

YOLOv10x 0.424 0.475 0.399

Table 5.2: Models comparison. Both models were trained on original data with default

configuration.

5.3.2 Results for different YOLOv10 model sizes

In this experiment, we compare YOLO version 10-N, which is a smaller version with

2.3M params and version 10-X, which is the largest version with 29.5M params.

5.3.3 Results for different learning rates

In this experiment, YOLOv10x and Faster-RCNN was trained using AdamW optimizer

with various learning rates (1e-3, 1e-4, 1e-5), for 200 epochs and 3000 iterations,

respectively. Both the models were trained on data with early-stopping disbled for this

experiment.
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(a) Precision (b) Recall

(c) mAP

Figure 5.3: AdamW optimizer with different learning rates (1e-3, 1e-4, 1e-5) tested on

YOLOv10x. It is trained on data for 200 epochs.

Models Learning rate Precision Recall mAP Class Accuracy

1e-3 42.4% 47.5% 39.9% -

YOLOv10x 1e-4 45.0% 44.9% 41.0% -

1e-5 45.6% 45.9% 42.2% -

1e-3 7.156% - 19.956% 0.777

Faster-RCNN 1e-4 2.101% - 6.6378% 0.75

1e-5 0.169% - 0.5828% 0.75

Table 5.3: Table shows YOLOv10x and Faster-RCNN models trained on data with

AdamW optimizer using different learning rates (1e-3, 1e-4, 1e-5) for 200 epochs and

3000 iteratons respectively. Early stopping was disabled for this test.
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(a) Precision (b) Class Accuracy

(c) mAP

Figure 5.4: AdamW optimizer with different learning rates (1e-3, 1e-4, 1e-5) tested on

Faster-RCNN. It is trained on data for 3000 iterations. This model alone was visualized

using TensorBoard as it did not support WandB.
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(a) Precision (b) Recall

(c) mAP

Figure 5.5: Best model was trained on data for 200 epochs each with early stopping

enabled and disabled

Models Patience Precision Recall mAP

YOLOv10x-early 50 0.456 0.459 0.422

YOLOv10x-no-early 0 0.456 0.459 0.422

Table 5.4: Table shows best model (YOLOv10x with 1e-5 learning rate) performance on

data for 200 epochs each, with early stopping enabled and disabled.

5.3.4 Results for model on larger epochs

This experiment was run on model with and without early-stopping enabled, for 200

epochs on data.

5.3.5 Results of Best model on Original and Augmented data

In this experiment, the best model (YOLOv10x with learning rate 1e-5) from previ-

ous experiments was selected and trained on original and augmented data to see it’s

performance on both the datasets.
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(a) Precision (b) Recall

(c) mAP

Figure 5.6: Best model (YOLOv10x with 1e-5 learning rate) was trained on original data

and augmented data for 200 epochs each with early stopping disabled.

Models Precision Recall mAP

YOLOv10x-O 0.456 0.459 0.422

YOLOv10x-A 0.629 0.350 0.440

Table 5.5: Table shows best model (YOLOv10x with 1e-5 learning rate) performance on

original data and augmented data for 200 epochs each, with early stopping disabled.
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(a) Precision vs Confidence (b) Recall vs Confidence

(c) Precision vs Recall (d) F1-score vs Confidence

Figure 5.7: Species-wise performance of the best model was visualised, showing

Precision, recall and F1-score against confidence scores.BI, BE, OK have relatively

lower metric curves due to their low instance counts in training data.

5.3.6 Results for species-wise analysis

In this experiment, species-wise results were tested on best model, to understand the

model in-depth. So, precision, recall and F1 curves were drawn against confidence

curves.

5.3.7 Results with and without Vegetation indices

In this experiment Random forest and 3-layered Neural network was trained with and

without vegetation indices.

5.3.8 Results for tree health prediction

In this experiment, dataset with LAI values are tested on XGBoost model.
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Class Precision Recall mAP

BE 0.39 0.18 0.26

BI 0.60 0.05 0.31

CP 0.73 0.30 0.50

DF 0.71 0.31 0.50

NS 0.72 0.63 0.64

OK 0.63 0.28 0.45

Table 5.6: Table shows best model (YOLOv10x with 1e-5 learning rate) performance

class-wise.

(a) Train accuracy vs Val accuracy-NN (b) Train loss vs Val loss-NN

(c) Train accuracy vs Val accuracy-NN VI (d) Train loss vs Val loss-NN VI

Figure 5.8: 3-layer neural network, with and without vegetation indices.
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Model Class Precision Recall F1-score Model Class Precision Recall F1-score

BE 0.81 0.42 0.55 BE 0.86 0.47 0.61

BI 0.75 0.52 0.61 BI 0.79 0.57 0.66

RF CP 0.78 0.71 0.75 RF VI CP 0.83 0.77 0.80

DF 0.87 0.88 0.88 DF 0.88 0.89 0.89

NS 0.85 0.83 0.84 NS 0.87 0.84 0.85

OK 0.83 0.94 0.88 OK 0.84 0.95 0.89

ACCURACY 0.83 ACCURACY 0.85

BE 0.84 0.95 0.89 BE 0.83 0.66 0.74

BI 0.73 0.43 0.54 BI 0.81 0.71 0.75

NN CP 0.74 0.68 0.71 NN VI CP 0.86 0.83 0.84

DF 0.86 0.88 0.87 DF 0.93 0.92 0.93

NS 0.81 0.85 0.83 NS 0.89 0.91 0.90

OK 0.85 0.93 0.89 OK 0.90 0.95 0.93

ACCURACY 083 ACCURACY 0.89

Table 5.7: Table shows pixel-based model performance with and without vegetation

indices(VI).

(a) Train accuracy vs Val accuracy-RF (b) Train loss vs Val loss-RF

(c) Train accuracy vs Val accuracy-RF VI (d) Train loss vs Val loss-RF VI

Figure 5.9: Random forest, with and without vegetation indices.

Figure 5.10: MSE vs n estimators, for XG-

Boost model.

MSE MAE R²

1.0497 0.7575 0.6804

Table 5.8: XGBoost performance
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Discussion and Analysis

From Tab 5.1, YOLOv10 architecture illustrated it is a slightly superior model to

YOLOv8 in regards to all the metrics, which can also be seen in Fig 5.1a,5.1b,5.1c.

From Tab 5.2, YOLOv10n seems to be slightly better at avoiding false positives,

making it a model with higher precision [0.437]. Fig 5.2a shows, the model avoids

incorrect detections. YOLOv10x, on the other hand, is more successful at detecting a

higher percentage of actual objects (higher recall [0.475]) (Fig 5.2b) and has a better

overall performance (higher mAP [0.399])(Fig 5.2c). This makes it more suitable for

applications where it is more important to ensure that most objects are detected, even at

the cost of a few more false positives.

From Tab 5.3, in Yolov10x, a relatively higher learning rate of 1e-3 yields moderate

performance. The model achieves decent recall but slightly lower precision [42.4%] and

mAP [39.9%]. This suggests that while the model is good at detecting objects, it may

be prone to overfitting or instability in the learning process, leading to slightly lower

overall accuracy.A learning rate of 1e-4 improves precision and mAP compared to 1e-3,

indicating a more stable learning process. The model achieves a better balance between

precision and recall, leading to improved overall performance.The lowest learning rate

(1e-5) provides the best performance among the three. Both precision [45.6%] and

recall [45.9%] are maximized, leading to the highest mAP [42.2%]. This suggests that

the model benefits from a slower, more controlled learning process, allowing for better

convergence and fine-tuning of weights, shown in Fig 5.3a,5.3b,5.3c. Whereas in Faster

RCNN, shown in Fig 5.4a,5.5b,5.4c, the model struggles with a higher learning rate,

showing very low precision and mAP, though class accuracy is somewhat reasonable.

Class accuracy here denotes the class assigned to the detected trees. This suggests that

the model might be unstable and unable to converge properly. Lowering the learning

34
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rate to 1e-4 results in a significant drop in both precision and mAP, indicating that

the model’s performance is deteriorating further. The class accuracy remains stable,

which suggests that the model is struggling with detecting objects but still somewhat

correctly classifying them. At the lowest learning rate, the model performs the worst,

with near-zero precision and mAP. This indicates that the learning rate is too low for

the model to make meaningful updates to its parameters, leading to poor performance

overall. As to summarise, YOLOv10x is much more resilient to changes in learning

rate and achieves better performance overall compared to Faster-RCNN. It benefits

from a lower learning rate (1e-5), which allows it to fine-tune and improve precision,

recall, and mAP effectively. Faster-RCNN, however, does not perform well with the

AdamW optimizer at any of the tested learning rates, struggling particularly with lower

learning rates. This might indicate that Faster-RCNN requires a different approach in

terms of optimization or that it is less suited to this specific task or dataset compared to

YOLOv10x.

The results from the Tab 5.4 suggest that, for the YOLOv10x model trained on

augmented data with a learning rate of 1e-5, early stopping (Fig 5.6c) did not provide

any additional benefit in terms of performance metrics. Both models performed equally

well, indicating that the model’s training was stable and did not suffer from overfitting

or unnecessary prolongation of training. This could imply that, under similar circum-

stances, early stopping may be optional rather than necessary, particularly when using

effective regularization techniques like data augmentation. However, early stopping

might still be valuable for saving computational resources and time, especially when

working with larger datasets or longer training cycles.

In the next experiment, when the model was trained on the augmented dataset (Tab

5.5), all performance metrics improved except for recall, shown in Fig 5.6a,5.6b,5.6c.

The precision increased to 0.629, mAP to 0.440, and recall decreased to 0.350. The

improvement in precision suggests that the model became slightly better at correctly

identifying true positives, with fewer incorrect predictions. The decrease in recall

indicates that the model was not able to detect a greater number of objects in the dataset,

this behaviour can be attributed to the increase of model’s precision with increased data.

The higher mAP further confirms that the model’s overall ability to detect and localize

objects improved as a result of training on the augmented data.

In pixel-based classification, the results (Tab 5.7 and Fig 5.8,5.9), clearly demon-

strate that incorporating Vegetation Indices into the training data can significantly

enhance the performance of models, with NN VI achieving the highest at 89% accuracy
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(a) True labels (b) Predicted labels

Figure 6.1: YOLOv10x (1e-5). Original labels on left and predictions on right.

(Fig 5.8c). VI likely provided additional spectral information that is highly relevant to

vegetation, allowing the models to better distinguish between different species based on

their unique spectral signatures. This is particularly beneficial in this ecosystem where

different species may have similar visual characteristics but different spectral profiles,

the reason why, object detection model struggles and these models outstrips them in

performance. And the reason, oak (OK) has best metrics among all classes is because,

it has the most unique values in data, but when image snapshots were taken from the

satellite, norway spruce (NS) had more recurring instances, making it better in object

detection models.

In health prediction, Leaf area index(LAI) value between 3-6 is considered healthy,

or otherwise. The regression model (Tab 5.8) demonstrates a solid fit to the data, with

a high R² value indicating that it explains a substantial portion of the variance in the

target variable (LAI). The error metrics (MSE and MAE) are relatively low (Fig 5.10),

pointing to reasonably accurate predictions.

Understanding the Model predictions and limitations
From Figure 6.1b, we can see the YOLOv10x model predicts fewer tree objects in

the image (about 81 instances on average in test images, but only about 35-50 instances

on average in predicted images) but correctly identifies most of those it does detect (

see Fig 5.6a,5.6b), this behavior can be attributed to the interplay between the model’s

confidence threshold and Intersection Over Union (IoU) threshold. The confidence

threshold in YOLOv10x determines the minimum probability that a predicted bounding

box must have for the model to consider it a valid detection. If this threshold is set
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too high, 0.6 (default) in our case, the model only output predictions it is very certain

about, potentially leading to fewer detections overall. This behavior can explain why

the model predicts fewer tree objects, it is likely discarding detections that fall below

the high confidence threshold, even if they are correct. On the other hand, IoU threshold

is used during the Non-Maximum Suppression (NMS) process to eliminate redundant

or overlapping bounding boxes. If the IoU threshold is set too high, 0.6 (default), the

model discards additional bounding boxes that have significant overlap with others,

even if they correspond to different tree objects. This can result in fewer detections,

particularly in our case where trees are closely spaced or overlapping.

Detecting trees in heterogeneous and dense forests is inherently challenging, and

these difficulties are amplified in our case, where both factors are combined. The

complexity of such environments arises from the wide variety of tree shapes, sizes,

appearances, overlapping canopies, diverse species, and different growth stages. This

variability complicates the task for object detection models, which may struggle to

consistently identify and differentiate between individual trees, leading to errors such

as missed detections or incorrect classifications. The dense foliage and shadows further

obscure trees, exacerbating the difficulty of accurate detection. When using data directly

from raw satellite imagery (even when overlayed over SuperDove imagery) instead

of UAVs or drones, these challenges are exacerbated. Satellite images typically have

lower spatial resolution compared to images captured by UAVs, making it harder to

discern individual trees, especially in dense forests. The large-scale perspective of

satellite imagery often results in pixelated or blurry representations of trees, reducing

the model’s ability to detect fine details. Moreover, atmospheric conditions, lighting

variations, tree-crown angle variations and the presence of clouds can further degrade

the quality of satellite images, increasing the difficulty for object detection models to

accurately identify trees in such complex and cluttered environments.

But still, this data can be valuable for training models that are robust to the specific

issues encountered in satellite imagery, such as low resolution, high variability, and

atmospheric distortions. It allows for the development of techniques that enhance model

performance and multi-scale feature extraction. Furthermore, satellite imagery datasets

can be used to create synthetic or semi-synthetic training sets by combining real satellite

data with generated annotations, which can help in training models to better generalize.

By utilizing such data as a benchmark or training resource, more accurate and reliable

object detection for complex and challenging environments are made.



Chapter 7

Conclusion

In this study, we explored various models for detecting tree species, including Random

Forest (RF), Neural Networks, and Faster R-CNN, while also innovatively applying the

latest YOLOv10. The YOLOv10x model particularly showcased a balance of strengths

and limitations within the challenging environment of dense, heterogeneous forests. It

achieved high precision and recall, but its tendency to predict fewer tree objects was

influenced by the confidence threshold and Intersection Over Union (IoU) threshold.

A high confidence threshold limited the model to only the most certain detections,

potentially overlooking valid trees, while a high IoU threshold excluded overlapping

bounding boxes, critical in our dense forest scenario. Despite predicting fewer instances,

YOLOv10x maintained impressive accuracy in its detections.

In pixel-based classification, the integration of Vegetation Indices (VI) significantly

enhanced performance. VI provided additional spectral data, improving the model’s

ability to differentiate between tree species, especially where visual characteristics

were insufficient. The NN VI model, leveraging this spectral information, achieved the

highest accuracy of 89%, demonstrating VI’s effectiveness in refining classification.

For health prediction, the regression model performed well, with a high R² value

indicating strong explanatory power over the Leaf Area Index (LAI). Low MSE and

MAE further validated the model’s accuracy.

While the NN VI model excelled in classification with 89% accuracy (greater than

models that are used in the Edinburgh forest department with 83% accuracy and close

to other SOTA models that were trained on public inventories and global datasets),

YOLOv10x stood out, showing exceptional adaptability and robustness, despite the

parameter and data complexities. It may very well outperform other models, with

sufficient high quality data and resources to optimize IOU and confidence threshold.
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Future work

Given the complexities encountered in this study, avenues for future research are evident.

First, the data itself presents opportunities for improvement. While satellite imagery

offers a broad overview, its limitations in resolution and clarity suggest that combining

it with higher-resolution UAV or drone data could yield better results. Developing

techniques for data fusion, where satellite and UAV data are combined to produce richer

datasets, could significantly enhance model performance.

If YOLOv10 is used, fine-tuning the confidence and IoU thresholds more dynami-

cally during training or developing adaptive mechanisms that adjust these parameters

based on the density and overlap of objects is crucial. Additionally, experimenting with

multi-scale feature extraction techniques might improve the model’s ability to detect

smaller or partially obscured trees, which are often missed in current approaches.

Next, the application of ensemble learning techniques, combining models like

YOLOv10x with VI-enhanced classifiers, could be explored to leverage the strengths of

both approaches, potentially leading to even higher accuracy and robustness.

Finally, finding ways to leverage SOTA segmentation algorithms or modelling

segmentation algorithms, is crucial in regards to annotation, as it would save the effort

of manual annotation. Moreover, it would simply be impossible to manually annotate,

if the images in the dataset exceed a certain threshold.
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[3] Hervé Abdi, Dominique Valentin, and Betty Edelman. Neural networks. Number

124. Sage, 1999.

[4] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria

Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-the-art in

artificial neural network applications: A survey. Heliyon, 4(11), 2018.

[5] Siham Acharki. Planetscope contributions compared to sentinel-2, and landsat-

8 for lulc mapping. Remote Sensing Applications: Society and Environment,

27:100774, 2022.

[6] Abdulaziz Amer Aleissaee, Amandeep Kumar, Rao Muhammad Anwer, Salman

Khan, Hisham Cholakkal, Gui-Song Xia, and Fahad Shahbaz Khan. Transformers

in remote sensing: A survey. Remote Sensing, 15(7):1860, 2023.

[7] Kai O. Bergmüller and Mark C. Vanderwel. Predicting tree mortality using spectral

indices derived from multispectral uav imagery. Remote Sensing, 14(9), 2022.

[8] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[9] Jick Castanha, Indrawati, Subhash K.B. Pillai, Gadang Ramantoko, and Tri Widar-

manti. A systematic literature review on natural language processing (nlp). In

2022 International Conference on Advanced Creative Networks and Intelligent

Systems (ICACNIS), pages 1–6, 2022.

[10] Sungeun Cha, Joongbin Lim, Kyoung-Min Kim, Jongsoo Yim, and Woo kyun

Lee. Uncovering the potential of multi-temporally integrated satellite imagery for

accurate tree species classification. Forests, 2023.

40



Bibliography 41

[11] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, pages 785–794, 2016.

[12] Kwanghun Choi, Wontaek Lim, Byungwoo Chang, Jinah Jeong, Inyoo Kim, Chan-

Ryul Park, and Dongwook W Ko. An automatic approach for tree species detection

and profile estimation of urban street trees using deep learning and google street

view images. ISPRS Journal of Photogrammetry and Remote Sensing, 190:165–

180, 2022.

[13] Matthew L Clark and Dar A Roberts. Species-level differences in hyperspectral

metrics among tropical rainforest trees as determined by a tree-based classifier.

Remote Sensing, 4(6):1820–1855, 2012.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,

Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[15] Matthias Drusch, Umberto Del Bello, Sébastien Carlier, Olivier Colin, Veron-
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First appendix

A.1 Dataset Visualizations

A.2 YOLOv10x - Extended results visualization
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(a) Beech annotations (b) Birch annotations

(c) Corsican pine annotations (d) Douglas Fir annotations

(e) Norway Spruce annotations (f) Oak annotations

Figure A.1: Bounding boxes and the locations in the image for different species.
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Figure A.2: YOLOv10x Confusion matrix.

Figure A.3: YOLOv10x Loss Curves


