
Scaling Pixel-based Language Models

Chen Hu
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2024

Abstract

Recently, Pixel-based Language Models have been shown to perform well in natural

language processing tasks. However, most of these pixel-based LLMs can only process

discriminative tasks. While PIXAR can handle generative tasks, since the pretraining

dataset is English-based, it only attempts English generative tasks. Therefore, this thesis

proposed PIXAR++, which can handle seven languages and process and generate images

with larger patch sizes. This project attempts more downstream tasks on discriminative

tasks and generative tasks in multiple languages. It turns out that PIXAR++ works

well in other languages as well. This thesis analyzes the reasons behind the wrong and

correct generated text patches and proposes more directions for the development of

PIXAR++ models.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy.

It did not involve any aspects that required approval from the Informatics Research

Ethics committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Chen Hu)

ii

Acknowledgements

I would like to thank my Supervisors, Prof Antonio Vergari and Prof Suglia Alessandro

for all their help, encouragement, and advice. After each meeting with them, I got a

deeper understanding of the project and a clearer direction for the next work. I would

also like to thank Yintao Tai, my senior, for helping me with this project. Since my

project is scaling his model, he gave me advice and help in many stages of my project.

iii

Table of Contents

1 Introduction and Motivation 1
1.1 Introduction . 1

1.2 Motivation . 2

1.3 Objective . 3

1.4 Results achieved . 3

4section.1.5

2 Background and Literature Review 5
2.1 Language Models . 5

2.2 Diffusion Models . 10

3 Methodology 11
3.1 Datasets and downstream tasks . 11

3.1.1 GLUE . 11

3.1.2 XNLI (Cross-lingual Natural Language Inference corpus) task: 13

3.1.3 BAbI task: . 14

3.1.4 LAMBADA tasks: . 14

3.2 Preprocessing . 14

3.3 Training stages . 15

3.4 Text recognization . 16

3.5 Readability metric . 18

4 Experiments and Results 20
4.1 Data Preprocessing . 20

4.2 Computational budget . 21

4.3 Pretraining stage . 21

4.4 GAN stage . 22

4.5 Discriminative Tasks . 22

iv

4.5.1 GLUE . 22

4.5.2 XNLI . 26

4.6 Generative tasks . 29

5 Conclusion and Discussion 33
5.1 Conclusion . 33

5.2 Discussion . 34

Bibliography 37

A First appendix 43
A.1 First section . 43

v

Chapter 1

Introduction and Motivation

1.1 Introduction

In traditional natural language processing (NLP) research, the selection and use of

tokenizers affect many aspects of model training. Tokenizers are designed to segment

text into a sequence of small sub-units. Common sub-units include sentence pieces,

bytes, characters, sub-words, or words. However, the vocabularies of these sub-units

often require a lot of effort to create and maintain [1]. Besides, these vocabularies also

have particular limitations.

For a vocabulary consisting of word units, it is not possible to include all the words

in any one language in advance. This is because collecting all the uncommon words

before the training of NLP models is difficult, and new words are created in the daily

conversation and writing of people. Therefore, out-of-vocabulary (OOV) words always

exist. According to the research of Kaddour et al., the performance of NLP models

was heavily decreased when encountering these OOVs [2]. Besides, because bytes and

characters are very small, the sequence made up of them can be very long. A long

sequence increases the burden on the embedding and output layers of the model [3].

The sub-word is more flexible. It can build vocabularies of different sizes as required,

which relieves the burden on both the embedding and output layers, but also creates a

dilemma. Although this kind of vocabulary performs well in the training of a single

language, when faced with multilingual datasets, the researchers need to either expand

the size of the vocabulary or fix the number of sub-words that the vocabulary can

contain. Therefore, a fixed vocabulary is bound to have limitations. This limitation

mainly exists in the encoding of input and the calculation of the probability distribution

of vocabularies [4].

1

Chapter 1. Introduction and Motivation 2

According to the research of Rayner et al., when facing incorrect words or unusual

sentence structures, humans can still make sense of sentences by integrating visual and

textual information [5]. This means that the graphic information contained in the text

can help people understand the sentences. Therefore, NLP models can also be trained

by learning graphic information or pixel information contained in the text [6]. Based on

the above research, a Pixel-based Encoder of Language, PIXAL [4] was designed. This

model used a sequence of fixed-size rendered patches to replace the embedding layer in

the traditional NLP pipelines. This model does not need to process raw text but only

needs to extract features from pixels in the patch to learn [4]. However, PIXEL is not

proper in dealing with generative tasks. Therefore, the first pixel-based autoregressive

large language model (LLM), PIXAR [7], was designed to process the generative tasks

of NLP. In the pretraining stage, this model predicts the next patches consisting of pixels

only depending on the previously rendered text patches [7]. However, PIXAR can still

be extended.

1.2 Motivation

This dissertation aims to scale a pixel-based language model, PIXAR. It is the first

pixel-based autoregressive LLM [7]. According to the introduction, the traditional NLP

model only focuses on the text information but ignores the graphic information of the

text. For humans, however, the graphic information of a text is a necessary component

in helping people understand sentences. Therefore, it is worth learning and generating

text using the pixel information of text images as model input. Since PIXAR has already

done some encouraging research in this field, this project decided to scale PIXAR in

the following ways.

Firstly, the patch of the input and output images are fixed in size. However, increas-

ing patch size can increase the length of the text sequence contained in each patch, so

that the model can generate a longer text sequence on the premise that the number of

generated patches is fixed. Besides, PIXAR is only tried on the English dataset and

all the experiments applied to PIXAR are based on English. To expand the scope and

robustness of PIXAR, this thesis will attempt to expand PIXAR into a multilingual

version. Finally, according to the experiment results of Dhariwal et al., diffusion models

always have better performance than the GAN models [8]. Therefore, in further re-

search, the Diffusion transformer or Diffusion models will be used to replace the GAN

as the final layer of the PIXAR model [8] [9] [10].

Chapter 1. Introduction and Motivation 3

The development of this PIXAR++ has many benefits both for NLP research and

applications. First, for NLP research, pixel information was proved to be useful for

model training. Therefore, these useful graphical features can be utilized and even

combined with traditional NLP training, so that the trained model can more accurately

understand the meaning of a sentence. In addition, if the model only uses text images as

its input, it will be free from the constraints of the fixed vocabulary. When this model

is faced with OOV, the performance of it will not drop too much. Besides, because

this study connects NLP and CV, it has a broad development prospect. Finally, the

expansion of language types and patch size enables PIXAR++ to have more application

scope and stronger generalization ability.

1.3 Objective

This project aims to extend PIXAR. Since PIXAR has done experiments on English,

the new model PXIAR++ will focus on multilingual datasets. Besides, a larger patch

size is also tried on PIXAR++. The project has the following main objectives:

• Environment configuration and preprocessing the dataset.

• Training PIXAR stage one: MLE.

• Training PIXAR stage two: Adversarial.

• Designing a multilingual dataset for PIXAR++.

• Training PIXAR++ on this multilingual dataset.

• Training PIXAR++ on a larger patch size.

• Evaluating this trained PIXAR++ model.

• Finish dissertation.

1.4 Results achieved

Based on background technology and motivation, this thesis trained two models named

8-patch-size PIXAR++ and 16-patch-size PIXAR++ (The input and output patch size is

8 * 8 or 16 * 16) that can deal with multilingual language discriminative and generative

tasks. Besides, the training process includes two stages, the trained models in each

Chapter 1. Introduction and Motivation 4

stage are tried on all the downstream tasks. According to the paper on PIXAR, since the

patch size used in PIXAR is 8 * 8 [7], the comparison between PIXAR and 8-patch-size

PIXAR++ can better reflect the advantages and disadvantages of PIXAR++.

Discriminative tasks: The performance of 8-patch-size PIXAR++ on the GLUE

benchmark is slightly lower than PIXAR. Since this task is pure English, this result

is in the assumption. However, specifically, 8-patch-size PIXAR++stage1 even does

better on RTE and WNLI, and 8-patch-size PIXAR++stage2 performs better on RTR

than PIXAR in GLUE benchmark [11]. Besides, the 8-patch-size PIXAR++ performs

better than PIXAR on most of the XNLI tasks except English and Turkish [12]. Besides,

16-patch-size PIXAR++ performs worse on every discriminative task of the other two

models.

Generative tasks: Since the training dataset of PIXAR is in pure English, the

downstream tasks it attempts contain only bAbI and the English LAMBADA [7].

PIXAR is superior to PIXAR++ in the accuracy of generating text. Only on the

readability of the Stage 1 models, 8-patch-size PIXAR++ is superior to PIXAR. This

means that PIXAR is still better at English generation tasks than PIXAR++ and that

GAN loss improves the readability of single-language models more than multilingual

models [7] [10]. Besides, for LAMBADA tasks in other languages, both PIXAR++

models also have similar performance to English LAMBADA.

1.5 Thesis structure 1

• Introduction and Motivation: The introduction, motivation, objective, results,

and structure of the thesis.

• Background and Literature Review: The background research related to this

thesis and the technical basis related to PIXAR++.

• Methodology: The core preprocessing, training, and evaluation methods and

models used in this thesis.

• Experiments and Results: The preprocess, training, and the performance of the

experiments baselines and PIXAR++ on downstream tasks.

• Conclusion and Discussion: The achievements, limitations, and future works

are mentioned in this chapter.

1Part of the first three chapters of this thesis are paraphrased from ipp.

Chapter 2

Background and Literature Review

2.1 Language Models

Figure 2.1: This image shows the classification of LM according to the kind of input data

[13]

As shown in Figure 1, currently LMs can be divided into four categories according to

the type of input data. The first is Text-only LMs that only take texts as input, including

GPT [14] and LLaMA [15]. The second is Multimodal LMs that take images and texts

as input, represented by LLaVA [16] and PALI [17]. The third is the pixel-based LMs

that take not text-only images as input, including Donut [18] and Pix2Struct [19]. The

last one is the pixel-based LMs that take text-only images as input, which is mainly

studied in this thesis. The main representative models are PIXEL [4], PIXER [7], and

5

Chapter 2. Background and Literature Review 6

PTP [13]. Therefore, the following sections will review recent pixel-based LMs that

take images as input.

Since Chinese is a pictograph, its characters contain a lot of graphic information

in the text, and most of the early Pixel-based natural language processing models used

Chinese datasets as their input. One of the earliest experiments was done by Liu et

al., a CNN-based model was used in their project to extract the graphic information

of handwritten Chinese characters on character-level and then the similarity of these

Chinese characters was compared [20]. Besides, according to the research of Sun et al.,

the classification tasks of Chinese characters were also tried through training models

on character-based datasets [21]. Traditional symbolic tokenizers miss out on a lot

of graphic information in Chinese characters, but the Tianzige features that highlight

graphic information in Chinese characters can be well utilized [22] [23]. Besides,

character-level graphic features are integrated into the ChineseBERT embedding vector

to train Bert-based models [6]. However, character-based models still have some

limitations. First, since the smallest unit of a picture is not a pixel but a character, these

models did not capture all the information in the picture. In addition, some emojis will

also affect the performance of such models. Based on the above research, pixel-based

models will capture more comprehensive visual information about text, which was

designed to address these limitations.

When talking about Pixel-based models, the first model to introduce is designed

by Salesky et al. [24] which uses visual text datasets as its inputs. This model is used

to solve machine translation tasks. However, the embeddings of a fixed vocabulary

depended on the output layer of this model, which means it is not a pure pixel-based

model [24]. According to the idea of Salesky et al., PIXEL (Pixel-based Encoder of

Language), the first complete LLM (large language model) using pixels of images as

input was designed based on the Masked Autoencoding Visual Transformer (ViT-MAE)

[25]. On the basis of the transformer model, after training the encoder-decoder model

ViT-MAE, the pixels of the masked image patches were reformed. This model gets

rid of the restricted vocabulary embedding layer. As the replacement, The raw text

was rendered into a sequence of fixed-sized patches by using a Vision Transformer

encoder [26]. PIXEL contains three main parts, renderer, encoder, and decoder. The

renderer turns texts into images, the unmasked parts of the image are encoded through

an encoder, and the decoder reforms the masked parts [4]. To expand the application

of PIXEL, multiple language datasets were tried as the input of PIXEL in 2023 [27].

Besides, instead of using the text encoder of CLIP based on ID, CLIPPO solves visual

Chapter 2. Background and Literature Review 7

QA tasks through the process of both images of rendered texts and normal images

[28] [29]. This research makes the connection between NLP and CV, which means

the multimodal models can be trained by both images and texts. Since both PIXEL

and CLIPPO contain the encoder part in their architecture, they cannot be trained to

solve generative tasks. Using encoded text features as conditions, a diffusion model

was used by GlyphDiffusion to generate images of texts from noise [30]. However,

the embedding of symbols was still applied in this model. Therefore, according to the

design of LLMs only based on pixels, a model named PIXAR was created to learn the

representation of symbols by only processing perceptual information [7].

PIXAR (PIXel-based AutoRegressive LLM) was designed based on the PIXEL

model to process the generative tasks that PIXEL can not handle[7]. MAE structure

used in PIXEL was replaced by other generative LLMs including LLaMA-2 and GPT-2

[15]. The input and output of this model are only patches of pixels with text information

on them. In the pretraining stage, this model generates new image patches only learned

from the previous image patches. In the second finetune stage, this model chooses

the GAN loss as the final layer and this model combines the MSE loss and GAN loss

for RGB images and combines pixel-wise binary cross entropy loss and GAN loss for

binary images. Another model named PTP (Patch-and-Text Prediction) [13] was also

designed conditioned on PIXAR. This model contains both image and text decoders,

which means this model can be used to predict not only the image with masked text

content but also the pure text content from the text images. As shown in the paper

on PTP, for the GLUE benchmark, PTP performs better than PIXAR and PIXEL on

every task of GLUE, which means PTP has better performance on discriminative tasks.

However, since PTP did not try to do the experiments on the LAMBADA and bAbI

tasks, the generative ability of PIXAR and PTP has not been compared [13].

PIXAR Preprocessing: Since this project will use PIXAR as the base model,

here will introduce the implementation of PIXAR in detail. Since PIXEL is designed

based on PIXAR, the preprocessing part of them is similar. Firstly, the articles of the

raw datasets were divided into small paragraphs within a fixed number of characters

using the ”PunktSentenceTokenizer” from the Natural Language Toolkit (NLTK). As

shown in Figure 2.2, These small paragraphs are treated as the input text. After that,

a long (single) image consisting of several nonoverlapping patches is generated to

represent these small paragraphs. In the experiments of PIXAR, the binary images

(x ∈ [0,1]H×W×1) and RGB images (x ∈ [0,1]H×W×3) were tried. These images are

made up of patches with a fixed size. A vector is generated by flatting each patch of

Chapter 2. Background and Literature Review 8

the input image x ∈ RH×W×C (H: the patch height; W: the patch width; C: number of

channels). A hidden embedding hin ∈ Rd is then created by projecting the vector. All

the patch embeddings have resulted in a sequence of {hin
1 , ...,h

in
eos} which is used to be

the input of the transformer decoder block. According to the experiment of the PIXAR

paper, binary images not only simplified model learning, but also obtained relatively

good downstream task performance [7].

Figure 2.2: This image shows the preprocessing and decoder process of PIXAR

PIXAR structure: Unlike the PIXEL model, PIXAR is a decoder-only model. A

stack of 12 Transformer layers is contained in its decoder. Aiming to increase the perfor-

mance of the transformer used in this model, pre-normalization using RMSNorm [31],

SwiGLU activation functions [32], LLaMA-2 [15] and rotary positional embeddings

[33] are proposed to be used in PIXAR. The output generated by these transformer

layers in PIXAR is hout ∈ Rd hidden states [7]. Finally, new image patches are generated

as the output of the model. The specific process is to add a linear layer after the trans-

former layer, which can map the output embedding hout
N back to the space of the pixel

as a vector. This vector named x̃ can be represented as the linearized H ×W ×C (For

binary image C is equal to 1) patches and can be interpreted according to the category

of the image. Setting the temperature to T = 1, an element-wise sigmoid squashed the

vector x̃ for the rendered binary images, where x̃ are the logits. Besides, a threshold

θ = 0.5 was applied to generate a hard binary vector for the original vector with the

values of the probabilities which is between [0,1]. For the processing progress of the

RGB images, the value of the x̃ element-wise is firstly clipped to be within [0,1]. After

that, the RGB patches are created by linearly mapping the three channels in the x̃ to

{0−255} [7].

Training stages and loss functions: There are two stages in the training of PIXAR

Chapter 2. Background and Literature Review 9

which are Stage 1 training: MLE (maximum likelihood estimation) and Stage 2
training: Adversarial. In stage 1 training, a gold (observed) patches sequence (x1:i−1)

and a sequence of L ground truth pixel patches (xi:i+L−1) are prepared to calculate the

negative log-likelihood. The negative log-likelihood of xi:i+L−1 conditioned on x1:i−1

is minimized to calculate the MLE, which is named ”teacher forcing” [34]. Given the

embedding of the last layer hout
N , the pixels in xi:i+L−1 are considered to be conditionally

independent. According to the assumption above, the reconstruction loss Lrec over

xi:i+L−1 is minimized. For the RGB images, the MSE loss is applied, and for the binary

images, the usual pixel-wise binary cross-entropy loss is used [7] [35] [36]. Since there

are H×W ×C×L variables in the sequential prediction task, this task is challenging for

the PIXAR model to predict. Although the choice of using binary images relieves the

predicted budget of the learning, the pretrained PIXAR very easily generates patches

with noise which is more likely to occur when L>1, and always gets stuck in the local

optimal. According to the research of Theis et al., MLE tends to insert probabilistic

mass into possible modes which means the circumstance above can be predicted [37].

Therefore, the first stage of training will lead to low readability of the generated patches

[7].

To solve the above problems, PIXAR paper modified the original Lrec. An adver-

sarial loss is added to the original loss function. The newly added loss function is

named patch-wise context-aware adversarial (PCAA) loss. Besides, the generation

performance and readability of PIXAR can be greatly increased by only 200 steps

of stage two training. Based on the basic structure of the GAN [10] model, both a

discriminator and a generator should be used for the adversarial training. The PCAA

Loss Function is:

LPCAA = Ex̃i:i+L−1 [−log(D(x̃i:i+L−1|x1:i−1))] (2.1)

Where x̃i:i+L−1 is the ground truth pixel patches; x1:i−1 is the observed patches.

The usage of this equation is to measure how much the discriminator can be ”fooled”

by the generator by letting the discriminator ”guess” whether a generated patch x̃i is

real or fake. A copy of the stage one PIXAR is used with a patch-wise classification

head to be a context-aware discriminator. This discriminator is used to compute the

PCAA loss. Based on the real patches x1:i−1 provided, the training of this discriminator

is to justify whether the input patch is fake or real [7].

A patch sampling algorithm is designed to compute the PCCA loss effectively and

reduce the computational burden of the transformer layers. The fake patches are first

Chapter 2. Background and Literature Review 10

generated given a sequence of patches and the reconstruction loss is calculated by the

generator. After that, the key and value vectors of the real patches and the PCAA loss

of each fake patch are calculated by the discriminator. Only 30 sampled fake patches

are used to compute the PCAA loss for a sequence to increase the training speed of

stage 2 [7].

The last step is to choose the hyperparameters to balance the PCAA and MLE.

Because GAN training is extremely unstable, according to the [38] study, the paper of

PIXAR decided to mix MLE loss (Lrec) and PCAA loss (LPCAA). The following is the

loss function of stage 2:

Lcom = Lrec +λm ·λauto ·LPCAA (2.2)

where λm is a hyperparameter that can be manually modified, and λauto = ∇GL [Lrec]

/(∇GL [LPCAA +δ]) where ∇GL [·] is the scale of gradients of the generator related to the

last layer, and the δ = 1e−8 is used to protect this equation by avoiding division by zero.

2.2 Diffusion Models

The basic theory of the diffusion model is based on non-equilibrium thermodynamics.

The diffusion process begins with random noise and data resembling real videos and

images are generated by removing this noise. The idea of using the diffusion model

to generate images starts with Stable Diffusion. In this model, multiple diffusion steps

are used to increase the throughput of the model, using a gradual increase in noise to

improve the ability of control, so that the model can generate high-quality images [39].

The OpenAI Sora was proposed based on Diffusion Models and Transformers. High-

quality video of around 1 minute can be generated by this model [40] [9]. Two models

are used in SORA which are Latent Diffusion Models [39] and Diffusion Transformers

(DiT; [41]). Latent Diffusion Models have great advantages in the task of compositing

high-quality images. The computation cost can be decreased by using the diffusion

model in the latent space. The most important part of the SORA is the Diffusion

Transformer. The U-Net module of the classic diffusion model was replaced by the

transformer to make up the latent diffusion model. Using this structure can speed up the

processing efficiency of image patches and reduce the computing resources required to

generate high-quality images [41]. In further study, the diffusion model or diffusion

transformer is planned to be used as the final layer in PIXAR++ instead of using the

GAN loss [7].

Chapter 3

Methodology

3.1 Datasets and downstream tasks

At the beginning of the tasks, environment configuration, data preprocessing, and

training the original PIXAR are the main work directions. Two English datasets

used in the paper on PIXAR are chosen to retrain PIXAR which are Bookcorpus

[42] and English Wikipedia [4] [7]. Because of the lack of training resources and

because this project had a PIXARstage2 checkpoint of 85M parameters provided by the

PIXAR authors, the original PIXAR model did not need to finish training. Besides,

after research, Wikipedia datasets contain other language versions. Therefore, seven

Wikipedia datasets with seven different languages including German, French, Spanish,

English, Russian, Arabic, and Italian were chosen and combined to create a new

multilingual dataset. This dataset was used in the first and second stages of training.

For the downstream tasks, this project chose GLUE benchmark and XNLI as the

discriminate tasks and Lambada and bAbI tasks for the experiment on generative tasks

[4] [11] [12] [43] [44].

3.1.1 GLUE

GLUE benchmark consists of nine tasks, where eight are classification tasks and only

STS-B is regression tasks. According to the type of tasks, it mainly includes three kinds

of tasks: similarity and paraphrase tasks, inference tasks, and single-sentence tasks

[11]. Most of the tasks use accuracy as their metric and other metrics will be mentioned

specifically in the task introduction below.

Single-sentence tasks:

11

Chapter 3. Methodology 12

• CoLA (Corpus of Linguistic Acceptability) [45]: This task contains judgments

of English acceptability derived from articles and books on linguistic theory.

Each of these samples is a sequence of words that the language model needs

to determine if it is grammatically correct. The evaluation metric used here

is Matthews correlation coefficient [46]. It presents the performance of the

unbalanced binary classification. The value of it is from -1 to 1, and the value 0

is guessing without being informed [45].

• SST-2 (Stanford Sentiment Treebank) [47]: This evaluation task contains the

sentiment annotated by humans and the movie reviews. The language models

need to predict whether the sentiment of sentences provided is positive or negative

[47].

Similarity and paraphrase tasks:

• MRPC (Microsoft Research Paraphrase Corpus) [48]: This task contains

many sentence pairs taken from online news sources automatically. These sen-

tences have been manually marked for semantically equivalent or not. Since it is

an unbalanced dataset, this project reported an F1 score for this task [48].

• QQP (Quora Question Pairs): The QQP dataset contains a set of question pairs

extracted from the corpus of community Q&A websites. Like MRPC, it is also a

downstream task to test whether two sentences are semantically equivalent. It is

also a task with an unbalanced dataset. Therefore, the F1 score is also applied in

this project to evaluate the performance of the model on this task [11].

• STS-B (Semantic Textual Similarity Benchmark) [49]: The STS-B consists

of some sentence pairs extracting image and video titles, news headlines, and the

inference data of natural language. Each sentence pair was manually labeled with

a score from 1 to 5 based on similarity. This task aims to predict these scores and

the performance of the language model is evaluated by Pearson and Spearman

correlation coefficients [49].

Inference tasks:

• MNLI (Multi-Genre Natural Language Inference Corpus) [50]: The collec-

tion of sentence pairs in this task is crowd-sourced with the annotations of textual

entailment. Each sentence pair consists of a premise sentence and a hypothesis

Chapter 3. Methodology 13

sentence. The language model needs to predict whether the hypothesis is contra-

dicted by the premise (contradiction), the hypothesis is entailed by the premise

(entailment), or neither (neutral). Ten different sources were used to collect the

premise sentences. The sources include fiction, government reports, and speech.

The language models need to predict the matched (in-domain) and mismatched

(cross-domain) sets [50].

• QNLI (Stanford Question Answering Dataset) [51]: It is a Q&A tasks with

pairs of a question and a paragraph. The questions in this task were designed by

the annotator and the answers are one of the sentences in the Wikipedia paragraph.

The articles in this dataset are broken down into many sentences, each sentence is

combined with the corresponding question in the dataset to form sentence pairs,

and those with poor lexical matching are removed. This modified version changes

the searching answer task into a classification task and removes the assumption

that the answer always exists in the second sentence. Besides, the new task

considers the lexical overlap an important clue [51].

• RTE (Recognizing Textual Entailment): This task is a collection of four annual

text entailment problem challenges including RTE1, RTE2, RTE3, and RTE5. The

samples included are collected from Wikipedia text and news. All the datasets are

converted into binary classification problems. For the three classification datasets,

the contradiction and neutral are changed into not entailment [11].

• WNLI (Winograd Schema Challenge) [52]: This is a reading comprehension

task where a sentence with a pronoun is read and the referent to which the pronoun

refers is selected. To turn this task into a classification task, pronouns are replaced

with alternative referents. The model needs to determine whether there is an

entailment relationship between two sentences. The main source of the dataset is

fiction books [52].

3.1.2 XNLI (Cross-lingual Natural Language Inference corpus) task:

This task extends the test and development examples of the Multi-Genre Natural

Language Inference Corpus (MultiNLI) to 15 languages to build an evaluation set

for cross-lingual language understanding (XLU). it contains 7500 development and

test samples annotated by humans in the three class classification of natural language

inference (NLI) in Bulgarian, English, French, Spanish, Greek, German, Vietnamese,

Chapter 3. Methodology 14

Turkish, Russian, Arabic, Hindi, Thai, Chinese, Swahili, and Urdu. These languages

include several language categories and two low-resource languages, Swahili and Urdu

are contained [12].

3.1.3 BAbI task:

There are 20 tasks in the bAbI. All the tasks do not have noise and a hundred percent

accuracy can always be achieved by a human that can read English. These tasks are

simple and routine for humans and do not require any knowledge background, for

example, logic, or machine learning, to solve them. This project chose task one to test

the performance of PIXAR++. Task one consists of questions that possibly contain a

set of unrelated facts and one supporting fact. The model should find the true result for

the question [43].

3.1.4 LAMBADA tasks:

The LAMBADA (LAnguage Modeling Broadened to Account for Discourse Aspects)

task is a dataset that assesses the performance of the text comprehension ability of a

model. The samples of LAMBADA are narrative passages. One thing these articles

have in common is that people can easily guess the last word if provided with the

whole passage. If humans only read the last sentence, they can not guess the true

answer. Therefore, a model that wants to perform well on LAMBADA needs to learn

long-distance dependencies rather than being limited to the local context [53]. Since

the training dataset used in this project is a multilingual dataset, generative LAMBADA

tasks in other languages including German, French, Spanish, and Italian will also be

used [44].

3.2 Preprocessing

In the preprocessing stage, the main task is to preprocess the multi-language dataset cre-

ated in the previous section. Because Wikipedia articles vary in length, they sometimes

go beyond the input window of PIXAR. Therefore, this project uses the same algorithm

as PIXAR to segment these articles. The method named “PunktSentenceTokenizer”

was chosen from the Natural Language Toolkit (NLTK) to divide these articles into

sentences [54]. These sentences are combined into small paragraphs within a fixed

number of characters. After that, the samples that contain characters less than 100 are

Chapter 3. Methodology 15

deleted. The window size of the PIXAR++ is 360 patches and the character limit is

1180 characters which is the same as PIXAR [7]. According to Table 3.1, the English

Wikipedia has the most average characters which is 6295 and the Arabic Wikipedia has

the lowest average characters which is 1283. Although the differences between the two

languages are significant, this multilingual dataset contains, in the greatest likelihood,

the most text in English. In addition, the average characters of the preprocessed dataset

were 960 and the total samples of it were 27,138,373, which was similar to those of

PIXAR [7].

Dataset Number of samples Average characters

Arabic Wikipedia 1024000 1283

English Wikipedia 1024000 6295

French Wikipedia 1024000 3930

German Wikipedia 1024000 4238

Italian Wikipedia 1024000 2900

Russian Wikipedia 1024000 3166

Spanish Wikipedia 1024000 3546

Rendered dataset 27138373 960

Table 3.1: datasets information

According to the paper of PIXAR, the previously processed texts are rendered into

a long image containing several patches through PangoCairo render, the same tool used

in PIXEL. Based on the experiment results of PIXAR, binary images perform better

and relieve the burden of computation. Therefore, PIXAR++ chooses the binary image

(x ∈ [0,1]H×W×1) as the input image. Each image is then cropped into small patches

with fixed-size (x ∈ [0,1]8×8×1) for 8-patch-size PIXAR++ and (x ∈ [0,1]16×16×1) for

16-patch-size PIXAR++. Due to the good performance of PIXAR, the pixel-style

font “Pixeloid Sans” is chosen to generate the input images for PIXAR++. Finally,

through the linear projection, these patches are changed into vectors to create a hidden

embedding and input into the transformer decoder block [7].

3.3 Training stages

For the pretraining stage 1, since all the images used in PIXAR++ are binary, the usual

pixel-wise binary cross-entropy loss is used to pretrain the PIXAR++ model. Same

Chapter 3. Methodology 16

as the PXIAR model, the reconstruction loss Lrec is calculated in this stage. Table 3.2

shows the structure of the PIXAR++ model and the hyperparameters used for stage 1

training. PIXAR++ is also a decoder-only model that contains 12 transformer layers

and 12 attention heads. The number of parameters of these two pretrained PIXAR++

models is around 85M which is the same as the PIXAR model. Since the input patch

size of the 16-patch-size PIXAR++ is 16 * 16, the parameters of it are a little more

than the other model. Most of the hyperparameters are the same as the PIXAR model,

the batch size was changed to 768 and the steps were changed to 0.5M to increase the

training speed. In addition, during the training period, the learning rate is warmed up to

3e-4 linearly and then annealed to 3e-6 through the cosine scheduler. Table 3.3 shows

the new hyperparameters of stage 2 training, the learning rate and GAN learning rate are

changed to 3e-6, and the evaluation steps are changed to 100 to store more checkpoints.

According to PIXAR, the GAN ratio chosen by the author is from 0.1 to 15. After

trying several GAN ratios from this domain, 0.8 is picked for 16-patch-size PIXAR++

and 1.6 is picked for 8-patch-size PIXAR++. The loss function Lcom mentioned in the

methodology is also used in this project [7].

Render Configuration Model Structure Pretrain Hyperparameters

patch length 2 layers 12 peak lr 3e-4

patch number 360 attention heads 12 min. lr 3e-5

min char. 100 hidden size 768 lr scheduler CosineAnnealing

max char. 1180 activation SwiGLU optimizer AdamW

render DPI 80 intermediate size 2048 β1 0.9

font size 8 parameters 85.2M / 85.7M β2 0.95

patch size 8 / 16 weight decay 0.1

font PixeloidSans steps 0.5M

binary true warm up 2000

Temperature (T) 1 batch size 768

Threshold (θ) 0.5 precision fp16 & fp32

random seed 42

Table 3.2: This table shows the configuration of rendering the original text datasets, the

structure of models, and the hyperparameters of the pertaining stage.

3.4 Text recognization

For the generative tasks, it is necessary to recognize the text from the images and check

the readability of the generated text. For text recognition, the OCR software is chosen to

Chapter 3. Methodology 17

Stage 2 Hyperparameters

lr 3e-6 GAN lr 3e-6

lr scheduler CosineAnnealing GAN lr warmup steps 100

optimizer AdamW GAN total steps 1000

β1 0.9 GAN ratio 0.8 / 1.6

β2 0.95 GAN ratio warmup steps 100

weight decay 0.1 random seed 42

steps 1000 batch size 32

warmup 100

precision fp16

evaluation freq. 100 / 50

Table 3.3: This table shows the hyperparameters used in the stage of training GAN.

recognize the text from the images. These images are created by putting the generated

patches together. The extracted text is more accurate because OCR software performs

better on images with higher resolution. In addition, the performance of OCR software

on binary images is also poor. Even when faced with words humans can understand, its

recognition is still wrong. To improve the accuracy of the recognition, the generated

patches were scaled by 3 in size and placed in the middle of the square white background.

The Tesseract OCR 1 and Paddle OCR 2 are chosen to recognize the texts from the

output images. Because this project trains a multilingual model. Therefore, during the

evaluation, the LAMBADA dataset was tested in five different languages. Therefore,

this project will explore two different readabilities, namely whether the generated text

belongs to the same language as the prompt and whether the generated text belongs to

one of the five languages [7].

However, for Paddle OCR, it can only used by specifying one language as its

recognizing language. If five Paddle OCRs for different languages are used separately

to recognize the output images, the evaluation time will be increased. Besides, because

different languages have different alphabet tables, OCR for a single language might

recognize a wrong word correctly. For example, an incorrect French word may be

recognized by the English paddle OCR as the correct word, since the French alphabet

contains some characters like: ”à” which may be recognized to be ”a” by the English

Paddle OCR. Therefore, when facing different languages, the Paddle OCR for the same

language as the prompt language will be used as the recognizer.

For Tesseract OCR the multilingual version of it will be used as the recognizer. The

1Tesseract OCR: link
2Paddle OCR: link

https://github.com/tesseract-ocr/tesseract
https://github.com/PaddlePaddle/PaddleOCR

Chapter 3. Methodology 18

reason is that if single-language OCR is used, some wrong words that are more likely

to be in other languages may be forced to be recognized as correct words by such OCR

due to differences in the alphabet. While the use of multilingual OCR may slightly

reduce the accuracy of text recognition, it makes text recognition more rigorous. The

results of the Tesseract OCR and Paddle OCR are combined. If one of them recognizes

the target word, the prediction is considered correct [7].

Table 3.4 shows the letters that are not included in English but are contained in the

other four languages. These letters are copied from Chinese version Wikipedia 3

language Letters outside the English alphabet

German (Ä ä) (Ö ö) (SS ß) (Ü ü)

French (À à) (Â â) (Æ æ) (Ç ç) (É é) (È è) (Ê ê) (Ë ë) (Î ı̂) (Ï ı̈)(Ô ô) (Œ œ) (Û û) (Ù ù) (Ü ü) (Ÿ ÿ)

Spanish (Á á) (Ch ch) (É é) (Í ı́) (Ll ll) (Ó ó) (Ú ú) (Ü ü)

Italian (À à) (È è) (É é) (Ì ı̀) (Í ı́) (Î ı̂) (Ò ò) (Ó ó)(Ù ù) (Ú ú)

Table 3.4: This table shows the letters outside the English alphabet in the other 4

languages.

.

3.5 Readability metric

The patches of images generated by PIXAR++ may contain readable text or unreadable

text, and noise. Whether the output patches are readable for humans and OCR tools

or not depends on the generation quality of the PIXAR++ model. The standard for

measuring whether the generated text is readable is called readability. Because this

project uses two OCR tools as text recognition tools, the readability in this project is

defined as whether the generated patches can be recognized as at least one word by the

OCR tools. This project used two readability metrics, one is whether the generated

word exists in the same language word list as the prompt, and the other is whether

the generated word exists in the five languages word list. The languages of the five

languages word list are English, French, German, Italian, and Spanish, which are the

same languages used in LAMBADA prompts. The reference vocabulary of English is

collected by using the English Word Frequency dataset 4, which contains 333k most

common English words. For the other four languages, the datasets are chosen from the

3Wikipedia (Chinese version): link
4English Word Frequency dataset: link

https://zh.wikipedia.org/wiki
https://www.kaggle.com/datasets/rtatman/english-word-frequency

Chapter 3. Methodology 19

WorldLex 5. There are two sets for each language which are raw freq. and cleaned freq..

The cleaned freq. datasets were tried first but the performance was not good. The reason

is that, for example, the German dataset only contains around 150k common words

which is much less than the chosen English dataset. Therefore, the raw freq. datasets in

this website were chosen as the vocabulary lists in this project. Since all these datasets

are much more than 333k words, this project only used around 333k words on the top

of each dataset CSV file [7].

5WorldLex: Blog, Twitter and Newspapers Word Frequencies for 66 languages: link

http://www.lexique.org/?page_id=250

Chapter 4

Experiments and Results

4.1 Data Preprocessing

Because both PIXAR and PIXEL chose Wikipedia datasets for their experiments, this

project selected seven different language datasets from Wikipedia including French,

English, Spanish, Arabic, Russian, German, and Italian. Chinese was chosen at the

beginning of the experiment but performed poorly in the evaluation due to the small font

size selected for the experiment. Figure 4.1 shows a rendered image comparing English

and Chinese. It can be seen that every character in English can be clearly recognized,

while many characters in Chinese are gathered together by many black pixels, which

makes it difficult to recognize the text. In addition, there are many Chinese characters,

but the dataset is only 1,024,000 articles, so many characters may only appear once.

Therefore, Chinese was replaced with Spanish.

Besides, the parameters of PIXAR++ specified in pretraining are consistent with the

number of PIXAR. Therefore, to ensure the fairness of the comparison experiment, it is

necessary to construct a multilingual dataset with a similar dataset size. Therefore, this

project chose the same Wikipedia dataset used in PIXAR and selected the first 1024,000

samples in each language [4] [7].

The first column of table 3.2 demonstrates the configuration of rendering the raw

text to images. For most of the parameters, keep them the same as those in the original

PIXAR paper. In terms of patch size, this project chooses to try a larger patch size: 16 *

16. When the font size is unchanged, a larger patch size will increase the sequence length

contained in each patch, and it will also increase the difficulty of image generation.

20

Chapter 4. Experiments and Results 21

Figure 4.1: This image shows the comparison of Chinese image and English image

4.2 Computational budget

Stage 1 training of PIXAR++ models is trained in the same environment of PIXAR

[7]. They both completed around 90 hours through 16 NVIDIA V100 GPUs. Stage

2 training and evaluation for PIXAR++ are also in the same environment as PIXAR.

Because the training resources required were much less than stage 1, 4 NVIDIA V100

GPUs were used for stage 2 training and evaluation.

4.3 Pretraining stage

In the pretraining phase of this project, two different datasets of rendered images were

used as inputs. The size of the input images is different in each of the models. The input

data of the first model was the images with the size of 240 * 192, which is made up of

720 patches and each patch size is 8 * 8. The input image size of the second model

is 480 * 384, which consists of 720 patches and each patch size is 16 * 16. The other

difference is that when training a model with an input patch size of 8 * 8, the dataset was

rendered before training began. When training the model with a patch size of 16*16,

the parallel mode of CPU and GPU was used. The CPU rendered the data, while the

GPU trained the model. Based on the training time, the second type of training did not

increase much training time. In addition, the size of the first method dataset is 1.2T,

while the size of the second method dataset is 28G.

To control variables, the patch size was increased without changing the font size.

The main purpose of increasing patch size is to increase the number of pixels generated

each time, and then increase the length of the generated sequence with a fixed font size.

According to the training results, the training loss of the PIXAR++ using the small

image as input is 0.18, while the training loss of the PIXAR++ using the large image

as input is 0.14. However, in downstream experiments, the PIXAR++ using the larger

Chapter 4. Experiments and Results 22

picture performed worse than the other PIXAR++. Because the training uses binary

images and the loss function is the usual pixel-wise binary cross-entropy loss, the white

part of the large image is much more than the white part of the small image. Therefore,

in the case of the same font size, the line spacing in the large picture is larger, and the

probability of this part being predicted correctly is higher. As a result, models using

larger images have less training loss.

4.4 GAN stage

Based on the experiments mentioned by Yintao et al., the best-performing model was

found at step 200. However, the original evaluation frequencies of the training are

200. Therefore, this project chose to reduce the total training steps to reduce the

training time. In addition, the evaluation steps were reduced to 100 or 50 to get more

checkpoints around 200 steps [7]. The chosen checkpoints of PIXAR++stage2 are 100

steps 8-patch-size checkpoint and 300 steps 8-patch-size checkpoint.

4.5 Discriminative Tasks

4.5.1 GLUE

Based on the paper of Tai et al. and Rust et al. [4] [7], the GLUE benchmark was

chosen as the primary metric to test the language understanding of the model. GLUE

contains 1 regression and 8 classification tasks. A newly created prediction head from

the rendered data is used to finetune PIXAR++ and the rendering of the dataset follows

the approach used for the training dataset. Some tasks consist of a pair of sentences, and

to separate the two sentences, a black patch is inserted between them. The embedding

of the last black patch is used as the head of the task input which is the same as the

paper of PIXAR. All hyperparameters are the same as those in the paper of PIXAR.

Besides, the early-stopping strategy mentioned in the paper on PIXAR is also used in

the experiments of this project [7].

PIXAR++stage1

According to the experiment result for stage one, the PIXAR++stage1 models with the

same input patch size as PIXARstage1 perform slightly worse than PIXARstage1 models,

given the same parameters of their models. This thesis will compare these two models

Chapter 4. Experiments and Results 23

first. For the average value of all tasks, PIXARstage1 is 74.0, and PIXAR++stage1 with 8

patch size is 71.3, which is only 2.7 lower. This may be because the GLUE benchmark

uses English as the dataset language, PIXARstage1 uses 26.8M English samples as

the training dataset, but only about 1/7 of the 27.1M samples in PIXAR++stage1 are

in English. Therefore, PIXAR++stage1 should not perform as well as PIXARstage1

on GLUE. Another reason may be that other languages also have a disturbing effect

on the parameters of the model. Compared to GPT-2 [44] and BERT [55], the two

PIXAR++stage1 models outperformed GPT-2 on STSTB, MRPC, RTE, and WNLI and

outperformed BERT on WNLI. This suggests that PIXAR++stage1 performs better on

tasks with smaller datasets.

Specifically, for the single-sentence tasks in GLUE (CoLA and SST-2), 8-patch-size

PIXAR++stage1 performs worse than PIXARstage1. For the accuracy of the SST-2 task,

8-patch-size PIXAR++stage1 is close to PIXARstage1, while Matthew’s correlation of

the CoLA task has a large gap between these two models. The slight gap on SST-2

can be interpreted as a difference in the dataset. For CoLA, the primary sources of

its dataset are books and articles. The pretraining dataset of PIXARstage1, however,

contains Bookcorpus [42] and is, therefore, better suited to this task. In addition, since

the task is to determine whether the syntax is correct. The PIXAR++stage1 dataset

contains seven languages, so the syntax of languages other than English can affect the

judgment of the model. For the similarity and paraphrase tasks (MRPC, QQP, and

STS-B), the 8-patch-size PIXAR++stage1 all have good performance and are close to

PIXARstage1 scores. For the inference tasks (MNLI, QNLI, RTE, and WNLI), the

8-patch-size PIXAR++stage1 still achieved good performance. For RTE and WNLI, the

performance of 8-patch-size PIXAR++stage1 is even better than that of PIXARstage1.

For RTE, the reason could be that the data of this task are from a Wikipedia dataset, and

PIXAR++stage1 only used the Wikipedia dataset in pretraining. For WNLI, The reason

may be that the dataset of WNLI is too small and unstable.

However, 16-patch-size PIXAR++stage1 performed worse than the other two models

on each task of GLUE. Therefore, this project will not analyze the reasons behind

each task individually. There are many reasons for this problem. The first reason is to

increase the size of the input image and the size of the patch that needs to be predicted.

Because of this change, the number of pixels in the input picture has increased, and

at the same time, the number of pixels in the patch that needs to be predicted has

also increased. This means that the number of features the model needs to learn has

increased, however, in the model, the overall number of parameters has not changed, so

Chapter 4. Experiments and Results 24

Models Parameters
Patch size MNLI-m/mm QQP QNLI SST-2 COLA STSB MRPC RTE WNLI

AVG
(pixel) 392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k 635

GPT-2 126M NA 81.0 89.4 87.7 92.5 77.0 74.9 71.5 52.0 54.9 75.6

BERT 110M NA 84.0/84.2 87.6 91.0 92.6 60.3 88.8 90.2 69.5 51.8 80.0

PIXARstage1 85M 8 78.4 / 78.6 85.6 85.7 89.0 39.9 81.7 83.3 58.5 59.2 74.0

PIXAR++stage1 85M 8 75.2 / 75.4 84.4 83.6 87.7 21.7 80.9 82.4 60.6 60.6 71.3

PIXAR++stage1 85M 16 70.0 / 70.2 83.2 82.2 83.5 10.9 77.2 81.8 57.0 57.7 67.4

PIXARstage2 85M 8 79.7 / 80.1 86.3 85.7 89.3 37.0 82.4 82.8 57.7 60.6 74.2

PIXAR++stage2 85M 8 74.5 / 75.2 84.4 83.6 86.9 15.9 80.3 81.8 62.1 57.7 70.3

PIXAR++stage2 85M 16 71.2 / 71.4 83.0 82.6 83.9 10.0 76.4 82.7 58.8 56.3 67.6

Table 4.1: This table shows the performance of BERT [55], GPT2 [44], PIXAR and

PIXAR++. PIXAR++ achieves similar performance to PXIAR on GLUE. For QQP and

MRPC, the F1 score is used as the benchmark. The Spearman’s ρ is used for STSB

and Matthew’s correlation is applied for COLA. The accuracy is used on other tasks.

the evaluation results are not good. Another reason is that the training stage uses the

usual pixel-wise binary cross entropy loss as the loss function, but in this loss function,

the weight of the white and black pixels is the same. However, in the large patch size,

due to the same size, the white pixel occupies a larger proportion, and the white pixel

is easier to predict correctly than the black pixel. Therefore, although the loss value

during pretraining is low, the effect of evaluation is not good. A good solution is to

balance the weight of the two types of pixels or increase the weight of the black pixel.

Another solution is to increase the font size of the large image, however, this will reduce

the length of the predicted sequence.

PIXAR++stage2

The last three rows in the table 4.1 show the performance of the stage 2 models on

the GLUE benchmark. In terms of average performance, all models achieved similar

results at stage 1 and stage 2. Specifically, the average score of PIXARstage2 and

16-patch-size PIXAR++stage2 has a small increase, while the average score of 8-patch-

size PIXAR++stage2 has a small decrease. The reason may be that stage 2 models are

trained to increase the readability and accuracy of the generated text to improve their

ability to handle generative tasks. Therefore, the development set used to select stage 2

PIXAR++ checkpoints is a validation set from LAMBADA. As a result, the checkpoints

picked out may not perform best on discriminative Tasks. Besides, the performance

of PIXAR++stage2 models on RTE is still better than PIXARstage2 for the same reason

mentioned in the PIXAR++stage1 section. The surprising result was that 16-patch-size

PIXAR++stage2 performed better than 8-patch-size PIXAR++stage2 on MRPC tasks

Chapter 4. Experiments and Results 25

and is very close to the performance of PIXARstage2. The difference between the two

PIXAR++ models is only patch size. Therefore, since the font size of these two models

is the same and the training of PIXAR++ is pixel-based, during training, the patch of

the input and output images of 16-patch-size PIXAR++ contain more characters and

information. This difference may be why 16-patch-size PIXAR++stage2 performs better

when dealing with online news datasets.

Hyperparameters

Table 4.2 shows the hyperparameters chosen for the evaluation of the GLUE benchmark.

All parameters are selected based on the description of the PIXAR paper. For larger

tasks like MNLI and QQP, select 256 as the batch size and 8000 as the max steps. For

smaller tasks like STSB and WNLI, 32 is selected as the batch size, while 2000 and

500 are selected as the max steps.

PIXAR++stage1 MNLI QQP QNLI SST-2 COLA STSB MRPC RTE WNLI

lr 3e-5 3e-5 3e-5 3e-5 3e-5 3e-5 6e-5 3e-5 3e-5

Weight decay 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.01

Optimizer AdamW

Warmup Linear warmup

Warmup steps 1000 1000 500 200 50 100 20 50 2

β1 0.9

β2 0.95

Random seed 42

Batch size 256 256 256 256 256 32 64 32 128

Max steps 8000 8000 4000 2000 500 2000 500 500 20

evaluation freq. 500 500 200 200 100 100 50 50 1̃ epoch

PIXAR++stage2 MNLI QQP QNLI SST-2 COLA STSB MRPC RTE WNLI

lr 3e-5 3e-5 3e-5 3e-5 3e-5 3e-5 6e-5 3e-5 3e-5

Weight decay 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.01

Optimizer AdamW

Warmup Linear warmup

Warmup steps 1000 1000 500 200 50 100 20 50 2

β1 0.9

β2 0.95

Random seed 42

Batch size 256 256 256 256 256 32 64 32 128

Max steps 8000 8000 4000 2000 500 2000 500 500 20

evaluation freq. 500 500 200 200 100 100 50 50 1̃ epoch

Table 4.2: This table shows the hyperparameters applied in the GLUE benchmark.

Chapter 4. Experiments and Results 26

4.5.2 XNLI

XNLI is the downstream task translated from MNLI in the GLUE benchmark [12].

This original dataset had no index, which led to poor training results. However, there

is an index item in the MNLI dataset. Therefore, in the preprocessing stage, an index

item is added to each sample in the dataset dictionary. Twelve languages in the XNLI

task are chosen as the experiment languages. Six of these languages were the same as

those in the pretraining dataset which are Arabic, German, English, Spanish, French,

and Russian. Italian was not included as the experimental language because it was not

included in the XNLI dataset. Table 4.3 shows the performance of these languages on

BiLSTM-max, BERT, PIXAR, and PIXAR++. Six other languages including Bulgarian,

Greek, Urdu, Swahili, Turkish, and Vietnamese were chosen to test the performance

of PIXAR++ models in languages they had not been trained before. Table 4.4 shows

the performance of these languages on the same models of table 4.3. The results of the

BiLSTM-max are provided from the paper of XNLI [12].

Models Parameters Patch size ar de en es fr ru AVG

BiLSTM-max NA NA 65.8 66.5 73.7 68.8 68.3 66.5 68.2

BERT 110M NA 70.7 75.9 81.9 77.8 NA NA NA

PIXAR++stage1 85M 8 63.6 68.0 75.3 72.1 71.2 67.0 69.5

PIXAR++stage1 85M 16 55.2 66.3 70.9 70.0 68.0 65.1 65.9

PIXARstage2 85M 8 59.7 67.2 78.8 69.8 67.7 64.0 67.9

PIXAR++stage2 85M 8 62.6 70.0 74.7 72.8 71.2 68.6 70.0

PIXAR++stage2 85M 16 54.1 66.9 70.9 69.4 68.3 64.5 65.7

Table 4.3: This table shows the performance of BiLSTM-max, BERT, PIXAR, and

PIXAR++ models on XNLI tasks. The metric used here is accuracy. The XNLI was

translated from MNLI and is used to evaluate the performance of multilingual models.

This table mainly shows the performance of the languages present in the pretraining

dataset of the PIXAR++. These languages are ar(Arabic), de(German), en(English),

es(Spanish), fr(French), and ru(Russian).

PIXAR++stage1

Languages in the pretraining dataset: According to the table 4.3, the PIXAR++stage1

model using 8 patch size images as input outperformed the other PIXAR++stage1 model

overall. In addition, PIXAR++stage1 outperforms BiLSTM-max in all languages except

Arabic. The accuracy of BiLSTM-max on Arabic is 65.8, but on the 8-patch-size and

Chapter 4. Experiments and Results 27

Models Parameters Patch size bg el ur sw tr vi AVG

BiLSTM-max NA NA 67.4 66.4 56.6 58.2 64.5 66.0 63.1

BERT 110M NA NA NA 61.6 NA NA NA NA

PIXAR++stage1 85M 8 67.8 68.0 54.3 60.5 64.7 63.9 63.2

PIXAR++stage1 85M 16 64.7 64.5 50.3 58.2 61.6 61.3 60.1

PIXARstage2 85M 8 60.5 64.6 50.2 56.2 65.5 63.9 60.2

PIXAR++stage2 85M 8 67.8 67.0 55.7 61.4 64.4 64.4 63.5

PIXAR++stage2 85M 16 64.5 64.5 50.4 58.5 61.0 61.7 60.1

Table 4.4: This table shows the performance of BiLSTM-max, PIXAR, and PIXAR++

models on other XNLI tasks. The metric used here is accuracy. This table mainly shows

the performance of the languages that were not included in the pertaining dataset. These

languages are bg(Bulgarian), el(Greek), ur(Urdu) (low-resource language), sw(Swahili),

tr(Turkish), and vi(Vietnamese).

16-patch-size PIXAR++stage1, they are 63.6 and 55.2. The reason may be that in the

training language of the PIXAR++ model, Arabic is very different from the other six

languages. However, the other six languages are similar. Therefore, during the stage one

training of PIXAR++stage1 on Arabic samples, other languages in the pretraining dataset

can not provide useful features and even have negative effects. Despite this, the result

of the Arabic task is also close to the result of BiLSTM-max. For the 8-patch-size and

16-patch-size PIXAR++stage1, the prediction accuracy of these two models for English

tasks is the highest, which is 75.3 and 70.9 respectively. The reason may be that the total

number of characters in the English samples in the pretraining datasets is more than

the number of other languages. As a result, the English samples in the preprocessed

pretraining datasets are more likely to be longer and more than other languages.

Languages did not in the pretraining dataset: According to the table 4.4, the

8-patch-size PIXAR++stage1 still performs better than the other PIXAR++stage1 overall.

The average performance of PIXAR++stage1 is better than the BiLSTM-max. This

shows that the PIXAR++stage1 model has good processing ability even when faced

with language text that has never been seen before. Besides, a low-resource language,

Urdu, is also one of the test languages. The task for this language is very challenging

and as expected, PIXAR++stage1 performs the worst on the task of this language. The

accuracy of the two PIXAR++stage1 is only 54.3 and 50.3. However, the performance

of 8-patch-size PIXAR++stage1 is still comparable to the baseline model which is 56.6.

This shows that PIXAR++stage1 can still perform well even in the face of a low-resource

language that has never been seen before. All four languages except Vietnamese and

Chapter 4. Experiments and Results 28

Urdu exceeded the baseline in accuracy. This shows that the model can handle languages

not existing in pretraining.

PIXAR++stage2

Languages in the pretraining dataset: The last three rows of the table 4.3 show

the performance of the stage 2 PIXAR and PIXAR++. On average, 8-patch-size

PIXAR++stage2 slightly outperforms PIXAR++stage1, while the average score of 16-

patch-size PIXAR++stage2 is slightly lower than PIXAR++stage1. Besides, the average

accuracy of 8-patch-size PIXAR++stage2 is higher than it of the PIXARstage2 and 8-patch-

size PIXAR++stage2 performed better than PIXARstage2 in all five languages except

English. The accuracy of PIXARstage2 and 8-patch-size PIXAR++stage2 in English is

78.8 and 74.7. The reason concerns the datasets for pretraining and stage 2 training,

PIXAR uses a pure English training dataset, while the dataset of PIXAR++ contains

seven languages. In addition, the training dataset of PIXAR has 26M English samples,

while PIXAR++ has only about 1/7 English samples in its training dataset. Since the

16-patch-size PIXAR++stage1 did not perform as well as the other PIXAR++stage1 on

stage 1, within the expectation, its performance after stage 2 training is still lower than

the other PIXAR++stage2.

Languages did not in the pretraining dataset: The last three rows of the table

4.4 show the performance of the stage 2 PIXAR and PIXAR++. Based on the average

accuracy of these languages of the three models, 8-patch-size PIXAR++stage2 got 63.5

which is higher than the other two models and the average accuracy of the other two

models is similar, which is 60.2 for PIXARstage2 and 60.1 for PIXAR++stage2. 8-

patch-size PIXAR++stage2 also slightly outperforms PIXAR++stage1, while the average

score of 16-patch-size PIXAR++stage2 is same as it of PIXAR++stage1. This may

be because the PIXAR++ training dataset contains more letter types, grammar, and

syntactic formats. Therefore, PIXAR++ is more robust when facing unknown languages.

Specifically, 8-patch-size PIXAR++stage2 outperforms PIXARstage2 in all languages

except Turkish. The reason may be that Turkish contains similar letters and words to

English.

Hyperparameters

The hyperparameters for this task are the same as MNLI tasks in the GLUE benchmark.

This is because other language datasets of XNLI are the translation version of MNLI.

Chapter 4. Experiments and Results 29

Models lr Weight decay Optimizer Warmup Warmup steps β1 β2 Random seed Batch size Max steps evaluation freq.

PIXAR++stage1 3e-5 0.1 AdamW Linear warmup 1000 0.9 0.95 42 256 8000 500

PIXAR++stage2 3e-5 0.1 AdamW Linear warmup 1000 0.9 0.95 42 256 8000 500

Table 4.5: This table shows the hyperparameters used in XNLI downstream tasks.

4.6 Generative tasks

In the experiments of generative tasks, the prompt was rendered as images, and a white

patch of 3 pixels in length was inserted before the generation began. The white patch is

used as a space to separate new words. PIXAR++ generates new text image patches

autoregressively from here [7]. This project mainly selects bAbI and LAMBADA for

the generative tasks. The bAbI only has an English version but the LAMBADA tasks

have English, French, German, Italian, and Spanish versions [44]. These two generative

tasks were used in PIXAR papers. The bAbI task is a QA task that evaluates the reading

comprehension of the model in providing the truth. The prompt is designed to contain

four examples from bAbI and uses ”|” as the divider between the question and the

answer. LAMBADA is the benchmark used to test the text-understanding ability of

LLMs. The model needs to provide a prediction for the last word of a sentence after

reading a paragraph [7].

Table 4.6 shows the results of PIXAR and PIXAR++ models on bAbI and LAM-

BADA tasks. Since the training set of PIXAR includes only English, the performance

results of PIXAR in the tasks of other languages are labeled NA in this table. In addition,

all LAMBADA tasks tested with PIXAR++ have three metrics. The one on the left

is the readability for a single language. Specifically, the meaning of it is whether the

generated text is in the same language vocabulary as the prompt. In the middle is the

readability of the five languages, which tests whether the generated text is in any of the

vocabularies of the five LAMBADA tasks in different languages. The last value is the

accuracy of the predicted result. In addition, for readability, a portion of all generated

text is not in the same language as the prompt but is still readable. The reason may

be that multiple languages are used in the pretraining stage. Because the words of

some languages are relatively similar, the model may misjudge the language of the text

to generate when performing the generation task. Besides, since the dataset used for

PIXAR contains only English, the performance of PIXAR on the bAbI task and the

English LAMBADA task should be more advantageous.

Chapter 4. Experiments and Results 30

PIXAR++stage1

According to the experimental results, in the model of stage one, PIXAR has the highest

prediction accuracy in bAbI and English LAMBADA tasks. Since PIXAR only used

the English dataset and was trained on more English samples than PIXAR++, more

English content information, sentence structure, grammar, and words were learned by

PIXAR. In addition, because pure English datasets use all English characters, they are

not affected by the noise and perturbation generated by characters contained in other

languages when generating text. It is worth noting that 8-patch-size PIXAR++stage1

performs better than PIXARstage1 in readability. This shows that using multilingual data

sets can increase the robustness of generating sequences as readable text. In addition, 8-

patch-size PIXAR++stage1 generates much more accurate text on LAMBADA tasks and

bAbI tasks in all languages than 16-patch-size PIXAR++stage1. In terms of readability,

8-patch-size PIXAR++stage1 is also better than 16-patch-size PIXAR++stage1, except

for the readability of the five languages of Italian. This may be because 16-patch-size

PIXAR++stage1 is more pixels than 8-patch-size PIXAR++stage1 in the patch size of the

input image during training and each generated patch size. As a result, larger models

and longer time may be required to train 16-patch-size PIXAR++stage1.

PIXAR++stage2

According to the experimental results, the readability of PIXAR on the bAbI task

improved from 63.2 to 77.0 (Growth value: 13.8), and on the English LAMBADA task,

it improved from 54.8 to 82.2 (Growth value: 27.4). For 8-patch-size PIXAR++stage2,

the Growth values are 0.4 and 0.5 and for 16-patch-size PIXAR++stage2, the growth

values are - 0.3 and 0.2. This means GAN loss is more useful for PIXAR which

uses a single language as the training dataset than PIXAR++ which uses a multi-

language dataset. Since the best checkpoints for PIXAR++stage2 are around 200 steps

and the batch size is 32, only a small fraction of the multilingual datasets are used and

the number of samples in each language is unbalanced. Also, since GANs are very

unstable, the checkpoints used for these experiments may not be the best. Finally, since

the samples of the multilingual dataset contain more words, characters, grammatical

structures, and syntactic structures, this dataset was more difficult to train. Given

these factors, the improvement in the accuracy of PIXARstage2 generated text is still

larger than that of PIXAR++stage2. For PIXARstage2, the improved values of bAbI and

LAMBADA are 8.5 and 8.1. But for 8-patch-size PIXAR++stage2 they are 3.4 and

Chapter 4. Experiments and Results 31

1.1 and for 16-patch-size PIXAR++stage2, they are 0.4 and 0.3. However, even so, the

accuracy of all prediction texts improved after stage 2 training. This shows that using

GAN loss as the final layer of the model can also improve the performance of PIXAR++

in generative tasks.

Models Parameters Patch height (pixels) bAbI LAMBADA (en) LAMBADA (de) LAMBADA (es) LAMBADA (fr) LAMBADA (it)

PIXARstage1 113M 8 63.2 (11.1) 54.8 (5.7) NA NA NA NA

PIXAR++stage1 85M 8 61.0 (9.7) 61.9 / 63.4 (1.9) 45.2 / 57.3 (2.8) 50.1 / 56.7 (0.9) 47.0 / 53.6 (3.5) 50.6 / 57.1 (2.6)

PIXAR++stage1 85M 16 42.3 (4.6) 54.3 / 55.3 (0.5) 35.5 / 44.3 (1.2) 39.8 / 48.5 (0.2) 38.8 / 43.0 (0.9) 47.5 / 57.4 (0.9)

PIXARstage2 113M 8 77.0 (19.6) 82.2 (13.8) NA NA NA NA

PIXAR++stage2 85M 8 61.4 (13.0) 66.4 / 68.2 (3.0) 49.8 / 61.3 (3.2) 53.9 / 61.0 (1.5) 51.0 / 56.5 (3.8) 55.6 / 63.1 (4.2)

PIXAR++stage2 85M 16 42.0 (5.0) 54.5 / 55.5 (0.8) 37.5 / 46.9 (1.2) 40.7 / 48.4 (0.3) 37.0 / 41.8 (1.2) 50.7 / 55.9 (1.1)

Table 4.6: This table shows the performance of PIXAR and PIXAR++ on two generative

tasks LAMBADA and bAbI. Among them, the performance of these models on the bAbI

task is presented by the readability ratio and the few shot accuracy (in brackets). For

LAMBADA is the readability ratio for one language, readability ratio for 5 languages, and

zero-shot last-word prediction accuracy (in brackets).

Output analysis

Figure A.1 and A.2 show the good and bad examples of LAMBADA generated by 8-

patch-size PIXAR++. These examples of A.1 generate the wrong text for the following

reasons: (1) According to the prompt, ”the man smiled at him.” was in the first line and

this ”him” represents ”carlos”. The generated text is ”him.” which means the model

did not understand what ”him” is, but only copied the answer from the prompt. (2) The

reason for this German example is similar. Besides, the prompt of this example did not

have the same word or a word with similar meaning as the result. The meaning of the

word ”Looks” in English is similar to ”ansah”, however, ”Look” means ”make people”

in German. Therefore, this is a tough sample to predict. (3) This example does not

predict correctly because the answer is ”Shane” but this word appears at the beginning

of a sentence in the prompt, which means no useful information in front of ”Shane”

but only a period. Besides, the last word in the prompt, ”cuenta,” doesn’t appear in

the previous paragraph either. (4) The predicted text of this example is meaningless.

The reason could be the model did not find a similar phrase or a proper word from the

prompt. (5) The answer here is “combattimenti”, a synonym of ”lotta.” However, due to

the phrase structure before the result, there is no equivalent in the prompt. So the model

doesn’t even answer ”lotta.” In Figure A.2, all result predictions are correct because the

phrase containing the result has appeared in the previous prompt. For example, ”the

Chapter 4. Experiments and Results 32

old city of suzhou” appeared in the previous prompt since the last word of this prompt

is old, the model outputs the following words ”city of suzho” in this phrase. Since the

output length is limited, the last letter of the word ”suzhou” was not generated.

Figure A.3 and A.4 show the good and bad examples of LAMBADA generated

by 16-patch-size PIXAR++. The reasons for the wrong samples are: (1) The reason

for the first example has been mentioned before, which is ”no similar phrase” in the

previous prompt. Besides, since the answer is ”cooking”, although the model finds the

word ”cook” as the answer, it is difficult for it to change this word to ”cooking”. (2)

The result for this answer was not provided in the previous prompt, which makes this

sample difficult to predict. (3) Since in the prompt, the symbol ”:” was after the word

”dijo”, the result the model predicted is ”:”. (4) There are two phrases ”de la pousser”

and ”de la jeep” in the prompt. The predicted text is similar to the first three characters

of ”pousser”. The reason could be the model thinks the word ”pousser” is more likely to

be the answer. (5) This is the same sample mentioned in the 8-patch-size examples. The

reason for the failure is the same, and the purpose of showing it is to compare it with

the image generated by 8-patch-size PIXAR++. The reason for the correct prediction is

the same as that of the 8-patch-size PIXAR++.

Figure A.5 and A.6 show the good and bad examples of bAbI. According to figure

A.5, PIXAR++ makes the mistake because it only learns a fixed structure ”Where is ...?

| ” but not the meaning of the sentences. Figure 4.2 shows where the model found the

answer visually, the answer to the upper prompt is ”office” and the other is ”garden”.

According to this figure, the result that PIXAR++ generated is according to the answer

to the same question in the previous prompt but not the last place ”Sandra” went. Figure

A.6 provides another reason for the model to make incorrect predictions, which is the

misspelling of words. For example, the letter ”g” in the generated word ”garden” was

more like ”a” and the letter ”a” in the generated word ”bearoom” should be ”d”. This

may be because of the generated noises in the prediction period.

Figure 4.2: This image shows where the model found the answer

Chapter 5

Conclusion and Discussion

5.1 Conclusion

Achievements: This project proposed PIXAR++, the extended version of PIXAR.

PIXAR is the first pixel-based autoregressive LLM that can generate images of a short

text sequence [7]. However, the pretraining dataset of PIXAR is only based on English

and the patch size of the input and output images is fixed to 8 * 8. Therefore, a 7

language dataset was collected and created to train PIXAR++ and 8 * 8 and 16 *

16 patch sizes are tried in this project. Under the premise of the same font size, a

larger patch will contain more text sequences. Besides, some downstream tasks are

used to test the performance of PIXAR++. GLUE and XNLI are used to show the

performance of PIXAR++ on discriminative tasks. Since GLUE is a pure English

benchmark, PIXAR performs better, but 8-patch-size PIXAR++ performs similarly to

PIXAR. Since XNLI is a multilingual task, 8-patch-size PIXAR++ outperforms PIXAR

in most languages. In addition, 16-patch-size PIXAR++ performs worse than the other

two models on both discriminative tasks. For the free-text QA generation tasks, the

project chose the bAbI task and 5 language LAMBADA tasks. In the English generation

task, PIXAR performed better than the other two models. PIXAR did not experiment

with LAMBADA in other languages. Therefore, for tasks in other languages, there

are only two PIXAR++ experimental results. For all the generative tasks, 8-patch-size

PIXAR++ still performs better than 16-patch-size PIXAR++.

Limitations and future work : Due to the difference in the number of white and

black pixels in the patches, although the model using a larger patch size has a lower

training loss, its performance in the downstream task is no better than 8-patch-size

PIXAR++. Therefore, Balanced Cross-Entropy and Focal loss is a better choice of loss

33

Chapter 5. Conclusion and Discussion 34

function. In addition, due to the increase in language types and patch size, the size

and training time of the model selected in this project may be insufficient. Therefore,

larger models and longer training times could be used in future work. Besides, based

on the experimental results of the generative task, PIXAR++ finds the answer by

looking for whether the last several letters in the prompt were present in the previous

prompt. If present, the text sequence following these letters in the previous prompt is

generated; if not, there is no way to predict correctly. This shows that the model has

not learned the correct dependencies between texts over long distances and that the

dependencies between patches are poorly interpretable. In addition, larger datasets,

more languages, Larger font sizes, and Higher resolution ratios could be tried in the

future, if the computational resources are sufficient. Finally, although the GAN model

improves the performance in generative tasks, it is still unstable and the diffusion model

proves to perform better than the GAN model on Image Synthesis [8]. Therefore, using

the diffusion model in stage two is worth trying. The details of the future work are in

the discussion section.

In summary, the project expanded PIXAR to handle more languages which proves

the possibility of learning text information from pixels in other languages, and expanded

the patch size to increase the length of the generated text. The experiment of this project

extends the application scope of PIXAR++ and provides more possibilities for the

extension of pixel-based models.

5.2 Discussion

Balanced Cross Entropy & Focal Loss

In this project, the binary cross entropy (CE) loss is chosen as the loss function in the

training of PIXAR++ [56]. However, the number of white pixels and the number of

black pixels per patch of the input images and the generated patches are not equal. In

addition, in images with 16 * 16 pixels per patch, the two classes are more unbalanced

due to the increase in line spacing and the increase in white space after the end of the

text. Therefore, if their weights are the same, it will result in poor training results even

though the loss function value is small. The equation of the binary cross entropy is:

CE(p,y) =

{
− log(p) if (y = 1)

− log(1− p) otherwise
(5.1)

Chapter 5. Conclusion and Discussion 35

Where y means white or black pixel in this project and p∈ [0,1] means the estimated

probability of the PIXAR++ model for y is the black pixel [56].

pt =

{
p if (y = 1)

1− p otherwise
(5.2)

Therefore, the CE loss can be written as this equation for convenience:

CE(p,y) =CE(pt) =− log(pt)

However, this loss function can not solve the problem of class imbalance. Therefore,

a common idea was proposed to use a weighting factor α ∈ [0,1], where α is for the

black pixel class and 1 - α is for the white pixel class. The notation definition of αt is

same as pt [56]. The equation of α-balanced CE loss equation is:

CE(pt) =−αt log(pt)

Although the importance of white and black samples was balanced by α-balanced

CE loss, the easy and hard samples are not distinguished. Therefore, the focal loss (FL)

loss function was designed to reduce the weight of the easy examples. The focal loss

function is:

FL(pt) =−(1− pt)
γ log(pt)

Where γ is a tunable hyperparameter between [0,5]. In the experiment of the paper

on FL, FL loss works the best with γ = 2.

Larger models & longer training time

According to the paper of PIXAR, the PIXAR model with 113M parameters was

chosen to deal with the generative tasks [7]. However, the PIXAR++ has only 85M

parameters. Besides, since the dataset used on PIXAR++ is a multi-language dataset,

more characters, words, syntactic structures, and grammar need to be learned by the

model, which will need more parameters. In addition, this project attempts to image

with 16 * 16 pixels per patch as the input and output of training. Therefore, each patch

contains more information and is more difficult to train. Moreover, compared with 8 *

8 pixels per patch, the generated patch is larger and contains longer text length, which

makes it more difficult to generate patches. Therefore, larger models and longer training

times are necessary.

Chapter 5. Conclusion and Discussion 36

Lager dataset & more languages

Due to the limited training resources, only 85M models and 27M samples of seven

language datasets were trained in this project. However, the English dataset for training

PIXAR has 26M English samples [7]. Therefore, for multilingual datasets, to achieve

experimental results similar to PIXAR on English tasks, there must be a similar number

of samples in all languages which means at least 26M (samples per language) * 7

(Number of languages) samples used to train PIXAR++. In addition, as the learning

difficulty of multiple languages is higher, the training difficulty will be higher due

to the differences in characters, words, syntactic structure, and grammar between

different languages. Therefore, samples for each language should be larger than 26M

for good performance. Besides, the main reason that the PIXAR++ did not achieve

good performance in Arabic is because other languages in the dataset are very different

from Arabic. Therefore, more languages that are similar to Arabic should be added

to the datasets to improve the ability to process Arabic tasks of PIXAR++ and other

languages can also be chosen to train in PIXAR++ to increase the robustness of the

PIXAR++ model.

Larger font size & Higher resolution ratio

As shown in A.1, in the French example, the word ”approprié” was written as ”appropriė”.

Besides, according to 3.2, in the Chinese image on the left, the generated Chinese charac-

ters are very vague. Therefore, to adapt to the more complex characters in the language,

the image resolution and font size of the model input should be increased appropriately.

However, such modifications also require larger models and longer training times.

Diffusion models and longer generation

As mentioned in the motivation part, the performance of diffusion models is always

better than the GAN models on Image Synthesis [8], and since the GAN model is

unstable, although the automatic GAN ratio balancing is used, the stage 2 training is

still difficult to optimize [7]. Therefore, diffusion models or diffusion transformers,

which are also generative models, can be used to replace GAN models in future work.

Besides, due to the readability metric, PIXAR++ still can not generate long sentences

and further experiments will check if diffusion models can increase the length of the

generated readable text [7].

Bibliography

[1] Ada Wan. Fairness in representation for multilingual nlp: Insights from controlled

experiments on conditional language modeling. In International Conference on

Learning Representations, 2021.

[2] Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta

Raileanu, and Robert McHardy. Challenges and applications of large language

models. arXiv preprint arXiv:2307.10169, 2023.

[3] Omri Keren, Tal Avinari, Reut Tsarfaty, and Omer Levy. Breaking character: Are

subwords good enough for mrls after all? arXiv preprint arXiv:2204.04748, 2022.

[4] Phillip Rust, Jonas F Lotz, Emanuele Bugliarello, Elizabeth Salesky, Miryam

de Lhoneux, and Desmond Elliott. Language modelling with pixels. arXiv

preprint arXiv:2207.06991, 2022.

[5] Keith Rayner, Sarah J White, and SP Liversedge. Raeding wrods with jubmled

lettres: There is a cost. 2006.

[6] Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu,

and Jiwei Li. Chinesebert: Chinese pretraining enhanced by glyph and pinyin

information. arXiv preprint arXiv:2106.16038, 2021.

[7] Yintao Tai, Xiyang Liao, Alessandro Suglia, and Antonio Vergari. Pixar: Auto-

regressive language modeling in pixel space. arXiv preprint arXiv:2401.03321,

2024.

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image

synthesis. Advances in neural information processing systems, 34:8780–8794,

2021.

37

Bibliography 38

[9] Enis Karaarslan and Ömer Aydın. Generate impressive videos with text instruc-

tions: A review of openai sora, stable diffusion, lumiere and comparable models.

Authorea Preprints, 2024.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

Advances in neural information processing systems, 27, 2014.

[11] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and

Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for

natural language understanding. arXiv preprint arXiv:1804.07461, 2018.

[12] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R

Bowman, Holger Schwenk, and Veselin Stoyanov. Xnli: Evaluating cross-lingual

sentence representations. arXiv preprint arXiv:1809.05053, 2018.

[13] Tianyu Gao, Zirui Wang, Adithya Bhaskar, and Danqi Chen. Improving language

understanding from screenshots. arXiv preprint arXiv:2402.14073, 2024.

[14] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-

rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal

Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[15] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. Llama: Open and efficient foundation language models. arXiv

preprint arXiv:2302.13971, 2023.

[16] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction

tuning. Advances in neural information processing systems, 36, 2024.

[17] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski,

Daniel Salz, Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer,

et al. Pali: A jointly-scaled multilingual language-image model. arXiv preprint

arXiv:2209.06794, 2022.

[18] Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park,

Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, and Seunghyun

Park. Ocr-free document understanding transformer. In European Conference on

Computer Vision, pages 498–517. Springer, 2022.

Bibliography 39

[19] Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Ju-

lian Martin Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and

Kristina Toutanova. Pix2struct: Screenshot parsing as pretraining for visual lan-

guage understanding. In International Conference on Machine Learning, pages

18893–18912. PMLR, 2023.

[20] Frederick Liu, Han Lu, Chieh Lo, and Graham Neubig. Learning character-level

compositionality with visual features. arXiv preprint arXiv:1704.04859, 2017.

[21] Baohua Sun, Lin Yang, Patrick Dong, Wenhan Zhang, Jason Dong, and Charles

Young. Super characters: A conversion from sentiment classification to image

classification. arXiv preprint arXiv:1810.07653, 2018.

[22] Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie, Fan Yin, Muyu Li,

Qinghong Han, Xiaofei Sun, and Jiwei Li. Glyce: Glyph-vectors for chinese

character representations. Advances in Neural Information Processing Systems,

32, 2019.

[23] Falcon Z Dai and Zheng Cai. Glyph-aware embedding of chinese characters.

arXiv preprint arXiv:1709.00028, 2017.

[24] Elizabeth Salesky, David Etter, and Matt Post. Robust open-vocabulary translation

from visual text representations. arXiv preprint arXiv:2104.08211, 2021.

[25] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross

Girshick. Masked autoencoders are scalable vision learners. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition, pages

16000–16009, 2022.

[26] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,

Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[27] Elizabeth Salesky, Neha Verma, Philipp Koehn, and Matt Post. Multilingual pixel

representations for translation and effective cross-lingual transfer. In Proceedings

of the 2023 Conference on Empirical Methods in Natural Language Processing,

pages 13845–13861, 2023.

Bibliography 40

[28] Michael Tschannen, Basil Mustafa, and Neil Houlsby. Clippo: Image-and-

language understanding from pixels only. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 11006–11017,

2023.

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

et al. Learning transferable visual models from natural language supervision. In

International conference on machine learning, pages 8748–8763. PMLR, 2021.

[30] Junyi Li, Wayne Xin Zhao, Jianyun Nie, and Ji rong Wen. Glyphdiffusion: Text

generation as image generation. arXiv preprint arXiv:2304.12519, 2023.

[31] Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances

in Neural Information Processing Systems, 32, 2019.

[32] Noam Shazeer. Glu variants improve transformer. arXiv preprint

arXiv:2002.05202, 2020.

[33] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu.

Roformer: Enhanced transformer with rotary position embedding. Neurocomput-

ing, 568:127063, 2024.

[34] Ronald J Williams and David Zipser. A learning algorithm for continually running

fully recurrent neural networks. Neural computation, 1(2):270–280, 1989.

[35] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[36] Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bern-

hard Schölkopf. From variational to deterministic autoencoders. arXiv preprint

arXiv:1903.12436, 2019.

[37] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation

of generative models. arXiv preprint arXiv:1511.01844, 2015.

[38] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for

high-resolution image synthesis. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 12873–12883, 2021.

Bibliography 41

[39] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. High-resolution image synthesis with latent diffusion models. In Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 10684–10695, 2022.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

[41] William Peebles and Saining Xie. Scalable diffusion models with transformers.

In Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 4195–4205, 2023.

[42] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,

Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-

like visual explanations by watching movies and reading books. In Proceedings

of the IEEE international conference on computer vision, pages 19–27, 2015.

[43] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart

Van Merriënboer, Armand Joulin, and Tomas Mikolov. Towards ai-complete ques-

tion answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698,

2015.

[44] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. Language models are unsupervised multitask learners. Ope-

nAI blog, 1(8):9, 2019.

[45] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network

acceptability judgments. Transactions of the Association for Computational

Linguistics, 7:625–641, 2019.

[46] Brian W Matthews. Comparison of the predicted and observed secondary structure

of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure,

405(2):442–451, 1975.

[47] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,

Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic

compositionality over a sentiment treebank. In Proceedings of the 2013 conference

on empirical methods in natural language processing, pages 1631–1642, 2013.

Bibliography 42

[48] Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential

paraphrases. In Third international workshop on paraphrasing (IWP2005), 2005.

[49] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia.

Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual

focused evaluation. arXiv preprint arXiv:1708.00055, 2017.

[50] Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage

challenge corpus for sentence understanding through inference. arXiv preprint

arXiv:1704.05426, 2017.

[51] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:

100,000+ questions for machine comprehension of text. arXiv preprint

arXiv:1606.05250, 2016.

[52] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema

challenge. In Thirteenth international conference on the principles of knowledge

representation and reasoning, 2012.

[53] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham,

Raffaella Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel

Fernández. The lambada dataset: Word prediction requiring a broad discourse

context. arXiv preprint arXiv:1606.06031, 2016.

[54] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with

Python: analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”,

2009.

[55] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805, 2018.

[56] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Fo-

cal loss for dense object detection. In Proceedings of the IEEE international

conference on computer vision, pages 2980–2988, 2017.

Appendix A

First appendix

A.1 First section

Figure A.1: This table shows some bad examples of the LAMBADA tasks for 8-patch-size

PIXAR++stage2

43

Appendix A. First appendix 44

Figure A.2: This table shows some good examples of the LAMBADA tasks for 8-patch-

size PIXAR++stage2

Appendix A. First appendix 45

Figure A.3: This table shows some bad examples of the LAMBADA tasks for 16-patch-

size PIXAR++stage2

Appendix A. First appendix 46

Figure A.4: This table shows some good examples of the LAMBADA tasks for 16-patch-

size PIXAR++stage2

Appendix A. First appendix 47

Figure A.5: This table shows some good and bad examples of the bAbI tasks for 8-patch-

size PIXAR++stage2

Appendix A. First appendix 48

Figure A.6: This table shows some good and bad examples of the bAbI tasks for 16-

patch-size PIXAR++stage2

	Introduction and Motivation
	Introduction
	Motivation
	Objective
	Results achieved
	Thesis structure Part of the first three chapters of this thesis are paraphrased from ipp.

	Background and Literature Review
	Language Models
	Diffusion Models

	Methodology
	Datasets and downstream tasks
	GLUE
	XNLI (Cross-lingual Natural Language Inference corpus) task:
	BAbI task:
	LAMBADA tasks:

	Preprocessing
	Training stages
	Text recognization
	Readability metric

	Experiments and Results
	Data Preprocessing
	Computational budget
	Pretraining stage
	GAN stage
	Discriminative Tasks
	GLUE
	XNLI

	Generative tasks

	Conclusion and Discussion
	Conclusion
	Discussion

	Bibliography
	First appendix
	First section

