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Abstract

Recently, Pixel-based Language Models have been shown to perform well in natural
language processing tasks. However, most of these pixel-based LLMs can only process
discriminative tasks. While PIXAR can handle generative tasks, since the pretraining
dataset is English-based, it only attempts English generative tasks. Therefore, this thesis
proposed PIXAR++, which can handle seven languages and process and generate images
with larger patch sizes. This project attempts more downstream tasks on discriminative
tasks and generative tasks in multiple languages. It turns out that PIXAR++ works
well in other languages as well. This thesis analyzes the reasons behind the wrong and
correct generated text patches and proposes more directions for the development of
PIXAR-++ models.
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Chapter 1

Introduction and Motivation

1.1 Introduction

In traditional natural language processing (NLP) research, the selection and use of
tokenizers affect many aspects of model training. Tokenizers are designed to segment
text into a sequence of small sub-units. Common sub-units include sentence pieces,
bytes, characters, sub-words, or words. However, the vocabularies of these sub-units
often require a lot of effort to create and maintain [1]]. Besides, these vocabularies also
have particular limitations.

For a vocabulary consisting of word units, it is not possible to include all the words
in any one language in advance. This is because collecting all the uncommon words
before the training of NLP models is difficult, and new words are created in the daily
conversation and writing of people. Therefore, out-of-vocabulary (OOV) words always
exist. According to the research of Kaddour et al., the performance of NLP models
was heavily decreased when encountering these OOVs [2]. Besides, because bytes and
characters are very small, the sequence made up of them can be very long. A long
sequence increases the burden on the embedding and output layers of the model [3].
The sub-word is more flexible. It can build vocabularies of different sizes as required,
which relieves the burden on both the embedding and output layers, but also creates a
dilemma. Although this kind of vocabulary performs well in the training of a single
language, when faced with multilingual datasets, the researchers need to either expand
the size of the vocabulary or fix the number of sub-words that the vocabulary can
contain. Therefore, a fixed vocabulary is bound to have limitations. This limitation
mainly exists in the encoding of input and the calculation of the probability distribution

of vocabularies [4].
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According to the research of Rayner et al., when facing incorrect words or unusual
sentence structures, humans can still make sense of sentences by integrating visual and
textual information [5]. This means that the graphic information contained in the text
can help people understand the sentences. Therefore, NLP models can also be trained
by learning graphic information or pixel information contained in the text [6]. Based on
the above research, a Pixel-based Encoder of Language, PIXAL [4] was designed. This
model used a sequence of fixed-size rendered patches to replace the embedding layer in
the traditional NLP pipelines. This model does not need to process raw text but only
needs to extract features from pixels in the patch to learn [4]. However, PIXEL is not
proper in dealing with generative tasks. Therefore, the first pixel-based autoregressive
large language model (LLM), PIXAR [7], was designed to process the generative tasks
of NLP. In the pretraining stage, this model predicts the next patches consisting of pixels
only depending on the previously rendered text patches [7]. However, PIXAR can still

be extended.

1.2 Motivation

This dissertation aims to scale a pixel-based language model, PIXAR. It is the first
pixel-based autoregressive LLM [7]]. According to the introduction, the traditional NLP
model only focuses on the text information but ignores the graphic information of the
text. For humans, however, the graphic information of a text is a necessary component
in helping people understand sentences. Therefore, it is worth learning and generating
text using the pixel information of text images as model input. Since PIXAR has already
done some encouraging research in this field, this project decided to scale PIXAR in
the following ways.

Firstly, the patch of the input and output images are fixed in size. However, increas-
ing patch size can increase the length of the text sequence contained in each patch, so
that the model can generate a longer text sequence on the premise that the number of
generated patches is fixed. Besides, PIXAR is only tried on the English dataset and
all the experiments applied to PIXAR are based on English. To expand the scope and
robustness of PIXAR, this thesis will attempt to expand PIXAR into a multilingual
version. Finally, according to the experiment results of Dhariwal et al., diffusion models
always have better performance than the GAN models [8]. Therefore, in further re-
search, the Diffusion transformer or Diffusion models will be used to replace the GAN
as the final layer of the PIXAR model [8]] [9] [10].
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The development of this PIXAR++ has many benefits both for NLP research and
applications. First, for NLP research, pixel information was proved to be useful for
model training. Therefore, these useful graphical features can be utilized and even
combined with traditional NLP training, so that the trained model can more accurately
understand the meaning of a sentence. In addition, if the model only uses text images as
its input, it will be free from the constraints of the fixed vocabulary. When this model
is faced with OOV, the performance of it will not drop too much. Besides, because
this study connects NLP and CV, it has a broad development prospect. Finally, the
expansion of language types and patch size enables PEIXAR++ to have more application

scope and stronger generalization ability.

1.3 Obijective

This project aims to extend PIXAR. Since PIXAR has done experiments on English,
the new model PXIAR-++ will focus on multilingual datasets. Besides, a larger patch

size is also tried on PIXAR++. The project has the following main objectives:

* Environment configuration and preprocessing the dataset.
* Training PIXAR stage one: MLE.

 Training PIXAR stage two: Adversarial.

* Designing a multilingual dataset for PIXAR++.

* Training PIXAR++ on this multilingual dataset.

* Training PIXAR++ on a larger patch size.

* Evaluating this trained PIXAR++ model.

¢ Finish dissertation.

1.4 Results achieved

Based on background technology and motivation, this thesis trained two models named
8-patch-size PIXAR++ and 16-patch-size PIXAR++ (The input and output patch size is
8 * 8 or 16 * 16) that can deal with multilingual language discriminative and generative

tasks. Besides, the training process includes two stages, the trained models in each
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stage are tried on all the downstream tasks. According to the paper on PIXAR, since the
patch size used in PIXAR is 8 * 8 [/]], the comparison between PIXAR and 8-patch-size
PIXAR++ can better reflect the advantages and disadvantages of PIXAR++.

Discriminative tasks: The performance of 8-patch-size PIXAR++ on the GLUE
benchmark is slightly lower than PIXAR. Since this task is pure English, this result
is in the assumption. However, specifically, 8-patch-size PIXAR++44.1 €ven does
better on RTE and WNLI, and 8-patch-size PIXAR++4¢.2 performs better on RTR
than PIXAR in GLUE benchmark [11]. Besides, the 8-patch-size PIXAR++ performs
better than PIXAR on most of the XNLI tasks except English and Turkish [12]]. Besides,
16-patch-size PIXAR++ performs worse on every discriminative task of the other two
models.

Generative tasks: Since the training dataset of PIXAR is in pure English, the
downstream tasks it attempts contain only bAbI and the English LAMBADA [7].
PIXAR is superior to PIXAR++ in the accuracy of generating text. Only on the
readability of the Stage 1 models, 8-patch-size PIXAR++ is superior to PIXAR. This
means that PIXAR is still better at English generation tasks than PIXAR++ and that
GAN loss improves the readability of single-language models more than multilingual
models [7] [10]. Besides, for LAMBADA tasks in other languages, both PIXAR++
models also have similar performance to English LAMBADA.

1.5 Thesis structure !

* Introduction and Motivation: The introduction, motivation, objective, results,

and structure of the thesis.

* Background and Literature Review: The background research related to this
thesis and the technical basis related to PIXAR++.

* Methodology: The core preprocessing, training, and evaluation methods and

models used in this thesis.

» Experiments and Results: The preprocess, training, and the performance of the

experiments baselines and PIXAR++ on downstream tasks.

e Conclusion and Discussion: The achievements, limitations, and future works

are mentioned in this chapter.

IPart of the first three chapters of this thesis are paraphrased from ipp.



Chapter 2

Background and Literature Review

2.1 Language Models

Text-only LMz (GPT, LLaMA)
The quick brown fox jumps @ Text-only Tasks
over the lazy dog.

Multimodal LMs (LLaVA, PaLl)
: The quick brown fox Multi- Above + Image-
-l |:|':|,:| jumps modal LM text Tasks
= over the lazy dog.
Pixel-based LMs (Donut,
Pix2Struct;
! ruct) Above+Visually-
g oo s g st sy Pixel-based LM situated
) Language
e~ Understanding
Text-only Pixel-based LMs

(PIXEL, PIXAR)
Pixel-based LM Text-only Tasks
The quick brown fox jumps

over the lazy dog.

o

Figure 2.1: This image shows the classification of LM according to the kind of input data
[13]

As shown in Figure 1, currently LMs can be divided into four categories according to
the type of input data. The first is Text-only LMs that only take texts as input, including
GPT [14] and LLaMA [15]. The second is Multimodal LMs that take images and texts
as input, represented by LLaVA [16] and PALI [17]]. The third is the pixel-based LMs
that take not text-only images as input, including Donut [18]] and Pix2Struct [[19]]. The
last one is the pixel-based LMs that take text-only images as input, which is mainly

studied in this thesis. The main representative models are PIXEL [4], PIXER [/], and
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PTP [13]. Therefore, the following sections will review recent pixel-based LMs that
take images as input.

Since Chinese is a pictograph, its characters contain a lot of graphic information
in the text, and most of the early Pixel-based natural language processing models used
Chinese datasets as their input. One of the earliest experiments was done by Liu et
al., a CNN-based model was used in their project to extract the graphic information
of handwritten Chinese characters on character-level and then the similarity of these
Chinese characters was compared [20]. Besides, according to the research of Sun et al.,
the classification tasks of Chinese characters were also tried through training models
on character-based datasets [21]]. Traditional symbolic tokenizers miss out on a lot
of graphic information in Chinese characters, but the Tianzige features that highlight
graphic information in Chinese characters can be well utilized [22] [23]. Besides,
character-level graphic features are integrated into the ChineseBERT embedding vector
to train Bert-based models [[6]]. However, character-based models still have some
limitations. First, since the smallest unit of a picture is not a pixel but a character, these
models did not capture all the information in the picture. In addition, some emojis will
also affect the performance of such models. Based on the above research, pixel-based
models will capture more comprehensive visual information about text, which was
designed to address these limitations.

When talking about Pixel-based models, the first model to introduce is designed
by Salesky et al. [24] which uses visual text datasets as its inputs. This model is used
to solve machine translation tasks. However, the embeddings of a fixed vocabulary
depended on the output layer of this model, which means it is not a pure pixel-based
model [24]. According to the idea of Salesky et al., PIXEL (Pixel-based Encoder of
Language), the first complete LLM (large language model) using pixels of images as
input was designed based on the Masked Autoencoding Visual Transformer (ViT-MAE)
[25]]. On the basis of the transformer model, after training the encoder-decoder model
ViT-MAE, the pixels of the masked image patches were reformed. This model gets
rid of the restricted vocabulary embedding layer. As the replacement, The raw text
was rendered into a sequence of fixed-sized patches by using a Vision Transformer
encoder [26]]. PIXEL contains three main parts, renderer, encoder, and decoder. The
renderer turns texts into images, the unmasked parts of the image are encoded through
an encoder, and the decoder reforms the masked parts [4]. To expand the application
of PIXEL, multiple language datasets were tried as the input of PIXEL in 2023 [27].
Besides, instead of using the text encoder of CLIP based on ID, CLIPPO solves visual
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QA tasks through the process of both images of rendered texts and normal images
[28] [29]. This research makes the connection between NLP and CV, which means
the multimodal models can be trained by both images and texts. Since both PIXEL
and CLIPPO contain the encoder part in their architecture, they cannot be trained to
solve generative tasks. Using encoded text features as conditions, a diffusion model
was used by GlyphDiffusion to generate images of texts from noise [30]. However,
the embedding of symbols was still applied in this model. Therefore, according to the
design of LLMs only based on pixels, a model named PIXAR was created to learn the
representation of symbols by only processing perceptual information [7]].

PIXAR (PIXel-based AutoRegressive LLLM) was designed based on the PIXEL
model to process the generative tasks that PIXEL can not handle[/]. MAE structure
used in PIXEL was replaced by other generative LLMs including LLaMA-2 and GPT-2
[15]. The input and output of this model are only patches of pixels with text information
on them. In the pretraining stage, this model generates new image patches only learned
from the previous image patches. In the second finetune stage, this model chooses
the GAN loss as the final layer and this model combines the MSE loss and GAN loss
for RGB images and combines pixel-wise binary cross entropy loss and GAN loss for
binary images. Another model named PTP (Patch-and-Text Prediction) [[13] was also
designed conditioned on PIXAR. This model contains both image and text decoders,
which means this model can be used to predict not only the image with masked text
content but also the pure text content from the text images. As shown in the paper
on PTP, for the GLUE benchmark, PTP performs better than PIXAR and PIXEL on
every task of GLUE, which means PTP has better performance on discriminative tasks.
However, since PTP did not try to do the experiments on the LAMBADA and bAbI
tasks, the generative ability of PIXAR and PTP has not been compared [13]].

PIXAR Preprocessing: Since this project will use PIXAR as the base model,
here will introduce the implementation of PIXAR in detail. Since PIXEL is designed
based on PIXAR, the preprocessing part of them is similar. Firstly, the articles of the
raw datasets were divided into small paragraphs within a fixed number of characters
using the "PunktSentenceTokenizer” from the Natural Language Toolkit (NLTK). As
shown in Figure These small paragraphs are treated as the input text. After that,
a long (single) image consisting of several nonoverlapping patches is generated to
represent these small paragraphs. In the experiments of PIXAR, the binary images
(x € [0, 1]7>*W>1y and RGB images (x € [0,1]7*W>3) were tried. These images are

made up of patches with a fixed size. A vector is generated by flatting each patch of
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the input image x € R7>*W>C (H: the patch height; W: the patch width; C: number of
channels). A hidden embedding 4™ € R? is then created by projecting the vector. All
the patch embeddings have resulted in a sequence of {h,...,h" } which is used to be
the input of the transformer decoder block. According to the experiment of the PIXAR
paper, binary images not only simplified model learning, but also obtained relatively

good downstream task performance [7].
"The quick brown fox jumps over the” Input text
The quick brown fox jumps o render as a image

The g Juick £ rown fox jur mps o

Preprocessing
<Az <o

Split into patches

| [ [ | [ I [ | EHEEEE | [ [ | EEOE Linear projection

ver th
Thresholding
Linear projection mENENE

Figure 2.2: This image shows the preprocessing and decoder process of PIXAR

Decder block

PIXAR structure: Unlike the PIXEL model, PIXAR is a decoder-only model. A
stack of 12 Transformer layers is contained in its decoder. Aiming to increase the perfor-
mance of the transformer used in this model, pre-normalization using RMSNorm [31],
SwiGLU activation functions [32]], LLaMA-2 [[15] and rotary positional embeddings
[33]] are proposed to be used in PIXAR. The output generated by these transformer
layers in PIXAR is #° € R hidden states [77]. Finally, new image patches are generated
as the output of the model. The specific process is to add a linear layer after the trans-
former layer, which can map the output embedding 4% back to the space of the pixel
as a vector. This vector named X can be represented as the linearized H x W x C (For
binary image C is equal to 1) patches and can be interpreted according to the category
of the image. Setting the temperature to 7 = 1, an element-wise sigmoid squashed the
vector X for the rendered binary images, where X are the logits. Besides, a threshold
0 = 0.5 was applied to generate a hard binary vector for the original vector with the
values of the probabilities which is between [0, 1]. For the processing progress of the
RGB images, the value of the ¥ element-wise is firstly clipped to be within [0, 1]. After
that, the RGB patches are created by linearly mapping the three channels in the X to
{0—255} [17].

Training stages and loss functions: There are two stages in the training of PIXAR
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which are Stage 1 training: MLE (maximum likelihood estimation) and Stage 2
training: Adversarial. In stage 1 training, a gold (observed) patches sequence (x:;—1)
and a sequence of L ground truth pixel patches (x;.;+7—1) are prepared to calculate the
negative log-likelihood. The negative log-likelihood of x;.;;;—1 conditioned on xy.;—{
is minimized to calculate the MLE, which is named teacher forcing” [34]]. Given the
embedding of the last layer h]'i,”’ , the pixels in x;.;+7 1 are considered to be conditionally
independent. According to the assumption above, the reconstruction loss L, over
Xi:i+-L—1 1S minimized. For the RGB images, the MSE loss is applied, and for the binary
images, the usual pixel-wise binary cross-entropy loss is used [7]] [35] [36]]. Since there
are H x W x C x L variables in the sequential prediction task, this task is challenging for
the PIXAR model to predict. Although the choice of using binary images relieves the
predicted budget of the learning, the pretrained PIXAR very easily generates patches
with noise which is more likely to occur when L>1, and always gets stuck in the local
optimal. According to the research of Theis et al., MLE tends to insert probabilistic
mass into possible modes which means the circumstance above can be predicted [37]].
Therefore, the first stage of training will lead to low readability of the generated patches
[7].

To solve the above problems, PIXAR paper modified the original L,... An adver-
sarial loss is added to the original loss function. The newly added loss function is
named patch-wise context-aware adversarial (PCAA) loss. Besides, the generation
performance and readability of PIXAR can be greatly increased by only 200 steps
of stage two training. Based on the basic structure of the GAN [10] model, both a
discriminator and a generator should be used for the adversarial training. The PCAA

Loss Function is:

Lpcaa = Exyyyp  [—1og(D(Xisivr—-1]x1:i-1))] (2.1

Where %;.;+ 11 is the ground truth pixel patches; x;.;—1 is the observed patches.

The usage of this equation is to measure how much the discriminator can be “fooled”
by the generator by letting the discriminator ”guess”” whether a generated patch ¥; is
real or fake. A copy of the stage one PIXAR is used with a patch-wise classification
head to be a context-aware discriminator. This discriminator is used to compute the
PCAA loss. Based on the real patches x;.;— provided, the training of this discriminator
is to justify whether the input patch is fake or real [/].

A patch sampling algorithm is designed to compute the PCCA loss effectively and

reduce the computational burden of the transformer layers. The fake patches are first
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generated given a sequence of patches and the reconstruction loss is calculated by the
generator. After that, the key and value vectors of the real patches and the PCAA loss
of each fake patch are calculated by the discriminator. Only 30 sampled fake patches
are used to compute the PCAA loss for a sequence to increase the training speed of
stage 2 [7]].

The last step is to choose the hyperparameters to balance the PCAA and MLE.
Because GAN training is extremely unstable, according to the [38]] study, the paper of
PIXAR decided to mix MLE loss (L,..) and PCAA loss (Lpcaa). The following is the

loss function of stage 2:

Lcom = Lrec + }\fm : }\faum : LPCAA (22)

where A, is a hyperparameter that can be manually modified, and Ayyo = Vi, [Lrec]
/(Vg, [Lpcaa +8]) where Vg, [] is the scale of gradients of the generator related to the

last layer, and the § = 1¢8 is used to protect this equation by avoiding division by zero.

2.2 Diffusion Models

The basic theory of the diffusion model is based on non-equilibrium thermodynamics.
The diffusion process begins with random noise and data resembling real videos and
images are generated by removing this noise. The idea of using the diffusion model
to generate images starts with Stable Diffusion. In this model, multiple diffusion steps
are used to increase the throughput of the model, using a gradual increase in noise to
improve the ability of control, so that the model can generate high-quality images [39].
The OpenAl Sora was proposed based on Diffusion Models and Transformers. High-
quality video of around 1 minute can be generated by this model [40] [9]. Two models
are used in SORA which are Latent Diffusion Models [39] and Diffusion Transformers
(DiT; [41]). Latent Diffusion Models have great advantages in the task of compositing
high-quality images. The computation cost can be decreased by using the diffusion
model in the latent space. The most important part of the SORA is the Diffusion
Transformer. The U-Net module of the classic diffusion model was replaced by the
transformer to make up the latent diffusion model. Using this structure can speed up the
processing efficiency of image patches and reduce the computing resources required to
generate high-quality images [41]. In further study, the diffusion model or diffusion
transformer is planned to be used as the final layer in PIXAR++ instead of using the
GAN loss [7]].



Chapter 3

Methodology

3.1 Datasets and downstream tasks

At the beginning of the tasks, environment configuration, data preprocessing, and
training the original PIXAR are the main work directions. Two English datasets
used in the paper on PIXAR are chosen to retrain PIXAR which are Bookcorpus
[42]] and English Wikipedia [4] [7]. Because of the lack of training resources and
because this project had a PIXAR 4.2 checkpoint of 85M parameters provided by the
PIXAR authors, the original PIXAR model did not need to finish training. Besides,
after research, Wikipedia datasets contain other language versions. Therefore, seven
Wikipedia datasets with seven different languages including German, French, Spanish,
English, Russian, Arabic, and Italian were chosen and combined to create a new
multilingual dataset. This dataset was used in the first and second stages of training.

For the downstream tasks, this project chose GLUE benchmark and XNLI as the
discriminate tasks and Lambada and bAbI tasks for the experiment on generative tasks
(4] [LL] [L12] [43] [44].

3.1.1 GLUE

GLUE benchmark consists of nine tasks, where eight are classification tasks and only
STS-B is regression tasks. According to the type of tasks, it mainly includes three kinds
of tasks: similarity and paraphrase tasks, inference tasks, and single-sentence tasks
[11]. Most of the tasks use accuracy as their metric and other metrics will be mentioned
specifically in the task introduction below.

Single-sentence tasks:

11
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* CoLA ( Corpus of Linguistic Acceptability) [45]: This task contains judgments
of English acceptability derived from articles and books on linguistic theory.
Each of these samples is a sequence of words that the language model needs
to determine if it is grammatically correct. The evaluation metric used here
is Matthews correlation coefficient [46]. It presents the performance of the
unbalanced binary classification. The value of it is from -1 to 1, and the value 0

is guessing without being informed [45].

e SST-2 (Stanford Sentiment Treebank) [47]: This evaluation task contains the
sentiment annotated by humans and the movie reviews. The language models

need to predict whether the sentiment of sentences provided is positive or negative
[47].

Similarity and paraphrase tasks:

* MRPC (Microsoft Research Paraphrase Corpus) [48]: This task contains
many sentence pairs taken from online news sources automatically. These sen-
tences have been manually marked for semantically equivalent or not. Since it is

an unbalanced dataset, this project reported an F1 score for this task [48].

* QQP (Quora Question Pairs): The QQP dataset contains a set of question pairs
extracted from the corpus of community Q&A websites. Like MRPC, it is also a
downstream task to test whether two sentences are semantically equivalent. It is
also a task with an unbalanced dataset. Therefore, the F1 score is also applied in

this project to evaluate the performance of the model on this task [11]].

* STS-B (Semantic Textual Similarity Benchmark) [49]: The STS-B consists
of some sentence pairs extracting image and video titles, news headlines, and the
inference data of natural language. Each sentence pair was manually labeled with
a score from 1 to 5 based on similarity. This task aims to predict these scores and
the performance of the language model is evaluated by Pearson and Spearman

correlation coefficients [49].
Inference tasks:

* MNLI (Multi-Genre Natural Language Inference Corpus) [S0]: The collec-
tion of sentence pairs in this task is crowd-sourced with the annotations of textual

entailment. Each sentence pair consists of a premise sentence and a hypothesis
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sentence. The language model needs to predict whether the hypothesis is contra-
dicted by the premise (contradiction), the hypothesis is entailed by the premise
(entailment), or neither (neutral). Ten different sources were used to collect the
premise sentences. The sources include fiction, government reports, and speech.
The language models need to predict the matched (in-domain) and mismatched

(cross-domain) sets [50]].

* QNLI (Stanford Question Answering Dataset) [S1]: Itis a Q&A tasks with
pairs of a question and a paragraph. The questions in this task were designed by
the annotator and the answers are one of the sentences in the Wikipedia paragraph.
The articles in this dataset are broken down into many sentences, each sentence is
combined with the corresponding question in the dataset to form sentence pairs,
and those with poor lexical matching are removed. This modified version changes
the searching answer task into a classification task and removes the assumption
that the answer always exists in the second sentence. Besides, the new task

considers the lexical overlap an important clue [51].

* RTE (Recognizing Textual Entailment): This task is a collection of four annual
text entailment problem challenges including RTE1, RTE2, RTE3, and RTES. The
samples included are collected from Wikipedia text and news. All the datasets are
converted into binary classification problems. For the three classification datasets,

the contradiction and neutral are changed into not entailment [[11]].

« WNLI (Winograd Schema Challenge) [S2]: This is a reading comprehension
task where a sentence with a pronoun is read and the referent to which the pronoun
refers is selected. To turn this task into a classification task, pronouns are replaced
with alternative referents. The model needs to determine whether there is an
entailment relationship between two sentences. The main source of the dataset is
fiction books [52]].

3.1.2 XNLI (Cross-lingual Natural Language Inference corpus) task:

This task extends the test and development examples of the Multi-Genre Natural
Language Inference Corpus (MultiNLI) to 15 languages to build an evaluation set
for cross-lingual language understanding (XLU). it contains 7500 development and
test samples annotated by humans in the three class classification of natural language

inference (NLI) in Bulgarian, English, French, Spanish, Greek, German, Vietnamese,



Chapter 3. Methodology 14

Turkish, Russian, Arabic, Hindi, Thai, Chinese, Swahili, and Urdu. These languages
include several language categories and two low-resource languages, Swahili and Urdu

are contained [12]].

3.1.3 BADl task:

There are 20 tasks in the bAbI. All the tasks do not have noise and a hundred percent
accuracy can always be achieved by a human that can read English. These tasks are
simple and routine for humans and do not require any knowledge background, for
example, logic, or machine learning, to solve them. This project chose task one to test
the performance of PIXAR++. Task one consists of questions that possibly contain a
set of unrelated facts and one supporting fact. The model should find the true result for

the question [43]].

3.1.4 LAMBADA tasks:

The LAMBADA (LAnguage Modeling Broadened to Account for Discourse Aspects)
task is a dataset that assesses the performance of the text comprehension ability of a
model. The samples of LAMBADA are narrative passages. One thing these articles
have in common is that people can easily guess the last word if provided with the
whole passage. If humans only read the last sentence, they can not guess the true
answer. Therefore, a model that wants to perform well on LAMBADA needs to learn
long-distance dependencies rather than being limited to the local context [S3]]. Since
the training dataset used in this project is a multilingual dataset, generative LAMBADA
tasks in other languages including German, French, Spanish, and Italian will also be
used [44].

3.2 Preprocessing

In the preprocessing stage, the main task is to preprocess the multi-language dataset cre-
ated in the previous section. Because Wikipedia articles vary in length, they sometimes
go beyond the input window of PIXAR. Therefore, this project uses the same algorithm
as PIXAR to segment these articles. The method named ‘“PunktSentenceTokenizer”
was chosen from the Natural Language Toolkit (NLTK) to divide these articles into
sentences [54]. These sentences are combined into small paragraphs within a fixed

number of characters. After that, the samples that contain characters less than 100 are
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deleted. The window size of the PIXAR++ is 360 patches and the character limit is
1180 characters which is the same as PIXAR [7]. According to Table [3.1] the English
Wikipedia has the most average characters which is 6295 and the Arabic Wikipedia has
the lowest average characters which is 1283. Although the differences between the two
languages are significant, this multilingual dataset contains, in the greatest likelihood,
the most text in English. In addition, the average characters of the preprocessed dataset
were 960 and the total samples of it were 27,138,373, which was similar to those of
PIXAR [7].

Dataset Number of samples Average characters
Arabic Wikipedia 1024000 1283
English Wikipedia 1024000 6295
French Wikipedia 1024000 3930
German Wikipedia 1024000 4238
Italian Wikipedia 1024000 2900
Russian Wikipedia 1024000 3166
Spanish Wikipedia 1024000 3546
Rendered dataset 27138373 960

Table 3.1: datasets information

According to the paper of PIXAR, the previously processed texts are rendered into
a long image containing several patches through PangoCairo render, the same tool used
in PIXEL. Based on the experiment results of PIXAR, binary images perform better
and relieve the burden of computation. Therefore, PIXAR++ chooses the binary image
(x € [0,1]#*Wx1) a5 the input image. Each image is then cropped into small patches
with fixed-size (x € [0, 1]8*®*1) for 8-patch-size PIXAR++ and (x € [0, 1]16%16x1) for
16-patch-size PIXAR++. Due to the good performance of PIXAR, the pixel-style
font “Pixeloid Sans” is chosen to generate the input images for PIXAR++. Finally,
through the linear projection, these patches are changed into vectors to create a hidden

embedding and input into the transformer decoder block [7].

3.3 Training stages

For the pretraining stage 1, since all the images used in PIXAR++ are binary, the usual

pixel-wise binary cross-entropy loss is used to pretrain the PIXAR++ model. Same
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as the PXIAR model, the reconstruction loss L,,. is calculated in this stage. Table
shows the structure of the PIXAR++ model and the hyperparameters used for stage 1
training. PIXAR++ is also a decoder-only model that contains 12 transformer layers
and 12 attention heads. The number of parameters of these two pretrained PIXAR++
models is around 85M which is the same as the PIXAR model. Since the input patch
size of the 16-patch-size PIXAR++ is 16 * 16, the parameters of it are a little more
than the other model. Most of the hyperparameters are the same as the PIXAR model,
the batch size was changed to 768 and the steps were changed to 0.5M to increase the
training speed. In addition, during the training period, the learning rate is warmed up to
3e-4 linearly and then annealed to 3e-6 through the cosine scheduler. Table [3.3|shows
the new hyperparameters of stage 2 training, the learning rate and GAN learning rate are
changed to 3e-6, and the evaluation steps are changed to 100 to store more checkpoints.
According to PIXAR, the GAN ratio chosen by the author is from 0.1 to 15. After
trying several GAN ratios from this domain, 0.8 is picked for 16-patch-size PIXAR++
and 1.6 is picked for 8-patch-size PIXAR++. The loss function L,,, mentioned in the

methodology is also used in this project [7]].

Render Configuration Model Structure Pretrain Hyperparameters
patch length 2 layers 12 peak Ir 3e-4
patch number 360 attention heads 12 min. Ir 3e-5
min char. 100 hidden size 768 Ir scheduler ~ CosineAnnealing
max char. 1180 activation SwiGLU optimizer AdamW
render DPI 80 intermediate size 2048 Bi 0.9
font size 8 parameters 85.2M / 85.TM Ba 0.95
patch size 8/16 weight decay 0.1
font PixeloidSans steps 0.5M
binary true warm up 2000
Temperature (T) 1 batch size 768
Threshold (6) 0.5 precision fpl6 & p32
random seed 42

Table 3.2: This table shows the configuration of rendering the original text datasets, the

structure of models, and the hyperparameters of the pertaining stage.

3.4 Text recognization

For the generative tasks, it is necessary to recognize the text from the images and check

the readability of the generated text. For text recognition, the OCR software is chosen to
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Stage 2 Hyperparameters
Ir 3e-6 GANIr 3e-6
Ir scheduler ~ CosineAnnealing | GAN Ir warmup steps 100
optimizer AdamW GAN total steps 1000
Bi 0.9 GAN ratio 0.8/1.6
Ba 0.95 GAN ratio warmup steps 100
weight decay 0.1 random seed 42
steps 1000 batch size 32
warmup 100
precision fpl6
evaluation freq. 100/ 50

Table 3.3: This table shows the hyperparameters used in the stage of training GAN.

recognize the text from the images. These images are created by putting the generated
patches together. The extracted text is more accurate because OCR software performs
better on images with higher resolution. In addition, the performance of OCR software
on binary images is also poor. Even when faced with words humans can understand, its
recognition is still wrong. To improve the accuracy of the recognition, the generated
patches were scaled by 3 in size and placed in the middle of the square white background.
The Tesseract OCR |'|and Paddle OCR [ are chosen to recognize the texts from the
output images. Because this project trains a multilingual model. Therefore, during the
evaluation, the LAMBADA dataset was tested in five different languages. Therefore,
this project will explore two different readabilities, namely whether the generated text
belongs to the same language as the prompt and whether the generated text belongs to
one of the five languages [/].

However, for Paddle OCR, it can only used by specifying one language as its
recognizing language. If five Paddle OCRs for different languages are used separately
to recognize the output images, the evaluation time will be increased. Besides, because
different languages have different alphabet tables, OCR for a single language might
recognize a wrong word correctly. For example, an incorrect French word may be
recognized by the English paddle OCR as the correct word, since the French alphabet
contains some characters like: ”a” which may be recognized to be ”a” by the English
Paddle OCR. Therefore, when facing different languages, the Paddle OCR for the same
language as the prompt language will be used as the recognizer.

For Tesseract OCR the multilingual version of it will be used as the recognizer. The

ITesseract OCR: link
Zpaddle OCR: link


https://github.com/tesseract-ocr/tesseract
https://github.com/PaddlePaddle/PaddleOCR
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reason is that if single-language OCR is used, some wrong words that are more likely
to be in other languages may be forced to be recognized as correct words by such OCR
due to differences in the alphabet. While the use of multilingual OCR may slightly
reduce the accuracy of text recognition, it makes text recognition more rigorous. The
results of the Tesseract OCR and Paddle OCR are combined. If one of them recognizes
the target word, the prediction is considered correct [7]].

Table [3.4] shows the letters that are not included in English but are contained in the

other four languages. These letters are copied from Chinese version Wikipedia

language Letters outside the English alphabet

German (A 4) (0 6) (SS B) (U i)

French | (A2) (Ad) (Ew)(Cg) (Eé) [Ee) [Ee) Ee) (1) [i)(O00) (Eew) U (Ui (Y
Spanish (A 4) (Chch) (Eé) (1) (L11) (O 6) (U ) (U ii)

Italian Aa)EESHIADADAD Od) O6)U U

Table 3.4: This table shows the letters outside the English alphabet in the other 4

languages.

3.5 Readability metric

The patches of images generated by PIXAR++ may contain readable text or unreadable
text, and noise. Whether the output patches are readable for humans and OCR tools
or not depends on the generation quality of the PIXAR++ model. The standard for
measuring whether the generated text is readable is called readability. Because this
project uses two OCR tools as text recognition tools, the readability in this project is
defined as whether the generated patches can be recognized as at least one word by the
OCR tools. This project used two readability metrics, one is whether the generated
word exists in the same language word list as the prompt, and the other is whether
the generated word exists in the five languages word list. The languages of the five
languages word list are English, French, German, Italian, and Spanish, which are the
same languages used in LAMBADA prompts. The reference vocabulary of English is
collected by using the English Word Frequency dataset EI, which contains 333k most

common English words. For the other four languages, the datasets are chosen from the

3Wikipedia (Chinese version): link
“English Word Frequency dataset: link


https://zh.wikipedia.org/wiki
https://www.kaggle.com/datasets/rtatman/english-word-frequency

Chapter 3. Methodology 19

WorldLex ﬂ There are two sets for each language which are raw freq. and cleaned freq..
The cleaned freq. datasets were tried first but the performance was not good. The reason
is that, for example, the German dataset only contains around 150k common words
which is much less than the chosen English dataset. Therefore, the raw freq. datasets in
this website were chosen as the vocabulary lists in this project. Since all these datasets
are much more than 333k words, this project only used around 333k words on the top
of each dataset CSV file [7]].

SWorldLex: Blog, Twitter and Newspapers Word Frequencies for 66 languages: link


http://www.lexique.org/?page_id=250

Chapter 4

Experiments and Results

4.1 Data Preprocessing

Because both PIXAR and PIXEL chose Wikipedia datasets for their experiments, this
project selected seven different language datasets from Wikipedia including French,
English, Spanish, Arabic, Russian, German, and Italian. Chinese was chosen at the
beginning of the experiment but performed poorly in the evaluation due to the small font
size selected for the experiment. Figure .1]shows a rendered image comparing English
and Chinese. It can be seen that every character in English can be clearly recognized,
while many characters in Chinese are gathered together by many black pixels, which
makes it difficult to recognize the text. In addition, there are many Chinese characters,
but the dataset is only 1,024,000 articles, so many characters may only appear once.
Therefore, Chinese was replaced with Spanish.

Besides, the parameters of PIXAR++ specified in pretraining are consistent with the
number of PIXAR. Therefore, to ensure the fairness of the comparison experiment, it is
necessary to construct a multilingual dataset with a similar dataset size. Therefore, this
project chose the same Wikipedia dataset used in PIXAR and selected the first 1024,000
samples in each language [4] [/].

The first column of table demonstrates the configuration of rendering the raw
text to images. For most of the parameters, keep them the same as those in the original
PIXAR paper. In terms of patch size, this project chooses to try a larger patch size: 16 *
16. When the font size is unchanged, a larger patch size will increase the sequence length

contained in each patch, and it will also increase the difficulty of image generation.

20
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Figure 4.1: This image shows the comparison of Chinese image and English image

4.2 Computational budget

Stage 1 training of PIXAR++ models is trained in the same environment of PIXAR
[7]. They both completed around 90 hours through 16 NVIDIA V100 GPUs. Stage
2 training and evaluation for PIXAR++ are also in the same environment as PIXAR.
Because the training resources required were much less than stage 1, 4 NVIDIA V100

GPUs were used for stage 2 training and evaluation.

4.3 Pretraining stage

In the pretraining phase of this project, two different datasets of rendered images were
used as inputs. The size of the input images is different in each of the models. The input
data of the first model was the images with the size of 240 * 192, which is made up of
720 patches and each patch size is 8 * 8. The input image size of the second model
1s 480 * 384, which consists of 720 patches and each patch size is 16 * 16. The other
difference is that when training a model with an input patch size of 8 * 8, the dataset was
rendered before training began. When training the model with a patch size of 16*16,
the parallel mode of CPU and GPU was used. The CPU rendered the data, while the
GPU trained the model. Based on the training time, the second type of training did not
increase much training time. In addition, the size of the first method dataset is 1.2T,
while the size of the second method dataset is 28G.

To control variables, the patch size was increased without changing the font size.
The main purpose of increasing patch size is to increase the number of pixels generated
each time, and then increase the length of the generated sequence with a fixed font size.
According to the training results, the training loss of the PIXAR++ using the small
image as input is 0.18, while the training loss of the PIXAR++ using the large image

as input is 0.14. However, in downstream experiments, the PIXAR++ using the larger
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picture performed worse than the other PIXAR++. Because the training uses binary
images and the loss function is the usual pixel-wise binary cross-entropy loss, the white
part of the large image is much more than the white part of the small image. Therefore,
in the case of the same font size, the line spacing in the large picture is larger, and the
probability of this part being predicted correctly is higher. As a result, models using

larger images have less training loss.

4.4 GAN stage

Based on the experiments mentioned by Yintao et al., the best-performing model was
found at step 200. However, the original evaluation frequencies of the training are
200. Therefore, this project chose to reduce the total training steps to reduce the
training time. In addition, the evaluation steps were reduced to 100 or 50 to get more
checkpoints around 200 steps [7]. The chosen checkpoints of PIXAR++44.2 are 100
steps 8-patch-size checkpoint and 300 steps 8-patch-size checkpoint.

4.5 Discriminative Tasks

4.5.1 GLUE

Based on the paper of Tai et al. and Rust et al. [4] [7], the GLUE benchmark was
chosen as the primary metric to test the language understanding of the model. GLUE
contains 1 regression and 8 classification tasks. A newly created prediction head from
the rendered data is used to finetune PIXAR++ and the rendering of the dataset follows
the approach used for the training dataset. Some tasks consist of a pair of sentences, and
to separate the two sentences, a black patch is inserted between them. The embedding
of the last black patch is used as the head of the task input which is the same as the
paper of PIXAR. All hyperparameters are the same as those in the paper of PIXAR.
Besides, the early-stopping strategy mentioned in the paper on PIXAR is also used in

the experiments of this project [7]].

PIXAR++4g01

According to the experiment result for stage one, the PIXAR++44,1 models with the
same input patch size as PIXAR 4601 perform slightly worse than PIXAR 46,1 models,

given the same parameters of their models. This thesis will compare these two models
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first. For the average value of all tasks, PIXARqge1 1s 74.0, and PIXAR++46.1 With 8
patch size is 71.3, which is only 2.7 lower. This may be because the GLUE benchmark
uses English as the dataset language, PIXAR 6.1 uses 26.8M English samples as
the training dataset, but only about 1/7 of the 27.1M samples in PIXAR++46.1 are
in English. Therefore, PIXAR++ 44,1 should not perform as well as PIXAR4ge1
on GLUE. Another reason may be that other languages also have a disturbing effect
on the parameters of the model. Compared to GPT-2 [44] and BERT [535]], the two
PIXAR++46.1 models outperformed GPT-2 on STSTB, MRPC, RTE, and WNLI and
outperformed BERT on WNLI. This suggests that PIXAR++4¢.1 performs better on
tasks with smaller datasets.

Specifically, for the single-sentence tasks in GLUE (CoLA and SST-2), 8-patch-size
PIXAR++g 4601 performs worse than PIXAR 4601 For the accuracy of the SST-2 task,
8-patch-size PIXAR++gqge1 18 close to PIXARqq.1, While Matthew’s correlation of
the CoL A task has a large gap between these two models. The slight gap on SST-2
can be interpreted as a difference in the dataset. For CoLA, the primary sources of
its dataset are books and articles. The pretraining dataset of PIXAR 4.1, however,
contains Bookcorpus [42] and is, therefore, better suited to this task. In addition, since
the task is to determine whether the syntax is correct. The PIXAR++q4.1 dataset
contains seven languages, so the syntax of languages other than English can affect the
judgment of the model. For the similarity and paraphrase tasks (MRPC, QQP, and
STS-B), the 8-patch-size PIXAR++46.1 all have good performance and are close to
PIXAR 4601 scores. For the inference tasks (MNLI, QNLI, RTE, and WNLI), the
8-patch-size PIXAR++ 4401 still achieved good performance. For RTE and WNLI, the
performance of 8-patch-size PIXAR++4g.1 is even better than that of PIXAR g1
For RTE, the reason could be that the data of this task are from a Wikipedia dataset, and
PIXAR++ 4601 Only used the Wikipedia dataset in pretraining. For WNLI, The reason
may be that the dataset of WNLI is too small and unstable.

However, 16-patch-size PIXAR++46.1 performed worse than the other two models
on each task of GLUE. Therefore, this project will not analyze the reasons behind
each task individually. There are many reasons for this problem. The first reason is to
increase the size of the input image and the size of the patch that needs to be predicted.
Because of this change, the number of pixels in the input picture has increased, and
at the same time, the number of pixels in the patch that needs to be predicted has
also increased. This means that the number of features the model needs to learn has

increased, however, in the model, the overall number of parameters has not changed, so
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Patch size  MNLI-m/mm QQP QNLI SST-2 COLA STSB MRPC RTE WNLI

Models Parameters . AVG
(pixel) 392k 363k 108k 67k 85k 57k 35k 25k 635

GPT-2 126M NA 81.0 894 877 925 770 749 715 520 549 756
BERT 110M NA 84.0/84.2 87.6 910 926 60.3 88.8 90.2 695 51.8 80.0
PIXAR;tqgel 85M 8 784/78.6 856 8.7 8.0 399 817 833 585 592 740
PIXAR++gqge1 85M 8 7521/754 844 836 877 217 809 84 606 606 713
PIXAR++g14ge1 85M 16 70.0/70.2 832 822 835 109 772 818 570 577 674
PIXAR;1qge2 85M 8 79.7/80.1 863 857 893 370 824 828 577 606 742
PIXAR++g14g02 85M 8 745/752 844 836 869 159 803 81.8 621 577 703
PIXAR++g4ge2 85M 16 71.2/71.4 830 826 839 100 764 827 588 563 67.6

Table 4.1: This table shows the performance of BERT [55], GPT2 [44], PIXAR and
PIXAR++. PIXAR++ achieves similar performance to PXIAR on GLUE. For QQP and
MRPC, the F1 score is used as the benchmark. The Spearman’s p is used for STSB

and Matthew’s correlation is applied for COLA. The accuracy is used on other tasks.

the evaluation results are not good. Another reason is that the training stage uses the
usual pixel-wise binary cross entropy loss as the loss function, but in this loss function,
the weight of the white and black pixels is the same. However, in the large patch size,
due to the same size, the white pixel occupies a larger proportion, and the white pixel
is easier to predict correctly than the black pixel. Therefore, although the loss value
during pretraining is low, the effect of evaluation is not good. A good solution is to
balance the weight of the two types of pixels or increase the weight of the black pixel.
Another solution is to increase the font size of the large image, however, this will reduce

the length of the predicted sequence.

PIXAR++40¢2

The last three rows in the table show the performance of the stage 2 models on
the GLUE benchmark. In terms of average performance, all models achieved similar
results at stage 1 and stage 2. Specifically, the average score of PIXARe.» and
16-patch-size PIXAR++4602 has a small increase, while the average score of 8-patch-
size PIXAR++4q¢2 has a small decrease. The reason may be that stage 2 models are
trained to increase the readability and accuracy of the generated text to improve their
ability to handle generative tasks. Therefore, the development set used to select stage 2
PIXAR++ checkpoints is a validation set from LAMBADA. As a result, the checkpoints
picked out may not perform best on discriminative Tasks. Besides, the performance
of PIXAR++g4g.2 models on RTE is still better than PIXAR 4.2 for the same reason
mentioned in the PIXAR++g4g.1 section. The surprising result was that 16-patch-size
PIXAR++4402 performed better than 8-patch-size PIXAR++44.0 0n MRPC tasks
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and is very close to the performance of PIXAR;,e.2. The difference between the two
PIXAR++ models is only patch size. Therefore, since the font size of these two models
is the same and the training of PIXAR++ is pixel-based, during training, the patch of
the input and output images of 16-patch-size PIXAR++ contain more characters and
information. This difference may be why 16-patch-size PIXAR++g4g.2 performs better

when dealing with online news datasets.

Hyperparameters

Table [4.2] shows the hyperparameters chosen for the evaluation of the GLUE benchmark.
All parameters are selected based on the description of the PIXAR paper. For larger
tasks like MNLI and QQP, select 256 as the batch size and 8000 as the max steps. For
smaller tasks like STSB and WNLI, 32 is selected as the batch size, while 2000 and

500 are selected as the max steps.

PIXAR++g41 | MNLI QQP QNLI SST-2 COLA STSB MRPC RTE WNLI

Ir 3e-5 3e-5 3e5 3e-5 3e-5 3e-5 6e-5 3e-5 3e-5
Weight decay 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.01 0.01
Optimizer AdamW
Warmup Linear warmup
Warmup steps | 1000 1000 500 200 50 100 20 50 2
Bi 0.9
B2 0.95
Random seed 42

Batch size 256 256 256 256 256 32 64 32 128
Max steps 8000 8000 4000 2000 500 2000 500 500 20
evaluation freq. | 500 500 200 200 100 100 50 50 1epoch
PIXAR++402 | MNLI QQP QNLI SST-2 COLA STSB MRPC RTE WNLI

Ir 3e-5 3e-5 3e5 3e-5 3e-5 3e-5 6e-5 3e-5 3e-5
Weight decay 0.1 0.1 0.1 0.01 0.01 0.01 001 001 001
Optimizer AdamW
Warmup Linear warmup
Warmup steps | 1000 1000 500 200 50 100 20 50 2
B 0.9
Ba 0.95
Random seed 42

Batch size 256 256 256 256 256 32 64 32 128
Max steps 8000 8000 4000 2000 500 2000 500 500 20
evaluation freq. | 500 500 200 200 100 100 50 50 1epoch

Table 4.2: This table shows the hyperparameters applied in the GLUE benchmark.
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4.5.2 XNLI

XNLI is the downstream task translated from MNLI in the GLUE benchmark [12].
This original dataset had no index, which led to poor training results. However, there
is an index item in the MNLI dataset. Therefore, in the preprocessing stage, an index
item is added to each sample in the dataset dictionary. Twelve languages in the XNLI
task are chosen as the experiment languages. Six of these languages were the same as
those in the pretraining dataset which are Arabic, German, English, Spanish, French,
and Russian. Italian was not included as the experimental language because it was not
included in the XNLI dataset. Table 4.3 shows the performance of these languages on
BiLSTM-max, BERT, PIXAR, and PIXAR++. Six other languages including Bulgarian,
Greek, Urdu, Swahili, Turkish, and Vietnamese were chosen to test the performance
of PIXAR++ models in languages they had not been trained before. Table 4.4 shows
the performance of these languages on the same models of table[4.3] The results of the
BiLSTM-max are provided from the paper of XNLI [12]].

Models Parameters Patch size  ar de en es fr ru  AVG
BiLSTM-max NA NA 65.8 66.5 737 688 683 66.5 682
BERT 110M NA 70.7 759 819 778 NA NA NA
PIXAR++ 441 85M 8 63.6 68.0 753 721 712 67.0 695
PIXAR+ 01 85M 16 552 663 709 700 68.0 651 659
PIXAR4ge2 85M 8 59.7 672 788 69.8 6777 64.0 67.9
PIXAR++14002 85M 8 62.6 70.0 747 728 712 68.6 70.0
PIXAR++40e2 85M 16 541 669 709 694 683 645 65.7

Table 4.3: This table shows the performance of BiLSTM-max, BERT, PIXAR, and
PIXAR++ models on XNLI tasks. The metric used here is accuracy. The XNLI was
translated from MNLI and is used to evaluate the performance of multilingual models.
This table mainly shows the performance of the languages present in the pretraining
dataset of the PIXAR++. These languages are ar(Arabic), de(German), en(English),

es(Spanish), fr(French), and ru(Russian).

PIXAR++4g¢1

Languages in the pretraining dataset: According to the table the PIXAR++ 441
model using 8 patch size images as input outperformed the other PIXAR++,4.1 model
overall. In addition, PIXAR++4e.1 outperforms BiLSTM-max in all languages except

Arabic. The accuracy of BiLSTM-max on Arabic is 65.8, but on the 8-patch-size and
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Models Parameters Patch size bg el ur SW tr vi  AVG
BiLSTM-max NA NA 674 664 56.6 582 645 660 63.1
BERT 110M NA NA NA 616 NA NA NA NA
PIXAR++ 441 85M 8 67.8 68.0 543 605 64.7 639 632
PIXAR++ 441 85M 16 647 645 503 582 61.6 613 60.1
PIXAR4ge2 85M 8 60.5 64.6 502 562 655 639 602
PIXAR++4002 85M 8 67.8 67.0 557 614 644 644 635
PIXAR++4002 85M 16 645 645 504 585 61.0 61.7 60.1

Table 4.4: This table shows the performance of BiLSTM-max, PIXAR, and PIXAR++
models on other XNLI tasks. The metric used here is accuracy. This table mainly shows
the performance of the languages that were not included in the pertaining dataset. These
languages are bg(Bulgarian), el(Greek), ur(Urdu) (low-resource language), sw(Swahili),

tr(Turkish), and vi(Viethamese).

16-patch-size PIXAR++g 46,1, they are 63.6 and 55.2. The reason may be that in the
training language of the PIXAR-++ model, Arabic is very different from the other six
languages. However, the other six languages are similar. Therefore, during the stage one
training of PIXAR~++4e.1 On Arabic samples, other languages in the pretraining dataset
can not provide useful features and even have negative effects. Despite this, the result
of the Arabic task is also close to the result of BILSTM-max. For the 8-patch-size and
16-patch-size PIXAR++441, the prediction accuracy of these two models for English
tasks is the highest, which is 75.3 and 70.9 respectively. The reason may be that the total
number of characters in the English samples in the pretraining datasets is more than
the number of other languages. As a result, the English samples in the preprocessed
pretraining datasets are more likely to be longer and more than other languages.
Languages did not in the pretraining dataset: According to the table .4 the
8-patch-size PIXAR++4.1 still performs better than the other PIXAR++;4601 Overall.
The average performance of PIXAR++gqg.1 is better than the BILSTM-max. This
shows that the PIXAR++46.1 model has good processing ability even when faced
with language text that has never been seen before. Besides, a low-resource language,
Urdu, is also one of the test languages. The task for this language is very challenging
and as expected, PIXAR++4g.1 performs the worst on the task of this language. The
accuracy of the two PIXAR++46.1 18 only 54.3 and 50.3. However, the performance
of 8-patch-size PIXAR++4.1 18 still comparable to the baseline model which is 56.6.
This shows that PIXAR++g44.1 can still perform well even in the face of a low-resource

language that has never been seen before. All four languages except Vietnamese and
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Urdu exceeded the baseline in accuracy. This shows that the model can handle languages

not existing in pretraining.

PIXAR++4602

Languages in the pretraining dataset: The last three rows of the table show
the performance of the stage 2 PIXAR and PIXAR++. On average, 8-patch-size
PIXAR++44¢2 slightly outperforms PIXAR++46.1, While the average score of 16-
patch-size PIXAR++q4¢2 18 slightly lower than PIXAR++46.1. Besides, the average
accuracy of 8-patch-size PIXAR++4g.2 1s higher than it of the PIXAR 4.2 and 8-patch-
size PIXAR++gq0.0 performed better than PIXAR 4.2 in all five languages except
English. The accuracy of PIXAR 6.2 and 8-patch-size PIXAR++44.2 in English is
78.8 and 74.7. The reason concerns the datasets for pretraining and stage 2 training,
PIXAR uses a pure English training dataset, while the dataset of PIXAR++ contains
seven languages. In addition, the training dataset of PIXAR has 26M English samples,
while PIXAR++ has only about 1/7 English samples in its training dataset. Since the
16-patch-size PIXAR++46.1 did not perform as well as the other PIXAR++441 0N
stage 1, within the expectation, its performance after stage 2 training is still lower than
the other PIXAR++46¢2.

Languages did not in the pretraining dataset: The last three rows of the table
4.4 show the performance of the stage 2 PIXAR and PIXAR++. Based on the average
accuracy of these languages of the three models, 8-patch-size PIXAR++4qe2 got 63.5
which is higher than the other two models and the average accuracy of the other two
models is similar, which is 60.2 for PIXAR g2 and 60.1 for PIXAR++g4602. 8-
patch-size PIXAR++g44¢2 also slightly outperforms PIXAR++46.1, While the average
score of 16-patch-size PIXAR++g402 18 same as it of PIXAR++yqg.1. This may
be because the PIXAR++ training dataset contains more letter types, grammar, and
syntactic formats. Therefore, PIXAR++ is more robust when facing unknown languages.
Specifically, 8-patch-size PIXAR++46.2 outperforms PIXAR 4.2 in all languages
except Turkish. The reason may be that Turkish contains similar letters and words to
English.

Hyperparameters

The hyperparameters for this task are the same as MNLI tasks in the GLUE benchmark.

This is because other language datasets of XNLI are the translation version of MNLI.
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Models Ir Weight decay Optimizer ‘Warmup Warmup steps 1 P2 Randomseed Batchsize Max steps evaluation freq.
PIXAR++gqg1  3€-5 0.1 AdamW  Linear warmup 1000 0.9 095 42 256 8000 500
PIXAR++gqge2  3e-5 0.1 AdamW  Linear warmup 1000 0.9 095 42 256 8000 500

Table 4.5: This table shows the hyperparameters used in XNLI downstream tasks.

4.6 Generative tasks

In the experiments of generative tasks, the prompt was rendered as images, and a white
patch of 3 pixels in length was inserted before the generation began. The white patch is
used as a space to separate new words. PIXAR++ generates new text image patches
autoregressively from here [/]. This project mainly selects bAbl and LAMBADA for
the generative tasks. The bAbI only has an English version but the LAMBADA tasks
have English, French, German, Italian, and Spanish versions [44]]. These two generative
tasks were used in PIXAR papers. The bAbI task is a QA task that evaluates the reading

comprehension of the model in providing the truth. The prompt is designed to contain

four examples from bAbI and uses |” as the divider between the question and the
answer. LAMBADA is the benchmark used to test the text-understanding ability of
LLMs. The model needs to provide a prediction for the last word of a sentence after
reading a paragraph [7]].

Table 4.6 shows the results of PIXAR and PIXAR++ models on bAbI and LAM-
BADA tasks. Since the training set of PIXAR includes only English, the performance
results of PIXAR in the tasks of other languages are labeled NA in this table. In addition,
all LAMBADA tasks tested with PIXAR++ have three metrics. The one on the left
is the readability for a single language. Specifically, the meaning of it is whether the
generated text is in the same language vocabulary as the prompt. In the middle is the
readability of the five languages, which tests whether the generated text is in any of the
vocabularies of the five LAMBADA tasks in different languages. The last value is the
accuracy of the predicted result. In addition, for readability, a portion of all generated
text is not in the same language as the prompt but is still readable. The reason may
be that multiple languages are used in the pretraining stage. Because the words of
some languages are relatively similar, the model may misjudge the language of the text
to generate when performing the generation task. Besides, since the dataset used for
PIXAR contains only English, the performance of PIXAR on the bAbI task and the
English LAMBADA task should be more advantageous.
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PIXAR++4g01

According to the experimental results, in the model of stage one, PIXAR has the highest
prediction accuracy in bAbI and English LAMBADA tasks. Since PIXAR only used
the English dataset and was trained on more English samples than PIXAR++, more
English content information, sentence structure, grammar, and words were learned by
PIXAR. In addition, because pure English datasets use all English characters, they are
not affected by the noise and perturbation generated by characters contained in other
languages when generating text. It is worth noting that 8-patch-size PIXAR++4601
performs better than PIXAR 4.1 in readability. This shows that using multilingual data
sets can increase the robustness of generating sequences as readable text. In addition, 8-
patch-size PIXAR++44.1 generates much more accurate text on LAMBADA tasks and
bADI tasks in all languages than 16-patch-size PIXAR++44¢1. In terms of readability,
8-patch-size PIXAR++ 441 1s also better than 16-patch-size PIXAR++44.1, €xcept
for the readability of the five languages of Italian. This may be because 16-patch-size
PIXAR++4ge1 1s more pixels than 8-patch-size PIXAR++g4g1 in the patch size of the
input image during training and each generated patch size. As a result, larger models

and longer time may be required to train 16-patch-size PIXAR++gqge1.

PIXAR++ 402

According to the experimental results, the readability of PIXAR on the bAbI task
improved from 63.2 to 77.0 (Growth value: 13.8), and on the English LAMBADA task,
it improved from 54.8 to 82.2 (Growth value: 27.4). For 8-patch-size PIXAR++ 402,
the Growth values are 0.4 and 0.5 and for 16-patch-size PIXAR++44¢2, the growth
values are - 0.3 and 0.2. This means GAN loss is more useful for PIXAR which
uses a single language as the training dataset than PIXAR++ which uses a multi-
language dataset. Since the best checkpoints for PEXAR++g44¢2 are around 200 steps
and the batch size is 32, only a small fraction of the multilingual datasets are used and
the number of samples in each language is unbalanced. Also, since GANs are very
unstable, the checkpoints used for these experiments may not be the best. Finally, since
the samples of the multilingual dataset contain more words, characters, grammatical
structures, and syntactic structures, this dataset was more difficult to train. Given
these factors, the improvement in the accuracy of PIXAR 4> generated text is still
larger than that of PIXAR++4ge2. For PIXAR 4402, the improved values of bAbI and
LAMBADA are 8.5 and 8.1. But for 8-patch-size PIXAR++4e.> they are 3.4 and
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1.1 and for 16-patch-size PIXAR++44.2, they are 0.4 and 0.3. However, even so, the
accuracy of all prediction texts improved after stage 2 training. This shows that using
GAN loss as the final layer of the model can also improve the performance of PIXAR++

in generative tasks.

Models Parameters Patch height (pixels) ~ bAbI ~ LAMBADA (en) LAMBADA (de) LAMBADA (es) LAMBADA (fr) LAMBADA (i)
PIXAR 41 113M 8 63.2(11.1) 54.8(5.7) NA NA NA NA
PIXAR++rage1 85M 8 61.0(9.7) 61.9/63.4(19) 452/57.3(28) 50.1/56.7(0.9) 47.0/53.6(3.5) 50.6/57.1(2.6)
PIXAR++yqg01 85M 16 423(4.6) 543/553(05) 355/443(1.2) 39.8/485(0.2) 38.8/43.0(0.9) 47.5/57.4(0.9)
PIXAR 1402 113M 8 77.0(19.6)  822(13.8) NA NA NA NA
PIXAR++yper  85M 8 614 (13.0) 664/682(3.0) 49.8/613(32) 53.9/61.0(1.5) 51.0/56.5(3.8) 55.6/63.1(4.2)
PIXAR++y402  85M 16 420(5.0) 545/555(0.8) 37.5/469(1.2) 40.7/48.4(0.3) 37.0/41.8(1.2) 50.7/559(1.1)

Table 4.6: This table shows the performance of PIXAR and PIXAR++ on two generative
tasks LAMBADA and bAbl. Among them, the performance of these models on the bAbl
task is presented by the readability ratio and the few shot accuracy (in brackets). For
LAMBADA is the readability ratio for one language, readability ratio for 5 languages, and

zero-shot last-word prediction accuracy (in brackets).

Output analysis

Figure and show the good and bad examples of LAMBADA generated by 8-
patch-size PIXAR++. These examples of generate the wrong text for the following
reasons: (1) According to the prompt, the man smiled at him.” was in the first line and
this “him” represents “carlos”. The generated text is “him.” which means the model
did not understand what him” is, but only copied the answer from the prompt. (2) The
reason for this German example is similar. Besides, the prompt of this example did not
have the same word or a word with similar meaning as the result. The meaning of the
word "Looks” in English is similar to ”ansah”, however, "Look” means “make people”
in German. Therefore, this is a tough sample to predict. (3) This example does not
predict correctly because the answer is ”Shane” but this word appears at the beginning
of a sentence in the prompt, which means no useful information in front of ”Shane”
but only a period. Besides, the last word in the prompt, ’cuenta,” doesn’t appear in
the previous paragraph either. (4) The predicted text of this example is meaningless.
The reason could be the model did not find a similar phrase or a proper word from the
prompt. (5) The answer here is “combattimenti”’, a synonym of ’lotta.” However, due to
the phrase structure before the result, there is no equivalent in the prompt. So the model
doesn’t even answer “lotta.” In Figure|A.2] all result predictions are correct because the

phrase containing the result has appeared in the previous prompt. For example, the



Chapter 4. Experiments and Results 32

old city of suzhou” appeared in the previous prompt since the last word of this prompt
is old, the model outputs the following words “city of suzho” in this phrase. Since the
output length is limited, the last letter of the word ”suzhou” was not generated.

Figure [A.3] and [A.4] show the good and bad examples of LAMBADA generated
by 16-patch-size PIXAR++. The reasons for the wrong samples are: (1) The reason
for the first example has been mentioned before, which is "no similar phrase” in the
previous prompt. Besides, since the answer is “cooking”, although the model finds the
word “’cook” as the answer, it is difficult for it to change this word to ”cooking”. (2)
The result for this answer was not provided in the previous prompt, which makes this

sample difficult to predict. (3) Since in the prompt, the symbol ”:” was after the word

99,99 s

”dijo”, the result the model predicted is :”. (4) There are two phrases ’de la pousser’
and “de la jeep” in the prompt. The predicted text is similar to the first three characters
of ”pousser”. The reason could be the model thinks the word “pousser” is more likely to
be the answer. (5) This is the same sample mentioned in the 8-patch-size examples. The
reason for the failure is the same, and the purpose of showing it is to compare it with
the image generated by 8-patch-size PIXAR++. The reason for the correct prediction is
the same as that of the 8-patch-size PIXAR++.

Figure and show the good and bad examples of bAbI. According to figure
PIXAR++ makes the mistake because it only learns a fixed structure "Where is ...?
| ” but not the meaning of the sentences. Figure shows where the model found the
answer visually, the answer to the upper prompt is “office” and the other is ”garden”.
According to this figure, the result that PIXAR++ generated is according to the answer
to the same question in the previous prompt but not the last place ”Sandra” went. Figure
[A.6] provides another reason for the model to make incorrect predictions, which is the
misspelling of words. For example, the letter ”’g” in the generated word “garden” was
more like ”a” and the letter ”a” in the generated word “bearoom” should be ”’d”. This

may be because of the generated noises in the prediction period.

Sondrd travellad to the holloy, Sandra joorneyed 1
o the bathroom. Where is Sundm‘?! bathr oo Johkin
Jent to the bedroom. Jolhn went to the bothroom. Whe
ape iz John? | bathroom Sandrag journeyed to the gor
wden. Danigl travelled to the kitchen, Where is Jokhn® k
boathyoom Sandro mowved to the bedroom, Moy wen

to the kitchen. Wheve is Moaey? | kitchen Soandva jour
neyed to the office. John trouvelled to the hallioy. Wh
ere i Sondra® | bothroom

Doniel journeyed to the qpc:
the gavden. Wheve is Daniel c;
to the hallwery. Jobin rnowved to the halllacy, Where is
lohn? | hallecey Moy travelled to the bedvoom. Jabin 1
ripzlled 1o the qﬁvden. here iz John? | govden Sano
dva travelled to the bathroom. Johh Journeyved to the
s hglhwoy. Where is Soandra? | bathyoom Sondro went -
lnDthe_ -:Iggmlfden. Moy travellzd to the halluoy. Where i:
s Daniel?

polen. Mary trovellad to
| goavdden Sondvo rmowved

Figure 4.2: This image shows where the model found the answer
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Conclusion and Discussion

5.1 Conclusion

Achievements: This project proposed PIXAR++, the extended version of PIXAR.
PIXAR is the first pixel-based autoregressive LLM that can generate images of a short
text sequence [7]. However, the pretraining dataset of PIXAR is only based on English
and the patch size of the input and output images is fixed to 8 * 8. Therefore, a 7
language dataset was collected and created to train PIXAR++ and 8 * 8 and 16 *
16 patch sizes are tried in this project. Under the premise of the same font size, a
larger patch will contain more text sequences. Besides, some downstream tasks are
used to test the performance of PIXAR++. GLUE and XNLI are used to show the
performance of PIXAR++ on discriminative tasks. Since GLUE is a pure English
benchmark, PIXAR performs better, but 8-patch-size PIXAR++ performs similarly to
PIXAR. Since XNLI is a multilingual task, 8-patch-size PIXAR-++ outperforms PIXAR
in most languages. In addition, 16-patch-size PIXAR++ performs worse than the other
two models on both discriminative tasks. For the free-text QA generation tasks, the
project chose the bADbI task and 5 language LAMBADA tasks. In the English generation
task, PIXAR performed better than the other two models. PIXAR did not experiment
with LAMBADA in other languages. Therefore, for tasks in other languages, there
are only two PIXAR++ experimental results. For all the generative tasks, 8-patch-size
PIXAR++ still performs better than 16-patch-size PIXAR++.

Limitations and future work : Due to the difference in the number of white and
black pixels in the patches, although the model using a larger patch size has a lower
training loss, its performance in the downstream task is no better than 8-patch-size

PIXAR++. Therefore, Balanced Cross-Entropy and Focal loss is a better choice of loss

33
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function. In addition, due to the increase in language types and patch size, the size
and training time of the model selected in this project may be insufficient. Therefore,
larger models and longer training times could be used in future work. Besides, based
on the experimental results of the generative task, PIXAR++ finds the answer by
looking for whether the last several letters in the prompt were present in the previous
prompt. If present, the text sequence following these letters in the previous prompt is
generated; if not, there is no way to predict correctly. This shows that the model has
not learned the correct dependencies between texts over long distances and that the
dependencies between patches are poorly interpretable. In addition, larger datasets,
more languages, Larger font sizes, and Higher resolution ratios could be tried in the
future, if the computational resources are sufficient. Finally, although the GAN model
improves the performance in generative tasks, it is still unstable and the diffusion model
proves to perform better than the GAN model on Image Synthesis [8]. Therefore, using
the diffusion model in stage two is worth trying. The details of the future work are in
the discussion section.

In summary, the project expanded PIXAR to handle more languages which proves
the possibility of learning text information from pixels in other languages, and expanded
the patch size to increase the length of the generated text. The experiment of this project
extends the application scope of PIXAR++ and provides more possibilities for the

extension of pixel-based models.

5.2 Discussion

Balanced Cross Entropy & Focal Loss

In this project, the binary cross entropy (CE) loss is chosen as the loss function in the
training of PIXAR++ [56]]. However, the number of white pixels and the number of
black pixels per patch of the input images and the generated patches are not equal. In
addition, in images with 16 * 16 pixels per patch, the two classes are more unbalanced
due to the increase in line spacing and the increase in white space after the end of the
text. Therefore, if their weights are the same, it will result in poor training results even

though the loss function value is small. The equation of the binary cross entropy is:

—log(p) if (y=1)
CE(p,y) = 5.1
(7-3) { —log(1—p) otherwise e-b
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Where y means white or black pixel in this project and p € [0, 1] means the estimated
probability of the PIXAR++ model for y is the black pixel [S6].

it (y=1
pt:{p if (y=1) 52)

1 —p otherwise

Therefore, the CE loss can be written as this equation for convenience:

CE(p,y) = CE(p:) = —log(p:)

However, this loss function can not solve the problem of class imbalance. Therefore,
a common idea was proposed to use a weighting factor o € [0, 1], where o is for the
black pixel class and 1 - o is for the white pixel class. The notation definition of o is
same as p; [56l]. The equation of a-balanced CE loss equation is:

CE(p:) = —oulog(pr)

Although the importance of white and black samples was balanced by a-balanced
CE loss, the easy and hard samples are not distinguished. Therefore, the focal loss (FL)
loss function was designed to reduce the weight of the easy examples. The focal loss
function is:

FL(p:) = =(1 = pi)"1og(p:)

Where 7 is a tunable hyperparameter between [0,5]. In the experiment of the paper

on FL, FL loss works the best with y= 2.

Larger models & longer training time

According to the paper of PIXAR, the PIXAR model with 113M parameters was
chosen to deal with the generative tasks [7]. However, the PIXAR++ has only 85M
parameters. Besides, since the dataset used on PIXAR++ is a multi-language dataset,
more characters, words, syntactic structures, and grammar need to be learned by the
model, which will need more parameters. In addition, this project attempts to image
with 16 * 16 pixels per patch as the input and output of training. Therefore, each patch
contains more information and is more difficult to train. Moreover, compared with 8 *
8 pixels per patch, the generated patch is larger and contains longer text length, which
makes it more difficult to generate patches. Therefore, larger models and longer training

times are necessary.
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Lager dataset & more languages

Due to the limited training resources, only 85M models and 27M samples of seven
language datasets were trained in this project. However, the English dataset for training
PIXAR has 26M English samples [7]]. Therefore, for multilingual datasets, to achieve
experimental results similar to PIXAR on English tasks, there must be a similar number
of samples in all languages which means at least 26M (samples per language) * 7
(Number of languages) samples used to train PIXAR++. In addition, as the learning
difficulty of multiple languages is higher, the training difficulty will be higher due
to the differences in characters, words, syntactic structure, and grammar between
different languages. Therefore, samples for each language should be larger than 26M
for good performance. Besides, the main reason that the PIXAR++ did not achieve
good performance in Arabic is because other languages in the dataset are very different
from Arabic. Therefore, more languages that are similar to Arabic should be added
to the datasets to improve the ability to process Arabic tasks of PIXAR++ and other
languages can also be chosen to train in PIXAR++ to increase the robustness of the
PIXAR++ model.

Larger font size & Higher resolution ratio

As shown in[A.T] in the French example, the word "approprié” was written as approprié¢”.
Besides, according to[3.2] in the Chinese image on the left, the generated Chinese charac-
ters are very vague. Therefore, to adapt to the more complex characters in the language,
the image resolution and font size of the model input should be increased appropriately.

However, such modifications also require larger models and longer training times.

Diffusion models and longer generation

As mentioned in the motivation part, the performance of diffusion models is always
better than the GAN models on Image Synthesis [8], and since the GAN model is
unstable, although the automatic GAN ratio balancing is used, the stage 2 training is
still difficult to optimize [/]. Therefore, diffusion models or diffusion transformers,
which are also generative models, can be used to replace GAN models in future work.
Besides, due to the readability metric, PIXAR++ still can not generate long sentences
and further experiments will check if diffusion models can increase the length of the

generated readable text [7].
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First appendix

A.1 First section

Prompt Generated Target Language

LAMBADA (Patch size: 8)

| "cc&kéosl.trfﬁfc:el u.lillson." Pt1h.t2 rnan shiled ot Eln‘i Cﬁl

o= didn't hove o clue whot was going on. ke looke " d i
2d to his manoager, "o here's uqst n?oued Into th carlos English
& house ot the bottom of the kill," "oh vight" "akboo

Jlt E:’t,m:vf mdyke thires, miles aweoy,” tom said and s uai

iled o irn. '

. Gron sadgte ein kuveer Segen und jeder grubt e
I?' Icr_} koc?mf nlfc:htdunde_vstalbev bdeinevktebdashc:%
Hgreifende Looks, das sie Cole und I gegeben ho " "
. und versouchte, tich mit Cole aufzubauen?Mein, : ansah German
sie kommnte nicht Sein Sie liebte Sorm, und ich wossh
= e Ich soh es i ihrer AuraTrotademn ook es o
=h Lieke it ibrer Auvd, wenn sie Cole wrd T ojaceb:

Dome un mlnutoﬁauva coambicr v te encontrore
on los muelles It hobic forzodo esos palabros
sa troaves de sus dientes, "Mo hay necesidad de o

sarnbicr, Mo pasarenos ton laraos", Shane agarro ™ " i
=u brgEo v comenza o levavla o moele, T Puedo I Shane Spanish
eqor alli por mi cuento, 121 R0 ey

Son fréve dechiverdit probablerment mes veux et
le=s poussera dons la gorae =il savaitbuelque ch
oze m'a dit guil ne le decouwrivait posiu'elle ne di
ruit personne & personnePos gu'elle puizse gayd " .
er uh secret. Elle Stait silibve guec des mots, dis approprie French
ant toujours ce qui etait dans son esprit, gue ce;
soit c:gg;avo prie ou non.de ol porticulierement gime
guand il netait pas

Lo scovto ubricco ubricchi fuori dol boy & dive
wad dol sdlendo contro un tigre-wildcat che mane
lia una bistecca crudo per coluzione & sta morer:
doper una lotta, " "Scormmetto che potrebbe ving " . - .
zre con il sUo respira,” disse RonanSean vidacchi combattimenti Italian
&, "Prengilo sul Serio, Roron, Questi Fagoszi soho
—ondifi. Se Marguez ha un campione, significe che
ho winto uno buono pavte dei rirnt

Figure A.1: This table shows some bad examples of the LAMBADA tasks for 8-patch-size
PIXAR++4602
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Prompt

LAMBADA (Patch size: 8)

Generated

Target

44

Language

he ot only Felished the task of ferreting oot t
1e provenance of some ochscure artork, but also
3 enjoyved the recagnition from her as o quasi ou
thowkity, "one of ey students mentioned o painting
that she Ulewed vhile Ulsltln ching, | thln |t WS
in suzhow,” piwuse Uy he osked, "no,
no it was the old city of suahou that's whut she
=wid, the old

"he told rme thot the costor bean poison hod be
en mixed into the frosting and thot that woold mo
ke me the best suspect, chemistry and baking,” o
avid looked o bit confused and ke stoyed aquist for
<o zecond. "gresn eves ol suld thot pete told v
ou the poison was in tl rosting ™ "wes and he =
woidd it rade perfect sense with my bockaround, w
hot's wronc?” ' m wonderving when be found out
that the poison wos in the

"Michgel wollte flr eine sehv lange Zeit nichts |
Tit dem beschaft zu tun”, antwortets die altere F
~au By hotte sein Hera =i Eennwggenfuhrev U
sait. " Madeies Mund fiel auf. " Was?" S0 Ey wor sef
w e, obwaohl mein Here Jedes Mal cuthorte, wen
A eb guf der Strecke gindg, Egal wie oft sein Pa i L
nd ich versuchten, ihn zu entmutigen, er fand ein
en Weg wieder aof dev

Lvlon des Schuppens, Sie heilten Guardian des
Portals, akzeptizren Sie diese Suche, um dos Port
ol 2u =chitzen?, Toh vermute. Mechsf do?"ETI
JLOMY boomte ein, "Ich moche”, sagte v und kor
ate den Blick auf den Blick auf ikn fOhlen. “Connar
des Schuppens, duch Sie worden benonnt.Alkaepti
eren Sie diese Suche, umn das Portol 20

Guigro decir, un dig, ella me estd diciendo gue te
e, y o lo su;uuante gue 5&, ustedez doz ez
tun rotos v ella estd saliendo con Jazon.Simepleme
nte no paresca bienAmanda no es volukle ¥ APor
qué no le habio dicho ella?: Me estabo pvoteqlenc
{0, 0 estobo protegiendo su orguilo?Bueria creer
que erd yo ello estobo

Ella finclmente le pregquntd con cuvmﬂdud "Ellcy
fue atrapade por | guardia, asi locre colpe
wivla sobre lo cakbeza Con un cor elubro o laton
antes de gque tuviera la oportunidod de disparar
un sequndo disparo”. Las manos de Emily yoloron
o Su bocd pard detener o repenting aparicion de

2 o visa"TO golpens o tu modre sobre o cobeza o
on un

hutant gue nous puissions le comprendre, il ok
e ume houvele TRaison pour | rmogies Les bonde
roles de lumigre colorée clignotent suv F'ovcide in
distinct, cormme un orage ointain e visoge préoc
“Upe de o piece de monnoie eclaivée de GLOW, en
lui dornrncnt Mopporence d'un mosgue. e ne vois
pas comment nous allons tous slintearer, le Bruz
ar o declare Cardinag, la nuit dernigre J'al vo-"C'es
t fini, dit la pigce de

Il & non seulernent concu la tiche de creuser
la pravensnce de certaines cuwvres d'art obscuy
es, mais o egalerment apprecie o reconnaissonce
d'elle comme une outorite guasi. <n de mes et
lignts o mentionne une peinture gu'elle considarai
tlors de g visite de lo Chine.Ja pense e © ‘etoit
3 Suzhou, “Elle ='est arrétes. "Suzhou?I o dernar
e, "Mon nonlCEtait o vizille ille de Suzhou Clest.

e gu'elle o dit, la vieile

Sono stato fuori la moggior parte della mattinatc
1.50n0 append tornato o casa dieci minoti fo, ™ "We
w0, Bere, ricorda solo che dowesti chigmarmi per
vimo se hoi problemiE nel contratto di locozione
ol coso wodlio dire Rl agitd gli occhi. Herwy nor
| gcovduuu ezattamente coza fosse nel contrattc

Yedendo gquesto piccolo mogozzino di blocchi dii
nformazion antiche, post-rmodernl & contemporar
wei, c'evono dubbi, penso Omar, che tutto cio di cui
avend kisogno per sapeve per | sual grogetti fub
¥ Fiposati Vicing o caso, Allora, qual & la tea con
vinziohe T Chiese Wyrinet mentré riettews e tozae
= arrostite-uapore bicnche e al tuuc\lo T Hizpicc
2, potresti vipeterlo per favore ™ Omor ha dichiare
ito. "Certamente Ho detto, "allora, quc:l & o tuo

size PIXAR++s14ge2

he not only Felished the task of ferreting oot th
qe provenance of some ohscure avtork, but also
3 enjoyed the recagnition from her as o quasi oo
thowkity, "one of ey stodents mentioned o painting
that =he Ulewed il Ulsltln chirng, | thln |t WoE
in suzhow.” she piwuse ‘suzhou he asked, "o,
o 1t wes the old city of suahou that's whut she
zaidd, the ald city of suzko

"he told me that the costor bean poison hod be
en mixed into the frosting and thot thot woold oo
ke me the best suspect, chemistery and baking.” o
il looked o kit confused ond ke stoyed quist for
<o zecond. "grasn E\-'es ol suld that pete told v
ol the poizon ws in t rosting ™ "was and he =
i it rade periact sense with ey bockoround, w
hot's arong?" i wondering when he foond oot -
thot the poizon wos in the frosting oand

"Michael waollte flr eine sehv lange Zeit nichts
Tit dem heschaft zu tun”, antwortets die altere F
e, "Ey hotte sein Herz, ain Renmgagentohrer 2u
et Maddies Mund fiel oot Was?" SN Ey wor sef
W e, obwaohl rmein Here Jedes Mul uufhorte wenl
4 &b guf der Strecke dindg. Eqal wie oft sein P Jj
d ich versuchten, ihn zu entmutigen, er foand ein
en Wen wieder auf dev Strecke ¢

Lvlon des Schuppens, Sie heilfen Guardion des
Portals, ak=eptizren Sie diese Suche, um dos Port
i 2u schitzen? " ek verrnte. Machst du? BTI
JLOMY boornte ain, "Ich moache”, sggte e und kot
ate den Blick auf den Blick auf ke fOhlen. "Connor
des Schuppens, duch Sie wurden benonnt Akaepti
gren Sie diese Suche, umn dos Portal 20 schitzen’

Guigkro decir, un dig, ella me estd diciendo gue t2
e, 4 s lor su;mente gue =&, ustedes dos as
h:m rotos v oella estd saliendo con JazonSimeleme
nte no paresca bienAmanda no es volukle ¥ APor
que no le hoabio dicho ella?:Me estabo pvoteqlenc
{0, 0 estobo protegiendo su orgullo?Bueria creer
gque erg yo elo estobo protegiendo |

Ella finclrmente le pregquntd con cuvmsm{ud "Ellcy
fue atrapada por | guardia, osi lonike ciolpe
wivla sobre o coabeza Con un cor elubro o loaton
antes de gque tuvierd lo oportunidad de dispeorar
un sequndo disporo”. Las manos de Emily yoloron
o S hocd pard detener o repenting aporicion de

2 o visa"To ool ec:s o tu mcdve sobve o cobeao o
“or LR condela

shutant gque nous puissions le comprendre, il ok
e umE houvElle TREiSon pour o rmodies Les bonde
roles de lumigre colorde clignotent suv Fowcids in
distinct, comme un orage ointain e visoge préoc
“Upe de | piece de monnoie eclairée de BLOW, en
lui donnont Mapporence d'un mosgue. e ne vois
pas comment nous allons tous sintearer, le Bruz
ar o declors Cardinag, o noit dernigre ol vo-"Ces
tfimi, clit o pigce de monnaie e

Il a non seulernent concu la tiche de creuser
o provensnce de cevtaines euwres d'art obsouy
es, mais o egalerment apprecie o reconnoissonce
d'elle comme une outorite quosi. «ln de mes etug
lignts o mentionne une peinture gu'elle considerai
tlors de lg visite de lo Chine Ja pense e © ‘etoit
3 Suzhou, “Elle ='est arrétes. "Suzhou? Il a dernar
e, "Mon non)CEtait o wellle ille de Suzhou Cest,
e gutele o dit, la viglle vile de Suzhe

Sono stato fuori la moggior parte della mattinat
15on0 append tornato o cosa diech minoti fo, " "Ye
o, Berne, ricorda solo che dowesti chigrmormi per
virmo se hoi problemiE nel controtto di locozione
ol o= wodlio dive Bl agitd gli occhi. Herey nor
1 rlcovduuu ezattamente coza fosze nel contratic
ol lozazione.

Yedendo gquesto piccolo magozzing di blocchi di i
nformazion antiche, post-moderni & contemporar
i, C'eroano dubbi, penso Omor, che totto cio di cui
avend bisogno per saperve per | sual grogett fub
Skl Fiposati vicing o caso, Allora, gual & la tea con
vinziohe T Chigse Wypnet mentré rretten e tozae
= arrostite-voapore bionche e al towalo, "Mi dispicoc
2, potresti vipeterlo per faupore M Omor ho dichice
=to "CertgmenteHo detto, "Allora, qual & la tua cor
winzioneT

“frosting”

"Strecke”

"schiitzen”

"protegiendo”

“candelabro”

“monnaig”

"ville"

"locazioneg”

“convinzione”

English

English

German

German

Spanish

Spanish

French

French

Italian

Italian

Figure A.2: This table shows some good examples of the LAMBADA tasks for 8-patch-
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Prompt Target Language

LAMBADA (Patch size: 16) Generated

she thanked matt, hung ugp the phone and decided to cook. thot woold =ooth her nerves. derve
zk iz fine he could take care of himself, she continued to tall hevself. he would coll her, amber gol English
‘hered supplies and ingredients and began making lasagna from scratch, after an hour she forgot

chbout the note that sent her tearing home and lost herself in the

she thonked matt, hung up the phone and decided to cook. that would sooth her nerves. dere
sk was fine he could take care of himself, zhe continued to tall herself. he would coll her, amker gol "cooking” English
thizved supplies and ingredients and begon making lasegno from scratch, after an hoor =he forgot

chbout the note that sent her tearing home and lost herself in the oocr

"D verdienst es, 2u sterben Sydney keuchte aof den Worten"Slade, Sie wissen nicht einmo German
|, wia= Sie sogen!"Sie erinnerte sich an den Gunner, den sie in den Boden schrieb.Die Kugel, dis dis S
site des Jesps getroffen hotte Mo, hatte sie nicht 2wei Schidsse gehdkt?2wei Schidsse, aber nor &

stz Kugel war in den Jeep

"D werdienst es, 2u sterben Sydney keuchte aof den Worten"Slade, Sie wissen nicht sinmo
|, s Sie sagen!"Sie evinnerte sich an den Gunner, den sie in den Boden schrish.Die Kugel, die die S “gegangen” German
site des Jesps getroffen hotteMor.. hatte sie nicht 2wei Schidsse gehdrt?2wei Schidsse, aber nor &
sitiz Kugel war in den Jeep aesee,

Mo habia manera de que viniera oqui povr su cuenta. Fidid una toza de café, v luego nos sent SDBI’IiEh

amos en silencio. "Entonces.”, Aidan finglmente dijo: "LComa te va?™ Me reil"Mo ha combkiade mucha

dezde lo diting vez gue te i, "Ya sabes, comes mucho agui”, dijo

Mo hakin manera de que viniera ogqui por su cuenta. Fidid una toza de café, v luego nos sent
amos en silencio. "Entonces,”, Sidon finclmente dijo; "LCdmo te va? Me vel Mo ko combiodo mucho "Aidan" SDBI’IiEh

desde lo ditimo vez gque te Wi”, " Sobes, comes mucho agul’, dido e

"Waus méritez de rmouriv.” Sydhey haleté aux mots"Slade, tu ne sais méme pas ce gue tu disl'E
lle = souvint d'elle de la pousser au solLa balle qui avait frappe le coté de la jesp Seulement... n'aw French

ait pas entendu deux coups de feu alors?leux coups, mais une seule balle &tait allé dons lo

"Wous méritez de mourir” Sydney haleté aux mots "Slade, tu ne sais méms pas ce gue tu disl'E
llz =2 souvint d'elle de la pousser au solla balle qui avait frappé le cité de o jeepSeulernent.. Hiay "jeep” French

ait pas entendu deux coups de feu alors?leux coups, mais une seule balle Stait allé dons lo oo

Lo scovto ubwicca okviachi fuori dal bar & diversa dol salendo contra un tigre-wildoat che mane
lie wh kistecca cruda per colazions & sta morendo per ung lotta, * "Scommetta che potrebbe ving ltalian
=re con il suo respire,” disse RonanSean viducchid. "Prendilo sul serio, Ronan. Buest ragazsi sono

—onditi. 52 Marguez ha un campione, significa che ho vinto uno buono porte dei
Lo scovto ubwiaca okviachi fuari dol bar & diversa dol salendo contra un tigee-wildoat che mang
lict une bistecco crudo per colozions e sta morendo per una lotte, ™ "Scommetto che potrebbe ving

sve con il suo respira,” disse RonanSecn ridacchid, "Prendila sul serio, Ronan, Buesti ragozsi sono “combattimenti” Italian

—onditi. 52 Moargquez ha un campione, sighifice che ho vinto uno buons porte dei Gace Yiece

Figure A.3: This table shows some bad examples of the LAMBADA tasks for 16-patch-
size PIXAR++4ge2
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Prompt Target Language

LAMBADA (Patch size: 16) Generated

to my sukprise, the door was cracked open, and | could see to figures inside throogh the fros English

ted glass. i'd Just raised my hond to knock when o voice drifted oot to me. "bot | don't want to be o

hedler " someone muttered. "i never wanted to be a

to my surprise, the doov was cracked open, gnd | could see two figures inside throogh the fros
ted glass. i'd Just raised my hond to knock when o voice drifted oot to me. "bot | don't wont to be o

"healer” English

healer,” zomeone muttered. i never wanted to be ahedaley +

“Jo, dos wive seltsam”, sagte Goauner."Wiv mickhten viellzicht herausfinden, wer sonst Okey die
#rt von OCule-Manipulationen verfigt, die Professor Torret tut” "Auierholk der Hochschule? "Dra German
uiten oder in verschiedenen Disziplinen”, sagte Gouner."Viellzicht sollte ich herausfinden, ob Profes

=sor Torret in denaphacs ein Gegenstick hat”, sagte

"Jo, dos wire seltsam”, sagte Gouner."Wiv mickhten viellzicht herausfinden, weyr sonst Okey die - ,
2 : B 2 o Gauner’ German
Art von OCule-Manipulationen verfigt, die Professor Torvet tut” "Buerholb der Hochschole?" "Dro
uiten odey in verschiedenean Disziplinen”, sagte Gouner."Vizllzicht sollte ich herousfinden, ok Profes
soF Torvet in denophoos sin Gegenstick hot”, sagte Gaoner -

"Entiendo eso, pero.." "Estamos novegondo por Jocksonville o Morfolk, Podernos dejorte o lo prim

o Spanish

ero en la mofona”. "MNecesito estar allil hace unoe hora”. "2 Tienes uno placa? "Mi ndmero de insignic

es seis-cero-hueve-dos. Mo tengo el lojo-" "Mo tienes uno

"Entienda e=o, pero." "Extamos novegondo pov Jacksonwille o Marfolk, Podernos dejorte o lo prim

- . "placa” Spanish

ko en b mafana”, "MNecesito estor allil hace une hova”, "2 Tienes ung placa? "Mi mormero de insignic

es seis-cero-nueve-dos. Mo tengo el lujo-" "Mo tienes uno placa

"5l te plait, mes amis m'appellent Cameron et croyez-mai gque vous préférez Etve mon ami gqu
= mon ennemi’, o déclaré Cameron avec un rive, "Certainement, Carmeron®, dit Elijah se défilant la ge
wie et en relfichant son callier, "Bue puis- je faire pour vous?" "Maoubliez pas gue lorsgque Vvous o French
2z donné une conference sur” o différence entre le systéme juridique canadien et américain & U

Jiversité Quesn's lonnée dernidre ', o déclaré

"5l te plait, mes amis miappellent Cameron et croyez-mai gque vous préférez Etve mon ami gu
= o ennemi’, o déclaré Cameron avec un rive, "Certainerment, Carmeron”, dit Elijoh se défilant la go
wge et en reldchant son collier, "Bue puis- je faire pour vous?" "Moubliez pas gue lorsgue Vvous e “Cameron” French
2z donné une conference sk o différence entre le systéme juridique canadien et américain & U

aiversité Bueen's 'année dernidgre ', o déclaré Lameron auer

Vedendo gquesto piccolo magoazzing di blocchi di informazioni antiche, post-moderni & contemporar
1ei, c'eranao dubbi, pensd Omar, che tutto cid di cui aveva bisogno per sopere per | sui progetti fub
_¥i Fiposati vicino o casa. "allora, qual & la tug convinzione? 'Chiese Wynnet mentre metteva le taozze [talian
= arrostite-vapore bionche e ol tavaolo, "Mi dispiace, potresti ripeterlo per fovore?"Omar ha dichicro

ito. "Certaments Ho detto, "Allora, qual & la tua

VYedendo gquesto piccala magazzing di blocchi di informazioni antiche, post-roderni & contemporar
1, c'erano dubbi, pensa Omar, che tutto cid di cui avewva bisogno per sopere per | suai progetti fub
JFi Fiposati vicino o casa. "Bllora, qual & o tug corvinzione? ' Chiese Wynnet mentre metteud le tozas - - . .

Ben i B e o B i ‘convinzione' Italian
= grrostite-vopore bionche & ol toavola, "M dispioce, potresti vipeterlo per fowvora? Omor ba dichicr:

ito. "Cavrtamente Ho detto, "Allora, qual & la tus convinzgiona”

Figure A.4: This table shows some good examples of the LAMBADA tasks for 16-patch-

size PIXAR++g1qge2
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Prompt Generated Target Good/Bad

bAbI (Patch size: §)

Sandrag travelled to the hollwoy, Sondva journeyed 1 Sondeo trovelled o the hollooy, Sondea Journeyed 1

0 the bathroom. Where iz Sundru?! bathroom John v o the bathvoom, Where i= Sundru?! kathroom John v

Jent to the bedvoom. Jokbin went to the bathroom, Whe sent to the bedvoom. Jobin went to the bothroon. Whe "office" Bad
zre iz John? | bathroom Sandra Journeved to the gar zre = Jobn® | bathroom Sandra Journeved to the gar omice d
‘dan. Domiel travelled to the kitchen. Wheve is Johin? | den Dosiel trovslled to the kitchen, Whers i Jobn® k

bothroom Sandra mowved to the bedroom. Mary went bothroom Sandro moved to the bedvoom, Moy wen

to the kitchen. Wheve is Mary? | kitcher Sandra Jour 1o the kitchen, Wheve is Moy | kitchen Sandra Jour

neyved to the office. John traveled to the halloey. Wh neyed o the office. Jobin travelled to the ol Wk

ere is Sondra? | ere s Sondva? | boathroomn

Jobin trovelled to the office. Doniel mowved to the kit Jobn trovelled to the office. Doniel mowved to the kit
hen. Wheve is Daniel? | kitchen Moy Journeyed to tk chen Wheve is Doaniel™ | kitchen Maey Joorneyed to th
e kitchen, Moy Journeyed to the garden. Wheve is J e kitchen, Moey Joorneyed to the gavden, BWhere s J
ohin? | office John moved to the halvegy, Donigl went  ohe® | office Jobn mowved to the bl Doniz) went . .
to the bedvoom, Where is Moary? | gorden Sandra troe to the bedvoom, Where s Mory? | govden Soandeo tro hallwa‘,f Bad
selled to the kol Moy moved to the kitchen, Whe selled to the hallo, Maey moved to the kitchen, Whe
e iz Mory? | kitcheh Sandra travelled to the kitchen, e s Moy | kitchen Sondva travellad to the kitchen,
Daniel travelled to the hallay. Where is Daniel? | PE)cmleI trovelled to the hallkoy. Wheve is Daniel? | kitc

then

FMary want to the hallwery, Mary travelled to the batk Foey went 1o the bl Faey travellzd to the batl
woorm. Where is Movy? | bathroom Jobn tragelled to towoom, Bhere s Foey? | bathroom Jobn trovelled to
he garden. Sandra went to the bathroom. Where is & e gorden, Sandra went to the bothroom, Where is 20

Journeyed to the office. Wheve is John™ l bothroom [ journeyed to the office. Wheve is John™ l bathroorm [ "bathroom” Good
wniel trowelled to the kitchen. Daniel went to the batk wanisl trovelled to the kitchen Doniel went to the batl
woam. Where is Mary? | office John mowved to the offi voom. Where = Mary? office John mowved to the offi
ce. Danigl moved to the bedroomn. Wheve is Sondea? | ce.tEunlel moved to the bedroom, Where is Sandra? |
L]

Dariel journeyed to the q)c:rden. Moy travellad to Daniel journeyed to the q)c:rden. Meey teavellad to
the gorden. Where is Daniel? | govden Sandyg moved  the gorden. Where s Doniel? | c;uvden Sondio rowved

to the hallwcy, Jobn moved to the hallbagy, Where is . 1o the hollloy, Jobn moved 1o the hallvcy, Where s .

labirn? | halheacey Moy traveled to the bedroom. John 1 lobn? | ol Foaey travelled o the bedroom. Jobn

rovelled to the qhvden. Wheve is John? | oorden Sane povellzd o the qhvden. Where is Jobhn™ | oorden Son “garden” Good
dvey trovelled to the bathroom, Jobn Joupnesed to the doo trowelled o the boathroomn, Jobe Joupneyed to the g

s hclicy, Where is Sondea? | bathroomn Sondeo went - bcliioy, BWheve s Sondea? | batbroom Sondva went

to the qg:vden. Moy trovelled to the hallaoy, Where iz to the gorden, Moy trovelled to the halloy, Where iz

£ Dainiel? | = Dariel? | gavden So

Figure A.5: This table shows some good and bad examples of the bAbl tasks for 8-patch-

size PIXAR++s1ge2
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Frompt Target Good/bad

bAbl (Patch size: 16) Generated

Daniel journeyed to the bedroom. Sondrd went to the bedroom. Where is Danial? | bedvoomn Sondro o
noved to the office. Sandra journeyed to the bedroom. Where is Sandra? | bedroom Daniel journeyed to 1
the office. Sondra moved to the govden. Where is Sandro? | garden Daniel mowved to the bathroom. John m
awed to the bedroom. Wheve is John? | bedvoorn Daniel moved to the bedvoor. Moy mowved to the kitchen,

Where is Sondra? |

Donigl journeyed to the bedroom. Sondrd went to the bedroom. Where is Donial? | bedyoom Sandre o
noned to the office. Sondva journeyed to the bedroomn. Where is Sandra? | bedroom Donigl joorneyed to 1 "garden" Bad
the office. Sondra moved to the govden. Where is Sandra? | garden Daniel mowved to the bathroom. John m
awed to the bedroom. Wheve is John? | bedvoorn Danigl moved to the bedvoom. Moy mowved to the kitchen,

Where is Sondra? | gardon Danigl rmowe

Sandra travelled to the bedroom. Doniel Journeyed to the govden. Where is Daniel? | garden John mow
ed to the bedroom. Sandra mowved to the garden. Where is Sandra? | govden Soandrog joorneyed to the be
droom. Mory went to the gavden. Wheve is John? | bedroom Mary journeyed to the bathroom. Doniel went
to the kitchen. Wheare is John? | bedroom Sandra moved to the office. Mary Journeyed to the kitchen, Whe

e is John? |

Sondra travelled to the bedroom. Daniel journeyed to the gorden. Wheve is Daniel? | gavden John mow
ed to the bedvoom. Soandra mowved to the garden. Where is Sondra? | govden Soandro joorneyed to the e
droom. Mory went to the gavden. Wheve is Jobn? | bedroom Mary journeyed to the bathroom. Donigl went “"bedroom” Bad
to the kitchen. Whare is John? | bedroom Sandea roved to the office. Mary journeyed to the kitchen, Whe
sz iz John? | beoroom Gandrd me

Moy travelled to the hallwoy. Sandea moved to the office. Where is Sandra? | office Sandra travelled to
the hallway. John mowved to the garden. Where is John? | govden Daniel mowved to the garden. Sondva mow
ed to the bathroom. Where is Sandra? | bathroom Moy joorneyed to the bedvoomn. Jokhn travelled to the |
dtchen. Wheve is John? | kitchen Mavy Journeyed to the halley, Jobin trovelled to the office. Where iz Sar
wra? |

oy travelled to the hallwoy. Sandea mowved to the office. Where is Sondra? | office Soandro troavelled to
the hallwoy. John mowved to the gorden. Where is John? | govden Daniel mowved to the garden. Sondea mow
ed to the bothroom, Where is Sondra? | batheoom Mory Joorneyed to the bedroom. Jobn teowvelled to the "bathroom” Goed
dtchen. Wheve is John? | kitchen Mavy Joukneyed to the halloy, Jobin trovelled to the office. Where iz Sar
ke | pathiroorn Mary Jou

John moved to the gavden. John journeyed to the halluoy, Where is Jobha? | halhacoy Moy went to the b
cllcyy. Sondra troavelled to the bathkoom. Where is Sondra? | bathroom Mavy journeyed to the bedroom. |
2onigl travelled to the kitchen, Where is Mary? | bedroom John went to the office. Mary Journeyed to the
gorden, Where is Mavy? | garden Doniel journeyed to the office. Sandra trovelled to the office. Where iz v
laary? |

John moved to the gavden. John journeyed to the halluoy, Where is Joba? | halacoy Moy went to the b
cllcyy. Sondra trovelled to the bathroom. Where is Sondva? | bathroom Mavy joorneyed to the bedroom. |
Saniel travelled to the kitchen, Where iz Mary? | hedroom Johin went to the office. Mavy Jouvneyed to the “garden” Bad
gorden, Where is Mavy? | garden Doniel journeyed to the office. Sandra trovelled to the office. Where iz
lary ™ | gavden Danigl dourr

Figure A.6: This table shows some good and bad examples of the bAbl tasks for 16-

patch-size PIXAR++qge2
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