
Decision Transformer vs. Decision Mamba:

Analysing the Complexity of Sequential

Decision Making in Atari Games

Ke Yan

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2024

Abstract

This work analyses the disparity in performance between Decision Transformer (DT)

and Decision Mamba (DM) in sequence modelling reinforcement learning tasks for

different Atari games. The study first observed that DM generally outperformed DT in

the games Breakout and Qbert, while DT performed better in more complicated games,

such as Hero and Kung Fu Master. To understand these differences, we expanded the

number of games to 12 and performed a comprehensive analysis of game characteristics,

including action space complexity, visual complexity, average trajectory length, and

average steps to the first non-zero reward. In order to further analyse the key factors

that impact the disparity in performance between DT and DM, we employ various

approaches, including quantifying visual complexity, random forest regression, correla-

tion analysis, and action space simplification strategies. The results indicate that the

performance gap between DT and DM is affected by the complex interaction of multiple

factors, with the complexity of the action space and visual complexity (particularly

evaluated by compression ratio) being the primary determining factors. DM performs

well in environments with simple action and visual elements, while DT shows an advan-

tage in games with higher action and visual complexity. Our findings contribute to a

deeper understanding of how the game characteristics affect the performance difference

in sequential modelling reinforcement learning, potentially guiding the development of

future model design and applications for diverse and complex environments.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Ke Yan)

ii

Acknowledgements

I would like to express my gratitude to the following people and institutions, without

whom this thesis would not have been possible:

First, I am incredibly thankful to my parents, for their emotional and practical

support. I am grateful to my supervisors from Amazon: John Pate, Prarit Agarwal,

Salman Khan Pathan, and Tania Bakhos. Their wisdom and patience in guiding me

with insightful suggestions have been invaluable.

My thanks go to my supervisor at the university, Chris Williams, for applying access

to the University’s Eddie Cluster and EPCC’s Cirrus cluster. These resources were

crucial for completing my experiments. I would also like to thank my group members:

Thomas Bartlett, Yihang Chen and Umut Halil for their support. Finally, a special

thanks to my friend Hanyuan Ma, who has been studying with me. The days of hard

work at Appleton Tower will always be valuable memories for me.

iii

Table of Contents

1 Introduction 1

2 Background 4
2.1 Transformer . 4

2.2 State Space Models . 4

2.2.1 Mamba . 5

2.3 Reinforcement Learning . 6

2.3.1 Traditional Reinforcement Learning 6

2.3.2 Sequence Modeling in Reinforcement Learning 7

3 Methodology 9
3.1 Dataset . 9

3.1.1 Data Processing . 9

3.2 Model Architecture . 10

3.3 Experimental Setup . 11

3.3.1 Loss function . 12

3.3.2 Evaluation . 12

4 Experiments and Analysis 15
4.1 Initial Experiments . 15

4.2 Extended Experiments and Analysis 17

4.2.1 Regression Analysis with Random Forest 20

4.2.2 Correlation Analysis . 23

4.3 Analysis of the Effect of Action Space Complexity 25

4.3.1 Action Fusion . 25

4.3.2 Results of Action Fusion . 27

5 Future Work 29

iv

6 Conclusion 30

Bibliography 31

A Appendix 34
A.1 Hyperparameters . 34

A.2 Examples of Game States (Screenshots of four consecutive frames) . . 35

A.3 Max Return and Expected Return . 36

A.4 Game scores for Random Walk and Human Player (Full table) 37

A.5 Normalized scores without removing outliers 38

A.6 Action Distribution of the last 1% of the dataset 39

A.7 Action Fusion Strategy . 40

A.7.1 Simple Action Fusion . 40

A.7.2 Frequency-based Action Fusion 41

v

Chapter 1

Introduction

The field of reinforcement learning (RL) has seen significant advancements in recent

years, particularly in the domain of sequential decision-making tasks. One notable

approach has emerged as a powerful tool for these challenges: the Decision Transformer

(DT) [1]. Recently, Ota introduced Decision Mamba (DM), which replaces DT’s

causal self-attention blocks with the new Mamba architecture [2, 3]. Both DT and DM

have shown promise in various RL tasks. However, to the best of our knowledge, a

comprehensive analysis of their relative performance across different environments

remains an open question. This study aims to fill this gap by thoroughly comparing DT

and DM across a wide range of Atari games.

Our investigation begins with an initial observation: while DM outperforms DT

in some games, such as Breakout, DT demonstrates superior performance in others,

notably Hero and KungFuMaster. This gap in performance across different games raises

questions about the factors that influence the effectiveness of these models. We seek

to understand whether certain architectural features of DT and DM are better suited

to specific types of games, and how various game characteristics impact their relative

performance.

Based on previous observations, we perform a sequence of analyses that integrate

empirical evaluation with an in-depth study of game characteristics. This investigation

begins with a comprehensive survey of various game characteristics, including action-

space complexity and visual complexity. To quantify the visual complexity, we introduce

three metrics: image entropy, compression ratio, and feature count. These metrics,

along with other game characteristics such as the number of actions and average

trajectory length, form the basis for detailed analysis using random forest regression

and correlation studies. The analysis results show that the action space complexity is

1

Chapter 1. Introduction 2

indeed an important factor in determining the performance of the model, but at the same

time, the visual complexity also plays a crucial role. Finally, to isolate the effect of

action space complexity and explore further, two action space simplification strategies

are implemented and evaluated: simple action fusion and frequency-based action fusion.

These studies provide more insight into the influence of action space complexity and

expose the limitations of simplification strategies in maintaining game dynamics.

The key contributions of this study are:

1. A thorough comparison of Decision Transformer (DT) and Decision Mamba

(DM) in a variety of Atari games, providing insights into their relative strengths

and weaknesses.

2. The identification and analysis of key game characteristics that influence model

performance, with a focus on visual and structural elements of the games.

3. A quantitative assessment of the relative importance of various game character-

istics in determining the performance gap between DT and DM, using Random

Forest regression and correlation analysis.

4. The development and evaluation of novel strategies to simplify the action space

in complex games.

Our findings reveal that while action space complexity is indeed a significant factor

in determining model performance, visual complexity, particularly as measured by

compression ratio, also plays a crucial role. We observe that DM tends to excel in

visually simpler environments, while DT shows advantages in games with higher visual

complexity. These insights not only contribute to our understanding of the strengths

and limitations of DT and DM but also have implications for the design and application

of sequence modelling approaches in RL.

The rest of the dissertation is structured as follows: Chapter 2 provides background

information on Transformer, State Space Models, basic concepts of Reinforcement

Learning, and related work on applying these sequence modelling architectures to

reinforcement learning tasks. Chapter 3 presents our approach in detail, including

dataset preparation, model architecture, and experimental setup. Chapter 4 focuses

on our experiments and analysis. It begins with a basic comparison and extended

measurements of the game’s action space complexity and visual complexity. This is

followed by the application of random forest, correlation analysis, and action fusion to

further explore the effect of action complexity. Chapter 5 discusses potential directions

Chapter 1. Introduction 3

for future work, and Section 6 summarizes the findings of this paper. Through these

analyses, this study aims to provide valuable insights into the factors that affect the

performance of sequence modelling in reinforcement learning tasks, possibly guiding

future development of model design and applications in more complex environments.

Chapter 2

Background

2.1 Transformer

The Transformer introduced by Vaswani et al. revolutionized the field of sequence

modelling [4]. The architecture consists of an encoder and decoder, each of which

contains multiple layers of self-attention and fully connected neural networks, with

a cross-attention connecting the encoder and decoder [4]. Compared to Recurrent

Neural Networks (RNNS), Transformer can process the entire sequence simultaneously,

and without suffering long-range dependency problems. This is achieved through the

self-attention mechanism. It allows the model to weigh the importance of different

parts of the input sequence, captures complex relationships inside the data, and can

be computed in parallel on modern GPUs. The Transformer show better performance

on various tasks while significantly reducing training time [4, 5]. However, they may

encounter difficulties when dealing with very long sequences during inference due to

their quadratic computational complexity, which leads to a large video RAM cost. [3].

2.2 State Space Models

State Space Models (SSMs) have emerged as a promising alternative for long sequential

modelling tasks. An SSM, or state space model, utilises a mathematical framework

to convert a one-dimensional input into an n-dimensional latent state, which is then

projected back to a one-dimensional output [3, 6]. The process can be expressed by the

4

Chapter 2. Background 5

following equations:

h′(t) = Ah(t)+Bx(t) (2.1)

y(t) =Ch(t) (2.2)

where h(t) represents the N-D latent state, x(t) is the 1-D input, and y(t) is the 1-D

output [3, 6].

The equations of SSMs are similar to those of RNNs, but there are differences in

how the matrix A is initialised. In traditional recurrent neural networks (RNNs), these

matrices are commonly initialised randomly and then updated via backpropagation. In

contrast, SSMs utilise HiPPO (High-order Polynomial Projection Operators) theory for

initialization. The HiPPO theory initializes the A matrix to represent the projection of

the input sequence onto polynomial bases [7]. For instance, one variant of the HiPPO

matrix, known as HiPPO-LegT:

Ank =−


(2n+1)1/2 (2k+1)1/2 if n > k

n+1 if n = k

0 if n < k.

(2.3)

where, n and k are indices representing the row and column of the matrix A, respectively

[7].

This initialization allows SSMs to efficiently capture information across differ-

ent temporal scales, hence enhancing the modelling of long-range dependencies in

comparison to RNNs [6, 7].

2.2.1 Mamba

Despite the benefits of structured HiPPO initialization, there are limitations to the

original SSM due to its time-invariant nature, which means that the matrices A, B, and

C are constant throughout time. The Mamba architecture, introduced by Gu et al.,

addresses this problem by incorporating a selection mechanism that introduces linear

time-varying [3]. Inspired by gating mechanisms in Long Short-Term Memory (LSTM)

networks, which have been successful in selectively updating and forgetting information

in sequential data processing [8]. In Mamba, this selection mechanism allows the model

to adaptively focus on or ignore specific inputs based on their relevance, making it

capture long-range dependencies and selectively copy from the inputs [3].

Chapter 2. Background 6

Conv

Linear

σ

Linear Linear

SSM

σ

Figure 2.1: Mamba block, σ is SiLU function, and⊗ stands for elementwise multiplication.

As illustrated in Figure 2.1, the core component of the Mamba architecture is the

Mamba block. The main branch starts with a linear layer, succeeded by a convolutional

layer. This output then goes through SiLU (Sigmoid Linear Unit) activation before being

processed by the SSM. The second branch includes a linear layer and SiLU activation.

The outputs of both branches are combined using element-wise multiplication and then

pass through a final linear layer. This architecture enables Mamba to efficiently model

complex dependencies and adapt its processing based on input content. The Mamba

architecture has demonstrated promising results across various domains, including

language modelling, DNA sequence modelling, and audio waveform processing [3].

Its ability to handle long sequences efficiently while maintaining selective copying

capabilities makes it a competitive alternative to traditional Transformer models in

certain applications.

2.3 Reinforcement Learning

2.3.1 Traditional Reinforcement Learning

Reinforcement learning (RL) is a paradigm in machine learning. In traditional RL, the

agent (model) learns to make decisions by interacting with the environment. One of the

basic frameworks of RL is the Markov decision process (MDP), which assumes that

the future state of the environment depends only on the current state and behaviour, not

Chapter 2. Background 7

on the previously recorded history (Markov property)[9]. For example, Q-learning is a

common method in MDP. It is a value-based method that uses a Q-function to estimate

the expected cumulative reward for each state-action pair, and then produce policy for

operation actions. A simplified representation of the Q-function can be expressed as:

Q(s,a) = r+ γ ·maxQ(s′,a′) (2.4)

where s is the current state, a is the current action, r is the immediate reward, s′ is

the next state, a′ represents all possible actions in the next state, and γ is the discount

factor for future rewards [9]. This equation, also known as the Bellman equation, uses

Markov properties by considering only the immediate reward and the value of the next

state-action pair, allowing efficient recursive computation. Q-learning has achieved

significant success in many applications, from game playing to robot control. However,

they often struggle with sample efficiency problems, especially in environments with

sparse rewards [9].

2.3.2 Sequence Modeling in Reinforcement Learning

In recent years, there has been a paradigm shift in solving reinforcement learning

tasks. Motivated by the success of sequence models across several domains, the new

method redefines the reinforcement learning task as a sequence modelling problem.

The Decision Transformer (DT), introduced by Chen et al., is a prime example of this

paradigm shift in reinforcement learning [1]. Utilizing the power of the Transformer in

sequence modelling, DT processes trajectories of return-to-go, states, and actions to

predict the next optimal actions. DT reframes the RL problem as a sequence prediction

task, freeing itself from the Markov property assumption by considering the entire

trajectory rather than just the immediate state-action pairs. Therefore this approach

does not require and explicit value-function (Bellman equation) approximation, which

is fundamentally different from the traditional RL. The larger context allows DT to

consider longer sequences of states, actions, and returns, enabling it to directly learn the

relationship between returns and optimal actions. The key advantage of this approach is

that it can consider a wider range of contexts, thus capturing long-term dependencies

more effectively than traditional RL methods. Moreover, DT uses offline data for

training, avoiding the inefficiency caused by the agent continuously interacting with the

environment in traditional RL.

Decision Transformer represent a promising direction in reinforcement learning

research. Based on the Decision Transformer, several variants have been proposed

Chapter 2. Background 8

to solve specific challenges or improve performance in different domains. Decision

ConvFormer replaces the causal-self attention layer of DT with a convolutional layer.

For state, action, and return-to-go in the game trajectory, it applies three separate

convolutional filters: The state filter, action filter, and RTGfilter to improve the model’s

ability to capture the inherent local correlations [10]. The Decision S4 model focuses on

continuous control tasks such as HalfCheetah. It uses a structured state space sequence

(S4) model to improve the efficiency of modelling long-range dependencies. With fewer

parameters and training time, it achieves better performance than Decision Transformer

on most tasks. [11]. Recently, Ota introduced Decision Mamba (DM), replacing DT’s

causal self-attention mechanism with the Mamba blocks [2]. This modification aims

to utilise the efficiency and effectiveness of the Mamba architecture in handling long

sequences, showing competitive performance with DT models.

While these studies show promising results, there remains a gap in understanding

how different sequence modelling architectures apply to various reinforcement learn-

ing tasks. To the best of our knowledge, most existing work has focused on limited

environments. For instance, Decision S4 concentrates on continuous control tasks in

MuJoCo. Alternatively, research has examined specific aspects of model performance,

such as the ability to capture local correlations (Decision ConvFormer) or long-range

dependencies (Decision S4 and Decision Mamba), leaving room for a more comprehen-

sive comparative analysis. Moreover, the impact of game characteristics, such as action

space complexity and visual complexity, on the performance of these models has not

been systematically investigated.

Chapter 3

Methodology

3.1 Dataset

This study utilizes the DQN-replay dataset introduced by Agarwal et al., comprising

the replay experience of a DQN agent across Atari games [12]. This dataset contains

approximately 50 million trajectories, each composed of (state, action, reward, next

state) tuples. States are represented as 84×84 pixel frame stacks of four consecutive

images, providing temporal context for the agent’s decision-making process. The action

space and reward structure depend on the specific game mechanics.

3.1.1 Data Processing

The first step of implementing Decision Transformer and Decision Mamba is the

preparation of input data. This process involves transforming raw game experiences

into a format suitable for sequence modelling. Basically, we followed the method used

in the original Decision Transformer paper [1].

The primary innovation in data representation for these models is the use of return-

to-go (RTG) instead of immediate rewards. Return-to-go at any given timestep is

defined as the sum of all future rewards from that point until the end of the episode

[1, 2]. For a timestep t in an episode of length T , the return-to-go R̂t is calculated as:

R̂t =
T

∑
t ′=t

r(t ′) (3.1)

where r(t ′) is the reward at timestep t ′.

In the data preparation process, each trajectory is represented as a sequence of

9

Chapter 3. Methodology 10

return-to-go values, states, and actions. The sequence takes the form:

(R̂1,s1,a1, R̂2,s2,a2, ..., R̂T ,sT ,aT) (3.2)

where st represents the state at timestep t, and at is the action taken at that timestep t.

With data prepared, the training set is then created by sampling trajectories from the

DQN-replay dataset. To reduce computational overhead, we followed the approach of

Chen et al., that is, for each game, randomly sampling 1% of the total gameplay experi-

ence [1]. Consequently, the model is trained offline using this pre-collected gameplay

experience, allowing for efficient training without requiring real-time interaction with

the game environment. Following the offline training, we conduct the online evaluation.

During evaluation, we do not use a separate test set from the dataset. Instead, we

evaluate the trained model directly in the Atari game environment using the Arcade

Learning Environment (ALE), which is specifically focused on Atari games and now

serves as a foundational backend for OpenAI Gym [13]. This approach consistent with

the standard practice in reinforcement learning, ensures that the model’s performance is

assessed on unseen game states and trajectories, effectively preventing any potential

information leakage from the training data to the evaluation phase.

3.2 Model Architecture

The architecture of the Decision Transformer, as illustrated in Figure 3.1 (left), consists

of several key components. The input to the model is a sequence of tokens representing

returns-to-go, states, and actions. These inputs are first processed through embedding

layers and combined with positional embeddings to provide temporal context. The core

of the model is a stack of transformer layers, each containing a causal self-attention

mechanism and a feedforward neural network. This structure allows the model to

capture complex dependencies between different elements of the input sequence [1].

Decision Mamba builds on the Decision Transformer by replacing the causal self-

attention mechanism with the Mamba block. As shown in Figure 3.1 (right), Decision

Mamba’s overall structure is similar to the Decision Transformer, with the key difference

being the replacement of the attention mechanism [2].

Both DT and DM operate on similar principles when it comes to training and

inference. During training, these models learn to predict the next action given the

current state, past actions, and the desired return-to-go. At inference time, both models

generate actions autoregressively. The process begins by specifying an expected return.

Chapter 3. Methodology 11

N

Causal
Self-Attention

+

N

Linear

+

σ

Linear

emb.

N

Mamba

+

N

Linear

+

σ

Linear

emb.

Figure 3.1: The Architecture of Decision Transformer (Left) and Decision Mamba (Right).

N represents normalization layers, activation function σ stands for GELU (Gaussian

Error Linear Unit), and + are addition operations used for skip connections.

The model then observes the current state and predicts the next action, which is executed

in the environment to obtain a new state and reward. The return-to-go is updated by

subtracting the received reward, and this process continues until the episode terminates.

3.3 Experimental Setup

Our experimental design aimed to evaluate and compare the performance of Decision

Transformer (DT) and Decision Mamba (DM) across various Atari games. We initially

selected four games: Breakout, Qbert, Hero, and KungFuMaster. Breakout and Qbert

were chosen as they were previously examined in both the Decision Transformer and

Decision Mamba papers, providing a baseline for comparison. Hero and KungFuMaster

were added to expand the scope of our analysis, as they potentially present greater

challenges for the models due to their more complex action spaces and game dynamics.

To ensure a comprehensive evaluation, we conducted experiments with different

context lengths: 10, 30, and 50, where 30 is the default value in the original Decision

Transformer paper. For all experiments, we maintained consistency in hyperparame-

Chapter 3. Methodology 12

ters across both models, the detailed settings of all hyperparameters can be found in

Appendix A.1.

In the extended experiments, we broadened our game selection to include eight

additional Atari games, bringing the total to twelve, which aims to provide a more

complete view of how DT and DM perform across a wider range of game characteristics

and complexities. For these additional experiments, we focused on the context length

of 10 for computational efficiency while still providing valuable insights.

3.3.1 Loss function

Atari games, which are considered discrete action control problems, differ from contin-

uous control tasks like those in robotics. The Atari games have a fixed set of possible

actions such as UP, Down, Left, Right, and Fire. For these discrete action predictions,

the cross-entropy loss is particularly well-suited and widely used in sequence modelling

[1]. The equation of cross-entropy loss can be defined as:

L =−
M

∑
a=0

ys,a log(ps,a) (3.3)

where M is the number of actions, y is 1 or 0, depends on if action label a is correct or

not for state s, and p is the predicted probability of action a at state s.

3.3.2 Evaluation

The model is trained offline using the DQN-replay dataset and subsequently assessed

online using the Arcade Learning Environment (ALE) [13]. This methodology acceler-

ates the training process by avoiding continuous interaction with the game environment.

Furthermore, in the original paper of Decision Transformer, it has been shown to achieve

results comparable to online learning [1].

3.3.2.1 Expected Return Setup

As outlined in the original Decision Transformer paper, the expected return acts as a

target for the model to aim for during the process of inference. The value is initialised at

the start of every episode and serves as a guiding factor for the model’s decision-making

process [1].

The original DT paper used different multipliers when setting the expected return

for each game. For Breakout, they used 1 times the maximum return in the dataset,

Chapter 3. Methodology 13

while for Qbert, they used 5 times the maximum. In our study, we aimed for consistency

across all games. Therefore, we chose to use 5 times the maximum return observed in

the DQN-play dataset for all games. This is also based on a naive assumption, that is,

setting a relatively optimistic initial value can be beneficial for the agent’s performance

[9]. This assumption has been validated in conventional RL methods but remains an

open question to these novel architectures such as DT and DM. It could be an interesting

future research direction to explore the impact of different initial expected returns. In

this article, we will only initialize it as 5 times the maximum return occurred in the

dataset.

Games Max Return Expected Return (5*max)

Breakout 104 520

Qbert 640 3200

Hero 190 950

KungFuMaster 284 1420

Table 3.1: Max Return Observed in Dataset, and Expected Return

Setup for Evaluation (Excerpt; full table in Appendix).

Table 3.1 illustrates our setup for four games: Breakout, Qbert, Hero, and KungFu-

Master. For example, in Breakout, where the maximum observed reward in our training

set was 104, we set the expected return to 520. During evaluation, we apply the same

expected return for both DT and DM.

3.3.2.2 Normalized Score

To account for the scoring mechanisms across different games, we employ a normalized

score metric. This approach, following the methodology of Hafner et al. and Ye et al.,

allows for meaningful comparisons of performance across different game environments

[14, 15]. This normalization maps the performance onto a scale where 0 represents a

random walk score and 100 represents human-level performance. The normalized score

is calculated using the following equation:

SCOREnormalized := 100× SCOREraw−SCORErandom

SCOREhuman−SCORErandom
(3.4)

where: SCOREraw is the actual score achieved by the agent (or model).

Chapter 3. Methodology 14

For SCORErandom and SCOREhuman, we follow the results reported by Hafner et al.

and Ye et al., where the random scores were obtained by agents taking random actions

and human scores were collected from players given 2 hours to practice each game

[14, 15]. Table 3.2 presents the random and human benchmark scores:

Game Random Walk Human Players

Breakout 1.7 30.5

Qbert 163.9 13455.0

Hero 1027.0 30826.4

KungFuMaster 258.5 22736.3

Table 3.2: Game scores for Random Walk and Human Player (Excerpt;

full table in Appendix A.4).

This normalization allows us to assess the relative performance of our models across

different games, regardless of their varying score scales. The full table of random walk

and human benchmark scores for all games in our study can be found in Appendix A.4.

Chapter 4

Experiments and Analysis

4.1 Initial Experiments

Decision Transformer (DT) Decision Mamba (DM)

Game 10 30 50 10 30 50

Breakout 288.11 251.39 238.19 343.13 384.79 401.39
± 89.98 ± 74.14 ± 41.33 ± 65.35 ± 54.29 ± 59.44

Qbert 26.73 4.94 11.48 26.54 26.10 22.59
± 7.74 ± 2.09 ± 6.12 ± 1.01 ± 4.20 ± 1.84

Hero 31.63 28.05 27.90 7.70 6.95 7.69
± 4.16 ± 4.44 ± 7.41 ± 0.96 ± 0.43 ± 1.42

KungFuMaster 29.41 14.23 6.98 6.32 7.42 7.23
± 6.47 ± 5.89 ± 2.35 ± 1.75 ± 1.46 ± 0.98

Table 4.1: Normalized score (mean ± std) of Decision Mamba and Decision Transformer

across four games with context lengths of 10, 30, and 50. Each game was run with 5

random seeds per context length (outliers removed to reduce standard deviation while

retaining at least 3 data points; the raw normalized scores, without outlier removal, are

provided in Appendix A.5). Bold indicates the better mean performance.

The experimental design aims to compare the performance of Decision Transformer

(DT) and Decision Mamba (DM) across four Atari games: Breakout, Qbert, Hero, and

Kung Fu Master 1. These games were chosen to represent a range of complexities and

1Breakout and Qbert were examined in the original DT and DM papers, and we reproduced these
results. Hero and Kung Fu Master were selected by us to expand the scope of the analysis.

15

Chapter 4. Experiments and Analysis 16

challenges, allowing for an evaluation of the models’ capabilities.

Our experiments also explored the effect of different context lengths (10, 30, and

50), with 30 being the default setting in the original Decision Transformer paper. Table

4.1 presents the normalized scores for both models across the four selected games. The

results reveal several notable patterns:

1. DM consistently outperforms DT in Breakout across all context lengths. The

performance gap is especially significant at context length 50.

2. Performance in Qbert is mixed, with DT performing slightly better at context

length 10, but with high standard deviation. DM shows a great advantage when

context lengths go to 30 and 50.

3. DT significantly outperforms DM in Hero across all context lengths. The perfor-

mance gap is significant, with DT achieving scores around 30, while DM’s scores

remain below 8.

4. In Kung Fu Master, DT shows a clear advantage at context lengths 10 and 30, but

its performance significantly drops as the context length increases.

To understand the significant performance differences, particularly in Hero and

KungFuMaster, we quantify the complexity of each game based on various metrics

derived from the DQN-replay dataset. The analysis is shown in Table 4.2.

Game # Actions Avg. Trajectory Avg. Steps to

Length First non-zero Reward

Breakout 4 1299.62 45.20

Qbert 6 1060.84 56.75

Hero 18 1192.23 54.94

KungFuMaster 14 2642.71 109.53

Table 4.2: Analysis results for various games based on DQN-replay dataset.

The results suggest that action space complexity significantly influences model

performance. Games like Hero and KungFuMaster, with 18 and 14 possible actions

respectively, have a large action space compared to Breakout and Qbert, which have

only 4 and 6 actions. This difference in the number of unique actions appears to be a

key factor in explaining the performance difference between the models.

Chapter 4. Experiments and Analysis 17

4.2 Extended Experiments and Analysis

While the initial experiments revealed interesting performance differences between

Decision Transformer (DT) and Decision Mamba (DM) across four Atari games, we

recognized the need for a more comprehensive analysis to understand the factors

influencing these disparities. Therefore, we expanded our analysis to a broader range

of Atari games. We added eight new games, carefully selected to represent a variety

of action space complexities. This expanded dataset allows us to examine how the

performance difference between DT and DM varies across a more diverse set of game

environments. To maintain computational efficiency, we conducted these additional

experiments using a context length of 10.

Game Decision Transformer (DT) Decision Mamba (DM)

Breakout 309.14 ± 97.41 367.13 ± 75.09

Qbert 36.98 ± 11.38 26.93 ± 1.20

Hero 30.37 ± 4.47 7.77 ± 0.99

KungFuMaster 29.41 ± 6.48 5.29 ± 0.89

Pong 71.58 ± 26.82 64.31 ± 53.24

Seaquest 2.05 ± 0.43 2.77 ± 0.35

Alien 12.42 ± 1.51 11.74 ± 2.16

BankHeist 0.63 ± 0.51 -0.09 ± 0.56

BattleZone 9.49 ± 5.39 7.20 ± 1.58

RoadRunner 25.00 ± 8.19 28.49 ± 8.00

FishingDerby 160.44 ± 28.23 153.14 ± 6.43

SpaceInvaders 26.06 ± 1.88 28.77 ± 2.95

Table 4.3: Normalized score (mean ± std) of Decision Mamba and

Decision Transformer across different games, context length 10. Scores

are averaged over 3 separate runs, each with a unique random seed.

Bold indicates better scores.

Table 4.3 presents a thorough comparison between Decision Transformer (DT)

and Decision Mamba (DM) across 12 Atari games. DT outperforms in 8 of the 12

games, including Qbert, Hero, KungFuMaster, Pong, Alien, BankHeist, BattleZone,

and FishingDerby. As reported before, DT’s advantage is significant in Hero and

KungFuMaster with scores of 30.37 and 29.41 respectively compared to DM’s 7.77

and 5.29. Conversely, DM excels in 4 games: Breakout, Seaquest, RoadRunner, and

Chapter 4. Experiments and Analysis 18

SpaceInvaders.

Game # Act. Avg. Traj. Avg. Steps Image Compression Feature

Length 1st Reward Entropy Ratio Count

Breakout 4 1299.62 45.20 1.50 21.35 23.33

Qbert 6 1060.84 56.75 1.89 5.80 84.64

Hero 18 1192.23 54.94 2.01 10.55 38.84

KungFuMaster 14 2642.71 109.53 2.66 7.58 52.63

Pong 6 2096.52 112.64 0.68 40.00 9.16

Seaquest 18 1413.12 87.23 2.24 12.92 16.18

Alien 18 932.20 22.49 2.02 7.71 22.88

BankHeist 18 1185.34 20.04 1.88 7.78 188.87

BattleZone 18 2068.26 267.60 2.84 9.31 13.88

RoadRunner 18 1123.01 81.03 1.77 12.89 24.61

FishingDerby 18 1775.02 44.58 2.20 8.01 23.34

SpaceInvaders 6 1820.79 52.07 0.84 13.30 65.85

Table 4.4: Extended analysis results for chosen Atari games based on the DQN-replay

dataset. Abbreviations: # Act. = Number of Actions, Avg. Traj. Len. = Average Trajectory

Length, Avg. Steps 1st Reward = Average Steps to First Non-Zero Reward.

To better understand these performance differences, we conducted an in-depth

analysis of various game characteristics. Table 4.4 presents a set of metrics for each

game. We report the number of actions, average trajectory length, and average steps to

the first non-zero reward for each game as before. To further capture the visual features

of each game, we introduced three additional metrics: Image Entropy, Compression

Ratio, and Feature Count:

• Image Entropy
Image Entropy is a measure of randomness or unpredictability in the image, by

quantifying the amount of information contained in an image [16]. Higher entropy

generally indicates more complex, information-rich images. It is calculated using

the Shannon entropy formula [17]:

H =−∑(pi · log2(pi)) (4.1)

where pi is the probability of pixel intensity i occurring in the image. We used

OpenCV’s calcHist function to compute each frame’s pixel intensities histogram.

Chapter 4. Experiments and Analysis 19

The histogram was then normalized to obtain probability distributions, and Shan-

non’s entropy formula was applied to these distributions.

• Compression Ratio
Compression Ratio is the ratio of the uncompressed size to the compressed size

of data [18]. Calculated as:

Compression Ratio =
Uncompressed Size
Compressed Size

(4.2)

More complex images are typically less compressible, resulting in lower compres-

sion ratios, while a simple image will have a larger ratio. In our implementation,

we use zlib which applies the DEFLATE algorithm to ensure lossless compression

and preserve all original data [19].

• Feature Count
Feature Count is determined using the Scale-Invariant Feature Transform (SIFT)

algorithm to detect and count distinct features in the image [20]. A higher Feature

Count generally indicates more distinct features or greater complexity in the

image. Feature Count was implemented using OpenCV’s SIFT detector.

These three metrics: Image Entropy, Compression Ratio, and Feature Count, were

chosen for their complementary nature in measuring visual complexity. Image En-

tropy measures overall information content and randomness in the pixel distributions.

Compression Ratio offers insights into the redundancy of the image data, which is partic-

ularly relevant for game environments that may have repeating patterns or backgrounds.

Feature Count, through the SIFT algorithm, captures the presence of distinct visual

elements. Together, these metrics provide a multi-faceted view of visual complexity. In

addition, combined with our existing game characteristics, these metrics form the basis

for a comprehensive analysis using Random Forest regression and correlation studies.

Comparing Table 4.3 and Table 4.4, we can observe several interesting patterns

that shed light on the relationship between game characteristics and model perfor-

mance. Firstly, it’s noteworthy that games with more complex action spaces, typically

those with 18 distinct actions, show varied performance differences between Decision

Transformer (DT) and Decision Mamba (DM). For instance, Hero and KungFuMaster,

both with relatively high action space complexity (18 and 14 actions respectively),

exhibit significant performance gaps but favouring DT. However, this pattern doesn’t

hold universally. Games like Seaquest, Alien, BankHeist, BattleZone, RoadRunner,

Chapter 4. Experiments and Analysis 20

and FishingDerby, all with 18 actions, show much smaller performance differences

between the two models, with some even favouring DM. This observation suggests that

action space complexity alone may not be the sole determinant of performance disparity

between DT and DM. Other factors, such as visual complexity or game dynamics, likely

play crucial roles in shaping model performance.

Examining the visual complexity metrics, we notice that games where DM outper-

forms DT, such as Breakout and Pong, tend to have lower image entropy and higher

compression ratios. This could indicate that DM performs better in visually simpler

environments. Conversely, games with higher image entropy and lower compression

ratios, like Hero and KungFuMaster, seem to favour DT. This pattern suggests that DT

might be more adept at handling visually complex environments. The feature count

metric doesn’t seem to have a clear correlation with performance differences. Games

with both high and low feature counts show varied performance disparities between DT

and DM, suggesting that this particular measure of visual complexity might not be as

influential in determining model performance.

4.2.1 Regression Analysis with Random Forest

To quantify the relative importance of various game characteristics in determining

performance differences between DT and DM, we employed a random forest regression

analysis [21]. By using the game metrics from table 4.4 as input Xand the difference

in performance between DT and DM (DT norm score−DM norm score) as the target

variable y. To ensure robust results given our limited sample size of 12 games, we

applied a 6-fold cross validation. As shown in the pseudocode 1, the process starts by

initializing the random forest regressor and setting up cross-validation. It then iterates

through the folds, training the model on each subset and calculating the Mean Squared

Error (MSE). After all folds are completed, the overall Root Mean Square Error (RMSE)

and its standard deviation are calculated. Finally, the model is fitted to the entire dataset

and the feature importance score is calculated. After performing the random forest

regression, we get a root mean square error (RMSE) of 17.57 and a standard deviation

of 12.35.

4.2.1.1 Feature Importance

The feature importance analysis, shown in Figure 4.1, provides the relative influence of

various game features on the performance difference between Decision Transformer

Chapter 4. Experiments and Analysis 21

Algorithm 1 Random Forest Regression with k-Fold Cross-Validation
1: Step 1: Initialize Random Forest and Cross-Validation

2: F ← RandomForestRegressor(ntrees = 1000)

3: CV ← K-Fold(k = 6,shuffle = True)

4: S← /0

5: Step 2: Perform k-fold Cross-Validation

6: for (Itrain, Itest) ∈CV.split(X) do

7: Xtrain,Xtest← X[Itrain],X[Itest]

8: ytrain,ytest← y[Itrain],y[Itest]

9: F.fit(Xtrain,ytrain)

10: ŷtest← F.predict(Xtest)

11: MSE← 1
ntest

∑
ntest
i=1(yi− ŷi)

2

12: S.append(
√

MSE)

13: end for

14: Step 3: Calculate RMSE

15: µRMSE← 1
k ∑s∈S s

16: σRMSE←
√

1
k−1 ∑s∈S(s−µRMSE)2

17: Step 4: Calculate Feature Importance

18: F.fit(X,y)

19: φ← F.feature importances

20: return µRMSE,σRMSE,φ

Num
_Ac

tio
ns

Com
pre

ssi
on

_Ra
tio

Tra
jec

tor
y_L

en
gth

Fea
tur

e_C
ou

nt

Im
ag

e_E
ntr

op
y

Ste
ps_

to_
1st

_no
n-z

ero
_Re

ward

Game Metrics

0.00

0.10

0.20

0.30

0.40

Fe
at

ur
e

Im
po

rt
an

ce

0.444

0.213

0.103 0.093 0.093
0.054

Figure 4.1: Feature importance of each game metrics. Higher scores indicate a greater

influence on model performance difference.

Chapter 4. Experiments and Analysis 22

(DT) and Decision Mamba (DM). The number of actions is the dominant factor, indicat-

ing that the performance difference between DT and DM tends to widen as the number

of unique actions increases, generally in favour of DT. The compression ratio has the

second highest significance level, followed by the average trajectory length. The feature

count and the importance of image entropy rank joint fourth. The average steps to 1st

non-zero reward had the weakest effect.

These findings provide valuable insights into the factors influencing model perfor-

mance. While action space complexity remains a crucial factor, the visual complexity

(particularly as measured by compression ratio) of the game also plays an important

role.

4.2.1.2 SHAP Values

0 1 2 3 4 5
mean(|SHAP value|)

Num_Actions

Compression_Ratio

Image_Entropy

Feature_Count

Trajectory_Length

Steps_to_1st_non-zero_Reward

Num_Actions

Compression_Ratio

Image_Entropy

Feature_Count

Trajectory_Length

Steps_to_1st_non-zero_Reward

+4.67

+2.79

+1.61

+1.54

+0.93

+0.88

Figure 4.2: SHAP value feature importance. Higher values suggest a greater influence.

As a complementary analysis to the previous feature importance measures, we also

calculated the SHAP (SHapley Additive exPlanations) values for each game metric

with respect to the performance difference between Decision Transformer (DT) and

Decision Mamba (DM). SHAP values provide a unified approach to explaining the

output of machine learning models, potentially providing more insightful understanding

of feature importance [22].

Figure 4.2 presents the SHAP values for each game metric. Consistent with our

previous feature importance analysis, the number of actions emerges as the most

influential factor, followed by the compression ratio. However, the SHAP analysis

also reveals slightly different results. Image entropy and feature count still show

comparable importance levels, but both with higher importance levels than previous

Chapter 4. Experiments and Analysis 23

feature importance analyses. These results further support our hypothesis that the visual

complexity of games plays a significant role in the relative performance of DT and DM.

4.2.2 Correlation Analysis

To further investigate the relationships between game characteristics and performance

differences, we conducted a correlation analysis. This analysis provides insights into the

linear relationships between variables, complementing the non-linear insights gained

from the Random Forest regression.

Similar to random forest regression, the performance difference for each game was

calculated as the normalized score of Decision Transformer (DT) minus the normalized

score of Decision Mamba (DM). A positive value indicates better performance by DT,

while a negative value suggests DM outperformed DT. We then computed the Pearson

correlation coefficient between this performance difference and each game metric, as

well as between the metrics themselves [23]. The Pearson correlation coefficient r

between two variables X and Y is defined as:

r =
∑

n
i=1(Xi− X̄)(Yi− Ȳ)√

∑
n
i=1(Xi− X̄)2

√
∑

n
i=1(Yi− Ȳ)2

(4.3)

where Xi and Yi are the individual game metrics and the performance difference indexed

with i. The coefficient r ranges from -1 to 1, where -1 indicates a perfect negative linear

relationship, 0 indicates no linear relationship, and 1 indicates a perfect positive linear

relationship [23].

The resulting correlation matrix is presented in Figure 4.3. In interpreting these

results, we follow the guidelines where absolute values of correlation coefficients

are categorized as: 0.00-0.10 “negligible”, 0.10-0.39 “weak”, 0.40-0.69 “moderate”,

0.70-0.89 “strong”, and 0.90-1.00 “very strong” [24].

Examining the correlations with the performance difference, we observe several

noteworthy relationships. The number of actions shows a moderate positive correlation

(0.43) with the performance difference, which aligns with our earlier observation that

DT tends to outperform DM in games with more complex action spaces. This correlation

supports the hypothesis that action space complexity is indeed a significant factor in

determining the relative performance of these two models. Image entropy exhibits a

weak positive correlation (0.30) with the performance difference. This suggests that

as the visual complexity of the game increases, there is a slight tendency for DT to

Chapter 4. Experiments and Analysis 24

Per
for

man
ce_

Diffe
ren

ce

Num
_Ac

tio
ns

Im
ag

e_E
ntr

op
y

Tra
jec

tor
y_L

en
gth

Ste
ps_

to_
1st

_no
n-z

ero
_Re

ward

Fea
tur

e_C
ou

nt

Com
pre

ssi
on

_Ra
tio

Performance_Difference

Num_Actions

Image_Entropy

Trajectory_Length

Steps_to_1st_non-zero_Reward

Feature_Count

Compression_Ratio

1.00 0.43 0.30 0.29 0.15 0.12 -0.28

0.43 1.00 0.68 -0.14 0.13 0.03 -0.53

0.30 0.68 1.00 0.12 0.40 -0.04 -0.70

0.29 -0.14 0.12 1.00 0.57 -0.22 0.25

0.15 0.13 0.40 0.57 1.00 -0.39 0.11

0.12 0.03 -0.04 -0.22 -0.39 1.00 -0.36

-0.28 -0.53 -0.70 0.25 0.11 -0.36 1.00 0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3: Correlation Matrix of Performance Difference and the Game Metrics.

The colour intensity represents the strength of the correlation, with red indicating

positive correlations and blue indicating negative correlations.

perform better relative to DM. The compression ratio, which was identified as the

second most important feature in our random forest analysis, shows a weak negative

correlation (-0.28) with the performance difference. This negative correlation implies

that as games become more compressible (i.e., visually simpler), there is a tendency for

DM to outperform DT. This finding is consistent with our earlier observation that DM

seems to excel in visually simpler environments. The average trajectory length shows

weak positive correlations (0.29) with the performance difference. This suggests that

DT might have a slight advantage in games with longer episodes. The average steps to

the first non-zero reward and the feature count show a very weak positive correlation

(0.15 and 0.12 respectively) with the performance difference, suggesting that these

metrics may not significantly influence the relative performance of DT and DM.

It’s also worth noting the correlations between the game metrics themselves. For

instance, the number of actions shows a strong positive correlation (0.68) with image

entropy, suggesting that games with more complex action spaces tend to have higher

visual complexity as well.

Chapter 4. Experiments and Analysis 25

4.3 Analysis of the Effect of Action Space Complexity

The Random Forest and correlation analyses provided insights into the factors influenc-

ing the performance differences between DT and DM. While these analyses highlighted

the importance of both action space complexity and visual complexity, we recognized

the potential for further investigation into the specific impact of action space complexity.

To isolate and investigate the effect of action space complexity in these two games:

Hero and Kung Fu Master, we explored a method to simplify the action space while

preserving the full range of possible actions during evaluation. This led us to implement

Action Fusion.

4.3.1 Action Fusion

Action fusion is an approach that allows for the combination of primitive actions into

fused actions, allowing the agent to perform tasks like firing and moving simultaneously

in a single timestep. This method preserves the full range of possible actions during

evaluation while simplifying the decision-making process during training and prediction.

To implement action fusion, we explored two methods. The first, Simple Action

Fusion, combines basic movement actions with the fire action into single composite

actions. The second method, Frequency-based Action Fusion, focuses on combining

actions that occur less frequently in the training data. This strategy is designed to

minimize the impact on essential game mechanics while still reducing the complexity

of the action space.

4.3.1.1 Simple Action Fusion

As shown in Figure 4.4. Simple action fusion keeps NOOP and FIRE unfused, then

fuse move actions and fire actions into action combinations, therefore the agent is still

capable of performing the original full actions during evaluation, training and making

predictions in reduced actions space. Consequently, the action space complexity for

Hero is reduced from 18 to 10, and for Kung Fu Master from 14 to 9.

Chapter 4. Experiments and Analysis 26

Agent

DOWNRIGHTDOWNLEFT

UPRIGHTUPLEFT

UP

DOWN

LEFT RIGHT

Agent

DOWNRIGHTFIREDOWNLEFTFIRE

UPRIGHTFIREUPLEFTFIRE

UPFIRE

DOWNFIRE

LEFTFIRE RIGHTFIRE

Agent

DOWNRIGHTFIRE
DOWNRIGHT

DOWNLEFTFIRE
DOWNLEFT

UPRIGHTFIRE
UPRIGHT

UPLEFTFIRE
UPLEFT

UPFIRE
UP

DOWNFIRE
DOWN

LEFTFIRE
LEFT

RIGHTFIRE
RIGHT

Move Actions

Fir e Actions

Fused Actions
Agent

Agent

Figure 4.4: Simple Action Fusion: Fuse Move Actions and Fire Actions

4.3.1.2 Frequency-based Action Fusion

Instead of simply fusing Move actions and Fire actions. Another feasible strategy could

be fusing according to the action distributions of the last 1% of the dataset, which is

considered to be the expert knowledge of the game [12]. The relatively non-frequent

actions are fused, for example, as shown in Figure 4.5, UP(3.37%) and UPFIRE(3.48%)

will be fused into (UPFIRE, UP). And UPRIGHT(4.09%) and UPLEFT(4.27%) will be

fused into (UPRIGHT, UPLEFT). Since we fuse non-frequent actions, this method is

expected to reduce the effect on the game caused by action fusion.

Implementing action fusion (Simple or Frequency-based) required modifications to

the Arcade Learning Environment (ALE) to allow the agent(or the model) to perform

fused actions. ALE serves as the foundational backend for OpenAI Gym’s Atari

environments and allows for more fine-grained control over the emulation process.

The implementation process involved several key steps. First, we created the Env

class in trainer atari.py, which serves as a wrapper around ALE. Next, we created a

mapping between the original action space and the fused action space. This mapping

was implemented as a dictionary, fused action map, which associates each fused action

Chapter 4. Experiments and Analysis 27

NOOP
FIR

E UP
RIGHT

LEF
T

DOWN

UPR
IGHT

UPLE
FT

DOWNRIGHT

DOWNLEF
T

UPFI
RE

RIGHTFI
RE

LEF
TFI

RE

DOWNFIR
E

UPR
IGHTFI

RE

UPLE
FTF

IRE

DOWNRIGHTFI
RE

DOWNLEF
TFI

RE

Actions

0

2

4

6

8

Pe
rc

en
ta

ge
 (

%
)

4.56 4.74

3.37

6.74

5.67
5.14

4.09 4.27

6.69
5.94

3.48

8.11

6.83

5.62
4.65 4.45

8.71

6.93

Figure 4.5: Action Distribution of the Last 1% of the Dataset (Game: Hero)

with a list of primitive actions. The mapping strategy varies depending on the specific

game; detailed strategies are provided in Appendix A.8. Overall, this implementation

preserves the full action space during evaluation. When the trained model interacts with

the game environment, it still has access to all original actions, but it makes decisions

in the simplified action space.

4.3.2 Results of Action Fusion

Table 4.5 and Table 4.6 present the original results and the outcomes of both action

fusion methods, respectively. To directly compare the original and action-fused results,

we maintain consistent values (Random Walk scores and Human Players soirees) when

calculating normalized scores. Although action fusion simplifies the game’s action

space, it preserves the core game mechanics and objectives. The fused actions still

enable the agent to perform all original game actions, with the reward assignment

mechanism controlled by ALE remaining unchanged. While this method may introduce

slight bias, it ensures comparability across experiments.

In the game Hero, the normalized score of Decision Transformer dropped from

the original 30.37 to 18.72 for Simple Action Fusion and 16.06 for Frequency-based

Action Fusion, while the Decision Mamba’s performance in Hero remained relatively

stable, with only slight variations across different fusion strategies. For KungFuMaster,

both DT and DM experienced significant performance drops with action fusion, but

the relative performance between the two models shifted. In the original setup, DT

substantially outperformed DM (29.41 vs 5.29). However, with action fusion applied,

Chapter 4. Experiments and Analysis 28

Game DT DM

Hero 30.37 ± 4.47 7.77 ± 0.99

KungFuMaster 29.41 ± 6.48 5.29 ± 0.89

Table 4.5: Original Results without Action Fusion. Context length 10. Scores

are averaged over 3 runs, each with a unique random seed. The better

scores are bold.

Game
Simple Action Fusion Frequency-based Action Fusion

DT DM DT DM

Hero 18.72 ± 3.67 7.07 ± 0.73 16.06 ± 0.74 7.26 ± 1.21

KungFuMaster 3.09 ± 3.19 3.64 ± 0.95 1.55 ± 0.86 2.79 ± 0.33

Table 4.6: Action Fusion Results: Normalized scores (mean± std) for Simple

Action Fusion and Frequency-based Action Fusion across games Hero and

KungFuMaster, with context length 10. Scores are averaged over 3 separate

runs, each with a unique random seed. The better scores are bold.

DM slightly edged out DT in both fusion strategies.

The results suggest that simplifying the action space, even when preserving the

full range of actions during evaluation, impacts the models’ ability to learn optimal

strategies. The performance drops observed with both fusion methods, particularly

for DT, indicate that action space complexity is indeed a significant factor in model

performance. However, the persistent performance gaps between DT and Decision

Mamba (DM), especially in games like Hero, suggest that action space complexity

alone cannot fully account for the disparities. This finding points to the need for more

investigation into other potential factors influencing performance. Given that both

models process game frames as input, visual complexity emerges as a promising avenue

for further exploration. Consequently, we propose a new hypothesis: the performance

gap between DT and DM in games like Hero and KungFuMaster is likely influenced

by multiple factors, with action space complexity being just one component of a more

complex interplay of game characteristics.

Chapter 5

Future Work

The above analysis extends our understanding of the relationship between game char-

acteristics and performance differences in Decision Transformer (DT) and Decision

Mamba (DM). The analysis confirms the importance of action space complexity, it also

reveals the key role of visual complexity in it. These findings emphasise the need for

further research. One potential direction is to investigate the fundamental mechanisms

in visual processing capabilities. This may need a theoretical analysis of attention

matrices in DT and state space representations in DM of games with different visual

complexities. Moreover, future research could explore hybrid architectures that combine

the advantages of DT and DM, potentially yielding more robust performance in a wider

range of environments.

29

Chapter 6

Conclusion

In conclusion, this study has conducted a comprehensive evaluation of Decision Trans-

former (DT) and Decision Mamba (DM) across selected 12 Atari games. This research

started by noting the differences in performance between DT and DM in the games

Hero and Kung Fu Master, leading to a systematic analysis of the game characteristics

influencing these discrepancies. The random forest regression analysis highlights the

importance of action space complexity, as well as visual complexity, by calculating

the feature importance and SHAP values. Our correlation analysis also supports these

findings, showing a moderate positive correlation between performance differences and

game characteristics such as the number of actions and some weak correlation with

image entropy. In addition, to further investigate the effect of action space complexity,

we implemented action fusion, including simple action fusion and frequency-based ac-

tion fusion, further highlighting the important role of action space complexity. Overall,

our analysis suggests that action space complexity and visual complexity are the main

factors that influence the performance gap between Decision Transformer and Decision

Mamba. DM tended to perform better with simpler action space and visual environ-

ments, and DT showed an advantage in games with complicated actions and visual

components. For future research, it can focus on theoretical analysis of the attention

patterns in DT and the state space representations in DM. Alternatively, researchers

can focus on developing hybrid models that combine the advantages of DT and DM to

improve the model’s ability to handle complex visual elements.

30

Bibliography

[1] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel,

A. Srinivas, and I. Mordatch, “Decision transformer: Reinforcement learning

via sequence modeling,” in Advances in Neural Information Processing

Systems (NeurIPS), vol. 34. Curran Associates, Inc., 2021, pp. 15 084–

15 097. [Online]. Available: https://proceedings.neurips.cc/paper/2021/hash/

7f489f642a0ddb10272b5c31057f0663-Abstract.html

[2] T. Ota, “Decision mamba: Reinforcement learning via sequence modeling with

selective state spaces,” arXiv preprint arXiv:2403.19925, 2024.

[3] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective state

spaces,” arXiv preprint arXiv:2312.00752, 2023.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.

Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural

Information Processing Systems (NeurIPS), vol. 30. Curran Associates, Inc.,

2017. [Online]. Available: https://papers.nips.cc/paper files/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[5] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep

bidirectional transformers for language understanding,” in Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,

MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein,

C. Doran, and T. Solorio, Eds. Association for Computational Linguistics, 2019,

pp. 4171–4186. [Online]. Available: https://doi.org/10.18653/v1/n19-1423

[6] A. Gu, K. Goel, and C. Ré, “Efficiently modeling long sequences with struc-

tured state spaces,” in The International Conference on Learning Representations

(ICLR), 2022.

31

https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/n19-1423

Bibliography 32

[7] A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, “Hippo: Recurrent memory

with optimal polynomial projections,” in Advances in Neural Information

Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,

and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 1474–1487.

[Online]. Available: https://proceedings.neurips.cc/paper files/paper/2020/file/

102f0bb6efb3a6128a3c750dd16729be-Paper.pdf

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, p. 1735–1780, nov 1997. [Online]. Available:

https://doi.org/10.1162/neco.1997.9.8.1735

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed.

The MIT Press, 2018. [Online]. Available: http://incompleteideas.net/book/

the-book-2nd.html

[10] J. Kim, S. Lee, W. Kim, and Y. Sung, “Decision convformer: Local filtering in

metaformer is sufficient for decision making,” in International Conference on

Learning Representations, 2024.

[11] S. Bar-David, I. Zimerman, E. Nachmani, and L. Wolf, “Decision s4: Efficient

sequence-based rl via state spaces layers,” 2023.

[12] R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspective on offline

reinforcement learning,” in Proceedings of the 37th International Conference on

Machine Learning, ser. ICML’20. JMLR.org, 2020.

[13] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning

environment: An evaluation platform for general agents,” Journal of Artificial

Intelligence Research, vol. 47, pp. 253–279, jun 2013.

[14] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with discrete

world models,” in 9th International Conference on Learning Representations,

ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[Online]. Available: https://openreview.net/forum?id=0oabwyZbOu

[15] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao, “Mastering atari

games with limited data,” in Advances in Neural Information Processing

Systems 34: Annual Conference on Neural Information Processing Systems

https://proceedings.neurips.cc/paper_files/paper/2020/file/102f0bb6efb3a6128a3c750dd16729be-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/102f0bb6efb3a6128a3c750dd16729be-Paper.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://openreview.net/forum?id=0oabwyZbOu

Bibliography 33

2021, NeurIPS 2021, December 6-14, 2021, virtual, 2021, pp. 25 476–

25 488. [Online]. Available: https://proceedings.neurips.cc/paper/2021/hash/

d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html

[16] T. Hayashi, D. Cimr, H. Fujita, and R. Cimler, “Image entropy equalization: A

novel preprocessing technique for image recognition tasks,” Information Sciences,

vol. 647, p. 119539, 2023. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0020025523011246

[17] C. E. Shannon, “A mathematical theory of communication,” The Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[18] D. Salomon and G. Motta, Handbook of Data Compression, 5th ed. Springer

Publishing Company, Incorporated, 2009.

[19] J.-l. Gailly and M. Adler, “zlib: A massively spiffy yet delicately unobtrusive

compression library,” 2004. [Online]. Available: https://github.com/madler/zlib

[20] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceed-

ings of the seventh IEEE international conference on computer vision, vol. 2.

Ieee, 1999, pp. 1150–1157.

[21] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, p. 5–32, oct

2001. [Online]. Available: https://doi.org/10.1023/A:1010933404324

[22] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-

tions,” in Proceedings of the 31st International Conference on Neural Information

Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,

2017, p. 4768–4777.

[23] J. J. Berman, “Chapter 4 - understanding your data,” in Data Simplification,

J. J. Berman, Ed. Morgan Kaufmann, 2016, pp. 135–187. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/B9780128037812000047

[24] P. Schober, C. Boer, and L. A. Schwarte, “Correlation coefficients: appropriate

use and interpretation,” Anesthesia & analgesia, vol. 126, no. 5, pp. 1763–1768,

2018.

https://proceedings.neurips.cc/paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/d5eca8dc3820cad9fe56a3bafda65ca1-Abstract.html
https://www.sciencedirect.com/science/article/pii/S0020025523011246
https://www.sciencedirect.com/science/article/pii/S0020025523011246
https://github.com/madler/zlib
https://doi.org/10.1023/A:1010933404324
https://www.sciencedirect.com/science/article/pii/B9780128037812000047

Appendix A

Appendix

A.1 Hyperparameters

Hyperparameter Value

Number of layers 6

Embedding dimension 128

Batch size 256

Context length K 10, 30, 50

Max epochs 5

Dropout 0.1

Learning rate 0.0006

Adam betas (0.9, 0.95)

Grad norm clip 1.0

Weight decay 0.1

Learning rate decay Linear warmup and cosine decay

Initial expected return (during evaluation) 5*max game score appeared in the dataset

3 Random seeds (default) 123, 132, 231

5 Random seeds (initial experiments) 123, 132, 231, 231, 312

Table A.1: Hyperparameter settings

34

Appendix A. Appendix 35

A.2 Examples of Game States (Screenshots of four con-

secutive frames)

Figure A.1: Breakout

Figure A.2: Qbert

Figure A.3: Hero

Figure A.4: Kung Fu Master

Appendix A. Appendix 36

A.3 Max Return and Expected Return

Games Max Return Expected Return (5*max)

Breakout 104 520

Qbert 640 3200

Hero 190 950

KungFuMaster 284 1420

Pong 21 105

Seaquest 314 1570

Alien 213 1065

BankHeist 136 680

BattleZone 32 160

RoadRunner 270 1350

FishingDerby 61 305

SpaceInvaders 288 1440

Table A.2: Max Return and Expected Return (5 times max) for selected games

Appendix A. Appendix 37

A.4 Game scores for Random Walk and Human Player

(Full table)

Game Random Walk Human Player

Breakout 1.7 30.5

Qbert 163.9 13455.0

Hero 1027.0 30826.4

KungFuMaster 258.5 22736.3

Pong -20.7 14.6

Seaquest 68.4 42054.7

Alien 227.8 7127.7

BankHeist 14.0 753.0

BattleZone 2360.0 37187.5

RoadRunner 11.5 7845.0

FishingDerby -92.0 -39.0

SpaceInvaders 148.0 1669.0

Table A.3: Game scores by Random Walk and Human Players, updated to reflect more

precise values [14, 15].

Appendix A. Appendix 38

A.5 Normalized scores without removing outliers

Decision Transformer (DT) Decision Mamba (DM)

Game 10 30 50 10 30 50

Breakout 267.36 218.75 208.33 343.12 384.79 340.35
± 90.69 ± 97.20 ± 51.74 ± 65.35 ± 54.29 ± 93.75

Qbert 29.67 9.06 7.89 26.54 23.05 22.59
± 12.84 ± 9.40 ± 6.58 ± 1.01 ± 7.74 ± 1.84

Hero 31.62 28.05 25.54 7.70 6.95 7.69
± 4.16 ± 4.44 ± 8.32 ± 0.96 ± 0.43 ± 1.42

KungFuMaster 19.65 11.24 9.68 6.32 6.72 6.03
± 14.15 ± 5.84 ± 8.01 ± 1.75 ± 1.46 ± 2.80

Table A.4: Normalized score (mean± std) of Decision Mamba and Decision Transformer

across four games with context lengths of 10, 30, and 50. Each game was run with 5

random seeds per context length. Bold indicates the better mean performance.

Appendix A. Appendix 39

A.6 Action Distribution of the last 1% of the dataset

Index Action Percentage

0 NOOP 4.56%

1 FIRE 4.74%

2 UP 3.37%

3 RIGHT 6.74%

4 LEFT 5.67%

5 DOWN 5.14%

6 UPRIGHT 4.09%

7 UPLEFT 4.27%

8 DOWNRIGHT 6.69%

9 DOWNLEFT 5.94%

10 UPFIRE 3.48%

11 RIGHTFIRE 8.11%

12 LEFTFIRE 6.83%

13 DOWNFIRE 5.62%

14 UPRIGHTFIRE 4.65%

15 UPLEFTFIRE 4.45%

16 DOWNRIGHTFIRE 8.71%

17 DOWNLEFTFIRE 6.93%

Table A.5: Distribution of Actions for Hero

Index Action Percentage

0 NOOP 6.43%

1 UP 6.16%

2 RIGHT 4.79%

3 LEFT 7.96%

4 DOWN 6.70%

5 DOWNRIGHT 7.89%

6 DOWNLEFT 7.14%

7 RIGHTFIRE 7.54%

8 LEFTFIRE 8.71%

9 DOWNFIRE 7.15%

10 UPRIGHTFIRE 6.70%

11 UPLEFTFIRE 8.12%

12 DOWNRIGHTFIRE 7.10%

13 DOWNLEFTFIRE 7.60%

Table A.6: Distribution of Actions for KungFuMaster

Appendix A. Appendix 40

A.7 Action Fusion Strategy

A.7.1 Simple Action Fusion

Game Original Actions Fused Actions

Hero

0: NOOP 0: NOOP

1: FIRE 1: FIRE

2: UP 2: [UP, UPFIRE]

3: RIGHT 3: [RIGHT, RIGHTFIRE]

4: LEFT 4: [LEFT, LEFTFIRE]

5: DOWN 5: [DOWN, DOWNFIRE]

6: UPRIGHT 6: [UPRIGHT, UPRIGHTFIRE]

7: UPLEFT 7: [UPLEFT, UPLEFTFIRE]

8: DOWNRIGHT 8: [DOWNRIGHT, DOWNRIGHTFIRE]

9: DOWNLEFT 9: [DOWNLEFT, DOWNLEFTFIRE]

10: UPFIRE

11: RIGHTFIRE

12: LEFTFIRE

13: DOWNFIRE

14: UPRIGHTFIRE

15: UPLEFTFIRE

16: DOWNRIGHTFIRE

17: DOWNLEFTFIRE

KungFuMaster

0: NOOP 0: NOOP

1: UP 1: UP

2: RIGHT 2: [RIGHT, RIGHTFIRE]

3: LEFT 3: [LEFT, LEFTFIRE]

4: DOWN 4: [DOWN, DOWNFIRE]

5: DOWNRIGHT 5: [DOWNRIGHT, DOWNRIGHTFIRE]

6: DOWNLEFT 6: [DOWNLEFT, DOWNLEFTFIRE]

7: RIGHTFIRE 7: UPRIGHTFIRE

8: LEFTFIRE 8: UPLEFTFIRE

9: DOWNFIRE

10: UPRIGHTFIRE

11: UPLEFTFIRE

12: DOWNRIGHTFIRE

13: DOWNLEFTFIRE

Table A.7: Simple Action Fusion Strategy

Appendix A. Appendix 41

A.7.2 Frequency-based Action Fusion

Game Original Actions Fused Actions

Hero

0: NOOP 0: [UP, UPFIRE]

1: FIRE 1: [FIRE, UPLEFT, UPLEFTFIRE]

2: UP 2: [NOOP]

3: RIGHT 3: [RIGHT, DOWNRIGHT]

4: LEFT 4: [LEFT, LEFTFIRE]

5: DOWN 5: [DOWN, DOWNFIRE]

6: UPRIGHT 6: [UPRIGHT, UPRIGHTFIRE]

7: UPLEFT 7: [RIGHTFIRE, DOWNRIGHTFIRE]

8: DOWNRIGHT 8: [DOWNLEFT, DOWNLEFTFIRE]

9: DOWNLEFT 9: [UPLEFT, UPLEFTFIRE]

10: UPFIRE

11: RIGHTFIRE

12: LEFTFIRE

13: DOWNFIRE

14: UPRIGHTFIRE

15: UPLEFTFIRE

16: DOWNRIGHTFIRE

17: DOWNLEFTFIRE

KungFuMaster

0: NOOP 0: [UP, NOOP]

1: UP 1: [RIGHT, UPRIGHTFIRE]

2: RIGHT 2: [DOWN, RIGHTFIRE]

3: LEFT 3: [LEFT, UPLEFTFIRE]

4: DOWN 4: [DOWNFIRE, LEFTFIRE]

5: DOWNRIGHT 5: [DOWNRIGHT, DOWNRIGHTFIRE]

6: DOWNLEFT 6: [DOWNLEFT, DOWNLEFTFIRE]

7: RIGHTFIRE 7: [UPLEFTFIRE, LEFTFIRE]

8: LEFTFIRE

9: DOWNFIRE

10: UPRIGHTFIRE

11: UPLEFTFIRE

12: DOWNRIGHTFIRE

13: DOWNLEFTFIRE

Table A.8: Frequency-based Action Fusion Strategy

	Introduction
	Background
	Transformer
	State Space Models
	Mamba

	Reinforcement Learning
	Traditional Reinforcement Learning
	Sequence Modeling in Reinforcement Learning

	Methodology
	Dataset
	Data Processing

	Model Architecture
	Experimental Setup
	Loss function
	Evaluation

	Experiments and Analysis
	Initial Experiments
	Extended Experiments and Analysis
	Regression Analysis with Random Forest
	Correlation Analysis

	Analysis of the Effect of Action Space Complexity
	Action Fusion
	Results of Action Fusion

	Future Work
	Conclusion
	Bibliography
	Appendix
	Hyperparameters
	Examples of Game States (Screenshots of four consecutive frames)
	Max Return and Expected Return
	Game scores for Random Walk and Human Player (Full table)
	Normalized scores without removing outliers
	Action Distribution of the last 1% of the dataset
	Action Fusion Strategy
	Simple Action Fusion
	Frequency-based Action Fusion

