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Abstract

Neural Machine Translation (NMT) plays a crucial role in the advancement of natural

language processing and the real world. However, competitive NMT systems predom-

inantly rely on Transformer architectures, which face significant computational and

memory bottlenecks when handling long sequence tasks. The recently proposed Mamba

model is regarded as a hidden-attention model with linear complexity concerning se-

quence length, offering a promising solution to the computational overhead associated

with the Transformer. This project aims to determine whether the Mamba model can

effectively replace attention mechanisms in NMT systems, aiming to achieve greater

efficiency while maintaining translation quality.

This project implements a Mamba-based model (Mamba Base) and a Mamba with

Attention Model (MA), evaluating their performance on the WMT14 English-German

Dataset. The results indicate that the Mamba Base model achieves a 5-7× increase

in inference speed compared to the Transformer, although it struggles with capturing

long sequence dependencies. In contrast, the MA model incorporates cross-attention

and achieves translation quality comparable to the Transformer while maintaining the

efficiency of the Mamba model. Additionally, this project analyzes specific linguistic

phenomena and visualizes attention distributions, revealing that the MA model captures

local features better and exhibits clearer and more uniform attention patterns than the

Transformer. This research demonstrates the potential of the Mamba model to replace

self-attention and MLP in Transformer-based NMT systems with higher efficiency.
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Chapter 1

Introduction

1.1 Motivation

Machine translation (MT) has long been crucial to bridging language divides and

facilitating more efficient cross-cultural communication in this globalised society. The

advent of Neural Machine Translation (NMT) has marked a tremendous advancement in

the MT field, dramatically enhancing the accuracy and fluency of translations compared

to traditional statistical machine translation (SMT). NMT leverages deep learning

technologies to grasp better the nuances and long dependencies of sequence, which can

generate more natural and coherent translations. In recent years, the rapid development

of large language models (LLMs) has provided a new pretrain-prompt paradigm for the

MT field. By training with large multilingual corpora, LLMs freed it from the limitations

of parallel data and also achieved dominant performance. These technologies propose

efficient alternatives to human translation, which, despite its accuracy, can be sluggish

and costly. By automating the translation process, MT enables instant communication

and information access at a low cost. However, challenges persist, particularly as

translation quality tends to decline noticeably with sentence length increasing [36].

Moreover, progress in MT research has slowed, with only modest advancements in

recent years. This slowdown highlights the urgent need for innovative theories and new

approaches to achieve breakthroughs and significantly enhance MT systems.

1.2 Problem Statement

Current mainstream NMT systems and LLMs are based on the Transformer [58] ar-

chitecture, which has brought impressive performance to these methods. However,

1



Chapter 1. Introduction 2

the complexity of the self-attention layer in the Transformer is O(L2D) where L is

the sequence length, and D is the dimension of word embedding, the attention matrix

consumes extensive memory as the context length increases. This issue poses significant

challenges for these Transformer-based models regarding computational resources. Ad-

ditionally, LLMs not only require substantial computational resources but also perform

poorly under specific language conditions due to the lack of teacher-forcing supervi-

sion from parallel data. Therefore, Gu et al. [23] introduce a novelty Structured State

Space Model (S4), which offers an approach to memory almost indefinitely history

with finite memory and loss. However, the state space models were indicated that fall

short of detecting alignment between source and target sequence in MT due to their

time-invariant and input-invariant [57]. Then, recent research by Ali et al. [1] and Gu

et al. [10] has shown that a Selective State Space Model (S6) [21] and a related archi-

tecture Mamba can function as a high-efficiency linear-complexity hidden-attention

model which overcomes the time-invariant character of traditional SSM, proposing its

potential to tackle the limitations encountered by both attention mechanisms and S4

in MT. Generally, the main focus of this project is to determine whether the Mamba

model, featuring linear-complexity hidden-attention capabilities, can efficiently replace

attention in MT while maintaining competitive translation quality.

1.3 Why NMT instead of LLM?

As the two main MT task solutions, NMT systems and LLMs have achieved dominant

performance in recent years. However, the purpose of this project is to explore the

potential of the Mamba model as an efficient hidden attention model to replace the

traditional attention mechanism in MT tasks. In this context, an NMT system provides

a more suitable foundation for investigation than LLMs. The main reason is that given

the source sequence S and the target sequence T , NMT systems model the conditional

probability p(T |S), which clearly reflects the model’s ability to handle challenges in MT

tasks like capturing the dependencies between the source and target sequences. On the

other hand, LLMs model the joint probability p(S,T ). Applying the Bayesian theorem

to expand the joint probability results in p(S,T ) = p(T |S)p(S), where calculating p(S)

introduces unnecessary resource consumption. LLMs achieve strong performance on

MT tasks primarily through extensive training data and large model sizes, which might

obscure the specific mechanisms and performance differences of models in the project.

Therefore, compared to LLMs, NMT systems provide a better architecture for this
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project, as they more clearly reflect the model’s specific ability for MT tasks, such as

detecting dependencies between source and target sequences.

1.4 Research Hypothesis and Objectives

The primary question this project seeks to answer is whether the Mamba model, with its

high efficiency, hidden-attention property and linear complexity concerning sequence

length, can effectively replace traditional attention mechanisms in NMT systems. Specif-

ically, the project aims to determine if the Mamba model can provide more efficient

memory usage and faster inference and training speeds while maintaining translation

quality. Here are the main objectives to address the main question:

1. Research existing methodologies and datasets of the NMT system to select a

dataset and establish a baseline for comparison.

2. Design and implement an NMT system incorporating the Mamba model.

3. Train the implemented NMT system with the selected dataset and evaluate its

quality of translation and efficiency.

4. Integrate cross-attention into the Mamba NMT model to compare Mamba’s ability

with self-attention and conduct ablation experiments.

5. Visualize the implicit attention in the Mamba model and analyze the models’

attention distribution.

6. Analyze the model’s ability to handle different linguistic phenomena based on

the translation results of the implemented model.

1.5 Timeliness, Novelty, and Significance

The Mamba model was introduced in December 2023 and is considered a strong

challenger against the Transformer due to its faster inference speed and scalability

in handling long sequences. Currently, Mamba has emerged as a trending research

direction within the deep learning community, demonstrating impressive performance

across various domains such as image processing [35], language modeling [21], and

multi-modal tasks [48]. However, no research has yet focused on applying Mamba to

MT tasks except this project. It is noteworthy because MT is a core task in natural
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language processing (NLP) that requires the model to effectively capture features of

the target sequence while also addressing dependencies between the source and target

sequences. Achieving this necessitates a model with robust capabilities for capturing

long-term dependencies, feature representation, and generalization. Additionally, fitting

Mamba into an encoder-decoder architecture remains an open problem. This project

developed an encoder-decoder NMT system based on the Mamba model, which achieves

competitive translation quality compared to the Transformer while boasting faster

inference speed.

The insights gained from tackling complex dependencies during MT research could

have broader implications for other tasks, encouraging the development of models to

address intricate dependencies in various applications better. Additionally, the Mamba

model’s linear complexity regarding sequence length enables it to tackle long-sequence

tasks, such as document-level translation effectively. This capability addresses the

computational and memory bottlenecks previously faced by NMT systems that utilize

the Transformer architecture. By exploring Mamba’s performance and effectiveness in

MT, this project aims to contribute valuable insights that could advance the state of the

art in both translation quality and efficiency.

1.6 Contributions and Result

The contributions of this project are summarized as follows:

• A study was conducted on existing NMT models and datasets, selecting the

encoder-decoder auto-regressive model as the foundational architecture, with

Transformer as the baseline, specifically utilizing the WMT14 EN-DE dataset.

• A Mamba-based encoder-decoder model (Mamba Base Model) was implemented

and evaluated for translation quality and model efficiency, achieving 5-7× faster

inference speed compared to Transformer, although it faced challenges when

translating long sentences.

• By employing cross-attention in the Mamba Base Model to create a Mamba

with Cross-Attention model (MA model), a similar translation quality to the

Transformer was achieved while maintaining the similar efficiency of the Mamba

Base.

• The translation results were analyzed on linguistic phenomena, revealing that
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the MA model better handled unseen words and constituent ambiguity than the

Transformer but struggled with complex sentence structure dependencies.

• The model’s attention distribution was visualized, demonstrating that the MA

model exhibited a clearer and more uniform attention distribution than the Trans-

former, indicating Mamba’s superior ability to handle fine-grained features.

• Prove the potential of Mamba to replace the self-attention layer, along with a

discussion of using diffusion models instead of auto-regressive models, potentially

allowing for the Mamba-based block to substitute for cross-attention.

1.7 Overview of the Thesis

The remainder of this thesis is organized as follows:

• Background: This chapter covers the preliminary knowledge necessary to under-

stand this thesis, including the architectural details of Transformers and certain

SSM models. It also discusses previous research and datasets in the field of NMT.

• Methodology and Implementation: This chapter introduces and justifies the

model used in this project, including the Baseline model Transformer, the Base

encoder-decoder Mamba model implemented by this project, and the Mamba

encoder-decoder model with attention. Additionally, this chapter also introduces

the evaluation metrics and visualization techniques.

• Training Detail: This chapter presents the detailed configurations regarding

the model training process, including the dataset selection, data preprocessing

methods, software and frameworks used for training, hardware platforms, and

hyperparameter settings for the model.

• Result and Analysis: This chapter presents the evaluation results regarding

the models’ translation quality and efficiency, followed by a detailed analysis.

Additionally, the project analyzes the model’s ability to handle various linguistic

phenomena through specific examples. The chapter also visualizes the model’s

attention distribution and showcases the results of the ablation experiments.

• Conclusion and Further Direction: This chapter concludes this project’s result,

findings, and contribution and suggests future research directions.



Chapter 2

Background and Related Works

2.1 Background: Transformer

Transformer is a revolutionary deep learning network originally used for NMT [58].

Then, it quickly became the dominant architecture in computer vision (CV), NLP, and

even the entire AI field.

Transformer is an encoder-decoder model, and its strong performance is mainly due to

its self-attention mechanism, which enables it to capture long-distance dependencies

within the sequence. This mechanism allows the model to assess the importance between

all elements in a single step, assigning varying weights to each element, allowing it to

capture long-distance dependencies, even when elements are distant within the sequence.

Such mechanisms not only make the Transformer more accurate and adaptable in

handling long sequence data but also enable efficient parallel processing, outperforming

the previous dominant recurrent and convolutional models. Cross-attention is also

applied in the Transformer to detect the attention between two different sequences. The

equation for attention is as follows:

Attention(Q,K,V ) = softmax(
QKT
√

dk
)V = αV, α = softmax(

QKT
√

dk
) (2.1)

Where α ∈ RB×LQ×LKV is the attention matrix and Q ∈ RB×LQ×D, K ∈ RB×LKV×D, and

V ∈ RB×LKV×D are the matrices depending on input data, given the batch size B, the

length of the sequence Q depended LQ, the length of the sequence K, V depended

LKV , and the dimension of hidden state D. Q, K, and V are matrices obtained by

applying linear transformations to the input sequence, which enables the model to

be data-dependent. When Q, K, and V depend on the same sequence, the formula

represents self-attention. However, when Q represents one sequence and K and V

6
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represent another sequence, it signifies cross-attention. The scaling factor dk ∈ R is the

hidden dimension of the matrix K, which is used to keep gradients stable.

However, since the time and space complexity of the attention matrix α for sequence

length L is O(L2), Transformer-based models face serious computational and memory

resource bottlenecks when dealing with longer contexts.

2.2 Background: State Space Models to Mamba

2.2.1 State Space Models (SSM)

State Space Models (SSMs) [30] are a class of models designed for processing continuous-

sequential data by leveraging the concept of state spaces from control theory. SSMs

are defined by two key equations: the state equation (Left in the Equation 2.2) and the

output equation (Right in the Equation 2.2). The state equation explicitly maintains a

hidden state that evolves over time, while the output equation generates observations

based on this hidden state:

h(t) = Ah(t −1)+Bx(t), y(t) =Ch(t)+Dx(t) (2.2)

Where t ∈ R is the current time step, x(t) ∈ R and y(t) ∈ R are the 1-D input signal

and 1-D output at time step t and h(t) ∈ RN×1 is the hidden state, given dimension of

state space N. A ∈RN×N , B ∈RN×1, C ∈R1×N and D ∈R are learnable, time-invariant

parameter matrices. For input sequences with hidden dimension D, the SSM is applied

to each dimension independently. This model computes the output of the current time

step through the previous hidden state and the current input.

Although SSMs have been demonstrated to handle long-range dependencies effectively

with the appropriate choice of the state matrix A [22], this approach suffers from

excessive computational and memory demands [24], making it impractical as a general

solution for sequence modelling.

2.2.2 Structured State Space Models (S4)

To efficiently process long sequential data with SSMs, Gu et al.[23] developed the

Structured SSMs (S4). This advancement refines the SSM framework through the

introduction of an initialization strategy, a discretization form, and a structured design.

hk = Āhk−1 + B̄xk, yk = C̄hk (2.3)
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Where h, x, and y are discrete sequences instead of continuous functions of time step k.

Ā, B̄ and C̄ means discretized [56] parameter matrix with the same size as basic SSMs,

enabling the S4 to handle discrete sequences recurrently. Additionally, since Dx(t) in

Equation 2.2 can be regard as a skip connection, the S4 assume D = 0 to simplify the

model.

The matrix A constructs the current hidden state by leveraging historical information.

The S4 model initializes the matrix A using the HiPPO operator [22], enabling it to store

almost infinite historical information within a limited memory capacity with minimal

compression loss. Besides, the S4 model integrates concepts from both recurrent and

convolutional networks to facilitate efficient inference and parallel training. The S4

model reformulates the problem by discretizing the parameter matrix into discrete time

steps to process discrete sequences recurrently. At each time step, an update of the

hidden state is recurrently involved, which only depends on the current state instead of

the entire history. This property endows the S4 model with the ability to infer efficiently.

Meanwhile, the S4 model utilizes a convolutional kernel to process input, streamlining

intermediate operations and enabling parallel training. The convolution kernel can be

precomputed and saved by expanding the expression of y using the state equation to

eliminate the hidden state in the output equation. This structured design enables the S4

model to achieve fast training like Convolutional Neural Networks (CNNs) and to per-

form inference as efficiently as Recurrent Neural Networks (RNNs). The remainder of

this section will introduce the details of the HIPPO operator and discretization process:

High-order Polynomial Projection Operator (HiPPO) According to Equation 2.2,

matrix A capture information from previous state to build new state. However, the

matrix A has a fixed size. With limited memory space to represent long previous states,

the previous SSM performed poorly on long sequence modelling tasks. This issue arises

primarily due to severe information loss caused by gradient vanishing/exploding during

backpropagation. When computing gradients in traditional SSM models, the matrix

A is repeatedly multiplied, and unselected values of matrix A can lead to exponential

scaling of the gradients over time.

To avoid gradient vanishing/exploding when dealing with long-term dependencies,

the S4 model uses the HiPPO matrix to initialize A, which achieves the gradient de-

cay/increase with a polynomial rate rather than exponentially. HiPPO tries to compress

previous input signals into a vector of coefficients that can capture recent tokens well

and decay old tokens. This architecture allows S4 models to retain almost all historical

information through functional approximation with minor information loss. Here is an
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Figure 2.1: The Example HiPPO Matrix, when n = k = 4.

example HiPPO matrix when n = k = 4 in Figure 2.1 and the equation of the HiPPO

matrix:

Ank =−


(2n+1)1/2(2k+1)1/2 if n > k

n+1 if n = k

0 if n < k

(2.4)

Discretization Except for continuous inputs, the sequential modelling task is also

confronted with discrete data, such as textual sequences. To address the challenge

of processing discrete data, S4 adopts a strategy to discretize the continuous SSM,

thereby facilitating the model’s approximation of the underlying continuous domain.

The discretized parameters matrices Ā, B̄ and C̄ in discretized SSM (Equation 2.3) which

can be computed by a bilinear approximation [56] with step size ∆ ∈ R:

Ā = (I −∆/2 ·A)−1(I +∆/2 ·A), B̄ = (I −∆/2 ·A)−1
∆B, C̄ =C (2.5)

It is important to note that this discrete SSM can only be used to process 1-dimensional

data. Therefore, to handle high-dimensional data, these discrete SSMs need to be

stacked, and the outputs of each SSM should be concatenated to obtain the final result.

The S4 model uses the HIPPO matrix to preserve long-term dependencies effectively and

combines convolutional and recurrent implementations for fast training and inference.

However, the state space matrices in the S4 model are unable to adapt to various inputs,

which limits the model’s ability to execute input-dependent inference.

2.2.3 Selective State Space Models (S6)

To overcome the S4 model’s limitation in performing input-dependent inference, Gu

et al. [21] introduced the S6 model, which processes inputs selectively. Unlike its

predecessor, the S4 model, which utilizes time-invariant parameter matrices (A, B, C,
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Figure 2.2: The Detailed Structure of Mamba [21], which Combines the H3 Model [14]

and Gated MLP [33] to Integrate SSM and MLP into a Single Block.

and ∆), the S6 model obtains B ∈ RB×L×N , C ∈ RB×L×N , and ∆ ∈ RB×L×D by applying

a linear transformation to input sequence x ∈ RB×L×D, making these matrices data-

dependent, and enabling the model to adapt its behaviour based on the input. Although

A is not data-dependent, the input dependency matrix ∆ enabled A to become data-

dependent by the discretization process. Here is the new discretization approach in the

S6 model, while C is still identical:

Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I) ·∆B (2.6)

Furthermore, to optimize traditional SSMs for efficient computation on modern GPUs,

the S6 model integrates the Flash Attention [9] technology. This technique utilizes the

hierarchical memory structure by computing the SSM states in Static Random Access

Memory (SRAM), thereby minimizing the bottleneck caused by frequent read-write

operations on the slower High Bandwidth Memory (HBM).

2.2.4 Mamba

To better encapsulate and leverage the efficient characteristics of the S6 layer, Gu

et al. [21] proposed the Mamba architecture (shown in Figure 2.2), which combines

the fundamental blocks of most SSM-based models, H3 model [14], with the gated

MLP [33] commonly found in modern neural networks. Such architecture allows the

Mamba block to integrate the SSM and MLP layers, enabling the Mamba-based model

to be constructed by simply stacking the Mamba blocks homogeneously. Additionally,

the Mamba block performs a convolution operation on the input before the SSM layer,

which is adept at capturing local features, while the SSM is responsible for processing

and capturing long-term dependencies in sequences. For the activation function, Mamba
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chose Sigmoid Linear Unit (SiLU) [13], which is nonlinear, continuously differentiable,

and defined over the entire range from negative to positive infinity:

SiLU(x) = x ·Sigmoid(x), Sigmoid(x) =
1

1+ e−x (2.7)

SiLU not only addresses the vanishing gradient problem but also solves the issue with

the Rectified Linear Unit (ReLU) [19] function, which is not zero-centred and has zero

gradients in the negative range. These architectural features enable the Mamba block to

effectively leverage the efficiency and long-term dependency-capturing capability of the

S6 layer, which is considered a strong challenger to the Transformer. This project will

build an NMT system based on the Mamba block to study its performance on MT tasks.

2.3 Related Works

2.3.1 Neural Machine Translation

The mainstream competitive NMT models are based on Encoder-Decoder auto-regressive [20]

architecture. Since for a given sequence and target sequence pair (x1:s,y1:t), the transla-

tion task can be modeled as P(y1:t |x1:s). By applying the chain rule, this conditional

probability can be expanded as follows:

p(y1:t |x1:s) =
t

∏
i=1

p(yi|x1:s,y<i) (2.8)

Where p(yi|x1:s,y<i) is modelled using the NMT model. The encoder receives source

sequences as input and then encodes them to extract dependencies where the decoder

captures dependencies in both encoder outputs and previous target tokens. Additionally,

the translation model is auto-regressive where each target token is generated based on

the source sequence and the previous generated tokens are then used to generate the next

token. These encoder-decoder auto-regressive NMT systems are primarily implemented

based on RNN, CNN, and Transformer models:

RNN-based NMT In 2014, Cho et al. [6] implement the first end-to-end RNN-based

MT model. While their approach mainly leveraged SMT architectures, they incor-

porated phrases learned through NMT to strengthen SMT features. Later that year,

Sutskever et al. [53] introduced a completely end-to-end NMT model, employing two

LSTMs as the encoder and decoder, and found that reversing the training samples

improved translation quality. Furthermore, to address the alignment between source and

target sequences more effectively, Bahdanau et al. [3] proposed the attention mechanism,
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which set the stage for the Transformer and quickly became a cornerstone of NMT

even deep learning research. However, RNNs depend on the sequential processing of

previous time steps to generate the current output, which hampers their parallelization

and leads to reduced computational efficiency, especially when dealing with large-scale

datasets.

CNN-based NMT Given the ability of Convolutional Neural Networks (CNNs) to

perform parallel computations, they present a promising avenue for research in NMT.

Gehring et al. [17] introduced the ConvS2S model, which utilizes CNNs as the encoder

and decoder to build an end-to-end NMT system, achieving notable success. Besides,

Kaiser et al. [29] showed that stacking multiple convolutional layers can effectively ex-

tend the context length for long sequence translation. While CNN-based NMT benefits

from parallel processing and exhibits high efficiency, the computational demands grow

with the sequence length.

Transformer-based NMT The proposing of the Transformer model [58] represented a

shift away from recurrent architectures by leveraging self-attention mechanisms. This

approach greatly improved parallel processing capabilities and the management of long-

range dependencies. Since its introduction, it has become a fundamental component in

NMT systems and continues to dominate today. Following this, mBART [34] introduced

the pretrain-finetune paradigm to the NMT field by pretraining a Transformer model on

monolingual corpus and fine-tuning it with parallel text, greatly enhancing multilingual

translation performance. Although Transformer-based models have revolutionized the

NMT field, they still address dependencies between sequence elements in a relatively

brute-force manner. Thus, they demand significant computational resources and en-

counter challenges with longer sequences.

Alternatively, some recent studies have adopted a language model perspective, employ-

ing encoder-only [16] and decoder-only [59] architectures that concatenate the source

and target sequences as input, achieving results similar to those of encoder-decoder

models while facing efficiency issues. The introduction and development of diffusion

models [37, 5], which generate entire sequences simultaneously by denoising random

noise in target sequences, have also provided an alternative solution to auto-regressive

methods in the MT field and offered efficient inference speeds.

In summary, most competitive and mainstream NMT systems in recent years are based

on the Transformer architecture, which requires substantial computational and storage

resources. Moreover, no new paradigm has emerged to challenge the Transformer for

many years. SSM has the capability to hold almost infinite historical information with
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Workshop Text Domain Language Pair

WMT24

News

Biomedical

Literary

EN-DE,HE,ZH,JA,UK,RU,CS; CS-UK

EN-FR,DE,IT,PT,RU,

ZH-EN

IWSLT24

TED Talks

Physical Training

Accent Challenge

EN-DE,ZH,JA

EN-JA

EN- JA

WAT23

Scientific Paper

Business Scene Dialogue

Patent

IT domain and Wikinews

EN-JA

EN-JA

JA-EN,ZH,KO

EN-HI,TH,MS,ID,VI

Table 2.1: Text Domain and Language Pair Supported by WMT24, IWSLT24, WAT23

limited storage space through functional approximation, making it a highly promising

research direction.

2.3.2 Datasets

Bilingual parallel datasets are the most important data resources in NMT research.

Since NMT models deployed between different language pairs require different parallel

corpora for training, there is a significant demand for parallel corpora in NMT research.

Currently, the publicly available datasets used in mainstream research are primarily

provided by three workshops: The Workshop On Machine Translation (WMT) [32],

The International Workshop on Spoken Language Translation (IWSLT) [50], and The

Workshop on Asian Translation (WAT) [38]. WMT is the world’s largest machine

translation workshop, mainly targeting European languages, while WAT is focused on

Asian languages. IWSLT also provides spoken language translation data for audio tasks.

These datasets support a wide range of language pairs and domains and are continuously

updated. Table 2.1 indicates the language pairs and corpus domains supported by recent

workshops in 2023/24, and many more datasets are supported in previous workshops. In

addition to the workshops mentioned above, OPUS [55] also provides a large number of

parallel corpora for various language pairs and has released the OPUS-100 [61] dataset,

which is an English-centric multilingual parallel corpus that covers over 100 languages.
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Methodology and Implementation

This project adopted an encoder-decoder auto-regressive model as the foundational

architecture for the Mamba-based model. This choice is motivated by the aim of this

project, which investigates the advantages and limitations of the Mamba block in com-

parison to the traditional attention layer regarding translation quality and performance.

Thus, unlike alternative perspectives such as language modelling or diffusion models,

this choice provides a more robust benchmark, baseline, and reference for this research.

3.1 Model Architecture

3.1.1 Baseline

This project chose the Transformer Base model (called Transformer in the following

chapter) [58] as the baseline since it employs both self-attention and cross-attention and

remains the best primitive in NMT and even the NLP field. These attention mechanisms

enable the Transformer to handle long-term dependencies well but suffer computational

and memory bottlenecks when sequence length increases, making it a robust and

reasonable benchmark for translation quality and model efficiency comparison with the

Layer Count

(Encoder +

Decoder)

Encoder

Parameters

(Millions)

Decoder

Parameters

(Millions)

Embedding

Parameters

(Millions)

Total

Parameters

(Millions)

Transformer Base 6+ 6 3.15 4.20 22.4 66.5

Mamba Base 12 + 12 1.84 1.84 22.4 66.6

Table 3.1: Parameter Details and Layer Count for Transformer and Mamba Base Models

14
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(a) Transformer Base Model (b) Mamba Base and MA Model

Figure 3.1: Model Architecture for Transformer [58] (a) and Mamba-based Model (b).

”Add & Norm” means residual connection and layer normalization. In Figure (b), the

Mamba Base Model concatenates (Option B) the encoder output and target input, while

the MA Model employs cross-attention (Option A).

Mamba-based model in this project.

Following the original Transformer Base settings (shown in Table 3.1), both the encoder

and decoder stack N = 6 identical layers and set the number of heads to 8 for multi-head

attention (MHA). The details of the Transformer are shown in Figure 3.1(a). The

encoder layer consists of two sub-layers: self-attention and MLP, while the decoder

layer is composed of three sub-layers: self-attention, cross-attention, and MLP. A

residual connection and layer normalization follows each sub-layer.

3.1.2 Base Architecture

The Mamba Base NMT model (Figure 3.1(b)) also follows the encoder-decoder ar-

chitecture by stacking the Mamba Block. Similarly, residual connection and layer

normalization are applied after each Mamba layer. The parameter and layer details

of the Mamba Base model are shown in Table 3.1. To match the model size with the

Transformer, both the encoder and decoder stack N = 12 identical Mamba layers with

an expansion factor E = 2, which can expand the model hidden dimension D = 512. For

state space dimension dstate, this project uses a reasonable choice dstate = 64 provided

by Gu et al. [21], which balances the performance and computing speed.

The Mamba block’s parameters consist of linear projections and SSM parameters (A,

B, C, and ∆), with the majority of parameters concentrated in the linear projections,
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totalling 3ED2 = 6D2. In contrast, one self-attention and one MLP layer in the Trans-

former have a total of 12D2 parameters. Thus, the encoder uses N = 12 Mamba blocks,

which is twice the Transformer, to match the parameter count.

The decoder concatenates the encoder output with the target sequence as input, which

results in the decoder processing approximately twice the length of sequences as the

encoder. The reason for using this less efficient method is that Mamba blocks cannot ag-

gregate features from two different sequences like a cross-attention layer. Additionally,

Mamba’s selective scan is completed through a single scan operation, making it difficult

for the model to initialize or embed the encoder’s final state as RNN-based models do.

Therefore, this approach of utilizing the encoder output might undermine the efficiency

of the Mamba Base model, including its memory usage and execution speed.

3.1.2.1 Word Embedding

Similar to most translation models, this project employed learnable word embeddings

as the hidden dimensions of the tokens, setting D = dmodel = 512. These embeddings

capture semantic information about the words and facilitate better representations in the

model. The model also employed a fully connected layer to project the output of the

final Mamba layer from dmodel dimension to the vocabulary size dimension, generating

the logits for the tokens used to predict the next token. Additionally, to improve the

model’s parameter efficiency, all models in this project share embeddings across the

encoder, decoder, and the final fully connected layer weights.

For the Transformer model and subsequent ablation experiments with mamba-based

models, position embeddings are used alongside word embeddings to convey the order

of tokens in a sequence explicitly. Additionally, to maintain numerical stability [58]

between word and position embeddings, models employing position embeddings must

multiply the weights of the word embeddings by embedding scale coefficient
√

dmodel.

3.1.2.2 Layer Normalization

To accelerate the training speed of the model, this project utilizes RMS Norm (Root

Mean Square Normalization) [60] for normalization instead of the basic Layer Norm

(Layer Normalization) [2]. RMS Norm is an improved method based on the Layer

Norm, which only requires the calculation of the root mean square instead of the mean

and standard deviation for the Layer Norm. This simplification has been shown both

theoretically and experimentally to save between 7% to 64% of computation resources
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while achieving similar performance [60]. Here is the equation of the RMS Norm:

RMSNorm(x) =
x√

1
D ∑

D
i=1 x2

i

· γ+β (3.1)

Where D is the embedding dimension, γ and β are the learnable parameters, and the

denominator is the RMS of samples.

3.1.3 Mamba with Cross-Attention

In base Mamba NMT models, this project concatenated the encoder output and the

target sequence to serve as input to the decoder, resulting in the decoder needing to

handle sequences of double the length. This may pose challenges for the model in

capturing long-distance dependencies, and subsequent experimental results confirmed

this hypothesis. Therefore, this project also implements a Mamba with Attention

Model (MA, shown in Figure 3.1(b)), which employs a cross-attention layer, with

the number of heads set to 8, between two Mamba layers in the decoder. Similarly,

the cross-attention layer also includes a residual connection and RMS normalization.

These changes allow the MA model to use the target sequence directly as the decoder

input without concatenation, reducing the sequence length and improving the model’s

efficiency. Besides, the MA model features an architecture that is more similar to

Transformer, allowing for a deeper analysis of the strengths and weaknesses of the

Mamba model and its characteristics.

3.2 Evaluation Methods

3.2.1 Quality of Translation

This project intends to use Bilingual Evaluation Understudy (BLEU) [43], Character

F-score (ChrF) [46] and Crosslingual Optimized Metric for Evaluation of Translation

(COMET) [49] as automatic metrics to evaluate the token overlapping, character over-

lapping and semantic similarity between the hypothesis and reference. Additionally,

this project conducts human analysis on specific examples from the test set based on

word-level and sentence-level linguistic phenomena. This comprehensive approach

aims to achieve a more rigorous and reasonable assessment of translation quality.

BLEU BLEU is the mainstream MT evaluation metric assessing how closely a transla-

tion matches reference translations by computing the geometric average of precision
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scores for n-grams overlapping between the model’s translations and references. The

BLEU score equation is given, with higher scores indicating better translation quality:

BLEUN = BP× exp(
N

∑
n=1

Wn log(Pn)), (3.2)

Pn =
∑c∈hypotheses ∑n-gram∈c Countreferences(n-gram)

∑c′∈hypotheses ∑n-gram′∈c′ Counthypotheses(n-gram′)
(3.3)

Where W is the weight of n-grams, N is the maximum length of n-grams, and BP is the

Brevity Penalty coefficient to discourage shorter translations. This project set N = 4

and W = 1
N , which is the convention for most MT research. For Brevity Penalty (BP):

BP =

1 if lc > lr

exp(1− lr
lc
) if lc ≤ lr

(3.4)

Where lr is the length of reference, and lc is the length of the hypothesis. The primary

advantage of BLEU is its straightforwardness and computational efficiency, which has

led to its wide use in MT tasks. However, BLEU assumes that input sentences have

been tokenized, and variations in tokenization methods can produce result biases. To

address this issue, this project uses sacreBLEU [47] to calculate the BLEU score, which

employs standardized tokenization after removing BPE and detokenization.

ChrF ChrF is a character-level evaluation metric in MT, which is similar to the BLEU

score. It computes precision and recall based on character n-grams, making it particu-

larly effective for languages with rich morphology, such as German, in this project. By

focusing on character matches rather than words, ChrF captures subtleties that may be

overlooked by word-level metrics, offering a more nuanced evaluation of translation

accuracy. The ChrF score is derived from the harmonic mean of precision and recall, and

it is robust to morphological variations, allowing it to assess translations in languages

where word forms change significantly. As a result, ChrF has gained popularity in MT

research as a complementary metric to traditional evaluations like BLEU, providing a

comprehensive perspective on translation performance.

COMET Although BLEU remains the most mainstream evaluation metric in current

MT research, it only considers the formal similarity of the translation without taking

into account semantics, same as ChrF. Therefore, this project also introduces COMET

to provide a more scientific analysis of translation quality. COMET is a deep learning-

based metric that achieved SOTA results correlating with human judgements in WMT19,

and WMT20’s Metrics shared tasks. The architecture of COMET is shown in Figure
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Figure 3.2: The Structure of COMET [49] . It inputs generated translation, source

sequence and reference translation and trains by minimizing the Mean Square Error

(MSE).

3.2. COMET takes hypothesis, source, and reference sentences as inputs and leverages

a pretrain cross-lingual language model as an encoder to extract features from the input

texts. Then, it employs a scoring model trained on human evaluation datasets to produce

the final score, with higher scores indicating better translation quality.

Linguistic Phenomena Besides these automatic evaluation metrics, this project will

also analyse specific translation sentences to evaluate the ability of models to handle

different linguistic phenomena. These linguistic phenomena are primarily categorized

at the word-level and sentence-level. The word-level includes unseen words, synonyms,

proper nouns, and morphology, while the sentence-level encompasses interrogative

sentences, passive voice, constituent structure, and some complex sentence structures.

Analyzing these linguistic phenomena can lead to a deeper understanding of the model’s

capabilities and limitations, providing more interpretability.

3.2.2 Efficiency and Resource Usage

In addition to translation quality, model efficiency and resource utilization are crucial

model performance indicators. Therefore, under the premise of having nearly equal

model parameters, this project uses Words Per Second (WPS), FLOPs, and GPU mem-

ory usage to evaluate the efficiency and resource utilization of the models.

WPS WPS represents the number of words processed per second by the model and is

an important metric of the processing speed of the model. Higher WPS means that the

model can process more tokens within a fixed interval, which is suitable for evaluating

the model’s single step inference performance and training efficiency. Therefore, this
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project will record and compare the WPS of different models in training and validating

to evaluate the efficiency of models.

Inference Speed Inference speed refers to the efficiency of a model in generating

outputs, typically measured by the number of tokens produced per second. In this

project, the model’s inference speed is evaluated with input sequences of varying

lengths, specifically 1, 10, 100, and 1000 tokens, using 10 synthetic sentences for each

group. The total time taken for the incremental inference steps is recorded, and the

inference speed is calculated by dividing the total inference time by the total number

of tokens. This method provides a quantitative assessment of the model’s efficiency in

generating outputs, allowing for a comparison between different models.

GPU Memory Usage GPU memory usage indicates the model’s memory usage during

execution. Lower GPU memory usage means the model uses hardware resources more

efficiently, helping to run larger models or handle larger batches of input sequences

in limited hardware environments. This project will record the average GPU memory

usage during training and peak GPU memory usage during incremental inference to

evaluate the model’s memory utilization efficiency.

These three metrics reflect the model’s execution speed and efficiency in using com-

putational and memory resources. By analyzing these results, a more comprehensive

understanding of the model’s efficiency and resource utilization can be obtained.

3.2.3 Attention Distribution

Aside from evaluating the model’s performance, the main objective of this project is

to explore the potential of the Mamba model as a hidden-attention model to replace

traditional attention mechanisms. Therefore, this project will also use attention heatmaps

to investigate Mamba’s ability to capture the correlation between the source and target

sequences. Since Mamba is a hidden-attention model, it cannot directly obtain the

attention matrix as an intermediate variable like the Transformer. Therefore, this project

adopts the method proposed by He et al. [26] to calculate the word importance using

integrated gradients. To obtain the attention of source tokens on the generated target

tokens, this project masks each source token individually and replaces it with a padding

token. Subsequently, it computes the relative change in the activation of the decoder’s

final layer caused by this substitution, employing L2 distance as the measure. Applying

this method across all source tokens derives a two-dimensional matrix that reflects the

impact of each source token on each corresponding target token.
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Training Details

4.1 Dataset, Preprocess and Batching

This project trained Transformer and all Mamba-based models on WMT 2014 English-

German dataset [4], which is a shared task of the annual Workshop on WMT Conference

and serves as benchmarks for NMT systems training. This dataset specifically comprises

parallel texts in English and German, including 4.51M rows for training, 3K for valida-

tion, and 3K for testing. It features diverse content, such as parliamentary records and

news articles. Besides, the WMT14 EN-DE datasets have high consistency and quality.

They are meticulously curated to encompass a wide range of genres, complexities, and

linguistic features, making them well-suited for benchmarking the performance of NMT

systems. Additionally, German is a morphologically rich language, which provides a

valuable target for evaluating translation models. Its complex inflectional vocabulary

challenges models to accurately capture and translate nuanced meanings. Furthermore,

previous entries in the WMT Workshops offer a rich set of references and baseline,

enabling this project to gauge expected performance standards and evaluate the effects

of Mamba’s innovations relative to established benchmarks.

For preprocessing, sentences were tokenized by Byte-pair encoding (BPE) [51] with

40000 BPE tokens and shared source-target vocabulary. BPE is a subword-level tok-

enization technique widely used in NLP, especially in machine translation. BPE works

by iteratively merging the most frequent pairs of characters or character sequences

in the text to form subword units. This method effectively handles out-of-vocabulary

words and rare word issues by breaking them into more common subwords. BPE allows

for a controlled vocabulary size, making it memory-efficient and adaptable to multiple

languages. It combines the advantages of word-level and character-level tokenization

21
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methods, improving translation quality and model robustness while enhancing process-

ing efficiency.

To avoid memory overflow and low computational efficiency caused by varying input

sequence lengths during training, this project controls the input amount per batch using

maximum tokens instead of batch size. This approach allows for flexible handling of

input sequences of different lengths, ensuring that each batch’s total number of tokens

does not exceed GPU memory limits. Each training batch contained sentence pairs

containing approximately 12K tokens (including source and target sequence).

4.2 Hardware and Software Configuration

This project has chosen to train the model simultaneously on the Eddie [40] and Cir-

rus [41] GPU clusters to expedite the completion of the model training due to the heavy

training tasks. Each training job utilizes two NVIDIA A100 80GB PCIe GPUs on the

Eddie cluster, while four NVIDIA Tesla V100-SXM2-16GB GPUs are employed for

training on the Cirrus cluster. The stopping criteria for training are either 100 epochs or

a validation loss that does not improve for 50K steps.

This project is based on Python, implementing the model within the PyTorch [44]

framework and using the Fairseq [42] framework for data preprocessing, training, and

translation generation. For GPU acceleration, the training script relied on CUDA [39].

It also utilized Apex [7] for mixed precision training and Causal-Conv1d [8] for effi-

cient causal convolutions in autoregressive models optimizing training and inference

efficiency. TensorboardX [28] was employed to log and monitor intermediate variables

during training and inference to facilitate subsequent analysis, while SacreBLEU [47]

and COMET [49] were used to evaluate the quality of translations. Here is the list of

the framework, package and language used in this project.

• Python: 3.9.19

• Fairseq: 0.12.2

• PyTorch: 2.3.1

• CUDA (Eddie): 12.1.105

• CUDA (Cirrus): 11.8.89

• APEX: 24.4.1

• Causal Conv1D: 1.4.0

• TensorboardX: 2.6.2

• SacreBLEU: 2.4.2

• COMET: 2.2.1
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4.3 Optimizer and Learning Rate

This project used the Adam [31] optimizer, consistent with the original Transformer,

to maintain the same training recipe. Compared to the Stochastic Gradient Descent

(SGD) optimizer, Adam dynamically adjusts the learning rate for each parameter by

computing the first and second momentums of the gradients. This allows Adam to

maintain a higher learning rate in certain directions, leading to faster convergence.

The Adam optimizer has three main hyperparameters: β1, β2 and ε. β1 and β2 control

the exponential decay rates for the moving averages of the first and second momentums

of the gradients, respectively, where ε is a small constant added to the denominator to

ensure numerical stability. This project set β1 = 0.9, β2 = 0.98, ε = 10−9 and warm up

step is 4000 which is also same as original Transformer recipe.

For the initial learning rate, this project trained the model with different learning

rates and ultimately chose an initial learning rate of 5×10−4 that achieved the lowest

validation loss. It is worth noting that the final performance obtained with a learning

rate around ×10−4 was quite similar. This may be because the Adam optimizer can

adaptively adjust the learning rate based on historical information and uses exponential

decay moving averages to smooth the changes in gradients, making it less sensitive to

the choice of the initial learning rate.

4.4 Regularization

Due to the significant architectural differences between the Transformer and Mamba

models, this project employs different regularization strategies for each model. This

project employs three types of regularization methods which are:

• Residual Dropout [52]: During training, Dropout randomly sets a portion of

outputs to zero, forcing the model to rely on different features in each iteration.

• Weight Decay [27]: Adding the L2 norm of the weight parameters to the loss

function to encourage weights to stay small and avoid.

• Label Smoothing [54]: In the final projection, instead of using one-hot encoded

targets, a small portion of the probability mass is distributed to other class labels

to prevent the model from becoming overly confident on the training set instances.

For Transformer models, this project followed the official setting in the original paper.

Dropout was applied after the output of each block with residual connection and after
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Dropout Weight Decay Valid Loss

0.1 0.0 4.224

0.0 0.1 4.181

0.0 0.2 4.167

0.1 0.2 4.141

0.2 0.2 4.156

Table 4.1: Hyperparameter Tuning Results of Dropout and Weight Decay on Validation

Loss

compositing the word embeddings with positional embeddings with a dropout probabil-

ity of 0.1. For label smoothing, this project set the smoothing factor to 0.1, meaning

that 10% of the probability mass is distributed to non-target classes. Weight decay is

not applied to the Transformer model.

For the Mamba-based model, when trained under the same regime as the Transformer,

this project observed that the Mamba model exhibited faster convergence but suffered

from severe overfitting. This necessitates tuning the hyperparameters for regularization.

Due to computational constraints, performing a grid search for the parameters is im-

practical. This project opts to tune these two parameters separately. Since the models in

the Mamba paper only applied weight decay, this project first selects the optimal weight

decay coefficient without applying dropout. Then, under this setting, different dropout

values will be adjusted. Since label smoothing directly affects the output distribution

rather than the parameter weights, the setting for label smoothing remains consistent

with that of the Transformer. Table 4.1 shows the result of different hyperparameter

combinations. Based on the experimental results, this project obtained the following

regularization configuration:

• Transformer

• Dropout: 0.1

• Weight Decay: 0.0

• Label Smoothing: 0.1

• Mamba

• Dropout: 0.1

• Weight Decay: 0.2

• Label Smoothing: 0.1
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Result and Analysis

This project implements the Mamba Base Model and Mamba with Attention Model

(MA), training both on the WMT14 EN-DE dataset alongside the baseline Transformer.

All models maintain a parameter count between 66M and 72M. This section evaluates

the performance and efficiency of the models, revealing that the Mamba Base offers

faster inference than the Transformer, while the Transformer achieves superior trans-

lation quality. The MA model attains translation quality similar to the Transformer

without compromising the efficiency of the Mamba Base. Additionally, this project

conducted ablation experiments to study the impact of components on the performance

of the MA model, which indicates that Mamba can effectively replace both self-attention

and the MLP block. Furthermore, this section analyzes specific translation sentences

and visualizes the attention distribution. The analysis shows that the MA model handles

word-level and sentence-level linguistic phenomena effectively. It even outperforms the

Transformer in dealing with unseen words and ambiguous constituents while encounter-

ing difficulties with complex long-term dependencies. The attention visualization shows

the MA model has a clearer and more uniform attention distribution, which indicates

better fine-grained feature capture ability than the Transformer.

5.1 Mamba Base Model

5.1.1 Translation Quality

The Mamba Base model converged after 3 days of training on 4 NVIDIA V100 GPUs,

while the Transformer model took 4 days to stop at 100 epochs. The project used

the model obtained by averaging the last 10 checkpoints and applied beam search to

25
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BLEU ChrF COMET

Transformer Base 25.82 ± 0.63 56.53 ± 0.44 0.82 ± 0.11

Mamba Base 21.21 ± 0.72 49.80 ± 0.79 0.74 ± 0.15

Table 5.1: Translation Quality with a Standard Deviation Evaluated on WMT14 EN-DE

Test Set with BLEU, ChrF and COMET between Transformers and Mamba Base Models.

generate translation with a beam size of 4 and a length penalty of 0.6, consistent with

the original settings of the Transformer. The translations are evaluated using three

metrics: BLEU, ChrF, and COMET, which respectively assess word-level similarity,

character-level similarity, and semantic alignment. The results are presented in Table

5.1, which demonstrates Mamba Base perform worse than Transformer on these metrics.

The Mamba Base model achieved a BLEU score of 21.21, much lower than the Trans-

former’s 25.82, indicating its shortcomings in generating word combinations that align

with reference translations. For the ChrF, the Mamba Base scored 49.80, lower than

the Transformer’s 56.53. It suggests that the Mamba Base model possesses a certain

capability to handle morphology-rich language, such as German, but there is still a

significant gap compared to the Transformer. Additionally, the Mamba Base achieved a

COMET score of 0.74, reflecting a semantic gap compared to the Transformer.

These results indicate that the Mamba base model is inferior to the Transformer in over-

all translation quality, and it still falls short of the Transformer in capturing global, local,

and hidden dependencies and patterns. One potential reason is that the implementation

of Mamba makes it challenging to fit into the encoder-decoder framework efficiently.

To improve computational efficiency, Mamba employs a hardware-aware algorithm that

utilizes scanning to compute the SSM layer in parallel. This results in difficulties in

obtaining the final SSM state of the encoder, and the implementation of Mamba also

does not allow the initialization of the SSM state. Consequently, the model can only

concatenate the encoder output and target sequence as decoder input. Consequently,

compared to the Transformer, the Mamba decoder needs to handle longer sequences,

which introduces more noisy dependencies and increases the difficulty of capturing

dependencies between sequences, ultimately leading to worse translation quality.

Sequence Length Scaling To verify the hypothesis that the Mamba Base model has

difficulty capturing long-distance dependencies due to the longer sequence length of the

decoder input, this project evaluated the models’ translation quality at different sequence

lengths. The test set (3K rows) of the WMT14 EN-DE dataset was divided equally into
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Short

(2-19)

Medium

(20-30)

Long

(31-80)
Overall

Transformer Base 25.50 ± 1.53 25.31 ± 1.01 26.22 ± 0.93 25.82 ± 0.63

Mamba Base 25.00 ± 1.44 24.03 ± 1.05 18.30 ± 1.14 21.21 ± 0.72

Table 5.2: SacreBLEU Score with a Standard Deviation of Mamba Base Models and

Transformers on the WMT14 EN-DE Test Set for Different Source Sentence Lengths.

three subsets, short, medium, and long, based on the source sequence length, with each

subset containing 1K sentences. Specifically, the short subset consists of sentences with

less than 20 words, the medium subset contains sentences with 20 to 30 words, and the

long subset includes sentences with more than 30 words (the maximum length is 80).

Since the scores of BLEU, ChrF, and COMET are aligned across both the entire test

set and all subsets, this project will focus on analyzing the BLEU score in subsequent

research, as it is the most widely used metric. The results of the other metrics are

presented in Appendix A. The BLEU scores of both the Mamba Base model and the

baseline model were tested on each subset, and the results are presented in Table 5.2.

According to the result, it is evident that as the sequence length increases, the gap in

translation quality between the Mamba Base and Transformer models also widens. In

the short subset, the Mamba model achieved a BLEU score of 25.00, almost on par with

the Transformer’s score of 25.50. In the medium subset, the gap between the Mamba

and Transformer is maintained at around 1.3. However, in the long sequence subset,

the Transformer scored 26.22 while the Mamba Base only reached 18.30, resulting in a

significant gap of nearly 8. This further demonstrates that the Mamba Base struggles

with capturing long-term dependencies, indicating a potential need for a new architec-

ture to fit into the encoder-decoder framework efficiently. In subsequent experiments,

the Mamba with Attention model was evaluated, which employs cross-attention in

the decoder to capture dependencies between the encoder output and decoder input,

achieving similar translation quality and even performing better on handling specific

linguistic features compared to the Transformer.

5.1.2 Model Efficiency

The main advantage of the Mamba model over the Transformer model is its ability to

achieve constant complexity per step during autoregressive inference, and it applies
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WPS

Train

WPS

Validate

GPU Memory Usage/GiB

Train

Transformer Base 7.5×104 2.3×105 31.88

Mamba Base 1.7×104 7.7×104 55.89

Table 5.3: Result of Training Efficiency for Mamba Base Models and Transformers.

Including training WPS, validation WPS, and average GPU memory usage

(a) Inference Speed vs. Sequence

Length

(b) Avg. Training GPU Memory

Usage vs. State Space Dim.

(c) Peak Inference GPU Memory

Usage vs. Sequence Length

Figure 5.1: Efficiency Metrics of the Mamba Base and Transformer Model: Inference

Speed and Memory Usage with scaling sequence length and state space dimension

hardware-aware algorithms that reduce I/O overhead to O(dstate), resulting in speed

improvements of 20−40 times [21]. This project evaluates the model’s efficiency during

training and inference from both speed and memory perspectives. The model uses WPS

and inference speed with varying input lengths as metrics to evaluate training and

inference speed, respectively, while average and peak GPU memory usage is employed

to assess memory efficiency during training and inference. Training is conducted on 4

NVIDIA V100 16GB GPUs, while inference is performed on an NVIDIA T4 16GB

GPU. Experimental results (shown in Table5.3 and Figure 5.1) show that the Mamba

model exhibits much faster inference speed during autoregressive tasks but slower

training speed and higher memory usage. However, the training process indicates the

Mamba Base model converges more quickly than the Transformer, resulting in lower

total FLOPs overhead during training.

For the training speed of the models, Table 5.3 shows both the training and evaluation

WPS of the Mamba Base Model are lower than those of the Transformer. This may

be because of teacher forcing during training, where the model performs only one

forward pass for the full sequence rather than generating tokens incrementally. The

computational complexity of the linear projections in both models is similar, but the

self-attention complexity of the Transformer is O(BL2D) , while the complexity of the
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SSM layer in Mamba is O(BLdstateD). Given that the average sequence length in both

the training and validation sets is 28, which is smaller than the setting of dstate = 64

in this project, and the value of L in the Mamba decoder is twice of the Transformer,

these factors contribute to the slower training speed of the Mamba model compared to

the Transformer. As the sequence length increases, this performance gap may narrow,

which could warrant further investigation in future studies on document-level datasets.

For the inference speed of the models, Figure 5.1(a) indicates that the Mamba Base

model achieves 5-7× faster than the Transformer, with an even larger gap as the input

sequence length increases. This is primarily because Mamba, based on the SSM model,

achieves constant complexity during auto-regressive inference, while the Transformer

can only achieve linear complexity, even applying KV cache [45]. Additionally, Mamba

utilizes hardware-aware algorithms to reduce I/O overhead while performing parallel

computations of the SSM layer through scanning, which significantly accelerates the

model’s inference speed. Meanwhile, the reason both models experience increased

inference speed as the sequence length grows could be that longer sequences result in

lower average I/O overhead per token. Additionally, since Mamba handles I/O more

efficiently, it shows a more significant speedup compared to the Transformer.

For GPU memory usage, the Mamba base model allocates more memory in both the

training and inference processes. This may be because the latent state of the SSM layer

in the Mamba model occupies more memory than the attention matrix in Transformer.

To verify the hypothesis, this project records the average GPU memory usage by

adjusting the dimension of the state space dstate, and the results are presented in Figure

5.1(b). It demonstrates that the memory overhead of the Mamba model decreases as

the dimension of state dstate decreases, and at dstate = 24 = 16 (dstate = 26 = 64 for the

Mamba Base model), it reaches a similar value compare to Transformer model, which

aligns with the efficiency benchmark provided by Gu et al [21]. Although the latent

space of the SSM requires more memory during training, its space complexity remains

constant, while the attention matrix has a space complexity of O(L2) during training

concerning sequence length L. When using the KV cache during inference, this can be

optimized to O(L). This indicates that the memory usage gap between the two models

should gradually decrease as the input sequence length increases. The results of the

inference memory usage experiments, shown in Figure 5.1(c), confirm this hypothesis:

with sequence length increasing, the slope of the Transformer’s curve is larger. This

suggests that Mamba may be more competitive regarding memory usage when handling

longer sequences. Consequently, further research could explore applying Mamba to
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Short

(2-19)

Medium

(20-30)

Long

(31-80)
Overall

Transformer Base 25.50 ± 1.53 25.31 ± 1.01 26.22 ± 0.93 25.82 ± 0.63

Mamba Base 25.00 ± 1.44 24.03 ± 1.05 18.30 ± 1.14 21.21 ± 0.72

Mamba Attention 24.89 ± 1.51 25.02 ± 1.03 25.22 ± 0.96 25.05 ± 0.64

Table 5.4: SacreBLEU Score with a Standard Deviation of MA Models compared to

Transformers and Mamba Base Models on the WMT14 EN-DE Test Set for Different

Source Sentence Lengths.

document-level NMT to validate this assumption.

Overall, the Mamba Base model achieves an inference speed of 5-7 × faster than the

Transformer and a faster converge speed. However, it also has a slower training speed

and larger GPU memory overhead on the WMT14 EN-DE dataset while it is flexible

to trade-off efficiency and performance by adjusting the state space dimension dstate.

Nevertheless, the result also demonstrates Mamba’s potential for processing longer

sequences, which requires further research on document-level datasets.

5.2 Attention Enhanced model

After comparing and analyzing the performance of the Mamba Base model, it is evident

that its inability to fit the encoder-decoder architecture efficiently leads to struggles in

capturing long-distance dependencies. Therefore, this project proposes the Mamba with

Attention Model (MA), which features a structure similar to that of the Transformer and

achieves competitive translation quality compared to the Transformer model. The BLEU

scores of the MA model and other previous models evaluated on different sequence

length subsets are presented in Table 5.4.

The MA model achieved a score of 25.05 on the entire test set, significantly surpassing

the Mamba Base model’s score of 21.21, with a gap of less than 1 compared to the

Transformer’s score of 25.83. In the short subset, the MA model maintained the same

strong performance as the Mamba Base model. In the medium and long subsets, the

MA model reached scores similar to the Transformer, improving by 1 point and nearly

7 points compared to the Mamba Base model, respectively. Overall, the MA model

achieved scores comparable to the Transformer across the entire test set and all subsets,

narrowing the score gap to below 1 in each bucket. Compared to the Mamba Base model,
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the MA model employs cross-attention, allowing it to extract features without treating

the source and target sequences as a single sequence, better capturing dependencies

and improving performance. For efficiency, the MA model presents almost equivalent

training memory usage (57.49 GiB), training WPS (1.8× 104) and Inference speed,

which suggests that the employment of cross-attention in the MA model on this dataset

did not affect the model’s efficiency.

The MA model is a reasonable solution that applies Mamba to the sentence-level MT

domain, combining the efficiency of the Mamba model’s hardware-aware algorithms

with the cross-attention model’s ability to handle dependencies between two sequences.

However, for document-level translation tasks, the efficiency of the MA model may be

constrained by the quadratic complexity of cross-attention concerning sequence length.

This limitation may require further research to develop an implicit cross-attention block

based on Mamba to address the issue.

5.3 Ablation

To investigate the impact of various components on the performance of the MA model,

this project conducted a series of ablation experiments, ensuring that all ablated models

maintained a parameter count between 66M and 72M. Specifically, three sets of experi-

ments were conducted, where different components of the Transformer were used to

replace the Mamba blocks:

1. Replacing the first and second Mamba layers in the encoder and decoder of the

MA model with self-attention and MLP layers, respectively. Additionally, to

maintain the model parameter count between 66M and 72M, this project also

adjusted the stack size of the self-attention Mamba model to N = 7 and reduced

the MLP’s hidden dimension to 1536 (3
4 of the original dimension 2048).

2. Replacing the MA model’s encoder and decoder with those of the Transformer,

respectively. The employed Transformer component in this experiment includes

position embeddings, whereas the Mamba does not incorporate them.

3. In the embedding, position encoding is added to explicitly input the order infor-

mation between tokens into the model. This helps eliminate interference caused

by different embeddings in the Transformer and Mamba models.

The experimental results in Table 5.5 indicate that replacing the Mamba block with

either the self-attention or MLP layer leads to an overall BLEU score improvement
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Short

(2-19)

Medium

(20-30)

Long

(31-80)
Overall

Transformer Base 25.50 ± 1.53 25.31 ± 1.01 26.22 ± 0.93 25.82 ± 0.63

Mamba Base 25.00 ± 1.44 24.03 ± 1.05 18.30 ± 1.14 21.21 ± 0.72

Mamba Attention 24.89 ± 1.51 25.02 ± 1.03 25.22 ± 0.96 25.05 ± 0.64

Mamba-MLP 25.54 ± 1.49 24.79 ± 1.04 25.71 ± 0.96 25.38 ± 0.66

Self-Attention-Mamba 25.30 ± 1.48 24.24 ± 1.08 25.87 ± 0.91 25.26 ± 0.62

MambaEN −TransformerDE 24.32 ± 1.45 24.57 ± 1.06 25.28 ± 0.91 24.92 ± 0.65

TransformerEN −MambaDE 24.61 ± 1.50 24.30 ± 1.04 25.35 ± 0.91 24.92 ± 0.63

Mamba Attention Positional 24.61 ± 1.49 24.28 ± 1.09 25.37 ± 0.93 24.89 ± 0.65

Table 5.5: SacreBLEU Score with a Standard Deviation for Ablation Experiments on the

WMT14 EN-DE Test Set, for Different Source Sentence Lengths.

of 0.2 to 0.4, and the model utilizing self-attention achieves a BLEU score of 25.54

on the short subset, slightly exceeding Transformer’s score of 25.50. However, all

models in the ablation experiments show that their BLEU score across all subsets and

the full test set fall within one standard deviation of the MA model’s results. This

suggests that using Transformer components to replace the Mamba block does not

yield a significant improvement or impact on translation quality, as all models achieve

performance competitive to the Transformer. Therefore, the Mamba layer can serve as

an efficient linear-complexity hidden-attention model to replace the self-attention layer

and MLP layer in the Transformer, achieving similar translation quality, faster inference

speed, and better scalability in sequence length.

5.4 Linguistic Phenomenon Analysis

To gain a deeper understanding of the characteristics of the MA model, this project

also analyzes the specific translations with different word-level and sentence-level

linguistic phenomena and compares with the Transformer’s translations.1 This project

first identified the key linguistic phenomena and then selected sentences that specifi-

cally exhibit these features to systematically test the model’s performance on various

linguistic phenomena. The example sentences are shown in Table 5.6 and Appendix

B, where S means source sentence, T means target reference, MA is MA’s translation,
1The reference resource of the analyses in this section is the Cambridge EN-DE Dictionary:

https://dictionary.cambridge.org/dictionary/german-english/.
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Phenomenon Example

Word

level

Unseen

Word

S: Beautiful animals and delicious tarts entice
T: Schöne Tiere und leckere Torten locken
MA: Schöne Tiere und leckere Torten locken zum ersten Mal

TR: Schöne Tiere und köstliche Tintenfische

Synonym/

Semantics

S: Dog-lovers victorious
T: Hundefreunde erfolgreich
MA: Hundeliebhaber siegreich
TR: Die Hunde-Liebhaber siegreich

Proper

Noum/

Acronym

S: RBS suspends two forex traders

T: RBS suspendiert zwei Devisenhändler

MA: RBS suspendiert zwei Devisenhändler

TR: RBS suspendiert zwei Devisenhändler

Morphemes

S: We see customers from all walks of life. Witnesses saw two people sitting in the car.

T: Zu uns kommen Kunden aus jeder sozialen Schicht. Zeugen sahen zwei Menschen in dem Auto sitzen.

MA: Wir sehen Kunden aus allen Lebensbereichen. Zeugen sahen zwei Personen im Auto sitzen.

TR: Wir sehen Kunden aus allen Bereichen des Lebens. Zeugen sahen zwei Leute im Auto sitzen.

Sentence

Level:

Pros

Constituent

Structure

S:There are vegan restaurants opening up, such as the Kombüse in Mannheim or Café Vogelfrei.
T:Vegane Restaurants entwickeln sich, wie zum Beispiel die Kombüse in Mannheim oder das Café Vogelfrei.
MA: Es eröffnen sich veganische Restaurants wie die Kombüse in Mannheim oder das Café Vogelfrei.
TR: In Mannheim und im Café Vogelfrei öffnen sich veganische Restaurants wie die Kombüse.

Interrogative

Sentence

S: How did the universe come about and what does it consist of?

T: Wie ist das Universum entstanden und woraus besteht es?

MA: Wie ist das Universum entstanden und worin besteht es?

TR: Wie entstand das Universum und worin besteht es?

Passive

Voice

S: One hundred people were brought out of the building to safety.

T: Hunderte Menschen wurden aus dem Gebäude in Sicherheit gebracht.
MA: Einhundert Menschen wurden aus dem Gebäude in Sicherheit gebracht.
TR: Hundert Menschen wurden aus dem Gebäude in Sicherheit gebracht.

Sentence

Level:

Cons

Adverbial

Clause

S: Before Friday ’s Bundesliga match against VfB Stuttgart, the ’Ultras’ responded with silence - initially.

T: Vor dem Freitagsspiel der Fußball-Bundesliga gegen den VfB Stuttgart reagierten die Ultras mit einem Schweigen - zunächst.

MA: Der VfB Stuttgart hat vor Freitag mit Schweigen auf die ”Ultras” geantwortet.

TR: Vor dem Bundesligaspiel am Freitag gegen den VfB Stuttgart reagierten die Ultras mit Schweigen - zunächst.

Emphatic

Inversion

S: Only when the psychological strain becomes severe do people give it consideration.

T: Erst wenn der Leidensdruck wirklich groß ist, mache man sich Gedanken.

MA: Erst wenn die psychologische Belastung stark wird , werden die Menschen berücksichtigt.

TR: Erst wenn die psychologische Belastung stark wird, wird sie berücksichtigt.

Table 5.6: Translation Example for MA and Transformer with Different Word-level and

Sentence-level Linguistic Phenomenon. Green means good examples while Red is bad.

and TR means Transformer’s translation. The analysis reveals that the MA model

effectively handles word-level features such as synonyms, morphemes, and acronyms,

demonstrating better performance than the Transformer in managing unseen words.

Furthermore, the MA model excels at processing simple statements, common interroga-

tive structures, alignment, and passive voice while accurately identifying ambiguous

constituent structures that often confuse the Transformer. However, when handling

sentences with inverted structure, such as emphatic inversions and adverbial clauses, the

MA model struggles to convey adequate semantics and capture complex dependencies.

For word-level linguistic phenomenon, the MA model exhibits superior handling of

unseen words compared to the Transformer. For example, in the given sentences in

Table 5.6, the bolded words “tarts” and “entice” did not appear in the training set, but

the MA model successfully provided the same translations as the reference: “Torten”

and “locken”. In contrast, the Transformer model translated these words as “köstliche
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(a) Proper Syntax Tree (also for MA model) (b) Syntax Tree for Transformer’s Translation

Figure 5.2: Syntax Trees for the German Constituent ”the Kombüse in Mannheim or

Café Vogelfrei” for MA and Transformer Models

Tintenfische” (delicious squid), which completely deviates from the original meaning

of the sentence. Additionally, the MA model demonstrates the ability to select the

most contextually appropriate tokens among synonyms. For instance, in the synonym

example, MA chooses ”siegreich” over ”erfolgreich” (both of which appear in the train-

ing set) as the translation for ”victorious” since the choice of reference ”erfolgreich”

would lean more toward the meaning of ”successful”. Furthermore, MA effectively

retains proper nouns from the source sequence and manages the complex morphological

inflections of German when handling changes in person and tense. For example, the MA

model preserves the acronym ”RBS” from the example sentence while correctly using

”sehen” and ”sahen” to correspond to ”see” and ”saw”, respectively, thus achieving

alignment in both person and tense. Therefore, the MA model performs excellently in

handling these word-level linguistic phenomena during testing, indicating that it has a

sufficient understanding of the source sentence’s semantics. It effectively manages local

details and some long-distance dependencies while demonstrating better generalization

capabilities compared to the Transformer model.

For sentence-level linguistic phenomena, the MA model can effectively parse and

disambiguate the syntactic structure of sentences while Transformer struggling. In

the given example on the ”Constituent Structure” row, the constituent ”the Kombüse

in Mannheim or Café Vogelfrei” has two possible parsing results (shown in Figure

5.2). The first syntax tree treats it as two noun phrases (NPs) connected by the con-

junction ”or”, while the second interprets it as a single NP with a prepositional phrase

(PP). In this context, the constituent should be parsed as two coordinated NPs since

both ”Kombüse” and ”Café Vogelfrei” refer to different restaurants. The Transformer

incorrectly parses it as the latter while the MA model successfully captures the depen-

dencies between the tokens and performs disambiguation correctly, which indicates

the MA model has stronger pattern recognition capability. Besides, the MA model
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can also handle common sentence types such as interrogative sentences and sentences

with passive voice (Shown in Table 5.6, where “How did” corresponds to “Wie ist,”

and “were brought” corresponds to “wurden gebracht”). However, it struggles when

dealing with inverted structured sentences, such as emphatic inversion and adverbial

clauses. These types of sentences often place the adverbial before the subject of the

main clause, which can lead to interference in the model’s selection of the action subject

and object in the main clause due to the subject and object present in the adverbial.

For instance, when handling the example with the adverbial clause, the MA model

mistakenly interprets the object “VfB Stuttgart” in the adverbial clause as the subject in

the main clause, overlooking the actual subject “Ultras.” In the case of the emphatic

inversion, the MA model misinterprets “people,” the subject of the action “consider,”

as the object being considered. The Transformer model correctly handles conditional

adverbials but encounters the same issues as the MA model when dealing with inverted

emphasis sentences. The aforementioned sentence-level analysis indicates that the MA

model effectively eliminates syntactic ambiguities within constituents but struggles to

accurately identify the action subject and object within complex sentence structures.

This suggests that while the MA model captures fine-grained token patterns better than

the Transformer, it slightly lags in managing complex long-term dependencies.

Overall, the MA model demonstrates strong performance in handling word-level and

most sentence-level linguistic phenomena, except that it struggles to detect long-term

dependencies in complex sentences. Particularly, the MA model outperforms the Trans-

former in handling unseen words and constituent disambiguation. This indicates that

the MA model has a robust ability to understand and capture fine-grained features and

exhibits great generalization capability, which may be due to the convolution layer be-

fore SSM in the Mamba. However, it lags behind the Transformer in understanding and

processing overall sentence structures. Therefore, further research may need to explore

ways to reduce information loss when Mamba compresses historical information to

enhance the model’s performance in complex sentence structures.

5.5 Attention Distribution

Recent studies [1, 10] have indicated that the Mamba model is an efficient implicit

attention model. Therefore, to further explore its hidden-attention efficiency, this project

has used attention heatmaps to visualize the model’s attention distribution, revealing

its performance and potential advantages under different input conditions. This project
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(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure 5.3: Attention Heatmap for a Long Sample (58 Tokens) Comparing Mamba Base,

MA, and Transformer Models.

(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure 5.4: Attention Heatmap for a Short Sample (7 tokens, ”And I think about my

father.”) Comparing Mamba Base, MA, and Transformer Models.

selected sentences from the short and long subsets and then plotted the corresponding

attention heatmaps for the Mamba Base, MA, and Transformer models for analysis.

The complete visualization results are presented in Appendix C. Figure 5.3 showcases

a set of typical results for long sequences, where it is evident that the heatmap of

the MA model is sharp, focusing on only a few specific words, while the Mamba

Base model’s results are blurred. This means each target token of the Mamba Base

Model attends to more source tokens, which indicates that the Mamba Base model

is harder to correctly focus on specific parts of the source sequence when processing

long sequences[57]. Additionally, compared to the MA model, the Transformer tends

to exhibit more blurring at the start of the sequence, which may hurt the quality of

translation. In handling short sequences, the Mamba Base Model overcomes the issue

of attention blurriness, presenting a clear and uniform attention heatmap similar to the

MA model. In contrast, while the Transformer’s heatmap is also clear, nearly all target

words focus on only a few key information-rich words, such as ”father” in the example,

rather than exhibiting the uniform attention distribution seen in MA-based models. This
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indicates that Mamba, as a hidden-attention model, can extract finer-grained features

and demonstrate stronger representational capabilities when processing inter-sequence

dependencies. However, this ability also makes it more susceptible to noise, potentially

leading to overfitting. This conclusion further explains the phenomenon where the

MA model outperforms the Transformer in disambiguation but faces challenges when

dealing with inverted sentence structures.

5.6 Discussion

This section highlights that while the Mamba Base Model significantly outperforms the

Transformer in inference speed and demonstrates better scalability in memory usage for

varying sequence lengths, it struggles to effectively handle long sequence dependencies.

This issue is tackled by incorporating a cross-attention block in the decoder, leading to

translation quality comparable to the baseline Transformer’s. However, despite the MA

model maintaining similar efficiency metrics, including inference speed and memory

usage, on the WMT14 EN-DE dataset, the introduction of cross-attention undoubtedly

affects the model’s scalability for longer sequences. In light of these findings, this

section will discuss the following two questions:

Why does Mamba excel in Language Modeling (LM) but not in MT?
An intuitive question arises: Mamba has been shown to achieve state-of-the-art perfor-

mance in LM, but why does it struggle with long sequence inputs in MT tasks? This

project posits that two primary factors contribute to this issue. Firstly, MT tasks are

more challenging than LM, requiring the model to have a stronger ability to capture

and recognize long-term dependencies. LM only needs to consider the dependencies

between previous target tokens, while MT must account for dependencies among source

tokens as well as those between source and target tokens. The second reason is that

the implementation of the Mamba only supports processing a single sequence, which

aligns well with the characteristics of LM. When dealing with MT tasks, there is cur-

rently no good solution to aggregate features from both source and target sequences,

so Mamba can only concatenate the two sequences into one for processing, making it

difficult for the model to extract the relationships between the two sequences. After

applying cross-attention, the model’s translation quality reached the same level as the

Transformer’s, which supports this hypothesis. Therefore, in order for Mamba to better

handle MT, or more generally, tasks that use an encoder-decoder architecture, a future

research direction is to implement a Mamba-based block that can combine features
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from two sequences, similar to the cross-attention block.

Potential of Mamba-based Implicit Cross-Attention
The MA model employs cross-attention, which may limit the efficiency advantages

of the Mamba model as sequence lengths increase. Therefore, is there a method to

implement a Mamba-based Implicit Cross-Attention Block to address this issue? Theo-

retically, it is feasible, but further research is needed.

During the procedure of this project, the latest research by Mamba’s authors, Gu et

al.[10], highlighted the duality between structured SSM (S4, S6, etc.) and masked

attention used in the auto-regressive model, masked diffusion model[15], etc.

y = M ◦ (QKT )V (Mask Attention) (5.1)

y = AM ◦ (CBT )X (structured SSM) (5.2)

Where M is the mask of the attention matrix in Transformer, and AM is a matrix

transformed (detail shown in Appendix D) by A in structured SSM. Additionally, the

formulas omit the softmax function and the scaling factor in the masked attention for

simplicity in computation. This set of formulas reveals the unified form between masked

attention and structured SSM. Moreover, in Mamba, the matrices B and C are also input-

dependent, which allows it to establish an equivalence between the components of

masked attention and structured SSM, where Q is equivalent to C, K is equivalent to

B, and V is equivalent to the input X . Thus, it is theoretically sufficient to define the

matrix C as a function of another sequence to obtain an implicit cross-attention variant

of Mamba that simultaneously processes dependencies between two sequences. Here is

the equation given two sequences X1 and X2:

y = AM ◦ (SC(X1) ·ST
B(X2))X2 (5.3)

Where Sc and SB are linear projections to make the B and C data-dependent in the

Mamba block. However, a constraint of utilizing this duality is that the lengths of

the two sequences must be equal, which poses a challenge because the Mamba-based

models in this project are auto-regressive. In these models, the sequence lengths of the

encoder output and decoder input during the generation process are inherently different.

As a result, the current implementation of Mamba makes it challenging to integrate this

module within the auto-regressive model used in this project. Nevertheless, inspired

by recent studies [11, 37, 5, 12], employing an encoder-decoder diffusion model as

a replacement for traditional auto-regressive methods in translation generation could

be a potential further direction. This approach can potentially overcome the issue of

differing lengths between the encoder output and decoder input.
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Conclusion and Further Direction

6.1 Conclusion

This project seeks to answer whether the Mamba model, known for its high efficiency,

hidden-attention property, and linear complexity relative to sequence length, can be-

come a viable replacement for attention mechanisms in NMT systems. Specifically,

the project aims to determine if the Mamba model can provide more efficient memory

usage and faster execution speeds without sacrificing translation quality. Therefore,

this project researched existing NMT models and datasets, then selected the WMT14

EN-DE dataset for training and the Transformer as the dominant baseline, which utilizes

both self-attention and cross-attention mechanisms. Then, this project implemented an

encoder-decoder model based solely on stacked Mamba blocks (Mamba Base Model),

as well as another model that employed cross-attention (MA Model). By evaluating the

model’s translation quality and efficiency, the results show that the Mamba base model

achieved an inference speed of 5-7× faster than the Transformer but struggled to trans-

late long sequence sentences. In contrast, the MA model attained competitive translation

quality compared to the Transformer while maintaining efficiency. Additionally, the

project conducted ablation experiments on the MA model, where various components

of the Transformer were used to replace those in the MA model. None of these replace-

ments impacted the translation quality, indicating that Mamba can effectively replace

both the self-attention and the MLP block. To obtain a deeper understanding of the MA

model, this project also assessed the model’s capabilities in handling specific linguistic

phenomena and visualized the implicit attention distribution. It was found that the

MA model can handle word-level and most sentence-level linguistic phenomena well,

especially performing better when processing unseen words and ambiguity constituents

39
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than the Transformer, though it slightly underperforms in managing complex long-range

dependencies. Meanwhile, the MA model exhibits a clearer and uniform attention

distribution in the visualized heatmap, which indicates a robust ability to extract local

fine-grained features.

Overall, the Mamba model is an efficient linear variant of self-attention. The model,

which consists of Mamba and cross-attention, achieves translation quality that is compet-

itive to the Transformer on sentence-level translation tasks and even excels in handling

ambiguity and unseen words. It also offers faster inference speed and better scalability

when processing long sequences. Additionally, adjusting the state space dimension al-

lows for a flexible trade-off between translation quality and efficiency. These properties

make Mamba a more efficient replacement for the self-attention and MLP modules in

the Transformer, while replacing the cross-attention block still requires further research.

6.2 Limitation and Further Direction

While the Mamba model can efficiently replace the self-attention layer with linear

complexity concerning sequence length, the Mamba model is designed to handle only a

single sequence and cannot compute correlations between tokens of two sequences like

cross-attention can. Therefore, cross-attention remains an irreplaceable component in

encoder-decoder auto-regressive NMT systems (such as the MA Model). This limitation

results in computational and memory bottlenecks as the sequence length increases, like

the Transformer. Consequently, future research will focus on two main directions:

• Develop an encoder-decoder diffusion NMT system with Mamba’s cross-attention

variant shown in equation 5.3 to replace the original auto-regressive model.

This approach allows the model to generate the entire sequence at once rather

than generating it token by token, enabling a target length predictor [18, 25] to

effectively achieve equal sequence and target lengths. Furthermore, this research

direction has significant scalability in other fields, as it can also be applied to text

summarization, multi-modal applications, etc.

• Due to the relatively short sequence lengths in sentence-level MT tasks, the

Mamba’s efficiency for long sequences is not adequately demonstrated. Therefore,

the MA model and the diffusion NMT implemented in future research should also

be tested on document-level datasets. However, it is important to note models of

document-level and sentence-level tasks involve architectural differences.
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Appendix A

Complete Translation Quality

Evaluation Results

This appendix provides the ChrF and COMET scores for all models conducted in the

project, tested on different length subsets, while the BLEU scores are already presented

in the main text. The ChrF and COMET results generally align with the BLEU score

in the main text, except that the Transformer model outperforms all the Mamba-based

models in the COMET metric, which indicates a better semantic extraction capability.

A.1 ChrF Score

Short

(2-19)

Medium

(20-30)

Long

(31-80)
Overall

Transformer Base 54.99 ± 1.06 55.99 ± 0.77 57.38 ± 0.64 56.53 ± 0.44

Mamba Base 54.65 ± 1.05 54.76 ± 0.82 45.42 ± 1.36 49.80 ± 0.79

Mamba Attention 54.58 ± 1.11 55.55 ± 0.79 56.39 ± 0.69 55.79 ± 0.47

Mamba-MLP 55.23 ± 1.07 55.33 ± 0.84 56.89 ± 0.66 56.10 ± 0.46

Self-Attention-Mamba 55.05 ± 1.11 55.39 ± 0.78 57.12 ± 0.64 56.20 ± 0.45

MambaEN −TransformerDE 54.47 ± 1.06 55.58 ± 0.82 56.71 ± 0.64 55.95 ± 0.47

TransformerEN −MambaDE 53.73 ± 1.04 54.88 ± 0.78 56.38 ± 0.62 55.45 ± 0.44

Mamba Attention Positional 53.83 ± 1.14 54.78 ± 0.80 55.92 ± 0.72 55.19 ± 0.47

Table A.1: ChrF score with a standard deviation for all models test on the WMT14 EN-DE

test set, for different source sentence lengths.
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A.2 COMET Score

Short

(2-19)

Medium

(20-30)

Long

(31-80)
Overall

Transformer Base 0.841 ± 0.124 0.832 ± 0.104 0.801 ± 0.100 0.825 ± 0.111

Mamba Base 0.784 ± 0.126 0.768 ± 0.108 0.675 ± 0.168 0.741 ± 0.146

Mamba Attention 0.789 ± 0.130 0.770 ± 0.106 0.738 ± 0.112 0.765 ± 0.119

Mamba-MLP 0.795 ± 0.121 0.773 ± 0.107 0.746 ± 0.103 0.771 ± 0.113

Self-Attention-Mamba 0.793 ± 0.123 0.772 ± 0.107 0.747 ± 0.106 0.771 ± 0.114

MambaEN −TransformerDE 0.786 ± 0.128 0.771 ± 0.110 0.738 ± 0.108 0.765 ± 0.118

TransformerEN −MambaDE 0.775 ± 0.135 0.761 ± 0.115 0.737 ± 0.106 0.758 ± 0.121

Mamba Attention Positional 0.787 ± 0.125 0.770 ± 0.107 0.739 ± 0.108 0.766 ± 0.115

Table A.2: COMET score with a standard deviation for all models test on the WMT14

EN-DE test set, for different source sentence lengths.



Appendix B

More Linguistic Phenomena Examples

This appendix provides more evidence for the linguistic phenomena analysis in the

main text, where RED means bad translation, GREEN mean good translation and bold
texts means keywords for the linguistic phenomena.

B.1 Word-Level

Unseen Words:
Example 1:

S: Many critics of veganism warn in particular of the lack of vitamin B12.

T: Insbesondere vor dem Mangel an Vitamin B12 warnen viele Vegansimus-Kritiker.

MA: Viele Kritiker des Veganismus warnen insbesondere vor dem Mangel an Vitamin

B12.

TR: Viele Kritiker des Veganismus warnen insbesondere vor dem Mangel an Vitamin

B12.

Example 2:

S: Nothing is more quintessentially Halloween than haunted houses.

T: Nichts gehört mehr zu Halloween als Häuser, in denen es spukt.

MA: Nichts ist mehr quintessenz als Halloween Häuser verfolgt.

TR: Nichts ist eher Halloween als Haunted Häuser.

Example 3:

S: However, their repertoire also includes emotive waltzes and a full big band sound.

T: Zu ihrem Repertoire gehören aber auch gefühlvolle Walzer und ein satter Big-Band-

Sound.

MA: Ihr Repertoire umfasst jedoch auch emotionale Walzer und einen großen Band-
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sound.

TR: Zu ihrem Repertoire gehören aber auch emotionale Walzen und ein ganzer Big

Band Sound.

Synonym:
Example 1:

S: All those involved will be happy with that evaluation.

T: Damit werden alle Beteiligten leben können.

MA: Alle Beteiligten werden mit dieser Bewertung zufrieden sein.

TR: Alle Beteiligten werden mit dieser Bewertung zufrieden sein.

Example 2:

S: July.

T: Wiederkehr feiern.

MA: Juli.
TR: Juli.
Example 3:

S: This and another bedroom were completely burnt out.

T: Dieses und ein weiteres Zimmer brannten vollständig aus.

MA: Dieses und ein weiteres Schlafzimmer wurden komplett ausgebrannt.

TR: This and another bedroom were completely burnt out.

Proper Noun and Acronym:
Example 1:

S: Edward Snowden, as witnessed by Hans-Christian Ströbele

T: Edward Snowden bezeugt durch Hans-Christian Ströbele

MA: Edward Snowden, wie von Hans-Christian Ströbele beobachtet.

TR: Edward Snowden, wie er von Hans-Christian Ströbele gesehen wurde

Example 2:

S: NSA revelations boost corporate paranoia about state surveillance

T: NSA-Enthüllungen verstärken Firmenparanoia wegen staatlicher Überwachung

MA: Die Enthüllungen der NSA fördern die Paranoia der Unternehmen hinsichtlich der

staatlichen Überwachung

TR: NSA-Enthüllungen verstärken die Paranoia der Unternehmen in Bezug auf staatliche

Überwachung

Example 3:
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S: Delta and JetBlue were among the airliners who have already submitted plans.

T: Unter diesen Fluggesellschaften waren auch Delta und JetBlue.

MA: Delta und JetBlue waren unter den Airlinern, die bereits Pläne vorgelegt haben.

TR: Delta und JetBlue gehörten zu den Fluglinien, die bereits Pläne eingereicht haben.

Morphemes:
Example 1:

S: Both ideas were rejected.

T: Beides wurde wieder verworfen.

MA: Beide Ideen wurden abgelehnt.
TR: Beide Ideen wurden abgelehnt.
Example 2:

S: The accused initially remained silent.

T: Die Angeklagten schwiegen zum Auftakt.

MA: Die Angeklagten schwiegen zunächst.

TR: Die Beschuldigten schwiegen zunächst.

Example 3:

S: Children ’s dreams come true

T: Kinderträume werden wahr

MA: Kinderträume werden wahr.

TR: Kinderträume werden wahr

B.2 Sentence-Level

Constituent Structure:
Example 1:

S: Except: In the stomachs of those in the passenger and back seats, hunger strikes.

T: Nur: In den Bäuchen der Leute auf dem Beifahrer- und Rücksitz macht sich der

Hunger bemerkbar.

MA: In den Magen der in den Passagier- und Rücksitzen, Hungerstreiks.

TR: Ausser: In den Magen der im Passagier und im Rücken Sitze, Hungerstreik.

Example 2:

S: The three ship unloaders on the bridge and the second transport belt could see

this rise to 10 million.

T: Die drei Schiffsentlader auf der Brücke sowie das zweite Transportband könnten
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bis zu 10 Millionen schaffen.

MA: Die drei Schiffsentlader auf der Brücke und der zweite Transportgurt konnten

diesen Anstieg auf 10 Millionen sehen.

TR: Die drei Entlader auf der Brücke und der zweite Transportgürtel konnten

diesen Anstieg auf 10 Millionen sehen.

Example 3:

S: Canadian plane and train maker Bombardier Inc reported a 15 percent fall in net

profit on Thursday, pressured by fewer aircraft orders and deliveries in the third
quarter and contract issues in its train unit.

T: Der kanadische Flugzeug- und Eisenbahnhersteller Bombardier Inc meldete am

Donnerstag einen 15-prozentigen Rückgang des Nettogewinns, nachdem er durch

rückläufige Bestellungen und Auslieferungen bei Flugzeugen im dritten Quartal
sowie Vertragsprobleme in der Eisenbahnsparte unter Druck geraten war.

MA: Der kanadische Flugzeug- und Bahnhersteller Bombardier Inc berichtete über

einen Rückgang des Nettogewinns um 15 Prozent, unter dem Druck von weniger
Flugzeugbestellungen und Auslieferungen im dritten Quartal und Vertragsproble-
men in seiner Zugeinheit.

TR: Der kanadische Flugzeug- und Bahnhersteller Bombardier Inc meldete am Donner-

stag einen Rückgang von 15 Prozent am Nettogewinn, unter dem Druck von weniger
Flugzeugaufträgen und Auslieferungen im dritten Quartal sowie von Vertragse-
missionen im Eisenbahnbereich.

Interrogative Sentence:
Example 1:

S: How did the universe come about and what does it consist of?

T: Wie ist das Universum entstanden und woraus besteht es?

MA: Wie ist das Universum entstanden und worin besteht es?

TR: Wie entstand das Universum und worin besteht es?

Example 2:

S: Is Europe’s elite ready to do business with Britain?

T: Ist Europas Elite bereit, mit Großbritannien Geschäfte zu machen?

MA: Ist die Elite Europas bereit, mit Großbritannien Geschäfte zu machen?

TR: Ist Europas Elite bereit, Geschäfte mit Großbritannien zu machen?

Example 3:

S: What are the basic physical laws of the Universe?
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T: Was sind die grundlegenden physikalischen Gesetze des Universums?

MA: Was sind die grundlegenden physikalischen Gesetze des Universums?

TR: Was sind die grundlegenden physikalischen Gesetze des Universums?

Passive Voice:
Example 1:

S: The evaluations were already made on Thursday.

T: Die Bewertungen wurden bereits am Donnerstag vorgenommen.

MA: Die Bewertungen wurden bereits am Donnerstag abgegeben.

TR: Die Bewertungen wurden bereits am Donnerstag vorgenommen.

Example 2:

S: Google is accused of infringing seven patents.

T: Google wird in sieben Fällen der Patentverletzung bezichtigt.
MA:Google wird beschuldigt, sieben Patente verletzt zu haben.

TR: Google wird vorgeworfen, sieben Patente verletzt zu haben.

Example 3:

S: Should this election be decided two months after we stopped voting?

T: Sollten diese Wahlen zwei Monate nach dem Ende der Stimmabgabe entschieden
werden?

MA:Sollte diese Wahl zwei Monate nach unserer Abstimmung entschieden werden?

TR: Sollte diese Wahl zwei Monate, nachdem wir die Abstimmung gestoppt?

Adverbial Clause:
Example 1:

S: After five years of robust growth since the global financial crisis, and cheap credit

fuelled by loose monetary policy in advanced economies, lower- and middle-income

families are turning to pawn shops to make up the difference as their economies slow.

T: Nach fünf Jahren robusten Wachstums seit der globalen Finanzkrise und billigen

Krediten aufgrund einer lockeren Finanzpolitik in den entwickelten Wirtschaftsräumen

suchen Familien mit geringeren und mittleren Einkommen Pfandhäuser auf, um so bei

stotternder Wirtschaft den Unterschied auszugleichen.

MA: Nach fünf Jahren robusten Wachstums seit der globalen Finanzkrise und billigen

Krediten, die von lockerer Geldpolitik in den hoch entwickelten Volkswirtschaften

angeheizt werden, wenden sich Familien mit niedrigen und mittleren Einkommen an

die Spielerläden, um die Differenz auszugleichen, da ihre Wirtschaft langsam voran-
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schreitet.

TR: Nach fünf Jahren robusten Wachstums seit der globalen Finanzkrise und billi-

gen Krediten, die in entwickelten Volkswirtschaften durch eine lockere Geldpolitik

angeheizt wurden, wenden sich Familien mit niedrigen und mittleren Einkommen an

Pfandhäuser, um den Unterschied auszugleichen, wenn sich ihre Volkswirtschaften

verlangsamen.

Example 2:

S: When designing the early Internet services, the focus lay on making communication
possible.

T: Bei der Konzeption der frühen Internetdienste stand im Vordergrund, Kommunika-
tion möglich zu machen.

MA: Bei der Gestaltung der frühen Bei der Gestaltung der frühen Internet-Dienste lag

der Schwerpunkt auf der Kommunikation.

TR: Bei der Gestaltung der frühen Internet-Dienste lag der Fokus auf der Ermöglichung
der Kommunikation.
Example 3:

S: With her dog Woody competing in the Class 1 competition, Susi Höpp was subject

to the critical scrutiny of the judge.

T: Susi Höpp stellte sich mit ihrem Woody in der Klasse 1 den kritischen Blicken des

Leistungsrichters.

MA: Susi Höpp wurde von Woody in der Klasse 1 unter kritischer Kontrolle des

Richters gestellt.

TR: Mit ihrem Hund Woody, der in der Klasse 1 konkurrierte, unterlag Susi Höpp der

kritischen Prüfung des Richters.

Emphatic Inversion:
Example 1:

S: ”Not only have you kept countless records for us, but you have also done so much

running around for us, and for this we offer our sincere thanks,” said Choir Chairman

Erich Schlotmann.

T: ”Du hast nicht nur viel für uns aufgeschrieben, sondern hast auch so manche Runde

für uns gedreht, dafür unser herzliches Dankeschön”, so der Vorsitzende des Chores

Erich Schlotmann.

MA: ”Sie haben uns nicht nur unzählige Rekorde geführt, sondern Sie haben uns

auch so umhergelaufen, und dafür bedanken wir uns herzlich”, sagte Choir-Vorsitzender
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Erich Schlotmann.

TR: ”Sie haben nicht nur unzählige Aufzeichnungen für uns geführt, sondern Sie

haben auch so viel für uns getan, und dafür möchten wir uns herzlich bedanken”, sagte

Erich Schlotmann, Chorvorsitzender.

Example 2:

S: Only when goalkeeper, Roman Weidenfeller, was the first BVB player to step onto

the field, did cheers briefly erupt, as is usually the case.

T: Nur als Torhüter Roman Weidenfeller wie immer als erster BVB-Spieler den Platz

betrat, brandete kurzzeitiger Jubel auf.
MA: Erst als der Torhüter, Roman Weidenfeller, als erster BVB-Spieler auf das Spielfeld

stieß, brach kurz ein Jubel aus, wie es normalerweise der Fall ist.

TR: Erst als der Torhüter, Roman Weidenfeller, als erster BVB-Spieler auf das Feld

kam, kam es zu einem kurzen Eklat, wie es normalerweise der Fall ist.

Example 3:

S: Indeed, such is demand across parts of southeast Asia - where household debt is

rising - that ValueMax, where she is carrying out her transaction, this week became the

third pawnshop to list on the Singapore stock exchange.

T: Tatsächlich ist die Nachfrage in Teilen Südostasiens - wo die Verschuldung der

Haushalte zunimmt - so groß, dass ValueMax, wo sie ihren Tausch vorgenommen hat,

diese Woche das dritte Pfandhaus wurde, das an der singapurischen Börse gelistet ist.

MA: Tatsächlich ist diese Nachfrage in Teilen Südostasiens - wo die Verschuldung

der Haushalte steigt - so hoch, dass ValueMax, wo sie ihre Transaktion durchführt,

diese Woche zum dritten Einzelhändler wurde, der an der Börse in Singapur verzeichnet

wurde.

TR: Tatsächlich ist die Nachfrage in Teilen Südostasiens - wo die Haushaltsschulden

steigen - so groß, dass ValueMax, wo sie ihre Transaktion durchführt, diese Woche

zum dritten Pfandladen wurde, der an der Börse von Singapur auflistet.



Appendix C

More Attention Distribution

Visualization Examples

This appendix presents additional attention distribution visualizations. The results are

consistent with the analysis in the main text, showing that the Mamba Base model

struggles with long sentences, often producing overly short translations, while the

Transformer tends to generate blurred attention patterns. The MA model, however,

demonstrates a clear and uniform attention distribution. For short sequences, both the

Mamba Base and MA models exhibit more detailed attention distributions, indicating a

more fine-grained feature extraction capability, where the transformer only attends to a

few headwords of sentences.

(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure C.1: Attention Heatmap for a Long Sample (70 Tokens)
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(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure C.2: Attention Heatmap for a Long Sample (51 Tokens)

(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure C.3: Attention Heatmap for a Long Sample (43 Tokens)

(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure C.4: Attention Heatmap for a Long Sample (44 Tokens)
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(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure C.5: Attention Heatmap for a Long Sample (37 Tokens)

(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure C.6: Attention Heatmap for a Short Sample (8 tokens, ”It is perfect, but it lies.”)

(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure C.7: Attention Heatmap for a Short Sample (7 tokens, ”But it was not for every-

one.”)
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(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure C.8: Attention Heatmap for a Short Sample (7 tokens, ”Or perhaps more accu-

rately, one.”)

(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure C.9: Attention Heatmap for a Short Sample (6 tokens, ”I do not know why.”)

(a) Mamba Base Model (b) Mamba Attention Model (c) Transformer Model

Figure C.10: Attention Heatmap for a Short Sample (10 tokens, ”What should you do,

drive through on red?”)



Appendix D

Linear Transformation for Matrix A

This appendix will introduce the detail of the linear transformation applied on matrix A

to get mask matrix AM in Equation 5.2.

Given the equation of SSM introduced in Chapter 2:

hk = Ahk−1 +Bxk, yk =Chk (D.1)

Expand the state equation (Left) through iteration and obtain the following equation:

hk = Ak . . .A1B0x0 +Ak . . .A2B1x1 +AkBk−1xk−1 +Bkxk (D.2)

=
k

∑
i=0

A×
k:sBixi. (D.3)

Multiplying by C to obtain another expression of SSM:

yk =
k

∑
i=0

C⊤
k A×

k:iBixi (D.4)

y = Mx (D.5)

M ji =C⊤
j A j · · ·Ai+1Bi =C⊤

j G jiBi (D.6)

G ji = A j · · ·Ai+1 (D.7)

In the newest research of the Mamba model, Gu et al.[10] indicate when instantiating

matrix A for each time step in an extremely structured way: A = aI, where a is a scalar,

and I is an identity matrix. The matrix G can be converted into the following form,
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which is mask matrix AM introduced in Equation 5.2:

AM =



1

a1 1

a2a1 a2 1
...

... . . . . . .

ak−1 . . .a1 ak−1 . . .a2 . . . ak−1 1


(D.8)


