
Optimising Vector Embedding Models for

Example Selection in Text-to-SQL Generation

Matthew Draper
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2024

Abstract

A comprehensive survey is conducted to assess the impact of altering the vector

embedding model within a standard Text-to-SQL example selection algorithm, focusing

on how these changes influence the effectiveness and quality of the selected examples.

While this is shown to significantly influence which examples are chosen for few-shot

prompting, it has little overall effect on execution accuracy scores. Current approaches

to selection are criticised for promoting examples with low similarity to the target gold

query, regardless of what embedding model is used. However when considering the re-

sults of the survey in aggregate, it is clear that record-setting benchmark scores could be

achieved through in-context learning techniques alone. In other words, the experiments

show that all the right ‘needles in the haystack’ exist for directing Text-to-SQL tasks

via few-shot prompting; it is just a matter of developing a mechanism geared towards

consistently finding them.

Novel methods are then put forward to address the issues identified. This includes

the design of a new metric for SQL similarity, along with a standardized format for

context-masking SQL queries. An algorithm is proposed that offers a new approach to

embedding-based retrieval by encoding the space of masked SQL queries and compar-

ing examples with previously generated ‘first guess’ predictions for each benchmark

question. This results in improved execution accuracy scores on the Spider benchmark

when compared to previous methods, and is shown to consistently retrieve high-quality

examples for few-shot prompting. Also outlined is a new framework for fine-tuning

embedding models aimed at optimising SQL retrieval, further enhancing the ability to

quickly retrieve structurally similar queries from a dataset. The research conducted

extends the field’s understanding of retrieval-based in-context learning techniques, and

concludes with definitive criteria that should be considered when designing future

Text-to-SQL example selection algorithms.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy.

It did not involve any aspects that required approval from the Informatics Research

Ethics committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Matthew Draper)

ii

Table of Contents

1 Introduction 1
1.1 The Text-to-SQL Problem . 1

1.2 Problem History . 2

1.3 Potential Beneficiaries . 2

1.4 Study Outline . 2

1.5 Problem Statement . 3

1.6 Research Hypotheses & Objectives 3

1.7 Development Notes . 4

1.8 Related Works . 5

2 Problem Background & Related Work 6
2.1 Problem Formulation . 6

2.2 Current Benchmarks . 7

2.3 Retrieval-Based In-Context Learning Approaches 8

2.3.1 Example Selection . 8

2.3.2 Vector Embedding Retrieval 9

2.4 Prompt Engineering for Text-to-SQL 10

2.4.1 Prompt Formatting . 10

2.4.2 Database Representation . 11

2.4.3 Example Organization . 11

2.4.4 K-Shot Prompt Pipeline . 12

2.5 Vector Embedding Models for Example Selection 13

2.5.1 Vector Embedding Model Architectures 13

2.5.2 Embedding Spaces . 15

2.6 Advanced Example Selection Techniques 17

2.6.1 Similarity Thresholds . 17

2.6.2 SQL Context Masking . 18

2.6.3 SQL Similarity Measures . 19

2.6.4 Pre-Predicted SQL Embeddings 20

iii

3 RQ1: Survey of Vector Embedding Model Performance 21
3.1 Experiment Outline . 21

3.2 Spider Results . 22

3.3 BIRD Results . 27

4 RQ2: Supervised Fine-Tuning of Vector Embedding Models 30
4.1 Supervised Fine-Tuning Pipeline . 30

4.2 Fine-Tuning of Question Embeddings 31

4.3 Fine-Tuning of SQL Embeddings . 32

4.4 Embedding Fine-Tuning Experiment 33

5 Conclusion 37
5.1 Study Overview . 37

5.2 RQ1 & RQ2 Conclusions . 38

5.3 Future Works . 39

5.4 Closing Remarks . 40

Bibliography 41

A Exemplar Benchmark Prompts 46
A.1 Spider Example Prompt . 46

A.2 BIRD Example Prompt . 48

B Example Selection Algorithms 52
B.1 Embedded Masked Question Selector 52

B.2 Embedded Pre-Predicted SQL Selector 53

B.3 Embedded Gold SQL Selector . 53

B.4 Manual Pre-Predicted SQL Selector 54

B.5 Manual Gold SQL Selector . 55

B.6 DAIL Selector . 56

C SQL context-masking & Similarity Examples 57
C.1 DAILMask vs SQLMask Masking Examples 57

C.2 DAILSim vs SQLSim Metric Examples 59

D Fine-Tuning Question Embeddings (Extended) 63
D.1 Experiment Construction . 63

iv

Chapter 1

Introduction

1.1 The Text-to-SQL Problem

Information retrieval from complex database schemas has historically been a non-trivial

task. As big data continues to maintain its importance in digital industry, efficient

access to key information is becoming increasingly critical. Structured Query Language

(SQL) is a declarative programming language for querying relational databases, which

has become the standardized reference language for database management and data

retrieval tasks.

SQL literacy among the general public, and even within the programming com-

munity, is by and large quite low. As a result, companies rely on specialist data

professionals to retrieve information from databases and distribute it to other staff mem-

bers. Database software interfaces such as Microsoft Excel help abstract away from

direct SQL query applications; however, businesses often require staff with extensive

experience and training in these platforms to reliably store and retrieve company data.

The Text-to-SQL problem aims to bridge the gap between the widespread need

to access crucial information from relational databases and the inherent difficulty of

forming the correct SQL query to retrieve it. It concerns a natural language processing

task, whereby a model is provided some representation of a target database, alongside a

relevant question as a plain-text input. An effective solution to the problem would be a

model capable of reliably converting well-formed inputs into correct corresponding SQL

queries, with a success rate equal to or greater than that of human experts. Although

there have been large advances in model performance in recent years, current state-of-

the-art techniques remain a significant way off human expert capability.

1

Chapter 1. Introduction 2

1.2 Problem History

Originally Text-to-SQL was approached as a sequence-to-sequence based machine

translation task [28]. This de-facto approach was superseded by models such as SQLNet

[25] and TypeSQL [26] which circumvent the “ordering problem” that is commonly

known to limit sequence-to-sequence based architectures [20]. Yet upon the advent of

widely-accessible and resoundingly successful large language models (LLMs), a new

paradigm for approaching the problem was embraced, as LLMs are now commonly

leveraged for conducting Text-to-SQL conversions. Many top-performing submissions

published to current Text-to-SQL benchmarks use OpenAI’s GPT family of models

as the basis for generating predicted SQL queries. Various studies have documented

OpenAIs premiere GPT-4 class to be the most effective base engines for code generation

tasks [6, 24]. As a consequence, much of the current Text-to-SQL research centres

around directing these models toward high execution accuracy scores.

1.3 Potential Beneficiaries

A fully realized general-purpose Text-to-SQL conversion model would be highly valu-

able across modern industry due to its predicted impact on levels of productivity.

Workers that previously did not have the skills to query big data, such as those in

the teaching, healthcare and governmental professions, would be suddenly capable of

accessing required information through a single interface. By removing the require-

ment to seek a trained specialist for data-retrieval, large amounts of company time and

expenditure could be saved upon integrating a successful Text-to-SQL parser.

1.4 Study Outline

The research conducted in this paper regards example selection techniques for Text-

to-SQL, with the objective of reviewing current mechanisms for few-shot prompting.

Retrieval-based in-context learning (RetICL) is a primary focus, with particular attention

paid to methods that involve the use of vector embedding models (VEMs). By encoding

some representation of a Text-to-SQL problem as a vector, similar examples to a target

problem can be quickly identified based on their proximity in the vector space. The

study aims to determine the limitations of using embedding models for Text-to-SQL

example selection, before designing novel RetICL approaches for such a task.

Chapter 1. Introduction 3

1.5 Problem Statement

It is conjectured that the choice of vector embedding model has a significant influence

on which examples are chosen by an embedding-based RetICL system. Studies that

incorporate such an approach to RetICL typically fix the choice of embedding model.

There is presently no survey in the literature exploring the effect of VEM choice on

Text-to-SQL example selection performance. This motivates the first research question:

RQ1: To what extent does the choice of vector embedding model influence
the quality of examples chosen for few-shot Text-to-SQL conversion tasks?

Once this topic has been addressed, an immediate follow up question arises. Currently,

there is no evidence in the literature indicating whether fine-tuning embedding models

can improve the quality of retrieved examples and result in improved performance on

key Text-to-SQL benchmarks. The second objective of the study is as follows:

RQ2: To what extent can the fine-tuning of vector embedding models be
applied to achieve better quality examples for Text-to-SQL generation?

These questions form the central motivation for the thesis, and a positive result in

either setting could be used to influence future studies in the field that include a ReICL

selection mechanism. Any example retrieval procedure that is shown to perform

significantly above the current alternatives would be of great value to those approaching

few-shot prompting for Text-to-SQL benchmarks such as Spider and BIRD [27, 14].

1.6 Research Hypotheses & Objectives

To preface the study, a set of three research hypotheses are offered. These initial

assessments made prior to the investigation motivate the design of future experiments.

1. Altering the embedding model will result in significantly different examples se-

lected for both the Spider and BIRD benchmarks.

2. Few-shot prompting techniques alone may be insufficient to achieve state of the

art execution accuracy scores for both the Spider and BIRD benchmarks.

3. A fine-tuned embedding model trained on Text-to-SQL examples is likely to

result in increased execution accuracy scores when compared against a baseline

embedding.

Chapter 1. Introduction 4

In order to address these hypotheses, the following research objectives are outlined.

i. A survey should be conducted for both the Spider and BIRD benchmarks, eval-

uating eight state-of-the-art vector embedding models and documenting their

execution accuracy scores in 1-shot, 3-shot, and 5-shot scenarios.

ii. Extended analysis of the survey results should be taken, with aims to answer:

• Is there a single embedding model that is more capable at example selection

than the alternative options?

• Why might suggested examples fail to direct the language model towards a

successful conversion?

• How could an embedding model be fine-tuned towards improved example

selection capability and higher execution accuracy scores?

• What is the highest possible execution accuracy score that could theoretically

be achieved through the use of example selection techniques alone?

iii. A framework should be proposed for fine-tuning a chosen embedding system from

the survey, demonstrating to what extent supervised fine-tuning techniques could

be used benefit VEM-based ReICL selection algorithms.

Upon fulfilling these objectives, a holistic assessment of the two original research

questions should be made by offering provable evidence-based conclusions. These

questions remain open problems in the Text-to-SQL field, and it is hoped that the

evidence produced in this study will inform future research on these topics.

1.7 Development Notes

The code used to perform these experiments is built on top of the source code provided1

in the DAIL-SQL study by Gao et al [4]. All implementation is carried out in Jupyter

notebooks and additional Python utility scripts, with the codebase divided into ‘chapter’

directories that correspond with the structure of this document. Results files are dis-

tributed alongside the source code and are directly reproducible within the notebooks.

The OpenAI GPT suite of language models is chosen to be leveraged across experiments,

with the gpt-3.5-turbo-0125 model used throughout unless stated otherwise.

1https://github.com/BeachWang/DAIL-SQL

Chapter 1. Introduction 5

1.8 Related Works

The central source on which this thesis is based is the DAIL-SQL study [4] produced

by the Alibaba Group in November 2023. This is the only submission to the Spider

and BIRD leaderboards that surveys and develops novel ReICL example selection

techniques. Other submissions focus on different refinement approaches, which include:

fine-tuning existing specialist Text-to-Code language models [10], constructing a multi-

agent framework to solve Text-to-SQL subproblems [22, 11], and extracting the most

relevant database rows, columns and tables to include in the prompt [7, 19].

The DAIL-SQL survey documents different components of prompt engineering

for Text-to-SQL, before the authors propose a state-of-the-art example selection algo-

rithm. DAIL Selection begins by applying a context-masking function to all plaintext

benchmark questions, and then ranks these examples based on their similarity to the

masked target question. After ordering the examples by masked-question similarity,

candidates must pass a SQL similarity threshold in order to be included in the few-shot

prompt. This test measures the proportion of shared tokens between the example query

and a previously generated ‘first guess’ prediction of the target gold SQL. Notably, the

DAIL study fixes the vector embedding to the all-mpnet-base-v2 model across the

study [17]. Pseudocode of the full DAIL Selection algorithm is provided in Appendix B.

There is precedent in the literature of successfully fine-tuned embedding models

for the purposes of example selection, with the most relevant source being the work

by Liu et al. of Microsoft Research [15]. Their paper “What Makes Good In-Context

Examples for GPT-3?” introduces KATE - a non-parametric selection approach that

is tested against several question answering and table-to-text generation benchmarks.

KATE utilises the RoBERTa embedding model [29] for example retrieval, the study

goes on to fine-tune the embedding for context-dependent tasks, stating in its conclusion

“We found that fine-tuning the sentence embeddings for retrieval on task
related datasets gave rise to further empirical gains” [15]

This supports the final research hypothesis in theory while leaving room for new

observations and conclusions, as the KATE study does not explore the effects of fine-

tuning embeddings for Text-to-Code generation tasks. Since there is no such report on

how fine-tuning embeddings could lead to improved example selection in the case of

Text-to-SQL, a research gap is identified that is to be addressed across this paper.

Chapter 2

Problem Background & Related Work

2.1 Problem Formulation

Across this paper, a Text-to-SQL instance refers to a tuple (D,Q ,G), where:

• D is the relational database that the problem concerns.

• Q is the plaintext question to be answered, relative to the database.

• G is the gold SQL query that successfully retrieves the necessary information,

relative to the question and the database.

Meanwhile a Text-to-SQL problem refers to the binary outcome of whether a

conversion model M is capable of producing an equivalent1 SQL to the gold query G .

Commonly, a commercial large language model is leveraged as the processing engine

used to perform the conversions. If this is the case, then Text-to-SQL instances are

required to be framed as prompts. This means the input database D and target question

Q must be represented as plaintext in a character-limited entry window. A well-studied

approach to enhancing LLM performance for this task is few-shot prompting. By

providing k examples from a training set within the prompt, the LLM has the prospect

of learning by analogy from the sampled conversions. However, the provided examples

must be to some degree relevant to the target problem in order for effective in-context

learning to take place. Retrieving examples that are likely to direct the language

model towards a successful conversion constitutes the field of retrieval-based in-context

learning, which is a well-proven approach to tackling Text-to-SQL tasks.

1Of course, several unique SQL queries can retrieve identical records from the database, implying
many answers to the same question Q . The stated gold query G can be thought of as a representative
success case, but this does not exclude the existence of other correct answers.

6

Chapter 2. Problem Background & Related Work 7

2.2 Current Benchmarks

Text-to-SQL model performance is generally assessed using the execution accuracy

(EX) metric. This metric evaluates the proportion of conversions from a test set that

produce a correct SQL query. This means the SQL prediction produced by the model

need not exactly match the gold query provided in the answer set, but it must retrieve

exactly the same information. Other metrics such as valid efficiency score and exact set

match score feature in the literature, but are not considered here.

Currently, there exist two primary benchmarks for assessing Text-to-SQL perfor-

mance, the first of which is Spider [27, 3]. Distributed by Yale University in 2018,

the Spider benchmark “consists of 10,181 questions and 5,693 unique complex SQL

queries on 200 databases with multiple tables, covering 138 different domains”. Spi-

der became the standard benchmark for Text-to-SQL research because of its database

variety, and number of labelled train cases. By November 2023, the 90% execution

accuracy threshold was surpassed with the submission of the (undisclosed) MiniSeek

model, produced by Seek AI. Their submission achieves a 91.2% score, which remains

the highest performing submission on the Spider leaderboard.

Given the consistent success of new submissions to Spider, there grew a requirement

for an updated, more challenging, Text-to-SQL benchmark. The BIRD benchmark

[14] was released in February 2023 and contains “12,751 Text-to-SQL pairs and 95

databases spanning 37 professional domains”. BIRD provides a considerably more

difficult set of tasks for Text-to-SQL models, as the benchmark focuses on utilising

datasets reflective of real life applications and industrial practice. This involves the use

of substantially larger databases (with the BIRD dataset requiring 33.4GB of storage),

as well as imperfect and erroneous data entries. Problem instances in BIRD also may

require additional contextual information, which can be chosen to be supplied to the

conversion model, or withheld. This adds a new dimension of difficulty not found

in any previous Text-to-SQL benchmark. The current top performing model is the

(undisclosed) OpenSearchSQL v2 + GPT4o model, produced by the Alibaba Cloud

research group. The submission achieves a score of 72.28%, which remains significantly

behind human-expert level performance of 92.96%.

The top open-source performers in their respective benchmarks focus on two differ-

ent fundamental aspects of the Text-to-SQL problem.

Chapter 2. Problem Background & Related Work 8

• DAIL-SQL is the highest performing publicly available submission to the Spi-

der benchmark, and is second in the overall leaderboard [4]. The final model

achieves an 86.6% execution accuracy score, by leveraging base GPT-4-Turbo

and implementing a state-of-the-art approach to example selection. DAIL-SQL

aims to select the most relevant few-shot examples to include in the prompt, with

the objective of steering the GPT model towards a successful conversion.

• CHESS is highest performing publicly available submission to the BIRD bench-

mark, and is seventh in the overall leaderboard [19]. It achieves a 66.69% execu-

tion accuracy score through a novel approach to schema linking. This concerns

providing a concise textual database representation, that distills the key tables

and columns necessary to answer the target question. CHESS introduces a three

tiered schema-pruning pipeline that proves effective in aiding SQL generation.

It is worth noting that CHESS also outperforms DAIL-SQL on the Spider benchmark

with an 87.2% score, however the Spider leaderboard was closed for submissions as

of February 2024. A revised Spider 2.0 benchmark offering “a more realistic and

challenging benchmark in the era of LLMs” is scheduled for release in Summer 2024.

2.3 Retrieval-Based In-Context Learning Approaches

2.3.1 Example Selection

Few-shot prompting has been a historically successful approach for directing large

language models toward desired behaviour in Text-to-Code conversion tasks [12]. By

providing a LLM with relevant examples inside the prompt, the model may learn

by analogy from the demonstrations without altering the base model weights. This

preserves LLM generality, whilst also saving significant time and resources when

compared to supervised fine-tuning approaches.

Immediately, several questions are raised as to what makes a ‘relevant’ example.

1. What is it that determines an example’s relevance?

2. How does one determine whether an example is likely to aid an LLM in it’s

response or distract it?

3. Do there even exist relevant examples to choose from in the train set?

Chapter 2. Problem Background & Related Work 9

The Spider benchmark provides 8659 potential training examples to include in prompt-

ing, whilst the BIRD benchmark provides 9428 training cases. Any example included

in a prompt is referred to as a shot, a prompt that features k demonstration examples

is referred to as a k-shot learning problem. It is possible for the value of k to vary in

prompt engineering models, with examples only included in the prompt if they satisfy

some predefined confidence threshold. A central objective of this study has been to

address these three questions in the setting of the Spider and BIRD benchmarks, as well

as in the context of Text-to-SQL research as a whole.

In any approach to in-context learning, examples included in a prompt should be

selected efficiently and deterministically. A good example (D∗,Q ∗,G∗) to suggest

should, in theory, have a question similar in sentiment to the target Q , and have an

answer query that reflects a similar structure to the target G . It is argued in this paper

that oftentimes, this is a conflicting and impossible ideal that is overlooked in the

literature, leading to limitations on performance when using RetICL selection methods.

Hence, a central theme across this work is one of trade-offs and compromises,

as it is demonstrated how current approaches aiming to satisfy either criterion are

obstructed by significant pitfalls. As the field of research progresses, it is hoped that the

observations outlined in this study will enrich the understanding of RetICL techniques

for Text-to-SQL and encourage the design of mechanisms that consider the question,

database, and gold query in future example selection algorithms.

2.3.2 Vector Embedding Retrieval

Various algorithms have been proposed for selecting the best examples for Text-to-SQL

problems, many of which rely on the theory and implementation of vector embedding

models. A sentence embedding model in particular deterministically maps a natural

language input to a high-dimensional vector, where the output’s position in the vector

space is in some way indicative of the original text’s structure, semantics, and meaning.

Vector embeddings enable semantic search for similar examples in the training set, as

candidates mapped near the target vector can be assumed to be the most comparable.

An example selection algorithm can be thought of as a ‘claw machine’ of sorts, one

that observes the target problem and selects k candidates from a train-set ‘prize box’.

Under this analogy, the role of the VEM can be thought of as follows:

Chapter 2. Problem Background & Related Work 10

• The VEM firstly orders all the training instances in the prize box, positioning

them in such a way that examples it deems similar are located close together,

while dissimilar examples are located further apart.

• Next, the VEM places a ball to represent the target problem inside the prize box

abiding by the same positioning rules as deployed in step one.

• The VEM then highlights the k-nearest instances to the ball in the prize box, it

then tells the claw machine to select these examples.

The example selection ‘claw machine’ operates in high-dimensional space, with

most models producing vectors ranging from approximately 750 to 1500 dimensions.

A VEM is defined by its vector positioning rule, as this is determined the weights that

parameterise its deep pre-trained neural network. A decision must be made about what

representation of Text-to-SQL instances should be encoded, or in the metaphor, what

defines each item in the prize box. This is referred to as the embedding space and is

commonly the set of plaintext questions found in each Text-to-SQL instance.

A framework for fine-tuning embedding models is distributed through the python

sentence-transformers library [2]. It is thought that this could be used to tremen-

dously benefit Text-to-SQL example selection, as sentence embeddings are typically

trained on large corpora of natural language text, with limited exposure to SQL prob-

lems. In theory, an embedding model specifically trained on Text-to-SQL tasks may be

able to suggest examples that better aid SQL generation.

2.4 Prompt Engineering for Text-to-SQL

2.4.1 Prompt Formatting

Throughout the experiments, prompts are formatted to align with the most successful

structure identified in the DAIL-SQL survey [4]. When leveraging a large language

model for Text-to-SQL tasks, each question in the benchmark must be uniformly and

consistently formatted. This involves three primary considerations: how to represent the

target database as a plaintext input; how to structure selected examples, deciding what

relevant information to include; and how to present the target question for completion.

Exemplar 1-shot prompts for both the Spider and BIRD benchmarks are provided in

Appendix A, which fully display the formatting approaches to be described.

Chapter 2. Problem Background & Related Work 11

2.4.2 Database Representation

Code Representation prompting is database representation approach that is integrated

across experiments. This is the most successful scheme for prompting gpt-3.5-turbo

models recorded in Gao et al’s survey, and is the method included within the final

DAIL-SQL submission [4]. This representation chooses to include all column labels

and data types of all tables in the database, along with the foreign key information for

each table. In theory, this provides a complete representation of the database structure,

so the processing model should not fail due to insufficient database knowledge.

However, in many instances, this results in large amounts of superfluous information

included in the prompt, with the input comprised of many tables and columns that

are unnecessary for producing the correct SQL query. This is most prevalent in the

BIRD benchmark, where databases tend to contain a far larger amount of tables and

columns than problems found in Spider. It has been demonstrated how this has the

potential to distract a LLM from its objectives, and serves as an active bottleneck to

progress [8, 1]. Thus a large sector of Text-to-SQL research focuses on how to best

extract relevant tables and columns for a given conversion task. Current state of the art

approaches to schema-linking techniques include MAC-SQL [22], RESDSQL [9], and

notably CHESS [19]. Modules that extract the most relevant database representations

are not included in this study, instead RAT-SQL [21] is used to generate the full textual

database representations for prompting.

2.4.3 Example Organization

The DAIL-SQL paper outlines three methodologies for organizing examples within

a prompt. The authors’ proposed approach, DAIL Organization, only includes the

associated question and gold query for each example. This is the approach that is

integrated into this study’s experiments, meaning that the associated databases for each

selected example are not included in the prompts.

It is arguable that this omits a fundamental component that could benefit a language

model attempting to learn by analogy from few-shot examples, as both the question and

gold query are dependent on their corresponding database. However in many instances,

especially in higher shot scenarios, including each example’s full database representa-

tion exceeds the text input limits of many LLMs. A recommendation for a future study

would be to utilise Full Information Organization (which includes question, query and

Chapter 2. Problem Background & Related Work 12

database for each example) alongside existing schema-linking and feature-extraction

techniques. This would ensure each example identified includes all the necessary infor-

mation to best impact retrieval-based in-context learning.

When using Code Representation prompting and DAIL Organization, a typical input

provided to the language model will adhere to the following structure.

/* Some example questions and corresponding SQL queries are provided

based on similar problems: */

/* Answer the following :

${EXAMPLE QUESTION}

${EXAMPLE GOLD SQL} */

/* Given the following database schema : ${DATABASE SCHEMA} */

/* Answer the following : ${TARGET QUESTION} */

SELECT

2.4.4 K-Shot Prompt Pipeline

All conversion tasks for Spider and BIRD benchmarks must first be formatted as a plain-

text input, with the context window limited to 16,385 tokens per prompt (approximately

65,540 bytes of text). Constructing a prompt requires many sub-modules for obtaining

a database representation, selecting examples and question formatting. Psuedocode is

provided to illustrate in abstract the central components of prompt construction.

Algorithm 1 Construct Prompt

Require: D: Target Database, Q : Target Questions, k: Number of Examples,

train set: Benchmark Train Set, embedding model: VEM

function CONSTRUCT PROMPT(D , Q , k, train set, embedding model)

f ormatted database← db to text(D)

selected examples← get examples(Q , k, train set, embedding model)

f ormatted examples← examples to text(selected examples)

f ormatted question← "Answer the following: " + Q + " SELECT "

prompt← f ormatted examples+ f ormatted database+ f ormatted question

return prompt

Chapter 2. Problem Background & Related Work 13

To preface future chapters, pseudocode is also offered for a basic example selection

algorithm, where candidates are determined by embedding the plaintext question space.

This algorithm constitutes one of the most common approaches to retrieval-based in-

context learning for Text-to-SQL tasks. Any alterations from this central mechanism

will be outlined in full, with accompanying pseudocode located in Appendix B.

Algorithm 2 Select Examples + Question Embedding
Require: Q : Target Question, k: Number of Examples, train set: Benchmark Train

Set, embedding model: VEM

1: function GET EXAMPLES(Q , k, train set, embedding model)

2: train questions← train set[“question”]

3: train embeddings← embedding model.encode(train questions)

4: target embedding← embedding model.encode(Q)

5: distances← compute distances(target embedding, train embeddings)

6: nearest neighbors← closest k indices(distances,k)

7: selected examples← train set[nearest neighbors]

8: return selected examples

2.5 Vector Embedding Models for Example Selection

2.5.1 Vector Embedding Model Architectures

SBERT-Based Models: The leading architecture for producing vector embeddings

derives from the landmark paper “BERT: Pre-training of Deep Bidirectional Transform-

ers for Language Understanding” released by Devlin et al. in May 2019 [2]. BERT

(standing for Bidirectional Encoder Representations from Transformers) utilizes a deep

bidirectional transformer architecture to pre-train a language model on a large corpus

of text. This bidirectionality allows BERT to consider the context from both the left

and the right side of a token, enabling a richer understanding of language compared to

previous models.

The standard BERT architecture is unsuited to the task of semantic search. To evalu-

ate a notion of similarity between two sentences, BERT’s cross-encoder architecture

requires inputting both candidates together into its deep birectional transformer network.

Chapter 2. Problem Background & Related Work 14

This means that identifying the most similar sentence in a dataset to a target would

require completing this computation pairwise for all candidate examples, resulting in

a significant computational burden when dealing with large datasets. Reimers and

Gurevych describe this fundamental issue of employing BERT for semantic search.

“BERT uses a cross-encoder: Two sentences are passed to the transformer
network and the target value is predicted. However, this setup is unsuitable
for various pair regression tasks due to too many possible combinations.
Finding in a collection of 10,000 sentences the pair with the highest similar-
ity requires with BERT 49,995,000 inference computations. On a modern
V100 GPU, this requires about 65 hours.” [16]

Figure 2.1: SBERT Sentence Similarity Eval-

uation Pipeline [16]

In their paper “Sentence-BERT: Sen-

tence Embeddings using Siamese BERT-

Networks” [16], Reimers and Gurevych

propose the SBERT framework. By ap-

plying a pooling step, outputs from the

BERT architecture are converted to mean-

ingful vectorised sentence embeddings.

The semantic similarity between embed-

dings can be quickly evaluated using com-

mon linear algebra metrics such as eu-

clidean distance and cosine distance.

With this method, the time required to identify the most similar example to a

target from a 10,000 entry training set is drastically reduced from an estimated 65

hours to just 5 seconds. The SBERT framework is distributed via the popular python

sentence-transformers library, which provides open access to a variety of sentence

embedding models and associated functions. The library also includes tools to fine-tune

the underlying BERT model, producing optimized embeddings for targeted objectives.

Through the huggingface central platform, many pre-trained embedding mod-

els based on the SBERT architecture are accessible for public use. Of these, the

most frequently downloaded models include bert-base-nli-mean-tokens [2, 16],

stsb-roberta-base [29, 16], all-mpnet-base-v2 [17], all-MiniLM-L6-v2 [23]

and all-MiniLM-L12-v2 [23].

Chapter 2. Problem Background & Related Work 15

OpenAI Models: Current state-of-the-art models include those available via

the OpenAI API, where three closed-source embedding models are made accessible

through paid access: text-embedding-ada-002, text-embedding-3-small, and

text-embedding-3-large. OpenAI has shared detailed insights about uses cases and

benchmark performance of these models. However, specific architectural details and

the exact training methodologies are not disclosed in public documentation.

2.5.2 Embedding Spaces

When using ReICL techniques for few-shot prompting, there are three fundamental

considerations that influence the choice of examples selected. First and foremost, the

structure of the example selection algorithm will dictate how and which examples are

ultimately chosen from the train set. For instance, a completely uninformed ReICL se-

lection algorithm might always return the first training example, regardless of the target

problem’s context. In this study, only retrieval algorithms that incorporate sentence

embeddings are considered, with the singular objective of selecting the most relevant

examples to steer towards successful SQL generation.

For such algorithms, it is hypothesized that the choice of VEM will also have an im-

pact on the results. Embedding models generate unique vector projections for encoded

Text-to-SQL instances, so altering the embedding can cause examples to be positioned

closer to or farther from the projected target question in the new vector space. Since it

is the k-nearest neighbors of the target vector that are selected for few-shot prompting,

it is conjectured that the choice of VEM has considerable influence on which training

examples are nominated.

Finally, the choice of how Text-to-SQL instances are represented directly influences

the resultant projection space. This choice is critical to the retrieval of effective ex-

amples, and is referred to as the embedding space. Sentence embedding models are

most effective when encoding natural language sentences with standard grammar and

conventional structure. Historically, this has led to the common choice of using plaintext

questions as the embedding space for Text-to-SQL tasks. This abstracts away from all

information that could be inferred from the associated database structure, as examples

are chosen exclusively based on their level of semantic similarity to the target question.

Chapter 2. Problem Background & Related Work 16

Note that any example selection algorithm only has access to the target database

D, and the target question Q , along with the training set of provided examples. If the

primary goal of RetICL is to select the examples most ‘similar’ to the target gold query,

this must be inferred exclusively from D and Q . This limits the potential options for

choosing an embedding space, and gives rise to significant obstructions that are outlined

as a central argument of this thesis.

Question Embeddings: An example of question-embedding based retrieval is

demonstrated using the first problem from the Spider benchmark test-set. The top three

examples identified when using the all-mpnet-base-v2 VEM are as follows:

Target Question: How many singers do we have?

Gold SQL: SELECT count(*) FROM singer

Example Question Example SQL

How many artists do we have? SELECT count(*) FROM artist

How many artists are there? SELECT count(*) FROM artist

How many songs have a

shared vocal?

SELECT count(DISTINCT title) FROM vocals

AS T1 JOIN songs AS T2 ON T1.songid =

T2.songid WHERE TYPE = "shared"

Table 2.1: Question Embedding Retrieval: Spider 3-Shot Examples

Evidently, the first two suggestions have semantically similar questions to the target,

and their queries share a matching SQL structure with the true gold query - these exam-

ples can be considered RetICL success stories. However, the third example asks a very

different question in terms of data-retrieval, which is reflected in a drastically different

SQL to the true gold query. This poor-quality example seems to be chosen based on the

question’s semantic similarity to the term ‘singers’ found in the target question. This

highlights a fundamental problem in using plaintext questions as the embedding space:

contextually relevant examples can be promoted for few-shot prompting whilst taking a

query that has little to no relevance for encouraging correct SQL generation.

Masked Question Embeddings: As displayed, a common problem when encoding

plaintext questions is that contextual database information has a significant influence on

the examples retrieved. Hence it would be more desirable to choose questions that are

structurally similar to the target, as opposed to semantically similar. By context-masking

the instance questions this problem can be circumvented. RESD-SQL [9] is a schema-

Chapter 2. Problem Background & Related Work 17

linking module deployed to identify database context-dependent tokens in a question

for masking. Algorithm 3 in Appendix B provides pseudocode for an example selection

algorithm that chooses examples by proximity in the masked-question embedding

space. Some SBERT models are engineered to handle sentences that include designated

context-masked tokens [16, 17]; the generic token to replace context-dependent token

labels is <mask>, whilst the token used to replace quoted values is <unk>.

To continue with the first example from the Spider benchmark test set, the associated

context-masked question would be “How many <mask> do we have?”. All questions

from the training set undergo context-masking, and it is this set of abstracted question

strings which forms the embedding space. When using the all-mpnet-base-v2 VEM,

the top three nearest examples to the masked target question are as follows:

Target Masked Question: How many <mask> do we have?

Gold SQL: SELECT count(*) FROM singer

Example Masked Question Example SQL

How many <mask> do we have? SELECT count(*) FROM Aircraft

How many <mask> do we have? SELECT count(*) FROM Employee

How many <mask> do we have? SELECT count(*) FROM Flight

Table 2.2: Masked Question Embedding Retrieval: Spider 3-Shot Examples

The three selected examples in the dataset share identical sentences after context-

masking and thereby have a common vector encoding. The examples also share a

common SQL structure with the true gold query. Still, it should be noted that there is

no guarantee that sharing an identical masked question to the target problem implies a

identically structured gold query. In this case, embedding the context-masked question

space yields arguably perfect ReICL performance, Section 3.4 will illustrate how this is

misrepresentative of the approach’s capacity to generate high-quality examples.

2.6 Advanced Example Selection Techniques

2.6.1 Similarity Thresholds

The DAIL Selection mechanism introduced by Dao et al. [4] proposes a similarity

threshold approach for Text-to-SQL example selection. Potential example nominations

are firstly ordered based on their masked-question embedding distances, which serves

Chapter 2. Problem Background & Related Work 18

as an initial heuristic rather than a definitive measure of example quality. The candidates

then must pass a quality assurance metric in order for them to be included in the prompt.

The DAIL algorithm uses a notion of SQL similarity to define its threshold function

(outlined in Section 2.6.3). In brief, the DAIL-SQL method determines whether to

include an example in the prompt by comparing the example SQL to a previously

attempted conversion, which serves as a ‘first guess’ to the true gold SQL structure. In

the DAIL study, these pre-predicted SQLs are generated using the Graphix-T5 language

model [13]. The idea being that a pre-prediction may not ultimately be a correct answer,

but it should share many of the key structural components of the gold SQL.

2.6.2 SQL Context Masking

DAIL Masking: To evaluate the similarity between two SQLs, the DAIL approach first

extracts the skeleton from the queries. RESD-SQL [9] is used as a schema-linking mod-

ule to identify database-specific clauses in the query, before these tokens are replaced

with an underscore. At the end of the masking, only SQL keywords, operators, and

underscores remain. This can be percieved as a liberal approach to context-masking

SQLs, as largely different queries can share a common mapping. In this study, this

approach to context-masking SQLs is referred to as DAILMask.

Proposed Masking: The DAIL masking mechanism does not account for the

number of unique columns or tables referenced in a SQL query, instead choosing to

abstract over this information. With this in mind, a new SQL masking procedure

is proposed, called SQLMask. This procedure takes a regex-oriented approach to

masking column and table identifiers across the SQL, making it highly efficient when

compared to DAILMask. By assigning consistent generic identifiers to each table and

column referenced in a query, SQLMask preserves the number of unique tokens whilst

abstracting away from database context. An example from the Spider test set is offered

in Table 2.3 to demonstrate the differences between the masking approaches. A selection

of eight further examples is provided in Appendix C.

SQL: SELECT DISTINCT Country FROM singer WHERE Age > 20

DAIL MASK: select distinct from where

SQL MASK: SELECT DISTINCT col1 FROM table1 WHERE col2 > num

Table 2.3: Example SQL context-masking Comparison

Chapter 2. Problem Background & Related Work 19

2.6.3 SQL Similarity Measures

DAIL Measure: In the DAIL Selection algorithm, the Jaccard similarity metric is

used as a threshold function to determine whether to include a candidate example in

the prompt. This is a common natural language similarity metric which calculates

the proportion of shared token labels found across two sentences. In this context of

measuring the similarity between SQL queries, it will be referred to as DAILSim.

DAILSim(SQL1,SQL2) =
Number of common tokens

Total unique tokens

Proposed Measure: Applying DAILMask to a pair of queries before calculating

their DAILSim value seems to be entirely inadequate for determining sensible notions

of SQL similarity. Many distinct query tokens are mapped to an underscore under

DAILMask, whilst the DAILSim measure is defined via the number of unique tokens

shared between the queries - this creates a notable issue. Also, the Jaccard similarity

measure between two SQLs only considers individual token labels, without accounting

for their position and overall structure. To ensure that structure is considered when

deciding SQL similarity, the tree similarity of edit distance (TSED) metric is identified.

Song et al. outline the novel metric [18], which first computes the syntax tree edit

distance between two queries and then normalizes to a value in the range zero to one.

This metric is agnositic to token labels, so to balance token label similarity and token

structure similarity, the SQLSim metric is proposed. This is the chosen metric for SQL

similarity used across the study, to be used in conjunction with SQLMask.

SQLSim(SQL1,SQL2) =
DAILSim(SQL1,SQL2)+T SED(SQL1,SQL2)

2

Table 2.4 provides an example that highlights the differences between the DAIL

approach and the proposed method for measuring SQL similarity. The example is a

clear demonstration of two SQLs that are dissimilar in structure and complexity but are

treated as perfect matches under the DAIL approach. Eight additional demonstrations

comparing the similarity scoring functions are provided in Appendix C.

SQL1 SELECT name, country, age FROM singer ORDER BY age DESC

DAILMask(SQL1) select from order by desc

SQLMask(SQL1) SELECT col1, col2, col3 FROM table1 ORDER BY col3 DESC

SQL2 SELECT T1.Name FROM people AS T1 JOIN poker player AS T2

ON T1.People ID = T2.People ID ORDER BY T2.Earnings DESC

Chapter 2. Problem Background & Related Work 20

DAILMask(SQL2) select from order by desc

SQLMask(SQL2) SELECT alias2.col1 FROM table1 AS alias1 JOIN table2

AS alias2 ON alias1.col2 = alias2.col2 ORDER BY

alias2.col3 DESC

DAILSim(DAILMask(SQL1), DAILMask(SQL2)) = 1.0

SQLSim(SQLMask(SQL1), SQLMask(SQL2)) = 0.3694̇

Table 2.4: SQL Queries and Similarity Metrics

2.6.4 Pre-Predicted SQL Embeddings

SQLSim, when used alongside the proposed masking SQLMask, is a stricter and seem-

ingly more complete approach to evaluating notions of SQL similarity than the method

deployed in the DAIL study. However, manually identifying the best examples for a

target based on SQLSim score remains too computationally expensive when working

with a moderately sized dataset. This is a case where vector embedding models could

provide a high-speed compromised solution. Though VEMs are trained with natural

language sentences, it is anticipated that an embedding-based approach could be fine-

tuned to map SQL queries to meaningful vectors after sufficient training examples.

The second half of this study investigates the potential of embedding the masked

SQL space rather than the standard masked-question space for ReICL, and whether this

can lead to the identification of higher quality examples. Of course, it is not possible

to embed the true target gold query in a Text-to-SQL problem, but to take inspiration

from the DAIL Selection algorithm, it is possible to embed a pre-predicted ’first guess’

SQL. This runs the risk of choosing examples that reinforce bad behaviour exhibited by

erroneous pre-prediction queries. Hence, the study aims to answer two pivotal questions

concerning example selection algorithms which prioritize a notion of SQL similarity.

1. Embedding Pre-Predicted SQLs: If we embed a masked pre-predicted SQL for

a target problem, and obtain the nearest neighbors in the embedded SQL space,

will this outperform traditional question embedding approaches? To what extent

does this reinforce bad translation from the first prediction?

2. Embedding Gold SQLs: If we embed the true gold SQL under SQLMask, do we

retrieve consistently high quality examples? Does the inclusion of highly similar

examples to the true gold query guarantee increases in benchmark performance?

Chapter 3

RQ1: Survey of Vector Embedding

Model Performance

3.1 Experiment Outline

To address the first research question, a comprehensive evaluation of state-of-the-art

embedding models is conducted against both the Spider and BIRD benchmarks. A total

of twenty-four experiments are recorded, evaluating the performance of eight surveyed

VEMs; these include the five SBERT-based models and the three OpenAI models stated

in Section 2.5.1. Each model is assessed by three independent k-shot experiments,

where k ∈ {1,3,5}. Otherwise, all experiments adhere to the following parameters.

Parameter Value

Language Model gpt-3.5-turbo-0125

Selection Algorithm GET EXAMPLES MASK (Algorithm 3)

Embedding Space Context-Masked Questions

Database Representation Code Representation

Example Organization DAIL Organization

Schema Linker for Question Masking RESD-SQL

Table 3.1: Embedding Model Experiment Fixed Parameters List

To preface the main survey results, two forms of baseline experiments are recorded

for each benchmark. These provide informative insights into how well gpt-3.5-turbo

can perform without the aid of informed retrieval based in-context learning techniques.

21

Chapter 3. RQ1: Survey of Vector Embedding Model Performance 22

• Zero Shot Experiment: Benchmark questions are posited to the language model

without any examples included in the prompt. The results of this experiment for

the Spider and BIRD benchmarks are offered in Table 3.2.

Benchmark Spider BIRD

EX 0.720 0.439

Table 3.2: Comparison of Zero-Shot Spider and BIRD EX Scores

• Random Selector Experiments: Examples are chosen at random from the

training dataset, with k-shot experiments conducted for k ∈ {1,3,5}. The results

for the Spider and BIRD benchmarks in each case are offered in Table 3.3.

k Spider BIRD

1 0.734 0.412

3 0.734 0.409

5 0.737 0.419

Table 3.3: Comparison of Random Selector k-shot Spider and BIRD EX Scores

By comparing the execution accuracy scores of Tables 3.2 and 3.3, it is evident

that providing random examples results in a negligible increase in performance for

Spider and is actually detrimental to performance for BIRD. This provides evidence that

poor examples can result in decreased performance and misalign a language model’s

behaviour when attempting to complete Text-to-SQL conversions.

3.2 Spider Results

Survey: The results of the 8 VEM survey for the Spider benchmark are displayed in

Table 3.4. Prompt and evaluation files for each experiment are distributed with the

source code, with all results fully reproducible via the corresponding Jupyter notebook.

k BERT RoBERTa mpnet-v2 Mini-L6 Mini-L12 te3-small te3-large ada002

1 0.760 0.765 0.764 0.773 0.752 0.761 0.761 0.770

3 0.766 0.779 0.767 0.767 0.766 0.771 0.777 0.775

5 0.777 0.775 0.776 0.766 0.772 0.781 0.784 0.783

Table 3.4: Research Objective 1 Survey: Spider EX Scores

Chapter 3. RQ1: Survey of Vector Embedding Model Performance 23

It is evident from the survey that employing informed ReICL example selection

techniques can increase execution accuracy for Spider Text-to-SQL conversions by

up to 6.4% above the zero-shot baseline. However, for each value of k, changing the

VEM does not appear to significantly impact the final EX score, with all outcomes

falling within a maximum distance of 2.1% to the top-scoring VEM in their k-shot

tier. Evidently, no singular VEM outperforms all other alternatives for all values of k,

with distinct models setting the record scores for 1-shot, 3-shot, and 5-shot experiments

respectively. Thus, altering the VEM shows only a slight effect on the EX score, but

this does not fully address how much influence VEM choice has on example selection.

Aggregated Results: A significant result is observed when considering the Spider

experiment results in aggregate. Counting how many benchmark questions were cor-

rectly answered across the experiments provides a lower bound of the best theoretical

score that can be achieved through example selection techniques alone. The number of

problems that could be answered with just a single example is surprisingly impressive,

as when considering the eight 1-shot experiments in the survey 896 / 1034 (86.7%)
of the benchmark questions were seen to be answered correctly. Extending this to

all twenty-four k-shot experiments, this proportion increases to 924 / 1034 (89.7%).
Both figures exceed the final score from the DAIL-SQL study (86.6%) and surpass any

known submission that leverages gpt-3.5-turbo. While altering the VEM may result

in a negligible difference to the overall EX score, these results imply that there is a

discernible difference in which questions are answered correctly across the experiments.

Example Variety Analysis: To illustrate this point further, the proportion of mu-

tually correctly answered questions for every pair of experiments is recorded. This

proportion is known as the Jaccard index of two experiments’ pairwise outcomes.

Jaccard Index =
Number of common correct answers

Total number of unique correct answers in both sets

For example, consider the results from the 1-shot bert-base-nli-mean-tokens

experiment and the 1-shot stsb-roberta-base experiment. The number of questions

that the BERT-equipped experiment answered correctly, the number of questions that

the RoBERTa experiment answered correctly, and the number of questions that both

experiments answered correctly are given in Table 3.5. From this information, we can

infer the Jaccard index between the two experiments results.

Chapter 3. RQ1: Survey of Vector Embedding Model Performance 24

Survey Result Value

Number of correct BERT answers 786

Number of correct RoBERTa answers 791

Number of common correct answers 743

Total number of unique correct answers in both sets 786+791−743 = 834

BERT / RoBERTa Experiment Results Jaccard Index 743/834≈ 0.891

Table 3.5: BERT and RoBERTa 1-shot Experiments Jaccard Index Computation

This indicates that approximately 11% of the correctly answered questions for the

1-shot BERT and RoBERTa experiments are answered correctly by only one model but

not the other. This difference is a more relevant measure to the study, and is formally

referred to as Jaccard distance. Since the embedding model is the only independent

variable between the experiments, the observed discrepancy must be due to VEM

influence on example selection, with different examples being included in the prompts.

Pairwise Jaccard scores are recorded for each set of experiments, stratified by k.

The average Jaccard distance for each k represents the expected proportion of correct

answers that differ between any two given experiments, indicating how often one model

correctly answers a question that the other does not. Across the strata, it is seen that

approximately 12% of the correct answers differ between any two experiments, as

indicated by the average Jaccard distance values of 0.123 for 1-shot, 0.125 for 3-shot,

and 0.119 for 5-shot experiments.

k Average Jaccard Index Average Jaccard Distance

1 0.877 0.123

3 0.875 0.125

5 0.881 0.119

Table 3.6: Research Objective 1 Survey: Spider Average Jaccard Scores & Distances

This consistent average Jaccard distance highlights that, even though the models

achieve similar overall execution accuracies, the specific questions they answer correctly

can often vary. This 12% discrepancy must be attributed to the choice of vector embed-

ding model, and the consequent variation in examples retrieved during the selection

process. Hence, further evidence is shown that the VEM choice can have a substantial

impact on the performance language models when deployed for few-shot learning.

Chapter 3. RQ1: Survey of Vector Embedding Model Performance 25

Example Quality Analysis: To understand how successful question embedding

based approaches are at example selection, the results from 1-shot experiments are used

to form an evaluation matrix, documenting question success versus example quality. An

example is classified as ’good’ if the SQLSim value between the example query and its

true target gold SQL is above 0.85. The threshold for a ’good’ example classification is

chosen to match the threshold deployed in the DAIL Selection algorithm. The evaluation

matrix given in Table 3.7 classifies all 1-shot experiment outcomes from the survey.

Good Example Bad Example

Correct 1815 4495

Incorrect 174 1788

Table 3.7: Research Objective 1 Survey: Spider Evaluation Matrix

The matrix offers important insights into the effect of few-shot prompting for Text-

to-SQL conversions. We see that providing a ‘good’ example significantly increases the

chance of a correct conversion, but does not guarantee a positive outcome. Also notable

is the sheer number of ‘bad’ examples selected. In Table 3.7, 76% of cases are seen to

include a ‘bad’ quality example. An exhaustive search of the Spider training set for

each benchmark question reveals that 66% of Spider problems have at least one ‘good’

example that could be nominated. When lowering the SQLSim threshold to 0.75, this

increases to 92%, but these strong potential candidates are still mostly going unselected.

To further this claim, the mean example quality is calculated for each experiment

by measuring the SQLSim score between the nominated example SQLs and the target

gold query. This displays that, across the board, examples chosen in the survey have

SQLs that are structurally dissimilar to their target, and are unlikely to significantly aid

a language model in its conversion attempts. It is argued that this is not particularly the

fault of the embedding models, but instead the algorithm that deploys them. Selecting

examples based on semantic similarity to the target plaintext question often fails to

retrieve examples that share any meaningful similarity in SQL structure.

k BERT RoBERTa mpnet-v2 Mini-L6 Mini-L12 te3-small te3-large ada002

1 0.534 0.543 0.545 0.527 0.540 0.448 0.461 0.470

3 0.529 0.527 0.525 0.511 0.528 0.446 0.455 0.469

5 0.518 0.512 0.517 0.501 0.522 0.439 0.449 0.464

Table 3.8: Research Objective 1 Survey: Spider Average Example Similarity Scores

Chapter 3. RQ1: Survey of Vector Embedding Model Performance 26

This highlights a critical insight from the study that reveals a fundamental flaw in

current ReICL algorithms: the failure of question similarity-based example retrieval.

• Masked Question Similarity ≠⇒ Similar SQL: When directly studying the

prompts that have been produced for Text-to-SQL tasks across the survey, it is

clear that choosing examples based on masked-question similarity generally does

not promote examples with similar SQLs to the target gold query.

Successful conversions tend to include examples with a higher SQLSim score

relative to the gold query, with success cases having an average example similarity

score of 0.62 compared to 0.48 for failure cases. This reinforces that the proposed

SQLSim metric is a strong indicator as to whether an example is suitable for few-

shot prompting, and a reminder of the failings of question embedding retrieval.

If the aim of ReICL is to identify examples with a high level SQL similarity to the

target, then embedding the masked-question space evidently does not achieve this

goal. The reason behind this disparity, it is argued, is a straightforward conclusion

from the definition provided in Section 2.1 of a Text-to-SQL problem. The

gold query for any Text-to-SQL problem depends on both the original question

and the target database. Masked question structure can be a useful heuristic

for the example SQL’s composition, but it has little to no correlation with the

relevant database’s structure. This means that you can have identical masked

questions, yet have completely different SQL structures if the two examples relate

to different databases. Often, examples are promoted that are largely different

in SQL structure to the target, which can distract a language model and result in

unsuccessful conversions. Hence embedding the masked-question space is not
encouraged for ReICL example selection in future studies.

Spider Summary: The aggregated survey results suggest that example selection

techniques are an underexplored avenue for the Spider benchmark, particularly when

using smaller or outdated language models. The possibility of reaching an 89.7%

success rate demonstrates that all the necessary ‘needles in the haystack’ exist within

the Spider training set to achieve state-of-the-art execution accuracy scores. However,

using question embedding-based retrieval to is argued to be significantly limited in its

effectiveness at finding suitable examples. Regardless of the embedding model used, on

average selected examples tend to be of an extremely low quality relative to the target

gold. The question, then, is how to develop a ReICL mechanism that can identify the

best possible candidates with a high degree of consistency.

Chapter 3. RQ1: Survey of Vector Embedding Model Performance 27

3.3 BIRD Results

Survey: Similar results are seen for the BIRD benchmark, albeit with lower success

rates due to a large increase in question complexity in comparison to Spider problems.

The results of the eight VEM survey for the BIRD benchmark are found in Table 3.9.

k BERT RoBERTa mpnet-v2 Mini-L6 Mini-L12 te3-small te3-large ada002

1 0.437 0.428 0.428 0.420 0.437 0.435 0.432 0.438

3 0.430 0.429 0.434 0.434 0.448 0.450 0.430 0.441

5 0.444 0.432 0.427 0.436 0.448 0.441 0.437 0.437

Table 3.9: Research Objective I Survey: BIRD EX Scores

Once again, EX scores do not deviate significantly among the experiments1, yet here

there is less evidence of a linear relationship between the number of few-shot examples

used and execution accuracy score. What becomes most apparent is the fact that 18 / 24

of experiments actually perform worse than the zero-shot baseline. Selected examples

appear to deter the language model from making successful conversions, leading to a

decrease in overall execution accuracy scores. Problems in the BIRD training set tend

to be more complex and varied in SQL structure, so an inappropriate recommendation

looks to be seriously detrimental to the probability of a successful outcome.

Aggregated Results: A high aggregated EX score is also observed across the BIRD

experiments, with a combined 1021 / 1534 (66.6%) of questions seen to be answered

correctly over the twenty-four experiments. A ReICL system capable of replicating this

score would achieve eighth place on the BIRD leaderboard. This may be challenging to

fully realize, as there is a greater disparity between aggregate and average performance

on the BIRD benchmark in comparison to the results observed for Spider. Table 3.10

demonstrates this extended gap between typical performance and optimal performance.

Benchmark Average Score Aggregate Score Agg - Avg

Spider 0.770 0.897 0.127

BIRD 0.436 0.670 0.234

Table 3.10: Average vs Aggregated Score Comparison for Spider and BIRD Benchmarks

1The evaluation script for BIRD differs from Spider and has a timeout element for long-running
prediction vs gold comparisons. This results in a small amount of potential variability between individual
experiment runs, dependent on local hardware and processing resources.

Chapter 3. RQ1: Survey of Vector Embedding Model Performance 28

Example Variety Analysis: Average Jaccard index and distance scores are also

recorded for the BIRD results, this time revealing a notable difference in the proportion

of correct answers shared between experiments. The figures found in Table 3.11

indicate that approximately 30% of correct answers differ between any two given BIRD

experiments, in contrast to the roughly 12% of cases observed for Spider.

k Average Jaccard Index Average Jaccard Distance

1 0.700 0.300

3 0.697 0.303

5 0.707 0.293

Table 3.11: Research Objective 1 Survey: BIRD Average Jaccard Scores & Distances

The larger average Jaccard distance scores suggests that changing the VEM has a

notable impact on which questions are answered correctly. Not only are BIRD questions

generally harder for large language models to answer, they also appear more difficult to

reliably choose few-shot examples for. Overall, changing the embedding model seems

to have a considerable impact on individual BIRD conversion tasks, but less so on the

overall execution accuracy score.

Example Quality Analysis: An evaluation matrix is also produced for the 1-shot

BIRD survey results. Once again, the evidence shows that a ‘good’ example is more

likely to lead to a success case rather than a failure, cementing the merit of effective

example selection techniques. But what is especially prevalent is the number of ‘bad’

examples chosen across BIRD experiments. In Table 3.12, 96% of cases include an

example of low similarity to the target gold. A manual search of the training set reveals

that 66% of BIRD benchmark questions have a ’good’ example in the training set that

could assist the language model, and upon lowering the threshold to 0.75 this increases

to a considerable 88%. But once again these examples are often not being correctly

identified, indicating that the selection of poor examples for few-shot prompting is

likely a major bottleneck to achieving higher BIRD execution accuracy scores.

Good Example Bad Example

Correct 352 4948

Incorrect 138 6834

Table 3.12: Research Objective 1 Survey: BIRD Evaluation Matrix

Chapter 3. RQ1: Survey of Vector Embedding Model Performance 29

Considerably low average example SQLSim scores are also recorded across the

experiments. What should be noted alongside the figures in Table 3.13 is the example

similarity scores for the random selector experiment. For the 1-shot random example

experiment the average example SQLSim score to the target was 0.423, for the 3-shot

random experiment the average score was 0.426, and for the 5-shot random experiment

the average score was 0.424. This shows that examples chosen by masked-question

embedding retrieval are, on average, only slightly more relevant to the conversion task

than a randomly selected query.

k BERT RoBERTa mpnet-v2 Mini-L6 Mini-L12 te3-small te3-large ada002

1 0.468 0.459 0.480 0.466 0.470 0.458 0.466 0.452

3 0.468 0.454 0.481 0.467 0.468 0.456 0.464 0.457

5 0.470 0.452 0.481 0.466 0.467 0.453 0.462 0.455

Table 3.13: Research Objective 1 Survey: Spider Average Example Similarity Scores

BIRD Summary: The results from the BIRD study reinforce many of the conclu-

sions already drawn in Section 3.2. When considering the aggregated results of the

survey, it is apparent that a ReICL approach that always selects the right examples could

result in impressive levels of performance. But it is also shown that typical examples

selected via a masked-question embedding approach often have little relevance to the

target problem. For the BIRD benchmark, this notably results in many experiments

producing lower execution accuracy scores than a zero-shot prompting approach.

On average, examples chosen for BIRD have even lower SQLSim scores to their

respective gold queries than examples chosen for Spider. Considering that for 66% of

BIRD problems, there exists at least one ‘good’ example in the train set to recommend,

this must be a fault of the example selection algorithm as opposed to any individual

embedding model. The surveys across Chapter 3 build a case against choosing examples

based on notions of question similarity, as embedding based retrieval is argued to be

misused in this context. Moving forwards2, the focus of the research is directed towards

leveraging embedding models towards more successful example retrieval through the

design of new ReICL algorithms and a different choice of embedding space.

2Further investigations into the BIRD benchmark are not conducted in the second half of this study.
Instead, newly designed ReICL mechanisms aimed at reducing the gap between average and aggregate
performance are evaluated against Spider. It is hoped and anticipated that a successfully engineered
ReICL mechanism for Spider will be able to translate favourable performance when tested using BIRD.

Chapter 4

RQ2: Supervised Fine-Tuning of Vector

Embedding Models

4.1 Supervised Fine-Tuning Pipeline

The results of Chapter 3 demonstrate that all the right training examples exist in both the

Spider and BIRD benchmarks to achieve state-of-the-art performance through few-shot

prompting methods alone. However, it remains unclear whether a mechanism can be

developed to reliably identify these high-quality examples. One unexplored approach

to improving the quality of selected examples could be VEM fine-tuning. Ideally, a

fine-tuned embedding model would learn to cluster relevant examples near the target

problem in the projected vector space. If fine-tuning causes high-quality examples to

map closer to the target, they are more likely to be selected as the nearest neighbor.

To use the sentence-transformer library’s fine-tuning suite, one must first decide

on an embedding space. Next, a loss function needs to be chosen that encourages the

selection of good examples while discouraging bad ones. In this study, the CoSENT [5]

loss function is chosen for this purpose, which requires training examples in the form

(sentenceA, sentenceB, score). The score function is expected to be a similarity measure

within the range [−1,1], where a score of 1 indicates a notion of perfect similarity

between the sentence pair, and a score of -1 indicates complete dissimilarity.

Once a training dataset of such triples is provided, the sentence-transformer

library has the facility to fine-tune an existing SBERT-based VEM. Given enough exam-

ples, this should produce refined embeddings, with vector positions in the output space

30

Chapter 4. RQ2: Supervised Fine-Tuning of Vector Embedding Models 31

reflecting the similarity scores from the training data. This underscores the importance

of establishing an accurate measure of similarity for sentences in the embedding space,

which in turn limits the possible approaches to fine-tuning for Text-to-SQL.

4.2 Fine-Tuning of Question Embeddings

One might first consider how to fine-tune a VEM when using context-masked questions

as the embedding space. A central lesson from Chapter 3 was that very little about SQL

structure can be inferred from the benchmark question alone, as gold queries equally

depend on the target database. This makes it difficult to design a general-purpose VEM

fine-tuning framework, as a universal notion of sentence similarity cannot exist between

two masked-question strings for the purposes of Text-to-SQL. Two examples with

identical masked questions could take very different gold queries. Under any VEM

encoding, the two instances will share a vector embedding, and there is no possible way

of distinguishing which of the two cases should be included in a prompt. This makes it

impossible to create a consistent and reliable training methodology.

An overfit approach to fine-tuning question embeddings for the Spider benchmark is

detailed in Appendix D as part of this study. The method embeds the standard question

space in order to minimize vector overlap, and uses a very basic scoring metric. The

Spider experiments from Section 3.2 are utilized, in essence creating an ’answer sheet’

for example recommendation. It can perhaps be viewed as a brute-force approach, with

the objective of promoting known successful 1-shot examples for each question, and

dissuading known fail cases. The aim is to reproduce the observed 86.7% 1-shot ag-

gregate score by manually pointing to which examples will result in a correct conversion.

The fine-tuned embedding produced via this approach leads to one of the highest

EX scores observed in the study, but can be seen to promote a backwards approach to

the traditional machine learning paradigm. The survey used to generate the training data

demanded a huge amount of runtime that is not expected to be replicated by other studies.

Also, the prompts that led to a success case when leveraging the gpt-3.5-turbo model

may not result in a successful conversion if using a different LLM. Most importantly,

the approach massively overfits to answer Spider benchmark questions exclusively,

providing no room for extrapolation to other Text-to-SQL problems. Thus it is deemed

to lack scientific rigor, and is not included in the main body of the study.

Chapter 4. RQ2: Supervised Fine-Tuning of Vector Embedding Models 32

4.3 Fine-Tuning of SQL Embeddings

A limiting factor in tackling Text-to-SQL benchmarks is the relative lack of labeled

training examples. Both Spider and BIRD contain fewer than 10,000 training examples,

which may be insufficient for conducting effective fine-tuning of a large language

model. However, a much larger dataset could be generated to fine-tune a vector embed-

ding model instead. Rather than using examples in isolation, examples are considered

pairwise for model training. By pairing examples in the train-set, over 44 million

combinations can be potentially generated with for training. To align with the embed-

ding fine-tuning pipeline, some form of similarity score must be provided with each pair.

A natural conclusion to this idea would be to fine-tune an embedding model using

pairwise SQLSim scores from the train-set. This would require a ReICL mechanism

that embeds the context-masked SQL space, which has not been explored before.

Embedding the SQL space could resolve many potential problems identified with using

pre-predicted SQLs as the key component of a ReICL mechanism.

• Retrieval Speed: Identifying the k most similar examples to a target SQL would

require a linear search of the train-set for every benchmark question. This would

require a massive computational overhead, and ultimately slow retrieval rates.

By embedding the masked SQL and obtaining the k-nearest neighbors, nearby

examples will be retrieved much quicker.

• Avoiding Overfit: The nearest neighbors in the embedding space are not guar-

anteed to be the most similar SQLs in the train-set. This could offset potential

concerns on whether retrieved examples will take on the negative characteristics

of incorrect pre-predictions.

• Previous Embedding Training: Embedding models are trained on large natural

language corpus, with little exposure to the full variety of possible SQL query

structures. By providing a vast quantity of SQL pairs with SQLSim values, it is

hoped targeted fine-tuning can ‘rewrite’ some of the predisposed behaviour of

a vector embedding model, and encourage the linking of queries based on their

SQL similarity over their linguistic similarity.

Complete pseudocode is provided in Appendix B for a selection algorithm that identifies

examples through embedding the context-masked pre-predicted SQL space.

Chapter 4. RQ2: Supervised Fine-Tuning of Vector Embedding Models 33

4.4 Embedding Fine-Tuning Experiment

In this section, six experiments are conducted against the Spider benchmark to ad-

dress several key themes of the study. Where relevant, the experiments employ

all-mpnet-base-v2 as the base embedding model used to encode the masked SQLs.

Experiments are conducted for k ∈ {1,3,5} as seen before in the previous chapter.

1. Pre-Pred SQL Similarity + Manual Selection: The top k examples by SQLSim

are selected by linear search, relative to the pre-predicted SQL query1.

2. Pre-Pred SQL Similarity + Embedding Selection: The top k closest examples

in the embedding space are selected, relative to the pre-predicted SQL query.

3. Pre-Pred SQL Similarity + Fine-Tuned Embedding Selection: The top k

closest examples in the embedding space are selected, relative to the pre-predicted

SQL query (using a fine-tuned embedding model).

4. SQL Similarity + Manual Selection: The top k examples by SQLSim are

selected by linear search, relative to the true gold SQL query.

5. SQL Similarity + Embedding Selection: The top k closest examples in the

embedding space are selected, relative to the true gold SQL query.

6. SQL Similarity + Fine-Tuned Embedding Selection: The top k closest exam-

ples in the embedding space are selected, relative to the pre-predicted SQL query

(using a fine-tuned embedding model).

By conducting these experiments, the benefits and drawbacks of selecting examples

based on some notion of SQL similarity should become clear. Each experiment looks to

provide a different insight into ReICL methods that focus on SQL similarity selection,

with some key points of interest highlighted below.

• Experiments 1/2 and 4/5 examine how much performance is lost when transition-

ing from expensive manual selection to efficient embedding based retrieval. On

average, manually determining the top five examples for a target using SQLSim

takes over one-hundred times longer than embedding-based retrieval. If examples

of similar quality to the true top k candidates can be quickly retrieved without an

exhaustive search, then the ReICL mechanism can be considered a success.

1The file of pre-predicted SQLs are sourced directly from the DAIL-SQL study [4], available at
https://github.com/BeachWang/DAIL-SQL/tree/main/results

Chapter 4. RQ2: Supervised Fine-Tuning of Vector Embedding Models 34

• Experiments 2/3 and 4/6 look to explore whether a fine-tuned embedding system

can retrieve better quality examples than the equivalent standard base model. The

all-mpnet-base-v2 model is fine-tuned using 300,000 distinct training tuples2,

each of the form (SQL1, SQL2, score). These SQLs are context-masked using

SQLMask and the similarity score is obtained using SQLSim.

• Experiments 4, 5, and 6 each attempt to find the k best examples by comparing

candidates to the gold queries for each Spider task. Of course, this is an un-

realizable construction that assumes the selection model has access to the true

benchmark answers. This is conducted to assess how well gpt-3.5-turbo can

perform when provided with examples of a guaranteed quality. This set of experi-

ments can be viewed in contrast to experiments 1, 2, and 3 which offer practical

solutions for SQL similarity based example selection by using pre-predictions.

Results: The experiment outcomes display some of the highest Spider benchmark

scores recorded across the study, with the best performance achieved when manually

providing the true top examples by SQLSim score. It is also clear that using an embed-

ding model to speed up example retrieval leads to minimal compromise in EX score, in

fact this ultimately improves performance in the set of pre-prediction experiments.

k DAIL Pre-Pred Manual Pre-Pred Embed. Pre-Pred SFT Gold Manual Gold Embed. Gold SFT

1 0.763 0.788 0.775 0.774 0.806 0.779 0.789

3 0.773 0.783 0.784 0.781 0.810 0.799 0.795

5 0.780 0.789 0.791 0.791 0.810 0.809 0.804

Table 4.1: Comparison of Spider EX Performance Across Different Selection Methods

The results in Table 4.1 suggest that selecting examples based on masked pre-

predicted SQL similarity is an effective approach to example selection. All such

experiments outperform the best results from the question embedding survey in Chapter

3. In other words, the highest outcome for each k when embedding the question space

is lower than the worst outcome observed when using pre-predicted SQL selection.

This approach also beats out the DAIL Selection algorithm [4] at each level of k when

reproduced locally, whilst retrieving examples of far higher similarity to the gold query

(Tables 4.1 & 4.2). There is still an approximate 2% to 3% disparity between each

2Fine-tuning was conducted for 8 epochs using Google Colab’s A100 GPU. The final model
achieved a loss of 0.0985 after the complete training procedure. The fine-tuned VEM has been pub-
lished to huggingface and is now accessible through the sentence-transformers library by calling
"model = SentenceTransformers(s2593817/sft-sql-embedding)".

Chapter 4. RQ2: Supervised Fine-Tuning of Vector Embedding Models 35

pre-prediction experiment and its corresponding gold query experiment at each tier.

This gap makes clear that practical implementations are quite a way off in their ability

to select the best possible examples from the training sets. Of course, if the set of

pre-predictions was of a higher quality then this problem would be less prevalent.

Example Quality Analysis: Disappointingly, the fine-tuning procedure results in lower

execution accuracy scores than the base model in both pre-prediction and gold query

selection experiments. This may appear like the embedding fine-tuning results in worse

examples being selected, but this is actually not the case. For each experiment, the

mean example quality is calculated by measuring the average SQLSim score between

the examples SQLs retrieved by the selection algorithm and the target gold query. Table

4.3 illustrates that, on average, examples offered up by a fine-tuned embedding model

tend to take a higher similarity score than examples chosen by the standard VEM.

k DAIL Pre-Pred Manual Pre-Pred Embed. Pre-Pred SFT Gold Manual Gold Embed. Gold SFT

1 0.581 0.724 0.718 0.723 0.841 0.818 0.829

3 0.571 0.724 0.715 0.721 0.837 0.811 0.824

5 0.566 0.722 0.711 0.719 0.834 0.804 0.820

Table 4.2: Comparison of Average Example Similarity Scores Relative to Gold Queries

Evidently, the fine-tuned embedding model is very effective at quickly obtaining

SQLs similar to a target. This is a major success of the study. Introducing a new way of

quickly retrieving similar SQLs to a target from a dataset is likely the most practical

takeaway from this research, with wide-ranging applications. Inspecting the results files

of the fine-tuned gold embedding experiment shows that the nominated examples are

indeed structurally similar to the target gold, demonstrating that the mechanism works

as intended. Unfortunately, this does not directly result in improved EX scores.

A contributing factor as to why this may be the case for the pre-predicted SQL

experiments is the issue of overfit. To prove this, average example similarity is recorded

relative to the pre-prediction queries, as opposed to the gold queries. When comparing

Table 4.2 with Table 4.3, it becomes clear that examples recommended in experiments

1, 2 and 3 have much higher similarity to the pre-predicted query than they do with

the target gold. This outcome is expected by design, but the large gap in average

similarities indicates that SQLs are being overfit to the prediction rather than the target.

Consequently, for incorrect pre-predictions, selected examples are likely to exacerbate

any faults of the original prediction and reduce the chances of successful conversion.

Chapter 4. RQ2: Supervised Fine-Tuning of Vector Embedding Models 36

The fine-tuned VEM tends to select examples that are even closer to the pre-predicted

query than the base VEM’s nominations, which has made the issue of overfit more

pronounced. This means that embedding the pre-predicted query using the standard

all-mpnet-base-v2 model is the most successful realizable approach, as it allows for

fast retrieval and reduces the effects of overfitting to flawed pre-predicted queries.

k Pre-Pred Manual Pre-Pred Embed. Pre-Pred SFT

1 0.925 0.889 0.901

3 0.920 0.882 0.894

5 0.914 0.874 0.889

Table 4.3: Comparison of Average Example Similarity Scores Relative to Pre-Predictions

Summary: The experiments have demonstrated that combining SQLMask with

embedding-based retrieval is a highly effective method for identifying SQL queries

with a structure similar to the target query. A large number of training instances can

be generated from relatively few SQLs to fine-tune an embedding model, which has

been shown to further improve the quality of selected examples. Still, presenting a

language model with highly similar examples to the target gold query does not guarantee

successful conversion. Fine-tuning can also result in selecting examples that are overfit

to a flawed pre-prediction, leading to lower EX scores compared to the base model.

That said, achieving a score of 81% on the Spider benchmark with the prior-

generation gpt-3.5-turbo base model is a huge success. According to Table 2 from

the DAIL-SQL paper [4], the upper limit for gpt-3.5-turbo using 5-shot DAIL selec-

tion is 79.6%. This assumes the selector can reference the gold query, as in experiments

4, 5, and 6. The embedded gold SQL selection algorithm extends this upper limit to

80.9%, suggesting this approach could be superior to the state-of-the-art DAIL method

if tested with the premier gpt-4-turbo or gpt-4o language models.

Upon review, the results files for the gold query embedding experiments exhibit the

consistent retrieval of examples that are relevant to the Text-to-SQL conversion tasks.

It is theorized that a chain-of-thought prompting style, that fully explains why these

selected examples are relevant to generating the target, would significantly increase

EX scores. Any continuation of the study would focus on developing new prompting

techniques to best support any language model learning by analogy from these examples.

Chapter 5

Conclusion

5.1 Study Overview

The research conducted has produced a series of results that can inform future Text-to-

SQL example selection studies, especially if utilising embedding models for retrieval.

Aggregated results from a large survey of embedding models make clear for the first

time that sufficient examples exist in both the Spider and BIRD training sets to achieve

near state-of-the-art performance through few-shot prompting techniques alone. This

is particularly notable as such scores can be achieved while using outdated language

models that are less capable than the current top of the range commercial offerings.

Altering the embedding model has been shown to impact which examples are se-

lected, but has relatively little impact on overall EX scoring and average example quality.

Algorithms that select examples primarily based on notions of question similarity are

criticised for producing examples of low relevance to the target gold query. In response,

a ReICL mechanism has been proposed that embeds the context-masked SQL space,

which results in some of the highest scores observed across the paper, as well as one of

the highest recorded execution accuracies to date for any Spider submission leverag-

ing the gpt-3.5-turbo model. This can be viewed as a milestone success for the study.

The method outlined provides a concrete and effective way of retrieving structurally

similar SQLs to a target, with the quality of selected examples being further enhanced

when using a fine-tuned embedding model. The novel context-masking script SQLMask

establishes a standard format for SQL queries and is designed to complement the

SQLSim metric. When used alongside embedding based retrieval, this certainly appears

37

Chapter 5. Conclusion 38

to be the current best way of retrieving similar SQLs from a dataset, which could

have wide-ranging applications. Significantly, practical implementations which embed

masked pre-predicted SQL queries outperform the state-of-the-art DAIL Selection

algorithm when tested with gpt-3.5-turbo on the Spider benchmark.

5.2 RQ1 & RQ2 Conclusions

A brief conclusion is provided to each of the central research questions that lie at the

heart of the paper to summarize the key takeaways and inform future works.

RQ1: To what extent does the choice of vector embedding model influence the quality

of examples chosen for few-shot Text-to-SQL conversion tasks?

The survey of embedding models conducted in Chapter 3 made clear that altering

the model often results in different examples selected for prompting. However very little

variation in overall EX scores or example quality is seen amongst experiments. This

led to the central conclusion that the choice of embedding model is not as important as

the choice of embedding space or the design of the retrieval algorithm. In the survey,

examples are selected by determining which examples have questions that are most the

semantically and linguistically similar to the target question. It’s argued how this is

not a good approach to choosing examples for Text-to-SQL, as a problem’s question

can have very little correlation with the problem’s gold SQL. This method of selection

abstracts entirely from the database related to the target problem, resulting in many

cases where the examples chosen by a VEM have queries with almost no structural

similarity to the target gold.

A positive outcome of this inconsistent and highly variable approach to example

selection was the broad range of example SQLs exhibited throughout the survey. Over

89% of Spider problems and 66% of BIRD problems have been shown to be answerable

using few-shot prompting methods alone. This surpasses all preconceived notions of

what a gpt-3.5 class model could achieve through few-shot prompting. The challenge

lies in developing a single mechanism capable of choosing all the right examples

to achieve this ideal performance. It is believed that no single question embedding

mechanism could retrieve all these examples while still being able to generalize to new

unseen Text-to-SQL problems. Therefore, focus should instead be assigned to designing

new retrieval algorithms that avoid using question similarity as the primary metric for

example quality, and instead uses it as a guiding heuristic.

Chapter 5. Conclusion 39

RQ2: To what extent can the fine-tuning of vector embedding models be applied to

achieve better quality examples for Text-to-SQL generation?

The fine-tuning procedure outlined in Chapter 4 led to the retrieval of examples

with higher average SQLSim scores to the target query when compared to the base

model. This is believed to have established the most effective and efficient approach to

selecting similarly structured SQL queries from a dataset. The retrieval method works

in conjunction with SQLMask, which introduces a new standard format for SQL queries

by abstracting away from database-dependent labels. By embedding the masked SQL

space, similar queries to a target can be quickly identified in a context-agnostic fashion.

Disappointingly, the fine-tuned embedding experiments yield lower Spider execution

accuracy scores than their base model counterparts, even if they produce examples of a

higher similarity to the true gold query. This indicates that there is more to Text-to-SQL

few-shot prompting than simply providing examples with highly relevant SQLs. I.e.

In higher-shot scenarios, the selected examples could have a cumulative effect beyond

their individual influence on the language model. This aspect has not been considered

when designing selection algorithms in this study. It is believed that the examples

nominated from the embedded gold SQL experiments should be good enough to direct

correct conversions if using a stronger language model, especially if used alongside a

chain-of-thought prompting approach, and schema-linking modules that can provide

concise database representations.

5.3 Future Works

The primary suggestion from this study is to repeat the experiments of Chapter 4 using a

premier commercial language model such as gpt-4-turbo. This would require a larger

financial outlay than was deemed feasible for this study but would provide valuable

insights into whether the proposed techniques can truly rival the top-performing DAIL-

SQL submission [4]. Additionally, it would clarify to what extent incorrect answers

can be attributed to language model limitations versus few-shot prompting limitations.

If a highly capable language model is unable to answer correctly even when manually

provided with the k most similar training queries to the gold, this may challenge the

conventional wisdom of what constitutes a good example.

Chapter 5. Conclusion 40

Another reccomendation would be to repeat the experiments of Chapter 4 against

the BIRD benchmark. This was not conducted in this study as no file of pre-predictions

for BIRD problems is included in the DAIL source code repository, so no meaningful

cross-comparison can be made. Average example similarity scores from the Chapter 3

BIRD experiment were notably poor, so it would be of interest to see how well a LLM

would respond when prompted with example queries of a guaranteed level of relevance.

Given that all the examples necessary for top performance have been shown to exist

in the Spider and BIRD train sets, any alternative mechanism of consistently retrieving

them would be highly valuable. It is concluded that a move away from embedding-

based retrieval may be best for future selection algorithms, and any truly effective

selection algorithm should consider question structure, database structure, as well as

some notion of expected SQL structure too. It is unlikely that all of this information

could be captured by a single sentence embedding model, which are primarily designed

for basic natural language inputs.

5.4 Closing Remarks

Example selection for Text-to-SQL is evidently a non-trivial task. Attempting to predict

the best training cases to include in a prompt without a prior knowledge of the gold

SQL structure is very difficult. Embeddings are often used as an efficient mechanism of

identifying potentially similar examples, but in this study it has been shown that they

are ineffective at retrieving quality candidates when encoding the question space.

It is conjectured that Text-to-SQL benchmarks could see leaderboard topping sub-

missions that focus on prompt engineering techniques alone. The pre-predicted SQL

techniques outlined in Chapter 4 can be used to successfully retrieve examples with a

strong degree of similarity to the provided ‘first guess’ query. Combining this with a

chain-of-thought prompting method, which explains how the example golds are derived

from their respective databases, could open a promising path for future research.

Although language models cannot solely rely on few-shot demonstrations for suc-

cessful conversions, ReICL techniques for Text-to-SQL should not be underestimated,

as this report has revealed that there is untapped potential that can be unlocked for the

Spider and BIRD benchmarks - simply by deploying effective example selection.

Bibliography

[1] Ben Bogin, Matt Gardner, and Jonathan Berant. Global reasoning over database

structures for text-to-SQL parsing. In Kentaro Inui, Jing Jiang, Vincent Ng, and

Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP), pages 3659–3664, Hong Kong,

China, November 2019. Association for Computational Linguistics.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

Pre-training of deep bidirectional transformers for language understanding. In

Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the

2019 Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for

Computational Linguistics.

[3] Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ra-

manathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev. Improving text-

to-sql evaluation methodology. In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), pages

351–360. Association for Computational Linguistics, 2018.

[4] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and

Jingren Zhou. Text-to-sql empowered by large language models: A benchmark

evaluation. Proc. VLDB Endow., 17(5):1132–1145, may 2024.

[5] Xiang Huang, Hao Peng, Dongcheng Zou, Zhiwei Liu, Jianxin Li, Kay Liu, Jia Wu,

Jianlin Su, and Philip S. Yu. Cosent: Consistent sentence embedding via similarity

ranking. IEEE/ACM Trans. Audio, Speech and Lang. Proc., 32:2800–2813, may

2024.

41

Bibliography 42

[6] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey

on large language models for code generation. arXiv preprint arXiv:2406.00515,

2024.

[7] Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, Wei Lu, Min-Yen Kan,

and Tat-Seng Chua. Re-examining the role of schema linking in text-to-sql. In

Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 6943–6954, 2020.

[8] Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, Wei Lu, Min-Yen Kan, and

Tat-Seng Chua. Re-examining the role of schema linking in text-to-SQL. In

Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings

of the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 6943–6954, Online, November 2020. Association for Computa-

tional Linguistics.

[9] Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. Resdsql: decoupling

schema linking and skeleton parsing for text-to-sql. In Proceedings of the Thirty-

Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference

on Innovative Applications of Artificial Intelligence and Thirteenth Symposium

on Educational Advances in Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23.

AAAI Press, 2023.

[10] Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie

Wei, Hongyan Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-

source language models for text-to-sql. arXiv preprint arXiv:2402.16347, 2024.

[11] Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie

Wei, Hongyan Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-

source language models for text-to-sql. arXiv preprint arXiv:2402.16347, 2024.

[12] Jia Li, Ge Li, Chongyang Tao, Huangzhao Zhang, Fang Liu, and Zhi Jin. Large

language model-aware in-context learning for code generation. arXiv preprint

arXiv:2310.09748, 2023.

[13] Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan

Huo, Fei Huang, Wenyu Du, Luo Si, and Yongbin Li. Graphix-t5: mixing

pre-trained transformers with graph-aware layers for text-to-sql parsing. In

Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence

Bibliography 43

and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence

and Thirteenth Symposium on Educational Advances in Artificial Intelligence,

AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023.

[14] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,

Bowen Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li,

Kevin C.C. Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can llm already

serve as a database interface? a big bench for large-scale database grounded

text-to-sqls. In Proceedings of the 37th International Conference on Neural

Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran

Associates Inc.

[15] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and

Weizhu Chen. What makes good in-context examples for gpt-3? arXiv preprint

arXiv:2101.06804, 2021.

[16] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using

Siamese BERT-networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun

Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP), pages 3982–3992, Hong Kong,

China, November 2019. Association for Computational Linguistics.

[17] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: masked

and permuted pre-training for language understanding. In Proceedings of the 34th

International Conference on Neural Information Processing Systems, NIPS ’20,

Red Hook, NY, USA, 2020. Curran Associates Inc.

[18] Y. Song, S. Ezzini, X. Tang, C. Lothritz, J. Klein, T. Bissyande, A. Boytsov, U. Ble,

and A. Goujon. Enhancing text-to-sql translation for financial system design.

In 2024 IEEE/ACM 46th International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP), pages 252–262, Los Alamitos,

CA, USA, apr 2024. IEEE Computer Society.

[19] Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini,

and Amin Saberi. Chess: Contextual harnessing for efficient sql synthesis. arXiv

preprint arXiv:2405.16755, 2024.

Bibliography 44

[20] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to

sequence for sets. arXiv preprint arXiv:1511.06391, 2015.

[21] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew

Richardson. RAT-SQL: Relation-aware schema encoding and linking for text-to-

SQL parsers. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault,

editors, Proceedings of the 58th Annual Meeting of the Association for Com-

putational Linguistics, pages 7567–7578, Online, July 2020. Association for

Computational Linguistics.

[22] Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Qian-Wen Zhang,

Zhao Yan, and Zhoujun Li. Mac-sql: Multi-agent collaboration for text-to-sql.

arXiv preprint arXiv:2312.11242, 2023.

[23] Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong, and Furu Wei. MiniLMv2:

Multi-head self-attention relation distillation for compressing pretrained trans-

formers. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors,

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,

pages 2140–2151, Online, August 2021. Association for Computational Linguis-

tics.

[24] Yiqing Xie, Alex Xie, Divyanshu Sheth, Pengfei Liu, Daniel Fried, and Car-

olyn Rose. Codebenchgen: Creating scalable execution-based code generation

benchmarks. arXiv preprint arXiv:2404.00566, 2024.

[25] Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet: Generating structured

queries from natural language without reinforcement learning. arXiv preprint

arXiv:1711.04436, 2017.

[26] Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. TypeSQL:

Knowledge-based type-aware neural text-to-SQL generation. In Marilyn Walker,

Heng Ji, and Amanda Stent, editors, Proceedings of the 2018 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 2 (Short Papers), pages 588–594, New

Orleans, Louisiana, June 2018. Association for Computational Linguistics.

[27] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,

James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir

Radev. Spider: A large-scale human-labeled dataset for complex and cross-domain

Bibliography 45

semantic parsing and text-to-SQL task. In Ellen Riloff, David Chiang, Julia

Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, pages 3911–3921, Brussels,

Belgium, October-November 2018. Association for Computational Linguistics.

[28] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating struc-

tured queries from natural language using reinforcement learning. arXiv preprint

arXiv:1709.00103, 2017.

[29] Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. A robustly optimized BERT pre-

training approach with post-training. In Sheng Li, Maosong Sun, Yang Liu, Hua

Wu, Kang Liu, Wanxiang Che, Shizhu He, and Gaoqi Rao, editors, Proceedings

of the 20th Chinese National Conference on Computational Linguistics, pages

1218–1227, Huhhot, China, August 2021. Chinese Information Processing Society

of China.

Appendix A

Exemplar Benchmark Prompts

A.1 Spider Example Prompt

The following prompt is generated for the first question in the Spider dev set, namely:

“How many singers do we have?”, from the ‘concert singers’ database, with gold query

“SELECT count(*) FROM Singers”. The prompt derives from the all-mpnet-base-v2

1-shot experiment, using DAIL-organisation and CR database representation.

PROMPT:

/* Some SQL examples are provided based on similar problems: */

\\/* Answer the following: How many aircrafts do we have? */

\\SELECT count(*) FROM Aircraft

\\

\\/* Given the following database schema: */

\\CREATE TABLE "stadium" (

\\"Stadium_ID" int,

\\"Location" text,

\\"Name" text,

\\"Capacity" int,

\\"Highest" int,

\\"Lowest" int,

\\"Average" int,

\\PRIMARY KEY ("Stadium_ID")

\\)

\\

46

Appendix A. Exemplar Benchmark Prompts 47

\\CREATE TABLE "singer" (

\\"Singer_ID" int,

\\"Name" text,

\\"Country" text,

\\"Song_Name" text,

\\"Song_release_year" text,

\\"Age" int,

\\"Is_male" bool,

\\PRIMARY KEY ("Singer_ID")

\\)

\\

\\CREATE TABLE "concert" (

\\"concert_ID" int,

\\"concert_Name" text,

\\"Theme" text,

\\"Stadium_ID" text,

\\"Year" text,

\\PRIMARY KEY ("concert_ID"),

\\FOREIGN KEY ("Stadium_ID") REFERENCES "stadium"("Stadium_ID")

\\)

\\

\\CREATE TABLE "singer_in_concert" (

\\"concert_ID" int,

\\"Singer_ID" text,

\\PRIMARY KEY ("concert_ID","Singer_ID"),

\\FOREIGN KEY ("concert_ID") REFERENCES "concert"("concert_ID"),

\\FOREIGN KEY ("Singer_ID") REFERENCES "singer"("Singer_ID")

\\)

\\

\\/* Answer the following: How many singers do we have? */

\\SELECT

Appendix A. Exemplar Benchmark Prompts 48

A.2 BIRD Example Prompt

The following prompt is generated for the first question in the BIRD dev set, namely:

“What is the highest eligible free rate for K-12 students in the schools in Alameda

County? Eligible free rate for K-12 = ‘Free Meal Count (K-12)‘ / ‘Enrollment (K-12)’”,

from the ‘california schools’ database, with gold query “Free Meal Count (K-12)‘ /

‘Enrollment (K-12)‘ FROM frpm WHERE ‘County Name‘ = ’Alameda’ ORDER BY

(CAST(‘Free Meal Count (K-12)‘ AS REAL) / ‘Enrollment (K-12)‘) DESC LIMIT

1”. The prompt derives from the all-mpnet-base-v2 1-shot experiment, using DAIL-

organisation and CR database representation, with additional context included.

PROMPT:

/* Some SQL examples are provided based on similar problems: */

\\

\\/* Answer the following: What is the highest infant mortality rate

\\ per thousand of the countries whose inflation is under 3? */

\\ SELECT MAX(T2.Infant_Mortality) FROM economy AS T1 INNER JOIN

\\ population AS T2 ON T1.Country = T2.Country WHERE T1.Inflation < 3

\\

\\/* Given the following database schema: */

\\CREATE TABLE frpm

\\(

\\ CDSCode TEXT not null

\\ primary key,

\\ ‘Academic Year‘ TEXT null,

\\ ‘County Code‘ TEXT null,

\\ ‘District Code‘ INTEGER null,

\\ ‘School Code‘ TEXT null,

\\ ‘County Name‘ TEXT null,

\\ ‘District Name‘ TEXT null,

\\ ‘School Name‘ TEXT null,

\\ ‘District Type‘ TEXT null,

\\ ‘School Type‘ TEXT null,

\\ ‘Educational Option Type‘ TEXT null,

\\ ‘NSLP Provision Status‘ TEXT null,

Appendix A. Exemplar Benchmark Prompts 49

\\ ‘Charter School (Y/N)‘ INTEGER null,

\\ ‘Charter School Number‘ TEXT null,

\\ ‘Charter Funding Type‘ TEXT null,

\\ IRC INTEGER null,

\\ ‘Low Grade‘ TEXT null,

\\ ‘High Grade‘ TEXT null,

\\ ‘Enrollment (K-12)‘ REAL null,

\\ ‘Free Meal Count (K-12)‘ REAL null,

\\ ‘Percent (\%) Eligible Free (K-12)‘ REAL null,

\\ ‘FRPM Count (K-12)‘ REAL null,

\\ ‘Percent (\%) Eligible FRPM (K-12)‘ REAL null,

\\ ‘Enrollment (Ages 5-17)‘ REAL null,

\\ ‘Free Meal Count (Ages 5-17)‘ REAL null,

\\ ‘Percent (\%) Eligible Free (Ages 5-17)‘ REAL null,

\\ ‘FRPM Count (Ages 5-17)‘ REAL null,

\\ ‘Percent (\%) Eligible FRPM (Ages 5-17)‘ REAL null,

\\ ‘2013-14 CALPADS Fall 1 Certification Status‘ INTEGER null,

\\ foreign key (CDSCode) references schools (CDSCode)

\\)

\\

\\CREATE TABLE satscores

\\(

\\ cds TEXT not null

\\ primary key,

\\ rtype TEXT not null,

\\ sname TEXT null,

\\ dname TEXT null,

\\ cname TEXT null,

\\ enroll12 INTEGER not null,

\\ NumTstTakr INTEGER not null,

\\ AvgScrRead INTEGER null,

\\ AvgScrMath INTEGER null,

\\ AvgScrWrite INTEGER null,

\\ NumGE1500 INTEGER null,

\\-- PctGE1500 double null,

Appendix A. Exemplar Benchmark Prompts 50

\\ foreign key (cds) references schools (CDSCode)

\\)

\\

\\CREATE TABLE schools

\\(

\\ CDSCode TEXT not null

\\ primary key,

\\ NCESDist TEXT null,

\\ NCESSchool TEXT null,

\\ StatusType TEXT not null,

\\ County TEXT not null,

\\ District TEXT not null,

\\ School TEXT null,

\\ Street TEXT null,

\\ StreetAbr TEXT null,

\\ City TEXT null,

\\ Zip TEXT null,

\\ State TEXT null,

\\ MailStreet TEXT null,

\\ MailStrAbr TEXT null,

\\ MailCity TEXT null,

\\ MailZip TEXT null,

\\ MailState TEXT null,

\\ Phone TEXT null,

\\ Ext TEXT null,

\\ Website TEXT null,

\\ OpenDate DATE null,

\\ ClosedDate DATE null,

\\ Charter INTEGER null,

\\ CharterNum TEXT null,

\\ FundingType TEXT null,

\\ DOC TEXT not null,

\\ DOCType TEXT not null,

\\ SOC TEXT null,

\\ SOCType TEXT null,

Appendix A. Exemplar Benchmark Prompts 51

\\ EdOpsCode TEXT null,

\\ EdOpsName TEXT null,

\\ EILCode TEXT null,

\\ EILName TEXT null,

\\ GSoffered TEXT null,

\\ GSserved TEXT null,

\\ Virtual TEXT null,

\\ Magnet INTEGER null,

\\ Latitude REAL null,

\\ Longitude REAL null,

\\ AdmFName1 TEXT null,

\\ AdmLName1 TEXT null,

\\ AdmEmail1 TEXT null,

\\ AdmFName2 TEXT null,

\\ AdmLName2 TEXT null,

\\ AdmEmail2 TEXT null,

\\ AdmFName3 TEXT null,

\\ AdmLName3 TEXT null,

\\ AdmEmail3 TEXT null,

\\ LastUpdate DATE not null

\\)

\\

\\/* Answer the following: What is the highest eligible free rate

\\ for K-12 students in the schools in Alameda County? Eligible

\\ free rate for K-12 = ‘Free Meal Count (K-12)‘ / ‘Enrollment (K-12)‘ */

\\SELECT

Appendix B

Example Selection Algorithms

Pseudocode for retrieval-based in-context learning example selection algorithms dis-

cussed across Chapters 3 and 4 are outlined in this Appendix. Also included is an

outline of the DAIL-SQL embedding algorithm as defined by Gao et al. in “Text-to-SQL

Empowered by Large Language Models: A Benchmark Evaluation”

B.1 Embedded Masked Question Selector

As featured across all vector embedding model survey experiments across Section 3.2

“Spider Results”, and Section 3.3 “BIRD Results”.

Algorithm 3 Select Examples + Masked Question Embeddings

Require: Q : Target Question, D: Target Database, k: Number of Examples, train set:

Benchmark Train Set, embedding model: VEM

1: function GET EXAMPLES MASK(Q , D , k, train set, embedding model)

2: train questions← train set[“question”]

3: masked questions← mask questions with schema link(train questions, train set)

4: train embeddings← embedding model.encode(masked questions)

5: masked target← mask questions with schema link(Q ,D)

6: target embedding← embedding model.encode(masked target)

7: distances← compute distances(target embedding, train embeddings)

8: nearest neighbors← closest k indices(distances,k)

9: selected examples← train set[nearest neighbors]

10: return selected examples

52

Appendix B. Example Selection Algorithms 53

B.2 Embedded Pre-Predicted SQL Selector

As featured in Experiments 2 & 3 of Section 4.4 “Embedding Fine-Tuning Experiment”

Algorithm 4 Select Examples + Masked Pre-Pred SQL Embedding

Require: pred sql: Target Pre-Prediction, D: Target Database, k: Number of Examples,

train set: Benchmark Train Set, embedding model: VEM

1: function GET EXAMPLES PRE PRED(pred sql, k, train set, embedding model)

2: train sqls← train set[“query”]

3: masked sqls← SQLMask(train sqls)

4: train embeddings← embedding model.encode(masked sqls)

5: masked pred← SQLMask(pred sql)

6: target embedding← embedding model.encode(masked pred)

7: distances← compute distances(target embedding, train embeddings)

8: nearest neighbors← closest k indices(distances,k)

9: selected examples← train set[nearest neighbors]

10: return selected examples

B.3 Embedded Gold SQL Selector

As featured in Experiments 5 & 6 of Section 4.4 “Embedding Fine-Tuning Experiment”

Algorithm 5 Select Examples + Masked Gold SQL Embedding

Require: G : Target Gold Query, D: Target Database, k: Number of Examples,

train set: Benchmark Train Set, embedding model: VEM

1: function GET EXAMPLES GOLD(G , k, train set, embedding model)

2: train sqls← train set[“query”]

3: masked sqls← SQLMask(train sqls)

4: train embeddings← embedding model.encode(masked sqls)

5: masked gold← SQLMask(G)

6: target embedding← embedding model.encode(masked gold)

7: distances← compute distances(target embedding, train embeddings)

8: nearest neighbors← closest k indices(distances,k)

9: selected examples← train set[nearest neighbors]

10: return selected examples

Appendix B. Example Selection Algorithms 54

B.4 Manual Pre-Predicted SQL Selector

As featured in Experiment 1 of Section 4.4 “Embedding Fine-Tuning Experiment”

Algorithm 6 Select Examples + Manual Pre-Pred SQL Similarity

Require: pred sql: Target Pre-Prediction, D: Target Database, k: Number of Examples,

train set: Benchmark Train Set

1: function MANUAL EXAMPLES PRE PRED(pred sql, k, train set)

2: train sqls← train set[“query”]

3: masked sqls← SQLMask(train sqls)

4: masked pred← SQLMask(pred sql)

5: best examples← []

6: for i,candidate in enumerate(masked sqls) do
7: score← SQLSim(masked pred,candidate)

8: if len(best examples)< k then
9: best examples.append((score, train set[i]))

10: # Sort the candidate list to ensure the kth highest scorer is

11: always at the end of the list

12: best examples.sort(key = score, reverse = True)

13: else
14: # If example is in top k candidates by SQLSim score, remove

15: the old kth highest scorer and insert the new example

16: if score > best examples[-1]) then
17: best examples[-1] = (score, train set[i])

18: best examples.sort(key = score, reverse = True)

19: return [example for score,example in best examples]

Appendix B. Example Selection Algorithms 55

B.5 Manual Gold SQL Selector

As featured in Experiment 4 of Section 4.4 “Embedding Fine-Tuning Experiment”

Algorithm 7 Select Examples + Manual Gold SQL Similarity

Require: G : Target Gold Query, D: Target Database, k: Number of Examples,

train set: Benchmark Train Set

1: function MANUAL EXAMPLES GOLD(G , k, train set)

2: train sqls← train set[“query”]

3: masked sqls← SQLMask(train sqls)

4: masked gold← SQLMask(G)

5: best examples← []

6: for i,candidate in enumerate(masked sqls) do
7: score← SQLSim(masked gold,candidate)

8: if len(best examples)< k then
9: best examples.append((score, train set[i]))

10: # Sort the candidate list to ensure the kth highest scorer is

11: always at the end of the list

12: best examples.sort(key = score, reverse = True)

13: else
14: # If example is in top k candidates by SQLSim score, remove

15: the old kth highest scorer and insert the new example

16: if score > best examples[-1]) then
17: best examples[-1] = (score, train set[i])

18: best examples.sort(key = score, reverse = True)

19: return [example for score,example in best examples]

Appendix B. Example Selection Algorithms 56

B.6 DAIL Selector

Adapted from Appendix A.1 of Gao et. al’s “Text-to-SQL Empowered by Large Lan-

guage Models: A Benchmark Evaluation” [4]

Algorithm 8 DAIL Selection
Require: Q : Target Question, train set: Set of Training Examples, k: Number of

Examples, pre pred: Target SQL Pre-Prediction, embedding model: VEM

1: function GET EXAMPLES DAIL(pred sql, k, train set, embedding model)

2: # Generate sentence embeddings for train set questions and target

3: masked questions← question mask with schema link(train set[“question”])

4: train embeddings← embedding model.encode(masked questions)

5: masked target← question mask with schema link(Q)

6: target embedding← embedding model.encode(masked target)

7: # DAIL Mask the train set queries & target pre-prediction

8: masked sqls← DAILMask(train set[“query”])

9: masked pred← DAILMask(pre pred)

10: # Use question similarity as heuristic for good examples

11: sort train set by cosine similarity(target embedding, train embeddings[i])

12: # Use DAILSim as threshold measure for example quality

13: for i, example in enumerate(train set) do
14: if DAILSim(pre pred,masked sqls[i])≥ 0.85 then
15: top examples.append(example)

16: else
17: backup examples.append(example)

18: ranked examples← top examples+backup examples

19: selected examples← ranked examples[0 : k]

20: return selected examples

Appendix C

SQL context-masking & Similarity

Examples

C.1 DAILMask vs SQLMask Masking Examples

EXAMPLE 1

SQL: SELECT DISTINCT Country FROM singer WHERE Age > 20

DAIL MASK: select distinct from where

PROP. MASK: SELECT DISTINCT col1 FROM table1 WHERE col2 > num

EXAMPLE 2

SQL: SELECT Name, Country, Age FROM singer ORDER BY Age

DESC

DAIL MASK: select from order by desc

PROP. MASK: SELECT col1 , col2 , col3 FROM table1 ORDER BY col3

DESC

EXAMPLE 3

SQL: SELECT Song Name, Song release year FROM singer

WHERE Age = (SELECT min(Age) FROM singer)

DAIL MASK: select from where = (select min () from

)

PROP. MASK: SELECT col1 , col2 FROM table1 WHERE col3 = (SELECT

min(col3) FROM table1)

57

Appendix C. SQL context-masking & Similarity Examples 58

EXAMPLE 4

SQL: SELECT country , count(*) FROM singer GROUP BY

country

DAIL MASK: select , count () from group by

PROP. MASK: SELECT col1 , count(*) FROM table1 GROUP BY col1

EXAMPLE 5

SQL: SELECT s.Song Name FROM singer AS s WHERE s.Age >

(SELECT avg(Age) FROM singer)

DAIL MASK: select from where > (select avg () from

)

PROP. MASK: SELECT alias1.col1 FROM table1 AS alias1 WHERE

alias1.col2 > (SELECT avg(col2) FROM table1)

EXAMPLE 6

SQL: SELECT Location, Name FROM stadium WHERE Capacity

BETWEEN 5000 AND 10000

DAIL MASK: select from where between and

PROP. MASK: SELECT col1 , col2 FROM table1 WHERE col3 BETWEEN

num AND num

EXAMPLE 7

SQL: SELECT max(Capacity) , avg(Capacity) FROM stadium

DAIL MASK: select max () , avg () from

PROP. MASK: SELECT max(col1) , avg(col1) FROM table1

EXAMPLE 8

SQL: SELECT Name, Capacity FROM stadium ORDER BY Average

DESC LIMIT 1

DAIL MASK: select from order by desc limit

PROP. MASK: SELECT col1 , col2 FROM table1 ORDER BY col3 DESC

LIMIT num

Appendix C. SQL context-masking & Similarity Examples 59

EXAMPLE 9

SQL: SELECT T1.Name, T1.Capacity FROM stadium AS T1

JOIN concert AS T2 ON T1.Stadium ID = T2.Stadium ID

WHERE T2.Year >= ’2014’ GROUP BY T1.Stadium ID

ORDER BY count(*) DESC LIMIT 1

DAIL MASK: select from where group by order by (

) desc limit

PROP. MASK: SELECT alias1.col1 , alias1.col2 FROM table1 AS

alias1 JOIN table2 AS alias2 ON alias1.col3 =

alias2.col3 WHERE alias2.col4 >= str GROUP BY

alias1.col3 ORDER BY count(*) DESC LIMIT 1

C.2 DAILSim vs SQLSim Metric Examples

EXAMPLE 1

SQL1 SELECT count(*) FROM singer

DAILMask(SQL1) select count () from

SQLMask(SQL1) SELECT count(*) from table1

SQL2 SELECT count(*) FROM Templates

DAILMask(SQL2) select count () from

SQLMask(SQL2) SELECT count(*) FROM table1

DAILSim(DAILMask(SQL1), DAILMask(SQL2)) = 1.0

SQLSim(SQLMask(SQL1), SQLMask(SQL2)) = 1.0

EXAMPLE 2

SQL1 SELECT country , count(*) FROM singer GROUP BY

country

DAILMask(SQL1) select , count () from group by

SQLMask(SQL1) SELECT col1 , count(*) FROM table1 GROUP BY col1

SQL2 SELECT count(*) , city FROM employee GROUP BY city

DAILMask(SQL2) select count () , from group by

SQLMask(SQL2) SELECT count(*) , col1 FROM table1 GROUP BY col1

Appendix C. SQL context-masking & Similarity Examples 60

DAILSim(DAILMask(SQL1), DAILMask(SQL2)) = 1.0

SQLSim(SQLMask(SQL1), SQLMask(SQL2)) = 0.931

EXAMPLE 3

SQL1 SELECT count(*) FROM singer

DAILMask(SQL1) select () from

SQLMask(SQL1) SELECT count(*) FROM table1

SQL2 SELECT grade FROM Highschooler GROUP BY grade

HAVING count(*) >= 4

DAILMask(SQL2) select from group by having

SQLMask(SQL2) SELECT col1 from table1 GROUP BY col1 HAVING

count(*) >= num

DAILSim(DAILMask(SQL1), DAILMask(SQL2)) = 0.66̇

SQLSim(SQLMask(SQL1), SQLMask(SQL2)) = 0.394

EXAMPLE 4

SQL1 SELECT name , country , age FROM singer ORDER BY

age DESC

DAILMask(SQL1) select from order by desc

SQLMask(SQL1) SELECT col1 , col2 , col3 FROM table1 ORDER BY col3

DESC

SQL2 SELECT template id , version number ,

template type code FROM Templates

DAILMask(SQL2) select from

SQLMask(SQL2) SELECT col1 , col2 , col3 FROM table1

DAILSim(DAILMask(SQL1), DAILMask(SQL2)) = 0.5

SQLSim(SQLMask(SQL1), SQLMask(SQL2)) = 0.7083̇

EXAMPLE 5

SQL1 SELECT count(*) FROM singer

DAILMask(SQL1) select count () from

SQLMask(SQL1) SELECT count(*) FROM table1

Appendix C. SQL context-masking & Similarity Examples 61

SQL2 SELECT count(*) FROM concert WHERE YEAR = 2014 OR

YEAR = 2015

DAILMask(SQL2) select from where =

SQLMask(SQL2) SELECT count(*) FROM table1 WHERE col2 = num

DAILSim(DAILMask(SQL1), DAILMask(SQL2)) = 0.6̇3̇

SQLSim(SQLMask(SQL1), SQLMask(SQL2)) = 0.627

EXAMPLE 6

SQL1 SELECT count(*) FROM singer

DAILMask(SQL1) select count () from

SQLMask(SQL1) SELECT count(*) FROM table1

SQL2 SELECT count(*) FROM student AS T1 JOIN has pet

AS T2 ON T1.stuid = T2.stuid JOIN pets AS T3

ON T2.petid = T3.petid WHERE T1.sex = ’F’ AND

T3.pettype = ’dog’

DAILMask(SQL2) select count () from where group by desc

limit

SQLMask(SQL2) SELECT count(*) FROM table1 AS alias1 JOIN table2

AS alias2 ON alias1.col1 = alias2.col1 JOIN table3

AS alias3 ON alias2.col2 = alias3.col2 WHERE

alias1.col3 = str AND alias3.col4 = str

DAILSim(DAILMask(SQL1), DAILMask(SQL2)) = 0.46̇

SQLSim(SQLMask(SQL1), SQLMask(SQL2)) = 0.246̇

EXAMPLE 7

SQL1 SELECT avg(age) , min(age) , max(age) FROM singer

WHERE country = ’France’

DAILMask(SQL1) select avg () , min () , max () , from

where =

SQLMask(SQL1) SELECT avg(col1) , min(col1) , max(col1) , FROM

table1 WHERE col2 = str

Appendix C. SQL context-masking & Similarity Examples 62

SQL2 SELECT document id , template id ,

Document Description FROM Documents WHERE

document name = "Robbin CV"

DAILMask(SQL2) select from where =

SQLMask(SQL2) SELECT col1 , col2 , col3 FROM table1 WHERE col4 =

str

DAILSim(DAILMask(SQL1), DAILMask(SQL2)) = 0.381

SQLSim(SQLMask(SQL1), SQLMask(SQL2)) = 0.642

EXAMPLE 8

SQL1 SELECT DISTINCT T1.Fname FROM student AS T1 JOIN

has pet AS T2 ON T1.stuid = T2.stuid JOIN pets AS

T3 ON T3.petid = T2.petid WHERE T3.pettype = ’cat’

OR T3.pettype = ’dog’

DAILMask(SQL1) select distinct from where or

SQLMask(SQL1) SELECT DISTINCT alias1.col1 FROM table1 AS alias1

JOIN table2 AS alias2 on alias1.col2 = alias2.col2

JOIN table3 AS alias3 ON alias3.col3 = alias2.col3

WHERE alias3.col4 = str OR alias3.col4 = str

SQL2 SELECT petid , weight FROM pets WHERE pet age > 1

DAILMask(SQL2) select from where >

SQLMask(SQL2) SELECT col1 , col2 FROM table1 WHERE col3 > num

DAILSim(DAILMask(SQL1), DAILMask(SQL2)) = 0.7

SQLSim(SQLMask(SQL1), SQLMask(SQL2)) = 0.182

Appendix D

Fine-Tuning Question Embeddings

(Extended)

D.1 Experiment Construction

In this appendix, an artifact of the project research is documented in full. This has been

evaluated as a preliminary investigation into embedding fine-tuning supplimentary to

the main report, which reinforces limitations found when embedding the question space.

In this section, the primary objective is to develop a framework that can replicate

the aggregated results from the RQ1 embedding model survey. When discussing aggre-

gate performance in Section 3.2, we saw 86.7% of Spider questions can be answered

correctly when provided a single training example. It would be desirable to train an

embedding model that always chooses a good 1-shot example where possible; any

single procedure capable of achieving an execution accuracy score of 86%+ whilst

leveraging gpt-3.5-turbo would be seen as a triumphant success.

A backwards way of approaching this problem would be to use the results from

the Chapter 3 survey to form a training set for a embedding model. Informally, the

philosophy behind the proposed method is “If you see this Spider question, then choose

an example we already know will provide a right answer”. This opposes the general

paradigm where fine-tuning examples are sourced from the train-set distributed with the

benchmark. Also, to build a dataset in such a fashion assumes some implicit knowledge

of the gold query, which is ill-advised. Hence the framework is not a rigorous science

and instead serves as a first foray into fine-tuned example selection methods.

63

Appendix D. Fine-Tuning Question Embeddings (Extended) 64

To achieve this ‘answer sheet’ approach, the best way forward is to embed the plain-

text question space. If the aim is to directly pick out known good examples from the

training set, context-masking the candidates complicates this process, as many examples

share a common masked question. When two examples share a masked question, they

also share a common embedding vector. If one of these is a good example to suggest for

a Spider task while the other is not, the selection mechanism cannot distinguish between

the two. Therefore, for this specific application, embedding the standard question space

is more appropriate than using a context-masked approach.

In alignment with the fine-tuning pipeline set out in Section 4.1, training examples

must be (sentenceA, sentenceB, score) tuples. The aim is to push certain examples closer

to the target question in the embedding space, so the sentence pairs must be of the form

(target question, example question). Examples are sourced from the 1-shot experiments

conducted in Chapter 3, as they are directly constructive to the conversion process

(or at least not significantly inhibitive). It is more difficult to assess the influence of

examples included in 3-shot and 5-shot prompts directly, as some examples may aid the

language model while others might be superfluous or even detrimental to the conversion.

To encourage the desired behaviour in an embedding model, a primitive approach

to fine-tuning is outlined as follows.

• For every successful 1-shot conversion in the RO1 survey, define a positive

training example of the form (target question, example question, 1).

• For every unsuccessful 1-shot conversion in the RO1 survey, define a negative

training example of the form (target question, example question, 0).

When training an embedding using the CoSENTLoss function, a similarity score of 1

within and example implies a notion of perfect similarity whilst a score of 0 implies a no-

tion of no similarity. The outcomes from the 8 survey experiments yields 7073 positive

examples and 2223 negative examples for model training. The all-mpnet-base-v2

model is subject to five epochs of fine-tuning on this dataset, achieving a final loss

of 0.4105. This is accessible via the sentence-transformers library by calling

"model = SentenceTransformers(s2593817/sft-question-embedding)". Us-

ing this optimized model to anchor Spider example selection leads to an improvement

in performance when compared to the base model, especially for k = 1 as designed.

Appendix D. Fine-Tuning Question Embeddings (Extended) 65

k all-mpnet-base-v2 all-mpnet-base-v2 (SFT)

1 0.764 0.804

3 0.767 0.789

5 0.776 0.789

Table D.1: Comparison of Model Performance

The fine tuned embedding model achieves 80.4% success rate for k = 1 which is

significantly higher than the base model success rate, as well as all 1-shot outcomes from

the survey. The fall in performance for the higher shot experiments can be expected, as

the training data is assembled specifically to target success in the k = 1 case. However

an improvement for both k = 3 and k = 5 is still observed over the base model.

The new embedding clearly promotes some of the ’good’ examples marked out

in the train set, but does not select all of them. This results in a large 6.3% disparity

when compared to the aggregated results. There remains over sixty questions that are

known to have a successful 1-shot prompt which fail when generating examples via the

fine-tuned embedding. There are several reasons for this happening, which are unlikely

to be resolved by any further fine tuning. The main problem being is that assigning a

positive (target question, example question, 1) tuple to the train set in no way guarantees

that the target and example questions map to the same vector. The fine-tuning procedure

simply looks to identify a model that is a minimizes the CoSENT loss function; there

is no assurance that a ‘good’ example becomes a nearest neighbor to its target in the

fine-tuned embedding space. Many bad examples that are linguistically very similar

to the target question remain the nearest neighbor after fine-tuning, a single training

example encouraging a different choice isn’t enough. Also, the train set often promotes

multiple different examples for the same question. The recommendations aren’t made in

isolation, each changes the fabric of the underlying BERT model in an overlapping and

potentially conflicting manner. These problems would become even harder to control if

looking to optimize 3-shot prompting, 5-shot prompting and beyond, where one must

consider the holistic effect of the examples on top of the individual influences.

In summary, this approach is ultimately impractical and overfit to the Spider bench-

mark. It serves as an informative first exploration in how fine-tuning embeddings can

lead to marginal gains in performance, but it has also demonstrated that simply showing

an embedding examples to target does not guarantee their selection for prompting.

