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Abstract

This thesis investigates the integration of causal inference techniques into reinforcement

learning to enhance planning in stochastic environments. Traditional reinforcement

learning approaches often rely on conditional probabilities to estimate future rewards,

leading to overestimation and suboptimal decision-making in environments where

correlation does not imply causation. To address this, we develop a causally-informed

future-value function using the do-operator, which corrects the overestimation problem

by accurately accounting for causal dependencies in multi-step planning scenarios.

However, this correction introduces a conservative bias, resulting in underestimation

of achievable returns. Despite this understimation we show emperically that under

several stochastic environments the overstimatiotn tends to harm the policy more then

the conservative causally derived estimates.

To mitigate this underestimation, we also propose a novel state-dependent policy

transformation method using planning projection matrices, which aligns the future-value

function with the optimal value function. Our theoretical analysis shows that solutions

must exist that can completely mitigate this problem. However, we are unable to provide

convergence guarantees or effective methods for learning these solutions. Consequently,

our focus is on empirical experiments that explore the effects of overestimation versus

conservative estimates in various stochastic environments. The findings highlight the

potential for more accurate and reliable decision-making in reinforcement learning,

despite the challenges in fully realizing these theoretical solutions.
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Chapter 1

Introduction

1.1 Overview

The rapid advancement in artificial intelligence (AI) has led to significant progress in the

field of reinforcement learning (RL), a domain concerned with how agents should take

actions in an environment to maximize cumulative reward. Reinforcement learning has

proven successful in a wide range of applications, from playing complex board games

like Chess [20] and Go [19] to real-world tasks such as robotic control [2], autonomous

driving [9], and recommendation systems [1].

In traditional reinforcement learning, agents often rely on model-free approaches,

where the focus is on learning a policy directly from experience without explicitly

modeling the environment. Techniques such as Q-learning [24, 13] and policy gradient

methods [23, 12, 18] have been widely adopted due to their simplicity and effectiveness

in various settings. However, these methods typically focus on the next immediate

action, often overlooking the broader implications of planning multiple steps ahead. This

limitation becomes particularly significant in complex environments where foresight

and strategic planning are crucial for achieving optimal performance [17].

Planning, in the context of reinforcement learning, refers to the process of consid-

ering sequences of actions over multiple time steps to guide decision-making. This

approach has been instrumental in achieving breakthroughs in domains requiring deep

strategic thinking, such as in the game of Go, where algorithms like Monte Carlo Tree

Search (MCTS) [5, 10] have been employed to search for optimal action sequences.

Despite its success, planning in reinforcement learning poses significant challenges,

especially in stochastic environments where outcomes are uncertain and depend on both

the current state and the agent’s actions.

1
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One of the major challenges in planning within stochastic environments is the

accurate estimation of future outcomes. Traditional reinforcement learning methods,

which often rely on conditional probabilities, may struggle to capture the true causal

relationships between actions and outcomes, leading to sub-optimal decision-making.

Causal inference, a field rooted in statistics, provides a framework for understanding

cause-and-effect relationships in complex systems. Unlike traditional statistical methods

that focus on correlations, causal inference seeks to uncover the underlying mechanisms

that generate observed data [15]. This distinction is crucial in reinforcement learning,

where the goal is not just to identify actions correlated with high rewards, but to

determine the actions that actually cause high rewards.

The intersection of causal inference and reinforcement learning represents a promis-

ing direction for addressing the limitations of current planning methods. By incorporat-

ing causal models into the planning process, it may be possible to develop algorithms

that better account for the uncertainties and complexities of stochastic environments.

This approach could have the potential to enhance the effectiveness of reinforcement

learning in a wide range of applications, from robotics and autonomous systems to

healthcare and finance, where decision-making under uncertainty is a common chal-

lenge.

In this thesis, we explore the application of causal inference techniques to improve

planning in reinforcement learning. We investigate how the integration of causal

reasoning can lead to more accurate future-value estimations and, consequently, more

optimal decision-making in stochastic environments. By addressing the limitations

of traditional planning approaches, this research aims to contribute to the ongoing

development of more intelligent and reliable AI systems.

1.2 Motivation

In the realm of reinforcement learning, planning plays a critical role in enabling agents

to make informed decisions by considering the potential outcomes of future actions.

Traditional planning methods, such as those employed in complex environments like

games or robotic control, typically rely on algorithms like Monte Carlo Tree Search

(MCTS). These methods operate by learning the expected reward from sampled expe-

rience data, followed by a greedification process that selects the sequence of actions

with the highest estimated return. This approach has demonstrated considerable success

in various domains; however, it also presents significant limitations that warrant closer
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examination.

At the core of these planning methods is the assumption that sampled experience

data can be used to accurately estimate the expected value of different action sequences.

This estimation process, in essence, relies on conditional probabilities, where the

expectation of future rewards is conditioned on the observed states and actions. While

this technique is computationally feasible and has been effective in many applications, it

implicitly assumes that these conditional expectations provide a reliable approximation

of the true value function in the environment.

Our initial observations challenge this assumption, revealing that it is possible to

construct environments where these conditional expectations systematically overesti-

mate the achievable returns. In such cases, the greedification process—designed to

maximize expected returns—can lead to suboptimal decisions, ultimately degrading

the performance of the agent. This phenomenon raises a critical question: why do

these planning methods, which have been so successful in many contexts, fail in certain

environments?

To address this question, we turn to the tools of causal inference, a framework that

allows us to analyze the relationships between actions and outcomes. Unlike traditional

statistical methods that focus on correlations, causal inference provides a means to

understand the true cause-and-effect mechanisms at play. By applying causal inference

to the problem of planning in reinforcement learning, we can investigate the underlying

reasons for the observed overestimation of expected returns.

Through this investigation, we derive alternative estimates for future rewards that do

not suffer from the same overestimation issues. These causal estimates take into account

the intricacies of the environment and the stochastic nature of the decision-making

process, providing a more accurate reflection of the expected returns. Our empirical

studies further demonstrate that this overestimation problem is not just an isolated

issue but a consistent challenge across randomly generated Markov Decision Processes

(MDPs).

The motivation for this research is thus twofold: first, to uncover the limitations of

current planning methods that rely on conditional expectations, and second, to propose

and validate alternative approaches based on causal inference that offer more reliable

estimates of expected returns. By doing so, we aim to aid the development of more

robust and effective planning algorithms that can be applied across a wide range of

complex, real-world environments.



Chapter 1. Introduction 4

1.3 Related Work

1.3.1 Model-based planning

Model-based planning was shown to have benefits in certain environments as early as

the 1990s, with the introduction of the Dyna architecture [21]. This method of planning

involves learning a full model of the environment that allows for accurate planning

when combined with a model-free learning rule. Later research has combined this with

the modelling of complex environments [14, 4, 8]. However, accurate modelling of

complex and highly stochastic environments has remained an elusive goal, as it requires

computationally expensive methods as well as suffering from compounding errors.

1.3.2 Model-free planning

Many other methods have evolved alongside, such as DRC [6], MuZero [17], Effi-

cientZero [25]. This method has focused on both overall performance as well as sample

efficiency. They completely circumvent the problem of model-based planning by di-

rectly modelling the future value given a sequence of actions. However, this gives rise

to the problem of overestimating the value, which forms the basis of this thesis. While

they mention the problem they do not go into detail on the underlying problem and rely

on conventional techniques such as regularisation to mitigate the effects.

1.3.3 Stochastic latent models

Other methods use stochastic latent models. The primary example of this is the

SimPLe[8] and Dreamer[7] architectures. These architectures attempt to approxi-

mate the environment by a stochastic latent model. These models show that you can

accurately model many complex environments using a reduced stochastic latent space.

They show impressive results, especially in sample efficiency and robustness to many

environments. On the other hand, they exclusively do offline planning. This means that

they use simulated experiences to train an agent, but there is no planning done during

interaction with the environment.

1.3.4 Stochastic planning

Some work has also been done on the extension of the planning process in MuZero[17]

called Stochastic MuZero[3]. This work uses VQ-VAE (Vector Quantised Variational
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AutoEncoder) as well as introduces the concept of afterstates. These techniques allow

them to integrate stochasticity directly into the planning process. This was shown to

greatly improve the performance in highly stochastic board games such as Backgammon.

1.3.5 Summary

Although there is a wide variety of planning approaches used we can see that much of

the related work has relied on either improving the planning algorithm or introducing

stochasticity into models used for planning, rather than exploring the overestimation of

these expectations directly and looking at alternative estimates.



Chapter 2

Background

2.1 Notation

Here is some notation that will be used throughout the document. Subscripts will

generally refer to timesteps, (e.g. St ,At ,Rt refers to state, action, and reward at timestep

t. A sequence of variables over multiple timesteps (from a to b) is noted by subscript

a : b (e.g. At:t+k = (At ,At+1, ...,At+k−1). Superscript with parenthesis generally refers

to a constant value in an MDP (e.g. S(0) refers to state 0 in the MDP, and A(0) refers to

action 0).

The expectation given a policy refers to the expected value when evaluating the

MDP using a specific policy. E.g.:

Eπ[ f (St+1)|St = st ] = ∑
st+1,at

f (st+1)p(st+1|st ,at)π(at |st)

Where p denotes the state-action transition probabilities, and f is any arbitrary

function f : S → R.

Similarly, we can have multiple-step expectations:

Eπ[ f (St+k)|St = st ,At:t+k = at:t+k] = ∑
st+1:k

f (st+k)
t+k−1

∏
i=t

p(si+1|si,ai)π(ai|si)

We will also use interventions, in the form of do operators (from causal inference).

The following expression represents ”given state st , if we perform action sequence

at:t+k by intervention, what is the expected value of f (st+k) (which in an MDP would

be equivalent of ignoring the policy).

6
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Eπ[ f (St+k)|St = st ,do(At:t+k = at:t+k)] = ∑
st+1:k

f (st+k)
t+k−1

∏
i=t

p(si+1|si,ai)

2.2 Reinforcement Learning

Throughout this thesis, we will look at reinforcement learning problems. We will

primarily focus on the use of planning within these problems and how stochastic

environments affect the processes of planning.

Reinforcement learning is the process of learning how to act to maximise a scalar

reward signal. This could be learning how to drive a car from point A to B, how to

balance one object on top of another, or how to win in board games like Chess or Go.

2.2.1 Markov Decision Process

Throughout this thesis, we will use the standard MDP (Markov Decision Process)

formulation of reinforcement learning. This consists of a state space S , action space A ,

and a probability distribution describing state-action reward and transition probabilities

p(s′,r|s,a), where s,s′ ∈ S , a ∈ A , and r ∈ R. We also assume the Markov property,

that given a current state and action pair, all future states and rewards are independent

from all past states and actions.

The behaviour of an agent is decided by a policy π(a|s), which describes a probabil-

ity distribution over all actions A given each state in S .

2.2.2 Planning

In traditional reinforcement learning, we only consider the next action to be executed.

This can be done in many different ways such as tabular Q-learning [24], deep Q-

networks [11], policy gradient methods [18] etc. However, in recent years the use of

planning has shown great success in complex reinforcement learning tasks, such as

Chess [20], Go [19], and Atari[17].

In reinforcement learning, planning refers to algorithms that, instead of considering

only the next action, find sequences of actions that are used as heuristics for deciding

which action to perform.

Planning can be split up into two primary methods. Model-based planning, in which

the agent attempts to model the environment directly to use it in the planning process.
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While this method can yield accurate results and has been shown at times to improve

convergence speed [22], there are some problems with this approach. When we consider

finite MDPs, a world model can be easily constructed using sample averages; however,

when we consider more complex and/or real-world problems, such as playing visually

complex video games and controlling robotic arms using camera input, several problems

arise. The two primary problems are that both modelling and sampling continuous state

spaces are non-trivial problems to solve.

This brings us to the second method of planning, which is model-free planning [6,

17]. In model-free planning, we do not attempt to model the environment directly.

Instead, we derive value functions that take in a state and several actions and try to

predict the future value directly without explicitly modelling the environment.

In this thesis, we will focus on model-free planning and use the tools of causal

inference to explore and understand how stochastic environments affect such future-

value functions.

2.3 Causal Inference

Causal inference is a powerful and increasingly critical area of study in statistics [15].

Unlike traditional statistical methods that focus primarily on associations or correlations

between variables, causal inference seeks to understand and quantify the cause-and-

effect relationships within data. This distinction is fundamental because, in many

real-world applications, simply knowing that two variables are correlated does not

provide actionable insight. Instead, decision-makers require knowledge of how one

variable causally affects another to make informed decisions.

2.3.1 Do-operator

The first tool of causal inference that we need is the do-operator, introduced by Judea

Pearl as part of his structural causal model (SCM) framework [16]. In reinforcement

learning, we often encounter conditional probabilities, such as P(Y |X = x), which

describes the probability of an outcome Y given that we have observed a particular value

x for a variable X . However, this expression reflects only a correlation and does not

imply that X causes Y . The do-operator, denoted as do(X = x), changes this perspective

by representing the probability of Y given that X has been actively set to x through an

intervention. The resulting probability, written as P(Y |do(X = x)), explicitly captures
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the causal effect of X on Y . This is a useful concept in reinforcement learning since we

are not interested in what actions correlate with high rewards; we are interested in what

actions are causing high rewards.

A formal definition of the do-operator is given in Eq 2.1, where Z is the set of

confounding variables between X and Y .

P(Y |do(X = x)) = ∑
z

P(Y |X = x,Z = z)P(Z = z) (2.1)

2.3.2 Do-calculus

Judea Pearl developed do-calculus, a formal framework consisting of a set of rules

that allows us to manipulate and evaluate expressions involving the do-operator. It is

particularly powerful in causal inference because it provides a systematic method for

identifying and estimating causal effects from observational data, even in the presence

of complex dependencies and confounders.

Do-calculus operates on causal diagrams or causal graphs, where directed edges

and causal effects represent the relationships between variables. The main goal of do-

calculus is to transform an expression that involves the do-operator into an equivalent

expression that does not involve the do-operator, enabling us to estimate causal effects

using observational data.

While there are three primary rules of do-calculus, we will only use the 2nd rule in

this thesis, and therefore we will not go into depth on the other two rules.

The second rule of do-calculus, often called the action/observation exchange rule,

enables us to swap an intervention with observation under specific conditions. Formally,

the second rule states:

P(Y |do(X),Z) = P(Y |X ,Z) (2.2)

if X and Y are conditionally independent given Z in the subgraph where outgoing

edges from X are removed. An example of this applying and not applying is shown in

Fig. 2.1
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2nd Rule of do-calculus applies
2nd Rule of do-calculus

does not apply

Figure 2.1: Two examples of SCMs where the 2nd rule of do-calculus applies (left)
and does not apply (right). The outgoing edges which are ignored under the modified
subgraph is marked in blue.

2.3.3 MDPs as Causal Models

We can represent MDPs as a structured causal model shown in Fig 2.2. In this structured

causal model the edge from St to At represents the policy, and the edges from St to St+k

and At to St+k represent the transition probabilities of the MDP.

Using this structured causal model, we can apply the rules and techniques of causal

inference to derive estimates about the MDP from observed data. More crucially, the

tools of causal inference can tell us whether we can determine the cause-and-effect

relationship between actions and rewards from the observed data.
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Figure 2.2: MDPs as structured causal models.



Chapter 3

Method

3.1 Causal Planning

It is worthwhile discussing why causal inference has specific benefits to planning in

reinforcement learning. It is crucial to note that traditionally when doing reinforcement

learning, we do not need to concern ourselves with causal inference. We will now show

why this changes when we consider planning with multiple actions.

In this section, we primarily look at how causal inference gives us insight into how

intermediate states in planning estimates give rise to a correlation vs causation problem

that is not present in traditional single-step reinforcement learning.

3.1.1 Single-step do-operator

When we consider only a single step in an MDP if a specific action has a higher

correlation with a certain next state (e.g. Eq 3.1), this must imply that the action is

causing the state. This follows directly from the Markov assumption since the only

variables governing the next state’s probability are the current state and the action. So

with the state being the same, the only variable that could be accounting for the change

in probability is the action.

P(St+1 = s′|St = s,At = 1)> P(St+1 = s′|St = s,At = 2) (3.1)

We can also show this using causal inference.

P(St+1 = s′|St = s,do(At = a)) = P(St+1 = s′|St = s,At = a) (3.2)

12
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Eq 3.2 is a direct application of the 2nd rule of do-calculus (Eq 2.2).

This then gives us that:

P(St+1 = s′|St = s,At = 1)> P(St+1 = s′|St = s,At = 2)

Implies that:

P(St+1 = s′|St = s,do(At = 1))> P(St+1 = s′|St = s,do(At = 2))

This implication tells us that if we observe a higher probability of s′ given action

At = 1, this implies that an intervention on the action (do(At = 1)) will result in a

higher probability of state s′.

We can see from this that when considering a single step, a conditional on the

action is always equivalent to a do-operator on the same action. Therefore, a correlation

between an action and the next state, given the previous state, always implies that the

action is causing the next state.

Note that this applies to any expectation of a function of the next state as well:

E[ f (St+1)|St = s,do(At = a)] = E[ f (St+1)|St = s,At = a] (3.3)

Where f : S → R. Notably, this includes any value function, telling us that (for a single

step) if the action correlates with a high value, it must be causing the high value.

This is all consistent with traditional reinforcement learning.

3.1.2 Multi-step do-operator

Now, we will look at how this changes when we consider two steps.

Given:

P(St+2|St = s,do(At = at),do(At+1 = at+1))

We can still apply the 2nd rule of do-calculus to the first action At , giving us:

P(St+2|St = s,do(At = at),do(At+1 = at+1))=P(St+2|St = s,At = at ,do(At+1 = at+1))

However, we now notice that we can not (in general) apply the same rule to the second

action (At+1). This is because the final state St+2 is not (in general) independent of

action At+1 when ignoring the outgoing connections of At+1. This is because St+2 and

At+1 has the confounding variable St+1. This is what’s referred to as a backdoor in
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Perl’s causal framework [16].

This tells us that a correlation between the final state and the second action does not

imply that the second action was causing the final state. It could be that the intermediate

action and the final state were both caused by the intermediate state (St+1).

This has important implications for planning. When planning in reinforcement learn-

ing, we generally do not stick to our plan; the plan often changes upon new observations.

Therefore, we only have observational data regarding planning, not interventional data.

This makes the problem analogous to off-policy learning. Furthermore, causal inference

tells us that from the observational data, we can not infer causation as we can with

single-step reinforcement learning.

The primary takeaway from this should be that if we maximise any quantity w.r.t

multiple actions using conditionals, we are simply maximising for actions that are

correlated with the quantity under a certain policy and not necessarily causing the

quantity itself. This can, therefore, lead greedification to fail.

3.2 Future-Value function

There have been several attempts at planning in deep reinforcement learning using

future value functions (also called model-free planning [6, 17]). Model-free planning is

done by approximating a future-value function (which we denote by Dπ) given state st

and action sequence at:t+k:

Dπ(st ,at:t+k) = Eπ[γ
kVπ(St+k)+

k−1

∑
i=0

γ
iRt+i|St = st ,At:t+k = at:t+k] (3.4)

This equation can be interpreted in the following way: ”Under policy π, given that

we observe state st and action sequence at:t+k, what is the expected value of state st+k

and intermediate reward.”

Then, in a given state, the agent employs a search strategy over possible future

action sequences and uses the result to choose the immediate action to perform. A

popular and widely successful strategy employed is MCTS (Monte-Carlo Tree Search).

The goal of such search strategies is to maximise the expected future-value function by

looking multiple steps ahead. I.e. approach the optimal action a∗t given the future value
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A(0) A(1) π∗ V ∗

S(1) 10 0 A(0) 10
S(2) 0 1 A(1) 1
S(0) 9.1 6.9 A(0) 9.1

Table 3.1: The Q∗ table with the optimal policy π∗ and the optimal value function V ∗ of
MDP in Fig. 3.1

function (Eq. 3.5):

a∗t = argmax
at

max
at+1:t+k

Dπ(st ,at:t+k) (3.5)

This can be interpreted as selecting the best sequence of k actions and performing

the first action in that sequence.

3.3 Failure in stochastic environments

Here we will introduce a simple stochastic environment which shows a possible failure

mode of this approach (Fig. 3.1). We will assume γ = 1, to simplify this example. The

most important things to note are:

• Under the optimal policy S(1) is preferable to S(2)

• State-action pair (S(0),A(0)), has no immediate reward, but a high probability of

transitioning into S(1) (more preferable).

• State-action pair (S(0),A(1)), has immediate reward, but a high probability of

transitioning into S(2) (less preferable).

Table 3.1 shows the Q∗ values and the optimal policy π∗ derived analytically from

the MDP. In this table, we can see that the optimal action in S(0) is A(0). Now, let’s

build the future-value function Dπ. First, we assume a behaviour policy ε-greedy (with

ε= 0.1) to ensure all trajectories have some probability of occurring. All the trajectories,

their probabilities and rewards can be found in Table 3.2. The future-value function for

initial state S(0) is calculated in Table 3.3.

If we now perform the maximisation step from Eq 3.5 on the data from Table 3.3 we

can see that from the perspective of the future-value function the optimal sequence of

actions to take from state S(0) is (A(1),A(0)). This would suggest that the agent should

perform the next action A(1), which contradicts the results in the optimal policy and

Q∗ table (Table 3.1). Furthermore, the max value for (S(0),A(0)) of the future-value
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Episode Terminates

Figure 3.1: MDP of a simple stochastic environment. r represents the immediate reward
of a state-action pair, and p represents the state-action-state transition probability.

Trajectory Probability Reward
S(0),A(0),S(1),A(0) 81.23% 10
S(0),A(0),S(1),A(1) 4.28% 0
S(0),A(0),S(2),A(0) 0.48% 0
S(0),A(0),S(2),A(1) 9.03% 1
S(0),A(1),S(1),A(0) 0.48% 15
S(0),A(1),S(1),A(1) 0.03% 5
S(0),A(1),S(2),A(0) 0.23% 5
S(0),A(1),S(2),A(1) 4.28% 6

Table 3.2: The trajectory probabilities and rewards under the behaviour policy outlined in
Section 3.3.
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Action Sequence (a0:2) Dπ(S(0),a0:2)

A(0),A(0) 9.94
A(0),A(1) 0.68
A(1),A(0) 11.79
A(1),A(1) 5.99

Table 3.3: The future-value function from state S(0) calculated from Eq. 3.4 and Table
3.2.

function is 9.94 and (as discussed) the max value for (S(0),A(0)) is 11.79. Both of these

values are in fact overestimates and exceed both their respective Q∗ values, and the V ∗

value of state S(0) (from Table 3.1).

3.4 Conditioning on future actions leads to overestima-

tion

The first clue as to why we arrive at the incorrect results when using the future-value

function can be seen in the interpretation of the equation. From the causal interpretation

question in Eq 3.4 is ”Given that we observe st and action sequence at:t+k, what is

the expected future value of state sk?”. In reality, this is not the question we are after.

The question we are after is ”Given that we observe st and preform action sequence

at:t+k, what is the expected future value of state sk?”. This is what is referred to in

causal inference as an intervention on the action sequence at:t+k, and is noted by the

do-operator. Writing the corrected version of Eq 3.4 using the do operator on the action

sequence we get:

Dπ(st ,at:t+k) = Eπ[γ
kVπ(St+k)+

k

∑
i=0

γ
iRt+i|St = st ,do(At:t+k = at:t+k)] (3.6)

In causal inference, the difference between a conditional and an intervention is that

using the intervention (do-operator) removes all incoming connections from the DAG

of the causal model. The causal DAG of a state action chain and the modified DAG

under the do-operator can be seen in Figure 3.2. It is important to note here that there

exist two cases in which the two DAGs represent the same probability.

• Case 1: If the policy is constant and independent of the state, the edge from Si to

Ai in the original DAG is superfluous, and the two DAGs are otherwise equivalent.
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Figure 3.2: The original DAG representing the causal model of a state action chain (left)
and the modified DAG under the do-operator from Eq 3.6 (right). Blue is used to indicate
conditionals in Eq 3.4 and red is used to indicate the do-operator in 3.6.

• Case 2: If the MDP is completely deterministic then At+k becomes independent

from St+k, given that we have conditioned on St and At:t+k. Therefore, the

connection from Si to Ai again becomes superfluous.

In terms of causal inference, (in general) naively using observational data and

conditionals does not give us an accurate estimate of the question of the expected value

given some intervention on the actions. In the language of causal inference, this is

because the policy allows for a backdoor from Ai to Si through Si−1, as long as Si−1

is not completely determined. Given this, the question becomes if and how we can

approximate the future-value function with intervention using only observational data.

In the next section, we show how we can write the future-value function in recursive

form. Furthermore, we show that when we do this the do-operator can be safely swapped

with a conditional from the rules of do-calculus.



Chapter 3. Method 19

Figure 3.3: The original (left) and modified (right) DAG of the causal model used in Eq
3.7.

3.5 Future-value function in recursive form

We can define the future-value function in a recursive form, such that it is defined in

terms of a shorter time-horizon version of itself:

Dπ(st ,at:t+k) =Eπ[γ
kVπ(St+k)+

k

∑
i=0

γ
iRt+i|St = st ,

do(At:t+k = at:t+k)]

=Eπ[γ(γ
k−1Vπ(St+k)+

k

∑
i=1

γ
i−1Rt+i)+Rt

|St = st ,do(At:t+k = at:t+k)]

=Eπ[γEπ[γ
k−1Vπ(S′t+k)+

k

∑
i=1

γ
i−1R′t+i

|S′t+1 = St+1,do(At+1:t+k = at+1:t+k)]+Rt

|St = st ,do(At = at)]

=Eπ[γDπ(St+1,at+1:t+k)+Rt |St = st ,do(At = at)] (3.7)

This new expectation only uses the one step of the state action chain DAG. This

DAG can be seen in Figure 3.3. Using the 2nd rule of do-calculus we can safely turn

the do-operator on (At = at) into a regular conditional, since we are conditioning on St ,

so there exists no backdoor from At to St+1. This can also be reasoned by the fact that

if we are conditioning on both St and At , then the edge from St to At (i.e. the behaviour

policy) is irrelevant. E.g. in an MDP if both St and At is known, then St+1 only depends

on the transition probability (not on the policy).

By removing the do-operator using the 2nd rule of do-calculus we get the final

equation (Eq. 3.8):
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State (st) Action Sequence (at:t+k) Value (Dπ(st ,at:t+k))
S(1) A(0) 10
S(1) A(1) 0
S(2) A(0) 0
S(2) A(1) 1
S(0) A(0),A(0) 9
S(0) A(0),A(1) 0.1
S(0) A(1),A(0) 2
S(0) A(1),A(1) 1.9

Table 3.4: Evaluation of the future-value function using Eq 3.8

Dπ(st ,at:t+k) = Eπ[γDπ(St+1,at+1:k+1)+Rt |St = st ,At = at ] (3.8)

Furthermore, we note that the expectation is independent of the policy since the

variable St+1 is purely defined by the transition probability when conditioning on both

St and At , and is, therefore, independent of the policy. This expectation can therefore be

approximated using observational data from any policy.

3.6 Evaluating the new future-value function

We can now evaluate the new future-value function for the example in Section 3.3, using

Eq 3.8. The result of this evaluation can be seen in Table 3.4. If we now apply the max

operation from Eq 3.5 in state S(0) we can see that the best action sequence from state

S(0) is (A(0),A(0)). This suggests that the best action from state S(0) is A(0) which is in

agreement with the Q∗ table in Table 3.1. We can also see that there are no longer any

overestimations that violate the V ∗ function, and if we calculate the expected return of

doing actions (A(0),A(0)) from S(0) we can indeed see that the exact expected return is

9 (in agreement with Table 3.4).

3.7 The upper-bound of planning

Although we now have a correct estimation for expected returns when performing k

actions in the future we now have a different problem. The max value of (S(0),A(0))

from Table 3.4 is 9, while the Q∗ value (S(0),A(0)) of is actually 9.1. It seems that we

have just swapped an overestimation problem for an underestimation problem. The

reason for this inconsistency is that when deciding multiple actions ahead in a stochastic
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environment we can sometimes not achieve as high an expected reward as the optimal

policy. This is because sometimes the optimal action At+i depends on St+i, so we can

not accurately predict the optimal action multiple steps ahead. For this reason, the max

of the future-value function will always be bounded by the optimal plan, which can be

lower than the expected value of the optimal policy.

Episode Terminates

Figure 3.4: MDP where the underestimation leads to incorrect action selection

In the previous MDP this was not a problem because even considering the under-

estimation the order of the two actions in S(0) did not change. However, this does not

always hold true. Figure 3.4 describes a new MDP with the same general structure, but

different transition probabilities and rewards. In this new MDP the optimal Q(∗) value

of action A(0) and A(1) in state S(0) are 15 and 13 respectively. I.e. the optimal action in

S(0) is A(0). However, when we do the same calculations for the optimal action sequence

as before, we get that the optimal action sequence is Dπ(S(0),(A(1),A(1))) = 13 (see

Table 3.5), suggesting that the optimal next action is A(1), which is incorrect.

This happens because the trajectories starting in A(1) do not have any stochasticity

and therefore do not suffer any underestimation by the future-value function.
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State (st) Action Sequence (at:t+k) Value (Dπ(st ,at:t+k)

S(1) A(0) 20
S(1) A(1) 0
S(2) A(0) 0
S(2) A(1) 10
S(0) A(0),A(0) 10
S(0) A(0),A(1) 5
S(0) A(1),A(0) 3
S(0) A(1),A(1) 13

Table 3.5: Evaluation of the future-value function of the MDP in Figure 3.4

3.8 Raising the upper-bound by state-dependent policy

transformations

A possible mitigation of the upper-bound problem is to transform the action space in a

state-dependent way. We can define a matrix for every state in which every column of

the matrix refers to a different distribution of actions for that state. We will refer to this

matrix as a planning projection, where each state has a distinct planning projection B(n)

(where n is the state it belongs to). This means that the state-action probabilities for a

policy is given by Eq 3.9, and the state-state transition probability is given by Eq 3.10:

P π,B
s,a = B(s)

a π(·|s) (3.9)

P π,B
s,s′ = ∑

a
p(s′|s,a)B(s)

a π(·|s) (3.10)

Doing this we have effectively transformed one MDP into another MDP where each

action in the new MDP refers to a distribution over the actions in the original MDP.

If we further restrict the planning projection matrices to be doubly stochastic we are

guaranteed that a uniform policy in this new MDP corresponds to a uniform policy in

the original MDP, which ensures that all states remain reachable.

It must be true that for any MDP there exists a planning projection such that the

upper limit of Dπ∗ is V ∗. I.e. that:

max
at :at:t+k

Dπ∗(st ,at:t+k) =V ∗(st) (3.11)

And that:
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argmax
at

max
at+1:t+k

Dπ∗(st ,at:t+k) = argmax
at

Q∗(st ,at) (3.12)

This follows immediately from the fact that we can define a planning projection

such that the first column of the matrix in each state is the optimal policy in that state.

I.e.:

B(s)
∗,1 = π

∗(·|s) (3.13)

And the remaining columns are uniformly distributed over the rest of the actions

to ensure it is doubly stochastic. Under this transformed MDP the optimal policy is

always A(0) (by definition), so even if the original MDP is stochastic the future-value

function will give the correct max value since the optimal policy is constant.

3.9 On learning the planning projection

One might learn the planning projection by iterative improvement, by iterating between

improving the policy and improving the planning projection. However, we have not

been able to prove any convergence guarantees for this.

Even though it is not guaranteed to converge it could still be interesting to attempt

to learn both parts by gradient ascent.

There is also the problem of ensuring that the planning matrices retain the doubly

stochastic property, which is non-trivial. This property is not strictly necessary for the

solution to be optimal, but it ensures that all states always remain reachable and that

any ε-soft policy in the transformed MDP, remains an equivalent ε-soft policy in the

original MDP, since uniform sampling of a double stochastic matrix results in uniform

sampling of the underlying actions.

Due to the difficulties of learning the planning projections, we focus the rest of the

thesis on the performance of the causal expectation without planning projections and

leave planning projections for future research.
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Experiments

In the previous chapter, we showed by specifically constructed MDPs how naively using

conditionals can lead to overestimates and how greedification of these estimates can

lead to sub-optimal policies.

We will now show empirically that this overestimation is not unique to highly

contrived MDPs. On the contrary, since the only thing required for overestimation to

happen is that some future actions are correlated with high rewards without causing

them, we should expect this to happen at some rate for most MDPs.

It is important to note that these MDPs are expected to be optimally solved by

Q-Learning, which is why we include Q-Learning as a reference result. This is to

demonstrate the sacrificed performance of the traditional planning approach.

4.1 Conditional vs Causal Estimates in Random MDPs

4.1.1 Method

First, we create 4 randomly generated MDPs. We then solve the optimal policy of

each MDP by iteratively solving the Q function using a linear system of equation,

and greedification. We know this will converge to the optimal policy by the policy

improvement theorem and the Bellman optimality condition [22]. Now, using this

policy, the transition probabilities, and the reward function, we analytically solve both

the conditional (Eq. 3.4) and the causal (Eq. 3.8) version of the future value function

(for two steps). We then randomly sample states from S and two actions from A as a

plan. We then evaluate both of the future-value functions using this plan, as well as

execute the plan and record the result of executing the plan.

24
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Further hyper-parameters can be found in Appendix A.

4.1.2 Results

Figure 4.1 shows a scatter plot of the expected vs realised return of randomly sampled

plans according to the causal and conditional expectations. The top row is the condi-

tional expectations and the lower is the causal expectations. Each of the columns is

a distinct randomly generated MDP. The black line is the identity line (y = x). This

means that every point above the black line had a higher expected return than what was

realised and every point below the black line had a lower expected value than what was

realised. For the conditional estimate, 68.7% of the plans had a lower-than-expected

return and 31.3% had a higher, while for the causal estimate, 49.6% of the plans had

lower-than-expected and 50.4% had a higher.

Since we are interested in the bias of the estimator, we draw a line fitting the optimal

bias through the point cloud (y = x+b), where the bias is the mean residual. For an

unbiased estimator, the mean residual should be 0, and the optimal biased line should

be the same as the black identity line. We see that in the conditional estimates, the

biased line is consistently above the black identity line, showing that for the randomly

generated MDPs the conditional estimate consistently overestimates the expected value

of the plan. For the causal estimates, we can see that the blue biased line fits very

closely to the black identity line, indicating that there is little bias in the estimator.

Figure 4.2 shows a bar chart of the mean residuals along with the standard error.

We can see that the conditional mean residual is way above zero for all the experiments

and the zero value is substantially outside the standard error. For the causal estimates,

two of the residuals are below while two of them are above, and for 3 out of 4, the 0

line is within the standard error of the estimate, which is what we should expect for an

unbiased estimate.
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Figure 4.1: Expected vs realised returns of planning using conditional and causal estimates. Each column is a randomly generated MDP. The
upper row shows the conditional results, while the lower row shows the causal results. Each graph plots the expected vs realised results of
executing a given plan.
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Figure 4.2: Residuals of the conditional and causal estimates when compared to the
realised returns during simulation.

4.2 Conditional vs Causal Agents in Random MDPs

In this experiment, we look at how agents using different estimates perform in randomly

generated MDPs with different amounts of lookahead. We look at both their perfor-

mance and the expected value as reported by their value function. We compare these

results to standard tabular Q-Learning, which should achieve optimal results under these

conditions.

4.2.1 Method

Similar to the previous experiment we generate random MDPs. We then train three

different agents in all of these MDPs. To ensure exploration we use an ε-greedy

behaviour policy, with a linear epsilon decay strategy.

In this experiment, we also vary the lookahead length (k) between 2 and 8.

4.2.1.1 Q-Learning agent

We use the standard Q-Learning update rule [24]:

Q(S,A)← Q(S,A)+α[Rt+1 + γmax
A′

Q(S′,A′)−Q(S,A)] (4.1)

As well as the algorithm 1.
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Algorithm 1 Q-Learning

1: Q(S,A)← 0 for all S ∈ S and A ∈ A
2: for each episode do
3: S← sample starting state
4: while not done do
5: A← argmaxA′Q(S,A′)
6: S′,R← perform A in state S
7: Q(S,A)← Q(S,A)+α[R+ γmaxA′Q(S′,A′)−Q(S,A)]
8: S← S′

9: end while
10: end for

4.2.1.2 Conditional lookahead agent

For the agent using (Eq. 3.4) the naive conditional future-value function, we apply the

update rule (given the state St and action sequence At:t+k):

D(St ,At:t+k)←D(St ,At:t+k)+α[
k−1

∑
i=0

γ
iRt+i + max

At+k:t+2k
D(St+k,At+k:t+2k)−D(St ,At:t+k)]

(4.2)

We use algorithm 2. The algorithm is similar to algorithm 1, but uses the eq 4.2 for

updates and also keeps the state, action, and rewards in a queue to perform the updates

on the sequence.

Algorithm 2 Conditional lookahead agent

1: D(S,A0:K)← 0 for all S ∈ S and A0:K ∈ AK

2: Initialise empty state, action, and reward queue LS,LA,LR
3: for each episode do
4: S← sample starting state
5: while not done do
6: A← argmaxA0:1

maxA1:K D(S,A0:K)
7: S′,R← perform A in state S
8: append S,A,R to LS,LA,LR
9: if len(LS) = k then

10: D(LS[0],LA)← D(LS[0],LA)+α[∑K−1
i=0 γiLR[i] +maxA0:K D(S′,A0:K)−

D(LS[0],LA)]
11: Pop first element from LS,LA,LR
12: end if
13: S← S′

14: end while
15: end for
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4.2.1.3 Causal lookahead agent

For the causal lookahead agent we use the causally derived future-value function (Eq.

3.8) to construct the update rule (Eq. 4.3). Here it is worth noting that the causal

future-value function relies on a shorter time horizon version of itself. In reality, we

could maintain k different future-value functions of different horizons, but for simplicity,

we have assumed that the shorter horizon future-value function can be approximated by

greedifying the last step (i.e. D(S,A0:k−1) = maxAk−1 D(S,A0:k)). While this assumption

is not necessarily true, preliminary experiments have shown this to work well.

D(St ,At:t+k)← D(St ,At:t+k)+α[Rt + γ max
At+k+1

D(St+1,At+1:t+k+1)−D(St ,At:t+k)]

(4.3)

We then use a modified version of the Q-Learning algorithm (Alg. 1) to update the

future value function. This algorithm is outlined in algorithm 3.

Algorithm 3 Causal lookahead agent

1: D(S,A0:K)← 0 for all S ∈ S and A0:K ∈ AK

2: for each episode do
3: S← sample starting state
4: while not done do
5: A0← argmaxA′0

maxA′1:K
D(S,A′0:K)

6: S′,R← perform A0 in state S
7: D(S,A0:k)←D(S,A0:k)+α[Rt +γmaxAt+k D(St+1,A1:k+1)−D(S,A0:k)] for

A1:K ∈ AK−1

8: S← S′

9: end while
10: end for

Further hyper-parameters can be found in Appendix A.

4.2.2 Results

In Figure 4.3 we can see the training results of the different agents in the randomly

generated MDPs. We can see in the results that as the lookahead horizon increases

the performance of the conditional estimate agent degrades, while the causal estimate

agent retains close to the optimal Q-Learning results, showing that the stochasticity

introduced by the MDP has little effect on the overall performance.

We can see how the expected result of the conditional agent overshoots the optimal

Q-Learning result by a large margin, as expected, and underperforms in realised reward.

This clearly shows how the overestimation misleads the greedy policy.
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We can also see that the expected value of the causal agent is significantly lower

than the Q-Learning result. This is likely due to the underestimation problem discussed

in Section 3.7. The more interesting, and unexpected result, is that even though the

future-value function underestimates the possible rewards, this has very little effect on

the actual return of the agent, and the agent achieves close to the optimal Q-Learning

result regardless.
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Figure 4.3: Training results from training the different agents on randomly generated
MDPs.

4.3 Windy River Environment

So far we have looked at highly contrived MDPs as well as random MDPs in which we

see some degrading performance. In this experiment, we will look at how under certain

situations this over-estimation can lead to complete failures to learn. To demonstrate

this we have created an environment inspired by the CliffWalking environment [22].

4.3.1 Method

The Windy River environment consists of a grid world (See Fig. 4.4) where the agent

starts in the lower left corner and the goal is to move to the lower right corner. Along

the bottom, there is a river, which if you fall in you are taken back to the start. The

agent has 4 actions, up, down, left, and right. At each step in the environment, there is

a probability of wind, which if it occurs, your action will be ignored and you will be

blown one grid cell down, towards the river. The agent is given a reward of -1 for every

step in the environment.
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Figure 4.4: An illustration of the Windy River environment

The method is the same as in the previous experiment (Section 4.2), except that we

do not vary the lookahead length. In this experiment we very the wind probability, to

get insight into how the amount of stochasticity affects the different agents. The results

are averaged over 10 runs with different seeds.

Further hyper-parameters can be found in Appendix A.

4.3.2 Results

In Figure 4.5 we can see the results from the Windy River environment. The results are

similar to the random MDP results, with Q-Learning and the causal agent achieving

a similar performance, while the conditional agent has the highest estimate with the

lowest performance. We can also see that when the probability of wind is raised to 50%

the conditional agent is unable to learn anything.
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Figure 4.5: Results from the Windy River environment with varying wind probabilities.
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Discussion

The theoretical and empirical findings of this research underscore the utility of incor-

porating causal inference into reinforcement learning, particularly in the context of

planning in stochastic environments. The core of the investigation revolved around the

limitations of traditional conditional planning methods, which often rely on maximizing

expected returns based on conditional probabilities. This approach, while computation-

ally feasible and effective in many deterministic or near-deterministic scenarios, tends

to overestimate future rewards in stochastic settings due to the failure to differentiate

between correlation and causation.

5.1 Implications of Overestimation and Underestimation

The identified overestimation problem is particularly problematic in environments where

certain actions are correlated with high rewards without being causally responsible

for them. This misalignment leads to suboptimal decision-making, as agents may

be led astray by spurious correlations that do not reflect the true dynamics of the

environment. The empirical evidence from randomly generated MDPs and the Windy

River environment highlights how this can lead to degraded performance or even

catastrophic failures in highly stochastic scenarios.

Conversely, the introduction of a causally-informed future-value function addresses

this overestimation by utilizing the do-operator to derive an estimate that correctly

accounts for the causal dependencies in multi-step planning. However, this correction

introduces a new challenge: underestimation. The underestimation is upper-bounded

by the optimal plan, which can be lower than the optimal policy. While avoiding the

pitfalls of overestimation, may lead to conservative strategies that do not fully exploit
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the available opportunities in the environment.

5.2 Addressing the Underestimation with Planning Pro-

jections

To counteract the underestimation, the research proposes a state-dependent policy

transformation using planning projection matrices. This approach transforms the action

space such that the future-value function better approximates the optimal value function.

The theoretical guarantee that an appropriate planning projection can align the future-

value function with the optimal value function is promising, offering a pathway to more

accurate and reliable planning strategies.

However, the practical implementation of such planning projections introduces

complexity. The need to balance exploration and exploitation presents challenges that

require further exploration. Moreover, the potential existence of local optima in the

iterative improvement of both policy and planning projection suggests that additional

research is needed to develop robust convergence guarantees.

5.3 Broader Impacts and Future Work

The integration of causal inference into decision-making processes has the potential

to improve the reliability and robustness of AI systems in various domains, including

robotics, autonomous systems, and healthcare. By moving beyond mere correlation

and utilising causality, AI systems can make decisions that are more aligned with the

underlying realities of the environments they operate in, without requiring to accurately

model the environment itself.

Future work should focus on empirically validating the proposed methods in more

complex and realistic environments. Additionally, the development of efficient algo-

rithms for learning state-dependent planning projections can prove to be an interesting

research avenue. Exploring how these techniques can be scaled to high-dimensional

state and action spaces, possibly through the use of deep learning, could significantly

enhance their applicability in real-world scenarios.
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5.4 Conclusion

This thesis has explored the intersection of causal inference and reinforcement learning,

with a particular focus on improving planning in stochastic environments. The research

identifies critical limitations in traditional conditional planning methods, which tend to

overestimate expected returns due to a failure to distinguish between correlation and

causation. By incorporating the do-operator into the planning process, the research intro-

duces a causally informed future-value function that corrects for these overestimations,

albeit at the cost of introducing sarcastically conservative estimates.

To mitigate the underestimation problem, the thesis proposes the use of state-

dependent planning projections, which can transform the action space to better align

with the optimal value function. This approach holds promise for improving the accuracy

and reliability of planning in reinforcement learning, particularly in environments

characterized by significant stochasticity.

Overall, the findings of this research contribute to the ongoing development of more

intelligent and reliable AI systems. By integrating causal reasoning into reinforcement

learning, we move closer to the goal of creating agents that can make more informed

and effective decisions, even in the face of uncertainty and complexity. Future research

should continue to refine these methods and explore their application in increasingly

challenging and dynamic environments.
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Appendix A

Experiment Hyper-parameters

A.1 Conditional vs Causal Estimates in Random MDPs

γ-decay 0.99
Experiments 4

MDP State count 100
MDP Action count 4

Table A.1: Hyper-parameters for the ”Conditional vs Causal Estimates in Random MDPs”
experiment

A.2 Conditional vs Causal Agents in Random MDPs

γ-decay 0.99
Random MDPs 10

MDP State count 10
MDP Action count 4

Table A.2: Hyper-parameters for the ”Conditional vs Causal Agents in Random MDPs”
experiment

A.3 Conditional vs Causal Agents in Random MDPs

38
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γ-decay 0.99
Experiment Seeds 10

Table A.3: Hyper-parameters for the ”Conditional vs Causal Agents in Random MDPs”
experiment


