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Abstract

The market proliferation of voice assistants (Canalys, 2021), has encouraged the inves-

tigation of Tool-Use capabilities powered by Large Language Models (LLMs). Qin

et al., 2023 utilized a fine-tuned Llama-2 model (Touvron et al., 2023) in a ReACT

(Yao et al., 2023) prompting context for Tool-Use, which has been shown to struggle

with populating the API calls with arguments (Q. Xu et al., 2023). Shen et al., 2024

proposed improving the pipeline through the separation of the ReACT reasoning stages

into three models: Planner, Caller and Summariser. This still pertains to the reliance

on zero-shot comprehension of APIs, which is a weak assumption given the models

used and research investigating zero-shot abilities of models of this size (Hsieh et al.,

2023; Wei et al., 2022). This study addresses this weak assumption and uses a hard

routing-based strategy for utilizing expert adapters to significantly boost the quality

of the API Calls produced by the Caller model, by reducing the zero-shot capability

reliance. Heuristics regarding the application of this idea were investigated to derive

the optimal level of abstraction, number of tasks and samples. Furthermore, this study

shows that adapter aggregation is a viable strategy for lowering the computational cost

of adapting to changes in the APIs. The experimentation has shown that this pipeline

can allow the 7 Billion model, to beat much larger, modern and closed-source models

used in a zero-shot scenario on this task.

i



Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Patryk Kuchta)

ii



Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Pasquale Minervini, whose

invaluable input, unwavering support, and dedication have been instrumental throughout

this journey. His guidance and feedback have greatly enhanced the process of writing

this dissertation and made it a more educationally enriching experience. For his patience,

encouragement, and steadfast belief in my abilities, I am truly thankful.

I would also like to take this moment to thank all the friends who have provided their

feedback on various parts of my dissertation. Your thoughtful insights and constructive

critiques have been instrumental in shaping this work. I am particularly grateful to
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Chapter 1

Introduction

1.1 Motivation for Tool-Use

The growth in computational and architectural capabilities has enabled the size expan-

sion of Large Language Models (LLMs), allowing new capabilities to emerge (Brown

et al., 2020; Wei et al., 2022). Amongst those previously infeasible tasks is Tool-Use

(Hsieh et al., 2023). In their review, Z. Wang et al., 2024 describe it as providing the

LLM with various utilities that are not part of the neural model, allowing the pipeline to

perform previously impossible actions and improve the quality of the answer. Those

actions can range from consulting a calculator to achieve better numerical answer preci-

sion (Schick et al., 2023), using a web browser to fetch current information that was not

present during the training of the LLM (Zhuang et al., 2023), or even controlling an

external robotic assistant through calls (Vemprala et al., 2023). Figure 1.1 includes a

simulated Tool-Use conversation.

In principle, LLMs can easily leverage a large variety of tools through public

Application Programming Interfaces (APIs). This ability is due to their programmatic

rule-based nature, which strikes a large resemblance with code and natural language

while generating text of this kind is within the realm of Natural Language Processing

(NLP) solutions (Duque et al., 2023; Sarkar et al., 2022). The availability of various

APIs is an essential aspect of the practical usefulness of the Tool-Use pipeline, as they

can provide crucial help when dealing with a plethora of tasks. For instance, RapidAPI

is an API hub used in some Tool-Use studies (Qin et al., 2023; Shen et al., 2024; Z. Shi

et al., 2024), and it contains over 16000 endpoints, spanning over 49 categories. Hubs

are preferable to using APIs directly as when used commercially they unify billing and

documentation into one place, increasing their practical utility.

1



Chapter 1. Introduction 2

Some may argue that we have already seen the first wave of market adoption of Tool-

Use through the proliferation of voice assistants such as Google Assistant or Amazon

Alexa (Canalys, 2021). Question-answering (QA) systems can benefit from Tool-Use,

as can be seen by the performance benefits of Retrieval Augmented Generation (RAG)

(Asai et al., 2024; Guu et al., 2020; Izacard et al., 2022; P. Lewis et al., 2021), which

can be considered a subset of Tool-Use. Those techniques are much more resilient in

cases of information that was not present in the training data (Min et al., 2023) and

in terms of data which values have changed since training (Izacard et al., 2022). The

robustness provided by RAG is a crucial consideration in many systems, given the cost

of retraining an LLM. Furthermore Béchard and Ayala, 2024; H. Ding et al., 2024 show

that introducing information-retrieving tools into the pipeline reduces the frequency

of hallucinations, further emphasising the benefits of making LLMs capable of using

Tools.

1.2 Hypothesis and Approach

Current solutions based on small models, such as the Llama model, often fail due to

incorrectly generated API calls. Q. Xu et al., 2023 highlight that API call malformation

in the shape of incorrect Argument Population1 is the most significant contributor to

failures of the entire pipeline. The idea central to the improvements offered by the Multi-

Agent pipeline (Shen et al., 2024) is to consider each of the reasoning steps of ReACT

reasoning (Yao et al., 2023) used by Qin et al., 2023 as a separate Machine Learning

problems, necessitating separate models for Planning, Calling and Summarising. This

approach allows the Caller model to become more specialised in API calling. Figure

1.2 illustrates the Multi-Agent architectural shift compared to a Single-Agent approach

and a non-Tool-Use conventional pipeline.

In this thesis, the hypothesis investigated is that each endpoint could be regarded

as a distinct task. Similarly, entire API families2 can be treated as a single unit, and

categories3 comprising lists of API families can also be viewed as a unified task.

This approach reduces the emphasis on the model’s ability to learn API usage solely

from the documentation in the prompt, as it allows the model to gain more insight by
1Argument Population is the task of selecting the parameters and values for those parameters in the

API call.
2API families are sets of endpoints from the same route; for example, all endpoints accessible from

https://soundcloud4.p.rapidapi.com/ constitute the soundcloud API family.
3The creators of each API family annotate categories by selecting from a list of 49 categories defined

by RapidAPI.
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Could you let me know the weather forecast, please?
tool

retriever Relevant tools are:
get_weather_for_met_office_api

market_forecast_for_business_api
get_user_location_for_user_info_api

planner
The user is likely interested in the weather in their current location only,

hence now I will call the get_user_location_for_user_info_api API, to find
out their location.

caller
Action: get_user_location_for_user_info_api

Action Input: {}

{ location: "Edinburgh" }

planner
The get_weather_for_met_office_api can be used to check the weather for

the user in their location which is Edinburgh.

caller
Action: get_weather_for_met_office_api

Action Input: { city: "Edinburgh" }

{ description: "Overcast", "rain_chance": 0.5, "temperature": 20 }

planner
According to Met Office API, weather in Edinburgh: overcast, 50% chance

of precipitation, temperature 20°C. Now summarize to the user.

summarizer
The weather in Edinburgh is overcast with a 50% chance of rain and 

a temperature of 20°C.

Figure 1.1: Simulated conversation following ReACT prompting principles (Yao et al.,
2023), incorporating the task division proposed by Shen et al., 2024. Qin et al., 2023
employed the same model for the Planner, Caller, and Summarizer roles.

training on a dataset focused on a specific subset of the overall data. This hypothesis

aligns with previous research suggesting that smaller models perform better when

reliance on in-context learning is minimised through fine-tuning (Mosbach et al., 2023).

This fragmentation of tasks allows for many possibilities in terms of implementation,

generating several sub-hypotheses examined in this study.

In a practical scenario, procuring even a relatively small subset of Llama-2 7B

(Touvron et al., 2023) experts through fine-tuning becomes infeasible, as storing an

entire model for each expert would be highly inefficient in terms of storage. A Parameter

Efficient Fine Tuning (PEFT) technique is used to maintain the computational and
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Figure 1.2: Illustration comparing the standard LLM assistant Question-Answering
approach with the Tool-Use ReACT-based pipeline (Yao et al., 2023), in both Single-
Agent (Qin et al., 2023) and Multi-Agent (Shen et al., 2024) configurations.

storage feasibility of the research undertaken. In many studies, including this one, the

resulting weights from PEFT technique applications are called adapters4 which are

applied onto a base model. In the context of the study, the PEFT strategy is Low-Rank

Adapters (LoRA) (Hu et al., 2021) due to its wide adoption and the fact that it allows

for the adapters to be dynamically swapped into the network efficiently. Hard routing

with a library of LoRA adapters is used, based on the description by Ostapenko et al.,

2024, where the pipeline dynamically swaps one adapter onto the base model based on

the current requirements. In this scheme, backing off to the base version of the model is

efficient, as it simply requires deactivating all of the adapters.

1.3 Aims

Crucially, the study aims to validate that this approach can improve performance

beyond what was achieved by Shen et al., 2024. The proposed method has a high degree

of customisation possible regarding base models, number of samples/tasks, adapter

stacking and hierarchical selection. Hence, to evaluate how to make the most of this

proposed pipeline, this research investigates the most appropriate hierarchical level

of abstraction for training, given that for each tool, there are 3 task splits possible:

endpoint-wise, API-family-wise, and category-wise. Furthermore, the experimentation

approximates an optimal number of samples and tasks (endpoints considered) for

training the experts.

4Adapters can be viewed as lightweight components that, once applied to a model, allow it to adapt to
have new capabilities—more detail in Section 2.1.3
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The hierarchical nature of the dataset division allows for the investigation of the

effect of aggregating experts to produce a new expert from one level higher in the

hierarchy, for instance, by using all of the endpoints experts from an API family to

create an API family-wide expert, based on adapter aggregation that has already been

shown to have a positive impact in Natural Language Generation (NLG) (Y. Wang,

Agarwal, et al., 2022). This approach to building experts might be beneficial regarding

computational cost as it simplifies expanding the number of endpoints supported in the

future, as new experts can be aggregated with minimal expense.

The final approach relevant to this study is extending the idea of the Global-to-Local

Progressive Fine-Tuning (GLPFT) presented by Shen et al., 2024 beyond two stages to

test whether this training regime improves the final performance of the resulting API

experts on the task. Prior research in other domains has shown that stacking PEFT

adapters can positively impact performance (Gema et al., 2024) when the training

regime successively narrows down the task.

1.4 Report Structure

This report is organized into five main chapters. The first chapter Introduction introduces

the motivation, hypothesis, and research objectives of this study, upon which the next

chapters are built. Chapter two is the Literature Review and it examines relevant

background in the field of LLM-based Tool-Use and the research related to this study.

This section also includes an introduction to many of the concepts used throughout this

study. Methodology, which is the third chapter, outlines the experimental configuration

and training schemes. Furthermore, it encompasses a discussion of the modifications

and additional annotations that had to be made to the dataset, and it also touches on how

the dataset was generated in the first place. Chapter four, called Results, discusses the

findings, highlighting the impact of different factors on the performance of the pipeline.

Finally, the Conclusions summarize the key insights, address limitations, and suggest

future research directions. Additional tables and prompt templates are included in the

Appendix. Figure A.1 in the Appendix also includes an illustration organizing all the

models used in this study to provide clarity.
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1.5 Objectives

• Validating the performance of the Multi-Agent (Shen et al., 2024) pipeline:

– Replicating the results of Shen et al., 2024 to ensure the viability of the task-

splitting hypothesis for the Tool-Use task.

– Analysing the impact of specialised agent networks on the ability to produce

valid API calls.

• Analysis of the ToolBench dataset (Qin et al., 2023)

– Identifying potential issues and inconsistencies in the train and test dataset,

especially in the relation between the Planner-Caller steps

– Addressing inconsistencies in the dataset by automated removal

– Analysing the effect of the training on the filtered dataset

• Implementation of the Modular-Expert-LLM API Caller pipeline:

– Dividing the dataset into a finer set based on three hierarchical division princi-

ples: API-category-wise, API-family-wise, and API-endpoint-wise.

– Implementing a pipeline for fine-tuning expert adapters for the fine tasks.

– Implementing a modular inference pipeline that will use the experts to produce

better API calls

• Finding the best principles and approaches for expanding the Modular-Expert library

– Comparison of the hierarchical division principles

– Combing finer level experts into coarser level experts using aggregation

– Analysing the relation between the number of training samples available and

tasks (endpoints) considered with performance

– Experimentation with a stacked LoRA progressive fine-tuning approach

– Comparison of the stacked progressive fine-tuning approach against a simple

stacked adapter approach and direct fine-tuning

• Analysing the practical impact of the Modular-Expert LLM pipeline.

– Validating performance gains of the inference pipeline on the original ToolBench

(Qin et al., 2023) test set

– Comparing the effectiveness of the proposed solution against closed source

models GPT-3.5 Turbo and GPT-4o mini

– Evaluating the use of categorical experts on out-of-domain tools5 from the

ToolAlpaca (Tang et al., 2023), with automatic neural category annotation

5Out-of-domain tools are tools for which there are no training samples present in the training set.



Chapter 2

Literature Review

2.1 Background

2.1.1 Large Language Models

The invention of the transformer architecture, proposed by Vaswani et al., 2023, has

allowed for an unprecedented growth of models that are modelling human language. Pre-

trained Large Language Models such as BERT (Bidirectional Encoder Representations

from Transformers) (Devlin et al., 2019) ignited the first wave of adaptation of large

language modelling technology by providing the reasoning capabilities required for

complex classification tasks, such as sentiment analysis (Sun et al., 2019), named

entity recognition (Y. Wang et al., 2020), and question answering (Gupta, 2020), with

remarkable accuracy and efficiency.

Generating text can be treated as a repeated classification task, continuously choos-

ing the next token until a special end-of-sequence symbol is produced. It is important

to note that this scheme does not allow for corrections earlier in the sequence, which

is a significant limitation (implications discussed in Subsection 3.1.4). This approach

led to the creation of large Sequence-to-Sequence models such as the BERT-based

BART (M. Lewis et al., 2019). Another family of models capturing this notion is the

now-famous Generative Pre-trained Transformer (GPT) family of models. Brown et al.,

2020 presented the third iteration from this collection, and with the increase in the

number of parameters also came a massive growth in capabilities. One particularly

impressive feat was that the models started to exhibit a considerable degree of zero-shot

and few-shot capabilities (Wei et al., 2022). In NLP, zero-shot learning is the ability

of the LLM to learn how to answer the task using instructions in the prompt alone

7
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without seeing any question-answer pairs in the training. For example, LLM is trained to

respond with sentiment scores after a comment is pasted into the conversation, but if the

task is explained sufficiently before the comment it should have no issues consistently

answering it. Appendix C.2 is a template that uses zero-shot learning for Tool-Use, and

it is included along with an example. Few-shot learning extends this idea by providing a

very limited number of samples and the task description in the prompt. Both approaches

rely on the LLM adapting based on the information in the prompt, commonly known as

in-context learning (Dong et al., 2024).

In modern Natural Language Processing, transfer learning (Torrey & Shavlik, 2009)

has become a crucial concept. Transfer learning occurs when a fully trained model on a

related task provides the initial weights for a new model for the target task. The two

distinct stages of training in this approach are often referred to as pre-training, followed

by fine-tuning. In most applications of this concept, it is hoped that the initialisation

of the specialised models with this general model will aid the training beyond what is

achievable by training from scratch or at least reduce the training time. The same idea

is central to the current LLM research and applications since foundation models have

reached the mainstream (Zhou et al., 2023).

Due to their computational complexity, the broader adoption of LLMs comes with a

significant environmental and financial cost. The ecological burden is substantial in the

current climate crisis, which appears to be at odds with furthering the development of

LLM technology. The carbon and cost impact of the discussed technologies was the

subject of serval studies, and they offer rather pessimistic conclusions on the matter

(Faiz et al., 2024; Patterson et al., 2021). In light of these challenges, improving the

efficiency and effectiveness of smaller models becomes increasingly important.

Another large obstacle to practical applications of LLM is hallucinations, which are

instances where language models generate plausible-sounding but baseless information

in response to queries (Huang et al., 2023; Ji et al., 2023). This phenomenon is particu-

larly prevalent in small models (Dahl et al., 2024) and has significant implications for

practical applications, even garnering attention from non-computer science academics

(Curran et al., 2023). There is a significant positive correlation between the extent

of fine-tuning and hallucination rates (Gekhman et al., 2024), presenting additional

challenges for small instruction fine-tuned models.
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2.1.2 Augmenting LLMs with Tool-Use

In addition to enabling previously impossible operations and enriching answers, inte-

grating external retrieval methods, such as Tool-Use, has shown promising results in

reducing hallucinations (Béchard & Ayala, 2024; H. Ding et al., 2024). The research

conducted by Qin et al., 2023 was amongst the first to tackle the Tool-Use task in the

context of smaller models. In their study, they experimented with multiple variants

of models from the Llama-2 family (Touvron et al., 2023). Amongst them was the 7

billion parameter variant, which is relatively small.

Models of this size are lightweight enough to run smoothly on high-end consumer

GPUs, offering instant responses in real-time applications. As mentioned before,

models of this size possess limited abilities in zero-shot settings (Hsieh et al., 2023;

Wei et al., 2022). Therefore, the model was instruction fine-tuned on a dataset of

conversations with Tool-Use generated by GPT-3.5 Turbo (Brown et al., 2020) (more

detail in Subsection 3.1.1). This process teaches smaller models to mimic the behaviour

of larger ones and is often referred to as Distilling (Iliopoulos et al., 2022). The dataset

features a diverse array of tools, many with a minimal number of samples (discussed in

more detail in Subsection 3.1.3). This characteristic requires the models to demonstrate

zero-shot learning capabilities for specific APIs.

This model retrieves a small subset of the endpoints in the RapidAPI hub, allowing

for the inclusion of the most relevant API documentation within the limited context

window. The success of the entire turn is highly dependent on whether the correct APIs

get fetched, therefore the accuracy of that retriever is crucial. The role of tool retrieval

in creating the prompt is demonstrated in Figure 2.1.

The maximum context length is a characteristic limitation of the transformer archi-

tecture (Vaswani et al., 2023) upon which modern LLMs are built (Brown et al., 2020;

Jiang et al., 2023; OpenAI, 2024; Touvron et al., 2023). This consideration makes har-

nessing the benefit of few-shot approaches difficult and costly as Tool-Use conversations

tend to be long, often surpassing 4096 tokens (which is the limit for Llama-2 models).

In recent developments, context windows started rapidly growing (Y. Ding et al., 2024;

G. Team et al., 2024; Xiong et al., 2023), which should allow the retrievers to be more

liberal with the number of APIs they select and prevent conversation cropping when the

context limit is reached. Some studies propose architectures that allow infinite tokens

to fit into the context (Munkhdalai et al., 2024). This does not imply that the retrieval

problem is wholly solved because, as F. Shi et al., 2023 shows, LLMs can get distracted
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Figure 2.1: Comparison of synthetic and inference-time prompt generation. Synthetic
prompt generation was utilized exclusively during dataset creation.

away from the task when irrelevant information is included in the prompt. Furthermore,

previous studies have shown the position of information can have a massive impact on

its utilisation (N. F. Liu et al., 2023). Qin et al., 2023 show that using LLMs with more

oversized context windows without changing the behaviour of the retriever already has

a substantial impact on the performance, simply by preventing context cropping.

Their study also considered the reasoning structure, where they proposed a Depth

First Search-based Decision Tree (DFSDT) optimised to limit error propagation and

encourage exploration during generation. Their evaluation has suggested the superiority

of the DFSDT approach. This approach is an extension of the strategy commonly

known as ReACT (Yao et al., 2023). In their study, they demonstrate that incorporating

a reasoning step before each action and allowing the model to repeat this cycle multiple

times can have a substantial benefit when addressing complex tasks and it is a significant

improvement over previously proposed Chain-of-Thought (CoT) prompting (Wei et al.,

2023).

The variety of APIs is part of what makes Tool-Use so practically useful. It also

often requires the model to learn how to use a specific API based on a digest of the
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documentation alone. This, in turn, means that there is a significant emphasis on the

zero-shot abilities of the model, which in the case of the model considered is lacking

(Hsieh et al., 2023; Wei et al., 2022). Q. Xu et al., 2023 show that in the case of

Llama-based Tool-Use models, mistakes in the Argument Population stage are the most

common factor contributing to failures. The focus of this study arises when taking

both of these considerations into account, hence it investigates whether a shift towards

a finer-task split can boost the performance, as it in principle reduces the reliance on

zero-shot assumptions.

2.1.3 Parameter-Efficient Fine-Tuning

As large language models have grown in size and complexity, innovative techniques

have become essential to manage their computational and storage demands effectively.

This trend has led to the development of efficient adaptation techniques in the field

of NLP (Houlsby et al., 2019; Semnani, 2019). Despite the large number of potential

approaches (Han et al., 2024; L. Xu et al., 2023), LoRA (Hu et al., 2021) and its

derivatives (Dettmers et al., 2023; Lialin et al., 2023; S.-Y. Liu et al., 2024) have started

to be regarded as the state-of-the-art approach. The underlying scheme is simple and

can be adapted to suit many scenarios, as it only involves training two small matrices,

the dot product of which gets added to the original weights of any matrix in the model.

The size of the matrices can be adjusted through the r parameter, which defines the

hidden dimension of both matrices. In practical applications, applying this adaptation

to only some of the weight matrices of the model works well enough (He et al., 2022),

further increasing the appeal of this approach. The central equation of LoRA can be

formulated in the following way:

fadapted(x|W,A,B) = f (x|(W +AB)) = xW + xAB (2.1)

Adapter Parameters: A ∈ Rd1×r, B ∈ Rr×d2, r≪ d1∧ r≪ d2 (2.2)

Original Weights: W ∈ Rd1×d2 (2.3)

LoRA offers an extraordinary reduction in trainable parameters, reducing it to 1-3%

of the original count while still maintaining good performance on various tasks (L.

Xu et al., 2023), and only those trained parameters in the adapter matrices have to

be saved, significantly reducing the storage requirements of the solutions involving

multiple experts. Furthermore, as shown by Figure 2.2, LoRA can be used without
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Figure 2.2: An interpretation of the effect of LoRA adapters on the final weights through
a latent patch, while the original weights remain frozen (unchanged during training).

altering the original weights, allowing for dynamic swapping in the inference time

and reducing the overhead of the solution. Furthermore, Biderman et al., 2024 shows

that LoRA can prevent forgetting of the original abilities of the model when compared

with traditional full fine-tuning, which is an advantageous characteristic when using a

pre-trained model.

2.2 Related Work

2.2.1 Non-ReACT Tool-Use

Many approaches, including the pipeline considered in this paper, rely on ReACT

prompting (Yao et al., 2023), but it is worth noting that there are other strategies as well.

For instance, in Chain of Tools (Z. Shi et al., 2024), the reasoning is expressed as a

program (for example, in Python) that includes a class of functions that list programmer-

written programs that can call the tools. It offers a sizable performance improvement

over other approaches. However, it inherently requires additional engineering as all of

the APIs must be accessible through Python function calls. Further, in Chain-Of-Code

(Li et al., 2023), reasoning is also expressed as Python code that then is interpreted

jointly by the compiler and LLM, where the LLM serves as a backup for whenever the
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compiler is unable to access a function that an LLM included in the code. An example

of such a function would be ‘is fruit(”lemon”)‘, which is a question that the LLM can

confidently answer with its natural language capabilities while answering this question

programmatically or with API would be wasteful.

Schick et al., 2023 have proposed another approach to Tool-Use, where information

that can be retrieved/computed by external tools is replaced by function calls that can

return this information. This approach allows the model to simplify the generation

process by using a single step to insert function calls for retrieving details needed in

the sentence (refer to Figure 2.3 for an example). This scheme avoids the cost and

complication of multi-step reasoning chains. It allows for the relatively easy creation

of new datasets based on existing text, where the ‘information gaps’ are artificially

introduced. However, the scheme has limited resilience against errors, as the one-step

nature does not allow the model to correct its mistakes.

In all of the approaches discussed in this section, the writing of API calls is not

done by an LLM but rather by a procedural function. Those approaches reduce the

reliance on the LLM’s ability to write API calls, which in the case of Llama-based

solutions is especially poor (Q. Xu et al., 2023). However, they necessitate a much

larger engineering effort to create a pipeline and integrate many tools. The implications

of this difference become evident by comparing the number of tools Schick et al., 2023

and Li et al., 2023 used (5 and 107 respectively) with the portfolio of endpoints used in

the Qin et al., 2023 study (over 16 thousand). Figure 2.3 is an illustration that compares

the main characteristics of these schemes.

2.2.2 Multi-Agent Tool-Use

Shen et al., 2024 have considered that performing ReACT reasoning might be too

complex for a single small model. Therefore, to reduce the reliance on this weak

assumption, they fine-tune separate models on three distinct tasks: Reasoning (referred

to as Planning in Shen et al., 2024), Acting (Calling), and Summarizing. This scheme

allows the individual models to focus more on their respective tasks, which is helpful

given their constraints.

While routing during training is a trivial problem, as the correct agent alignment is

known apriori, during inference routing is a significant problem, as it is not apparent

which agent should respond at each step. Therefore, Shen et al., 2024 trained the

Planner to conclude their responses with Next: caller or Next: summariser,
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1+ calls
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Output
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with tool outputs

Partial Answer

Answer

ReACT Tool-Use
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Toolformer Tool-Use

def get_weather(...):

def get_time(...):

def get_weather(...):

def get_time(...):
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1 call
at a timeEXAMPLE:

I need to call the Met Office API to get
weather information for Edinburgh.

EXAMPLE:
weather_state=get_weather("Edinburgh")
print(f"Weather state is {weather_state}.")

EXAMPLE:
The weather today is
`get_weather("Edinburgh")`.

Figure 2.3: Simplified comparison of reasoning schemes: ReACT Tool-Use (Qin et al.,
2023), Chain-of-Tools Tool-Use (Z. Shi et al., 2024), and Toolformer Tool-Use (Schick
et al., 2023).

which is used to route the timestep in the conversation to the correct expert. The

remaining experts have a simpler routing scheme, the Planner follows every Caller

action, while all responses from the summariser conclude the turn. Figure 1.2 includes

a simplified illustration comparing the two approaches and due to a large number of

models considered at this point, a glossary was included in Figure A.1 in the Appendix.

2.2.3 Progressive Fine-Tuning

Comprehension of the overall conversation and task is crucial to every step in the

pipeline; therefore, the authors of the Multi-Agent scheme argue that simple fine-tuning

right from the base models might create models that are overly specialised in performing

their assigned task, therefore lacking comprehension of the overall task. This prompted

the authors to propose Global-to-Local Progressive Fine-Tuning (GLPFT). This scheme

approaches the issue mentioned earlier by first fine-tuning a ‘backbone’ model on the

entire task, where the single agent has to perform all three roles in the reasoning, and

then using this model to fine-tune three models to take on specific roles. This approach
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Figure 2.4: Abstract illustration of the parameter space and various approaches to
training stages. The training stage represented by the dotted arrow from LM (Language
Modelling) Llama to Tool-Use Backbone was first proposed by Qin et al., 2023, while the
dotted line from Tool-Use Backbone to Caller represents a training regime proposed by
Shen et al., 2024. The other lines depict the approaches explored in Subsection 3.3.1.

aligns with the conclusion presented by Gururangan et al., 2020, who show that a

gradual multi-step alignment to the target task yields better performance than direct fine-

tuning directed at the task. In this way, GLPFT indulges in applying the transfer learning

principle twice through the aforementioned Global-to-Local Progressive Fine-Tuning

scheme, as the first ‘Global’ stage is applied on a Llama model already pre-trained on

Language Modeling. Figure 2.4 illustrates the parameter space relation between those

models.

This research will expand the Multi-Agent pipeline by fine-tuning adapters applied

to the Caller model, which are concerned with smaller and more specific tasks. The

hierarchical structure of the problems considered allows for stacking and fine-tuning

LoRA adapters that are increasingly more specialised, inspired by the stacked adapter

approach used by Gema et al., 2024 in the clinical domain. I hypothesise that the

Hierarchical Progressive Adapter Stacking approach will allow the resulting model to

outperform the other model by incorporating knowledge from the higher domain into

the lower domain, harnessing LoRAs characteristic of forgetting less of the original

expertise (Biderman et al., 2024).



Chapter 3

Methodology

The methodology of training experts has been primarily adapted from the Shen et al.,

2024 study. The main differences are the implementation of LoRA (Hu et al., 2021) for

fine-tuning and only saving the adapter’s state after the training concludes rather than

a whole merged model. The code base made public as a part of this study allows for

an easy generation of training scripts that can train expert adapters. All a user has to

specify to use the code is the expert they want to train and the base model. The code in

the repository provides the ability to stack LoRA adapters together during training, as

long as the previous adapter has already been trained. The code includes more detailed

documentation about usage. Most hyper-parameters have been consistent with how

the Caller was trained in the study from Shen et al., 2024. Although a more capable

new iteration of this model family was released, namely, Llama-3 (L. Team, 2024), this

study will maintain the use of the older Llama-2 (Touvron et al., 2023) for consistency.

The length of training was fixed at the minimal number of epochs1 where at least 1250

batches2 are seen during training. One expert takes roughly 4 hours to train on a single

NVIDIA A100 GPU. Additionally, it has to be noted that each adapter set after training

with the current configuration occupies only about 60 MB of disk space.

3.1 Training Dataset

3.1.1 Source and Method of Generation

Training data used in this study is the ToolBench dataset, which was a part of the

Toollama study (Qin et al., 2023). The dataset was generated using a zero-shot setting
1Epoch is one entire training pass through the training data.
2The effective batch size in the study is eight samples per batch.

16
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using GPT-3.5 Turbo (Brown et al., 2020). This automated scheme reduces the cost

of acquiring this data but introduces several issues. The scheme used the RapidAPI

hub, with a database of digested documentation for each tool generated by the model.

Afterwards, the model is tasked with generating simulated user questions and is doing

so by being instructed to create natural language queries that will use at least 2 APIs

from a small subset of the APIs that were sampled from the Hub (illustrated in Figure

2.1 as Synthetic Prompt Generation). Those queries and the sampled tools were passed

to GPT-3.5 Turbo in a zero-shot fashion, meaning only the Tool-Use task was explained

to the model, with no examples provided. Single-Agent sub-figure in Figure 1.2 shows

how the model answered queries through iterative generation.

This approach benefits from eliminating the costs of human annotation and replacing

it with a more affordable OpenAI API-based solution. New tools or shifts in usage

patterns can be easily accommodated by generating additional samples at any time with

minimal cost overhead. This flexibility allows for rapidly producing diverse datasets

that reflect current trends and requirements, enhancing the resulting models. This

unsupervised generation can result in many mistakes and inconsistencies in the dataset,

hence two significant issues are discussed later in this chapter. Before discussing issues

with automatic generation, it’s essential to acknowledge that human annotation is not

perfect and prone to mistakes. An extensive research field looks into the implication

and mitigation of those issues (Chiang & Lee, 2022; Pandey et al., 2022).

3.1.2 Expert-Wise Separation

Each expert is trained on a subset of tool calls that are relevant to the it. This way, the

agent can focus and derive expertise in their specific task. Therefore, the dataset was

split based on the tool used by the Caller in each instance on an endpoint, API family,

and category level.

This split points to the fact that, in the described pipeline, every classifiable plan

can be answered by one of three models: the specific endpoint trained, the API family,

or the category-wide expert. In cases where no expert is available or where experts are

not helpful, backing off to the base caller model is also possible.

This hierarchy poses the question of to what extent drilling down to finer tasks

helps. In principle, fine task divisions should help the model focus more on the specific

tasks, but acquiring experts for all endpoints is infeasible and may lead to overfitting.

Therefore, balancing those two considerations requires comparing training effectiveness
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Tool Type Acronym
Social Category
chuck norris API family
jokes random Endpoint JCN R
jokes search Endpoint JCN S
jokes categories Endpoint JCN C
Education Category
numbers API family
get random fact Endpoint N RF
get trivia fact Endpoint N TF
get math fact Endpoint N MF
get date fact Endpoint N DF
get year fact Endpoint N YF

Tool Type Acronym
Music Category
deezer API family
search Endpoint DZ S
playlist Endpoint DZ P
genre Endpoint DZ G
infos Endpoint DZ I
editorial Endpoint DZ E
artist Endpoint DZ A
track Endpoint DZ T
radio Endpoint DZ R
album Endpoint DZ AL
comment Endpoint DZ C

Table 3.1: Tools selected for experiments on hierarchy, focusing on effectiveness at
various levels and the aggregation of experts into higher-order experts. Endpoint names
have been shortened by omitting the API family name.

at those various levels.

The effect of the hierarchical abstraction level will be tested with an experiment

where the endpoint experts and the other possible higher-order experts will be trained

and evaluated. The endpoints and their corresponding Categories and APIs trained for

this experiment can be seen in Table 3.1.

3.1.3 Samples Distribution Distribution

The analysis of the dataset undertaken in this study revealed that the distribution in

terms of tools is not uniform nor difficulty-based. To illustrate this point, Table 3.2

contains the Top 10 most frequently used tools. Most of these tools only require 0 or 1

arguments, suggesting those are among the simpler APIs. Further, the fact that those ten

endpoints alone represent over 3% (11795 of 361038) of samples from a set containing

12377 tools (∼ 0.08% of the tools), shows the significant imbalance in the distribution.

The median of training samples for each endpoint is just 17.

Figure 3.1 shows that category distribution is also highly unbalanced. Over 63% of

categories (31 out of 49) occupy only 25.1% of the overall dataset in aggregate. Those

categories might represent the tendency of the dataset to have large blind spots for

specific categories or API families. This is especially concerning given that the test set

was generated similarly. Those issues are also present in that set.

I hypothesise that his discrepancy is caused by the fact that the data generation
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Tool Samples No. Args
jokes random for chuck norris 2362 0/1
search for soundcloud 1510 2/2
search for deezer 1239 1/1
api nutrition data for edamam nutrition analysis 1180 0/2
random for manatee jokes 1070 0/0
exchange for currency exchange 1006 2/3
getmsgs for messages 904 1/1
jokes search for chuck norris 869 1/1
all for getguidelines 864 0/0
get random fact for numbers 791 1/5

Table 3.2: Top 10 most frequently occurring tools in the training set, with the number of
samples and the number of arguments (No. Args) required/defined for each tool.

model is tasked with generating the query. In the generation, the LLM is likely to favour

queries that are more natural or related to questions it saw in the training data rather

than trying to maintain a good balance of samples for each API. This hypothesis is

consistent with the fact that the Top 10 endpoints (Table 3.2) are all related to popular

tasks, such as searching for music.

The nature of APIs means they can vastly vary in terms of difficulty and number of

parameters. Some API calls only require the correct route to be specified, while many

others necessitate intricate specific domain knowledge to produce valid API calls. In the

future, many features of the Tool-Use pipeline can likely be enriched by generating more

tailored training data, for example, by targeting challenging API categories. Subsection

3.1.1 explains that under the dataset generation strategy proposed by Qin et al., 2023

procuring those samples would not be costly, but this study will not investigate this

avenue, to maintain consistency with the previous work.

This characteristic points to the necessity of inspecting the relation between the

number of samples and the number of tools each expert has focused on during training.

The experiments conducted by Y. Wang, Mishra, et al., 2022 inspire this experiment.

Various experts with different numbers of training samples and endpoints will be

compared. All experts will be trained on the Caller model to make the comparison

consistent. The experts considered with the dataset sizes are shown in Figure 3.2 and

the number of endpoints encompassed within an expert in Figure 3.3.

The outcome of these experiments will produce recommendations on the minimal

number of samples required for training an expert and partially the extent of the benefit

of acquiring more data for a specific expert. Additionally, this experiment will inspect
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Figure 3.1: Distribution of samples by category. Exact numbers of samples are provided
in Table B.1.

how larger endpoint splits may lead to diminishing returns for the expert and at what

point the task splits become too coarse.

3.1.4 Classifying the Tool Request

Whenever the Planner ends the utterance with Next: Caller, there is an expectation

in the Multi-Agent pipeline that the action immediately following is a call to a single

API before the pipeline can invoke the planner again. Therefore, in the ideal world, the

Planner provides a clear choice of one tool. If the tool selection is clear, the pipeline can

decide which adapter is the most appropriate for this utterance and load it to improve

the output quality. When a plan is generated without a clear indication of the tool, all

expert adapters can be disabled as back-off to handle these cases, though this means no

performance improvements can be harnessed. Figure 3.4 illustrates the importance of

the tool classifier in the step between the Planner and the Caller.

The scheme used for identifying which tool was requested by the Planner is a simple

rule-based system, presented in Algorithm 1. At its core, this algorithm performs simple

string matching with the list of retrieved tool names. It is a simple yet effective baseline.

Still, the inspection of the dataset quickly revealed that this scheme gets confused

by cases where the Planner comments on the output of the previous API, sometimes

with strong wording such as the function X is not a valid approach or with

weaker wording the function X has been tried in the plan. In those ‘negation’
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information is available in Table B.4 in the Appendix.

cases, the simple approach will incorrectly believe that the Planner requested a function

that it, in reality, was only commenting about. The distinction between strong and weak

wording is significant as weak negation wording is often used in cases of reattempting a

specific tool (for instance the function X has failed, but it will be tried

again by modifying...).

Typical instances of ‘negation’ wording have been identified in the training set

semi-automatedly by classifying using the simple scheme and recording all cases with

more than one tool mentioned in the plan. This set of ambiguous instances is then used

to find the most common contexts before and after mentioning each API and the most

common phrases used around those. That has produced hundreds of potential candidates

that have been manually inspected to find phrases indicating negations, classifying them
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planner The user is likely interested in the weather in their
current location only, hence now I will call the

get_user_location_for_user_info_api API, to find
their location.

caller
Action: get_user_location_for_user_info_api

Action Input: {}

Tool
Classifier

roll
up

get_user_location_for_user_info_api

roll
up

user_info_api

Data

Library of
Adapters

Lookup for all 3

load the adapter
if present

Model
size:

~12GB Adapter
size:

~100MB

Figure 3.4: Illustration of how the plan determines the adapter choice in the pipeline,
with a focus on the tool classifier.

into strong and weak negations. Afterwards, this expanded scheme was compared with

the original classification scheme.

Figure 3.5 shows the difference in terms of the ability to parse (over 15% reduction

in the cases of inability to classify) and the accuracy of the resulting classification

(nearly 5% reduction in miss-classifications distribution of the parsed set). Notably,

the raw number of miss-classifications has risen because the improved scheme is more

likely to parse in general; therefore, it is more likely to parse incorrectly. It’s worth

highlighting that the probability of it parsing incorrectly, given that the sample was

parsed, was reduced (as shown on the smaller charts in Figure 3.5), which is a more

important outcome.

An alternative approach is to train a new Planner that is more decisive and provides

a more explicit structure for indicating API choices. This would involve modifying the

dataset, which, though costly, could be done automatically using a large language model

to rephrase the plans to better suit the subsequent calls by retrospectively inspecting the

entire conversation. This will enable the model to ensure consistency like it was not

able to during the original generation because of the word-by-word nature of decoding,

which does not allow for mistakes or inconsistencies to be fixed.

This study will not investigate this approach as it would make distinguishing between

the benefits of being more decisive and the benefits of the Expert pipeline more difficult

to track. Hence, the scheme used is a simpler rule-based system explained previously.

The ‘decisiveness’ approach is reserved as a potential avenue for future work.

3.1.5 Certainty Separation

The dataset resulting from the separation discussed in subsection 3.1.2 has a significant

issue. During inference, the model can only rely on the tool classifier to load the correct
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Figure 3.5: Comparison of tool classification schemes, considering both the entire
dataset (upper row) and the distribution of mistakes within the subset of the dataset that
could be parsed (lower row).

expert patch into memory, as there is no ground truth for which API is the correct

follow-up available. Therefore, the expert will never be loaded in cases where the

plan does not allow the classifier to make a classification, and the model will rely on

the general model to generate the API call by turning off all adapters. Hence, the

expert adapter will never see ‘uncertain’ plans at inference time due to the nature of

the inference pipeline. For a plan in the training set to be deemed as ‘uncertain’ if

they failed to mention a tool, mention multiple tools or the tool mentioned does not

correspond with the tool used.

Y. Wang, Mishra, et al., 2022 show that in NLG (Natural Language Generation),

the number of samples has a diminishing effect on the quality of the resulting model,

pointing to the belief that reduction in train set size due to this removal should have

a limited adverse impact. However, it is crucial to assess this relation in this specific

task. Therefore, the effect of excluding and including ‘uncertain’ samples will be

analysed. Considering 15 distinct tools, the resulting performance of training on the

following two datasets will be compared. The first dataset is all samples where the Caller

produced an API call for the tool targeted (called ALL), whilst the second CERTAIN

set contains samples from the ALL, but cases where tool classification was not possible

and cases where the classification did not match the subsequent API call were filtered



Chapter 3. Methodology 24

Algorithm 1 Classify Plan Into a Single Tool

1: function REMOVENEGATIONS(plan, negations)
2: for each negation in negations do
3: plan← plan.REPLACE(negation, ”[negated statement]”)
4: end for
5: return plan
6: end function
7: function FINDCOMMONSTRINGS(plan, tool names)
8: common strings← []
9: for each tool in tool names do

10: if tool is in plan then
11: APPEND(common strings, tool)
12: end if
13: end for
14: return common strings
15: end function
16: function CLASSIFYPLAN(plan, tool names, strong negations, weak negations)
17: plan← REMOVENEGATIONS(plan, strong negations)
18: common strings← FINDCOMMONSTRINGS(plan, tool names)
19: if LENGTH(common strings) = 1 then
20: return common strings[0]
21: else if LENGTH(common strings) > 1 then
22: plan← REMOVENEGATIONS(plan, weak negations)
23: common strings← FINDCOMMONSTRINGS(plan, tool names)
24: if LENGTH(common strings) = 1 then
25: return common strings[0]
26: end if
27: end if
28: return None ▷ Cannot be parsed
29: end function

out. Examples of cases that would be filtered out to get the CERTAIN set are shown in

Figure 3.6.

The selection of tools was made to provide a variety of dataset sizes and various

levels of prevalence of unclassifiable samples, as shown in Table 3.3. The size of the

training dataset ranged from 229 to 38245, and depending on the tool, the proportion

of unclassifiable cases ranged from 33.2 % to 57.9 %. The base model used for each

experiment is the Caller model trained by Shen et al., 2024.
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CONFUSING Planner: Based on the user’s request
for recent hashtags in Argentina, I should call the
get country s hashtags for twitter hashtags function
with the argument ”country: Argentina”. (...) I need to make another API
call to fetch all recent hashtags worldwide, as the user expressed interest in
them as well. This additional call will provide a comprehensive list of global
trending hashtags.
Reference Caller: get worldwide hashtags for twitter hashtags

Tool Classifier: get country s hashtags for twitter hashtags

AMBIGUOUS Planner: 1. Use the search for deezer func-
tion to search for popular tracks in the pop music genre. 2. Use the
exchange for currency exchange function to get the cur-
rency exchange rate between British Pounds and Euros. 3. Use the
album for deezer function to get the details of the latest album by Tay-
lor Swift. I will start by using the search for deezer function to search
for popular tracks in the pop music genre.

Reference Caller: search for deezer
Tool Classifier: [AMBIGUOUS]

UNEXPRESSED Planner: The previous action of fetching the current stock
information for GOOG on NASDAQ failed with a ”Not Found” message.
Since this action did not provide any useful information, I will try a differ-
ent approach to download the portfolio of freefloat investments.

Reference Caller: portfolio for freefloatus
Tool Classifier: [NO TOOLS MENTIONED]

Figure 3.6: Instances from the training set where the plan fails to lead to the correct tool
classification according to the scheme used in this study, with the referenced endpoint
shown afterwards. The word underlined in the first example is the most likely cause of
confusion.

3.2 Test Sets

3.2.1 ToolBench Test Set

The major conclusions of the viability of this pipeline will be drawn based on the

ToolBench test set, as it has APIs covered by the experts trained as part of this study

. This will also allow for a good comparison with the gains from the Multi-Agent

pipeline proposed by Shen et al., 2024. Furthermore, as this set is the main focus of

this study, two models from the OpenAI’s GPT family will be compared against the

proposed expert model: GPT-4o mini and GPT-3.5 Turbo. The latter will be used in

both zero-shot and few-shot (5 samples) in-context learning strategy, whilst GPT-4o

mini will be only tested in a zero-shot setting (due to usage constraints).
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Tool Training samples Diff (%) AcronymALL CERTAIN
Data (Category) 38245 21356 44.3 % D
chuck norris (API family) 3768 2138 43.4 % CN
billboard api (API family) 2447 1407 42.5 % BA
jokes random for chuck norris 2362 1314 44.3 % JCN
Transportation (Category) 2424 1431 40.9 % TR
search for soundcloud 1510 717 52.6 % SS
search for deezer 1239 520 57.9 % SD
random for manatee jokes 1070 714 33.2 % RMJ
exchange for currency exchange 1006 505 49.8 % ECE
get year fact for numbers 372 229 38.3 % GYF

Table 3.3: Comparison of training set sizes before and after removal.

3.2.2 ToolAlpaca Test Set and Additional Annotation

Assessing the out-of-domain capabilities of the pipeline proposed necessitated using

a dataset with tools unknown to the experts and Caller, which in this case will be the

test set from the ToolAlpaca study (Tang et al., 2023). As none of the tools from this

test set are previously known, only category-wide experts can be utilised. However,

the categories of each tool are also not known, hence all the tools with the associated

documentation were compiled into the prompts for GPT-4 Turbo, which is tasked with

annotating each API with one of the 49 categories from RapidAPI Hub. This way, 297

APIs were annotated, with only 11 cases of hallucination where the model has made up

a new category. The hallucination cases were annotated manually. The prompt template

with an example is included in the Appendix C.1. This test set was also used to assess

the Multi-Agent approach presented by Shen et al., 2024.

3.2.3 Specific Developmental Test Set

In most tools, the original ToolBench (Qin et al., 2023) test set has an insufficient

amount of cases, making comparisons between specific adapter approaches difficult.

Therefore, the original training set was split into two sets to make better-guided design

decisions: a new training set (90%) and a new specific test set (10%). This ratio was

kept consistent for all tools to ensure that there was a sufficient number of test cases for

any tool. This new test set will only be used to make comparisons between approaches

to procuring adapters and will not be considered when considering the overall impact

of the pipeline. Due to this separation, all of the experts in this study will be trained on
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Figure 3.7: Illustration of the parameter-
space effect of aggregating experts.

Figure 3.8: Illustration of the parameter-
space effect of stacking adapters in both
hierarchical and simple approaches.

slightly smaller training sets.

3.3 Training Scheme Experiments

3.3.1 Selection of the Base Model

Every expert has to be based on some pre-trained model. The most traditional approach

uses a base foundation model, in this case, the base Llama-2 7B model (Touvron et al.,

2023). This is the selection that Qin et al., 2023 have made for their model, but based

on the findings of Shen et al., 2024, the model is likely to benefit from a training regime

similar to GLPFT, where the Backbone model will be used as a base to allow Tool-Use

knowledge of the Backbone to be used by the Expert model. This scheme is how the

Caller model was trained (with the difference of using full fine-tuning rather than PEFT),

and this points to the third possible base model selection, which is to utilise the Caller

model, hence creating a training scheme that one may call Global-to-Local-to-Expert

Fine-Tuning due to its three distinct fine-tuning stages. The three possible approaches

have been shown in Figure 2.4. The tool choice is the same as in Table 3.3; each tool

was trained on all three base models.

3.3.2 Aggregating Experts into Higher-Order Experts

One of the hypotheses this research attempts to test is that lower-order task experts can

be aggregated into new higher-order experts without additional training, as illustrated

in Figure 3.7. Prior research has used simple aggregation schemes to combine models
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trained on arbitrary task divisions into models that outperform direct training on the

task (Y. Wang, Agarwal, et al., 2022). For this experiment, the endpoint experts trained

for the experiment described in Subsection 3.1.2 were aggregated and compared against

their corresponding directly trained higher-order experts.

Suppose models acquired in this manner match the performance or perhaps outper-

form the corresponding directly trained model. In that case, this training approach can

be advantageous for tool sets that frequently change or expand. In those cases, a change

in one endpoint will only require retraining on that endpoint, followed by an aggrega-

tion with the remainder of the set. Due to its straightforwardness and reproducibility,

the aggregation scheme used is the arithmetic mean. The focus of this experiment is

concerned with the effect of aggregation in general rather than narrowing it down to a

specific aggregation scheme, hence the preference for this scheme.

3.3.3 Hierarchical Progressive Adapter Stacking

Target Task Adapter 1 Adapter 2 Adapter 3 ACR.Task Task Task

jokes random for chuck norris
Social chuck norris Target

JCN R
Target Target Target

jokes search for chuck norris
Social chuck norris Target

JCN S
Target Target Target

jokes categories for chuck norris
Social chuck norris Target

JCN C
Target Target Target

chuck norris
Social Target

CN
Target Target

free nba
Sports Target

FN
Target Target

currency exchange
Finance Target

CE
Target Target

Table 3.4: Tasks considered for adapter stacking, with explanations for both the progres-
sive (first row of each target task) and simple stacked approaches (second row).

Prior research (Gema et al., 2024; Lialin et al., 2023) has used stacking of LoRA

(Hu et al., 2021) adapters to allow the model to achieve performance beyond what is

achievable with one adapter. The parameter space interpretation is shown in Figure 3.8.

An approach based on this idea will be investigated in two experiments, one where the

task used for all stages was the same target task (inspired by pre-training used by Lialin

et al., 2023), and where progressively, each adapter focuses on a more specific task
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(effectively drilling down, similarly to how Gema et al., 2024 used an initial adapter to

bring the model into the domain of the target task before focusing on the task). Table

3.4 presents the experts trained for this experiment.
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Results

The resulting experts from the experiments outlined in the previous chapter are evaluated

against reference API calls from ToolBench, ToolAlpaca and the custom-specific test

set. The metrics considered are the exact match score assessing the correctness of the

tool selection and the F1-score1 over the correctness of the arguments the API call gets

populated with (both the keys and values provided). In the spirit of focusing on the

adapter part of the pipeline, the results will be grouped based on the output of the Tool

Classification. The cases where the pipeline was unable to classify will not be shown,

as they will simply not be impacted by the expert adapter approach at all, with them

being run by the base Caller model. The results show that applying the adapters has a

positive impact on the accuracy of the API Calls produced by the pipeline and enables

the extraction of heuristics that guide the optimal training of experts.

4.1 Optimal Hierarchical Level of Abstraction

The investigation results into the correct abstraction are presented in Figure 4.1. They

reveal that the category experts struggle to offer considerable improvements over the

Caller from Shen et al., 2024 baseline. On the other hand, both the API family-wide

and endpoint-specific models were closely matched in terms of performance, and both

were significantly better than the baseline. This outcome points to a preference for

training API family-wide experts, those adapter experts can handle multiple kinds

of tool invocations to a satisfactory level, reducing the expense of training multiple

adapters for a comparable effect. Interestingly invocations of search for deezer

(DZ S) were handled significantly better by the API-family expert, rather than the

1F1-score is a correctness metric that balances precision and recall. F1-score = 2 · Precision·Recall
Precision+Recall

30
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endpoint expert, which seems counterintuitive. However, what likely is causing this

effect is the generalizability of information contained in other endpoints of the deezer

API family that have helped with that specific endpoint.
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Figure 4.1: Comparison between hierarchical experts and the baseline for each task.
The upper row shows Exact Match performance on API choice, while the lower row
shows F1 scores for Argument Population. Exact performance figures are listed in Table
B.3 in the Appendix, and tool acronyms are disambiguated in Table 3.1.

4.2 Effect of Sample Number and the Tasks Considered

Figure 4.2 shows how the performance of the experts evolves as more tasks (endpoints)

are considered and as the number of samples grows. The plot presents two intuitive

trends, firstly below 1000 samples, the expectation of the performance cannot be too

high, as the expert likely overfits the samples provided. Secondly, as the model’s

focus broadens, the gain over the baseline Caller model shrinks, ultimately becoming

practically non-existent past 200 endpoints per expert. This observation is consistent

with the expectations because, in the limit of tasks (i.e. the entire training set), the

expert is trained on the same data as the Caller model. One unintuitive trend is that
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the increase in the number of samples seems to harm the resulting model. Still, I

hypothesise this is simply the fact that experts with more samples also had more tasks,

hence the tendency in the samples graph is explainable through the previous conclusion.

The main conclusion from this experiment is that experts should be trained for sets of

endpoints below 200 to maximise the resulting performance. Regarding the number of

samples, the experiments suggest procuring a dataset of over 1200 samples for each

expert.

4 5 6 7 8 9
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2 3 4 5 6 7 8 9
10k

2 3 4
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1
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0

0.5

1
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EM and F1 Scores with the growth in Number of Tasks

Figure 4.2: The effect of increasing the number of tasks and samples on pipeline
performance compared to the baseline. Exact metrics are provided in Table B.4 in the
Appendix.

4.3 Effect of Limiting the Dataset to Certain Plans

The hypothesised harm of the uncertain plans has been proved to be incorrect to an

extent, as, in practice, the model has benefited from the additional cases and the noise

provided by those cases. This effect can be seen in Figure 4.3. Certain plans may have

repetitive patterns that the model started to overfit without uncertain plans or simply the

number of samples was insufficient after the filtering. Therefore, all training samples
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have been used for the remainder of the experiments, and it is recommended that the

proposed removal is not performed due to its harmful effects.
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Figure 4.3: Expert performance considering both the entire training set and a subset
limited to specific samples. Task acronyms are disambiguated in Table B.5. The data
used for this plot is also provided in Table B.6 in the Appendix.

4.4 Preferred Base Model Selection

Qin et al., 2023 propose fine-tuning a Tool-Use wide model (called Backbone in the

experiments) to gain performance over the standard Llama model (Llama) (Touvron

et al., 2023) on this task, and Shen et al., 2024 has made this pipeline more complex by

separating them into multiple agents, amongst them a model dedicated for writing API

Calls (Caller). Each of the three models described, Llama, Backbone, and Caller, can

serve as the basis for the expert model. The results in Figure 4.4 show that each step is

beneficial, especially holding off on adding the expert until the Caller model is trained.

In most tasks, the Expert based on the Caller model vastly outperforms any other path

of acquiring a model for this task.

The only endpoint that suffered from the introduction of the expert adapter is

exchange for currency exchange (ECE) but it was also the only endpoint that was

aided by the filtering in the experiment discussed in Section 4.3. Hence, the lacklustre

performance can be explained by the lack of filtering or the wrong level of abstraction

used. It has to be noted that applying the expert adapter to the Caller model has the

highest theoretical computational expense. Still, the cost of training a Caller and then the
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Expert Adapter is much lower than the previous stages of the training (training the Caller

is roughly one order of magnitude shorter than the Backbone, and the expert adapter

is approximately two orders of magnitude shorter). The outcome of this experiment

confirms that the Multi-Agent approach proposed by Shen et al., 2024 is beneficial in

terms of API Call correctness as the Caller has outperformed the Backbone in most

comparisons.
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Figure 4.4: The Argument Population F1-score depending on training the expert adapter
with various base models. Note that the ‘computational cost’ axis is a rough illustration
rather than a precise representation. Performance metrics are listed in Table B.7.

4.5 Viability of Expert Aggregation for API Experts

Aggregating the adapters fine-tuned for the Endpoints of a particular API to get an API

Expert has been shown to work in the cases considered, as seen in Figure 4.5. The

Aggregated Expert has achieved results comparable to those of the directly trained

API Expert in these experiments. Therefore, APIs affected by frequent changes can be

reflected dynamically by training endpoint experts and aggregating them. Each change

can be accommodated by training affected endpoint experts alone and then aggregating

again.
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Figure 4.5: Comparison of performance between the aggregated API expert, directly
trained API expert, and individual experts. The upper row shows Exact Match on API
choice, while the lower row shows F1-scores for Argument Population. Acronyms are
disambiguated in Table B.2, and exact figures are provided in Table B.8.

4.6 Progressive Adapter Stacking for Boosting Perfor-

mance

Figure 4.6 illustrates that stacking adapters with the training scheme used is only

beneficial in cases where the direct fine-tuning has failed to improve the performance.

Additionally, making the stacking progressive does not make a significant difference.

This may be because the base model has already undergone progressive fine-tuning

phases, and the residual knowledge is plentiful for the task. However, in many cases,

progressive stacking may require less training overall as the intermediate adapters can

be reused. Therefore, for the Expert Tool-Use pipeline, the recommendation is to use a

progressive stacked adapter approach only when the performance is disappointing.
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Figure 4.6: The effect of parameter stacking on performance, comparing simple stacking
and progressive stacking. The lower row shows the same data zoomed into the upper
range. Tasks are disambiguated in Table 3.4, and performance figures are listed in Table
B.9 in the Appendix.

4.7 In-Domain and Out-Of-Domain Test and Comparison

The in-domain tool comparison compares the Expert pipeline against the Caller it is

based on, and two closed-source competent models, with one of them, trialled both

in zero-shot and few-shot settings. As can be seen from Figure 4.7, the proposed

pipeline significantly outperforms the baseline of Caller. Still, it retains its edge over the

closed-source models in most categories. This outcome is especially remarkable when

considering that the ToolBench (Qin et al., 2023) dataset was generated by GPT-3.5

Turbo itself, and the Expert model is merely attempting to mimic its behaviour through

distillation (Iliopoulos et al., 2022).
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Figure 4.7: ToolBench test results for Callers, GPT models, and Experts. Metrics are
also included in Table B.10.

Furthermore, in line with the findings of Hsieh et al., 2023, the few-shot inclusion

of examples has not substantially helped the GPT-3.5 Turbo model, sometimes even

harming the model. This result might be due to the length of the conversations, which

can cause the model to get confused about that is the relevant data, similar to the

distraction effect discussed by F. Shi et al., 2023. Interestingly, the newest model from

this experiment, GPT-4o mini, performed the worst regarding Argument Population.

Additionally, the pattern of preference for smaller task splits discussed in Section 4.2 is

still present in this data. The experts trained on the two largest categories Data (1460

endpoints) and Finance (1451 endpoints) had offered minimal gains and performed

worse than the closed source models, whilst the categories where the Expert model

performed the best were relatively small, for instance, Education (206 endpoints) and

Transportation (137 endpoints).

The final experiment uses the ToolAlpaca dataset (Tang et al., 2023) to test the

Out-Of-Domain gains of this pipeline. The fact that the experts are trained to specialise

more in the tools outside of this test set is entirely consistent with the test outcome, as

the gains are small. Despite being numerically smaller the gains in terms of Argument

Population are more insightful as they show that for the majority of the categories,

the ability to choose the correct parameters has improved noticeably, but still falls far

from what would be required for a viable practical solution. On aggregate, the Expert
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Figure 4.8: ToolAlpaca out-of-domain test results for callers, GPT models, and experts.
Metrics are also included in Table B.11.

pipeline was still better than the baseline Caller model, hence pointing to the fact that the

resulting experts could learn additional generalisable information about API categories

that the original Caller lacked.
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Conclusions

5.1 Limitations and Future Work

The choice of Llama-2 as the base model may have limited the potential performance.

Therefore, to fully leverage the proposed pipeline, it is essential to explore the effects

of this approach using a more advanced and capable base for the Caller. The pipeline

shown in this study has not investigated all endpoints, API families and categories due

to computational constraints. Hence any application of this approach must be evaluated

before deployment. The provided code and the new specific test set split should aid in

the validation effort.

Uncertainty is a major consideration when aspiring to improve the pipeline as

currently only 64.3% of the plans in the training set can be classified into a choice of

tool. Additionally very often when the tool is classified the API call does not match the

classification. This means in many cases no experts can be loaded due to insufficient

classification abilities, and in some cases, the incorrect expert is loaded. This is the

reason why API Choice Exact Match scores rarely achieve 100% when endpoint experts

are used, as sometimes the expert has to deal with cases where the tool classifier has

incorrectly invoked them. Hence, a more involved expert selection scheme or retraining

of the Planner to have a structured way of indicating the tool required for the next

step would be beneficial. Retraining the Planner requires modifying the training set to

ensure that the required tool is indicated in the output sequences for the Planner and

ambiguities are avoided.

The final avenue for future work is the investigation of the poor performance of

GPT-4o mini during Argument Population, which was not explored as this model was

used merely for comparative purposes in this study. The lower cost of GPT-4o mini

39
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makes it a very palatable option for inference and data generation if the issue identified

can be remedied. At the same time, in the current state, it is questionable whether it is

worth using the newer model given the results presented.

5.2 Summary

This study proposed an expert adapter pipeline for progressing the advances made by

Shen et al., 2024 in writing API calls. It was shown that further reduction in the reliance

on the zero-shot In-Context learning abilities of the model has a significant positive

effect on the final performance, even when compared with much larger closed-source

models. The correct heuristics for implementing this pipeline in practice have been

investigated, with the conclusion that experts focusing on less than 200 endpoints tend

to perform substantially better than the Caller model, whilst experts with a broader

focus tend to be unable to beat the baseline. Furthermore, endpoint aggregation into API

family experts is a viable approach that can lower the expert pipeline’s computational

overhead for often modified APIs. Progressive fine-tuning was also beneficial to the

entire pipeline as the best base model considered was also the model that was trained

in multiple stages. Furthermore, stacked adapter approaches can help with endpoints

that direct fine-tuning schemes struggle with. Still, this approach has little to no benefit

if the expert is already performing well. Therefore, this study proposes that partial

implementations of Tool-Use can train experts focusing on popular APIs or tools that

base solutions struggle with to improve performance. This can be done using adapters

that can be loaded dynamically and additionally could be trained and distributed by the

API creator if desired, due to their small size.
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3.5 Turbo

Models used in this study

GPT-3.5 Turbo was used by Qin et al., 2023 to generate the
dataset, and in this study for comparison with the resulting
pipeline, both in zero-shot and few-shot prompt templates.
The size of this model is 175 Billion parameters.

4o mini GPT-4o mini was used in this study for comparison with
the resulting pipeline, tested only with a zero-shot prompt.
The size of this model is currently unknown, but
supposedly smaller than GPT-3.5 Turbo.

Closed source models from OpenAI

Open source models based on the Llama-2 architecture

Llama-2 7B pre-trained for Language Modelling was the
architectural basis for all of the main models in this study.

Backbone model was fine-tuned on the Llama-2 model by
Shen et al., 2024 on the entire Tool-Use Task, inspired by the
Toollama from Qin et al., 2023.

Planner model was
fine-tuned on the
Backbone by Shen et
al., 2024 specializing
in the reasoning step
of the pipeline.

Caller model was
fine-tuned on the
Backbone by Shen et
al., 2024 specializing
in the action step of
the pipeline.

Summarizer model
was fine-tuned on the
Backbone by Shen et
al., 2024 specializing
in the summary step
of the pipeline.

The expert adaptation (This study) can be applied to
Llama-2, Backbone or Caller.

Figure A.1: Models used in this study with description of their origin and purpose.
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Category Name
Number of

samples tasks
data 38,245 1,460
finance 30,100 1,451
entertainment 27,364 564
social 20,397 724
tools 20,868 534
sports 21,704 1,207
news media 11,857 317
travel 11,019 373
business 10,062 409
commerce 5,847 118
ecommerce 9,642 302
music 9,574 412
weather 9,452 214
education 9,440 206
location 8,868 346
other 8,477 447
food 8,338 194
gaming 7,316 309
database 7,109 227
mapping 6,670 120
communication 6,582 218
search 6,080 124
financial 5,488 186
video images 5,187 202
science 4,849 98
media 4,752 121
translation 4,212 75
business software 4,175 187
advertising 4,096 119
text analysis 3,647 91
movies 3,533 113
health and fitness 2,832 85
AI ML 2,776 89
transportation 2,424 137
sms 2,347 69
medical 2,258 45
email 2,243 118
events 2,094 52
monitoring 1,654 42
logistics 1,386 33
visual recognition 1,261 38
category not found 1,229 62
devices 961 32
energy 563 20
cybersecurity 429 12
jobs 407 12
reward 337 10
payments 304 27
storage 281 6
cryptography 242 17
customized 58 2

Table B.1: Distribution of categories in the ToolBench dataset, including the num-
ber of samples and the count of endpoints. AI ML is a shorthand for the artifi-
cial intelligence machine learning category.
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B.2 Results chapter

B.2.1 Optimal Hierarchical Level of Abstraction

Short Name Full Name
JCN R jokes random for chuck norris
JCN S jokes search for chuck norris
JCN C jokes categories for chuck norris
DZ S search for deezer
DZ P playlist for deezer
DZ G genre for deezer
DZ I infos for deezer
DZ E editorial for deezer
DZ A artist for deezer
DZ T track for deezer
DZ R radio for deezer
DZ AL album for deezer
DZ C comment for deezer
N RF get random fact for numbers
N TF get trivia fact for numbers
N MF get math fact for numbers
N DF get date fact for numbers
N YF get year fact for numbers

Table B.2: Disambiguation table for short names used in the ”Optimal Hierarchical Level
of Abstraction” experiment.
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API API Ch. (EM) Arg. Pop. (F1)
Cal Cat API End Cal Cat API End

JCN R 0.35 0.34 0.92 0.90 0.35 0.34 0.91 0.90
JCN S 0.33 0.33 0.90 0.90 0.31 0.32 0.86 0.85
JCN C 0.46 0.46 0.91 0.93 0.46 0.46 0.91 0.93
DZ S 0.27 0.26 0.89 0.58 0.18 0.18 0.79 0.47
DZ P 0.30 0.34 0.86 0.84 0.12 0.16 0.68 0.64
DZ G 0.43 0.30 0.87 0.87 0.22 0.16 0.77 0.77
DZ I 0.29 0.29 0.88 0.85 0.29 0.29 0.88 0.85
DZ E 0.40 0.36 0.91 0.96 0.23 0.19 0.68 0.76
DZ A 0.21 0.17 0.81 0.83 0.10 0.07 0.62 0.63
DZ T 0.33 0.25 1.00 1.00 0.21 0.15 0.83 0.81
DZ R 0.48 0.84 0.84 0.88 0.18 0.58 0.58 0.62
DZ AL 0.16 0.84 0.84 0.84 0.08 0.62 0.62 0.62
DZ C 0.00 0.12 0.75 0.75 0.00 0.06 0.62 0.62
N RF 0.26 0.26 0.88 0.86 0.23 0.23 0.83 0.82
N TF 0.29 0.30 0.84 0.82 0.18 0.23 0.80 0.78
N MF 0.24 0.90 0.88 0.90 0.15 0.88 0.85 0.88
N DF 0.15 0.07 0.93 0.93 0.11 0.06 0.89 0.89
N YF 0.21 0.84 0.87 0.87 0.09 0.84 0.87 0.86

Abbreviation Meaning
API API Endpoint (Tool)
API Ch. (EM) API Choice (Exact Match)
Arg. Pop. (F1) Argument Population (F1)

Cal Caller
Cat Category Expert
API API Expert
End Endpoint Experts

Table B.3: Comparison of hierarchical expert splits in terms of API choice (exact match)
and argument population F1. Acronyms are disambiguated in Table B.2, and the
information is illustrated in Graph 4.1.
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B.2.2 Effect of Sample Number and the Tasks Considered

Task Name Number of Caller Expert
Samples Tasks EM F1 EM F1

Data 38245 1460 0.37 0.30 0.36 0.30
Finance 30100 1451 0.28 0.23 0.31 0.25
Sports 21704 1270 0.39 0.34 0.39 0.35
Social 20397 724 0.31 0.26 0.34 0.28
Entertainment 27364 565 0.33 0.28 0.33 0.28
Tools 20868 534 0.58 0.53 0.37 0.32
Music 9574 412 0.50 0.43 0.88 0.80
Travel 11019 373 0.28 0.22 0.44 0.38
Education 9440 206 0.32 0.28 0.56 0.52
database 7109 227 0.54 0.55 0.49 0.50
billboard api 2447 92 0.24 0.20 0.88 0.83
Jobs 407 12 0.30 0.28 0.59 0.57
numbers 2740 5 0.24 0.17 0.87 0.84
random for manatee jokes 1070 1 0.37 0.37 0.93 0.93
search for soundcloud 1510 1 0.43 0.31 0.97 0.90
search for deezer 1239 1 0.27 0.18 0.58 0.47
jokes random for chuck norris 2362 1 0.31 0.29 0.90 0.85
exchange for currency exchange 1006 1 0.43 0.32 0.42 0.28

Table B.4: Performance metrics from the comparison of the number of samples and
tasks experiment. EM denotes the Exact Match on API choice, and the F1-score is
measured based on the Argument Population. Data is illustrated in Figure 4.2.
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B.2.3 Effect of Limiting the Dataset to Certain Plans

Short Name Full Name
D Data
CN chuck norris
BA billboard api
JCN jokes random for chuck norris
TR Transportation
SS search for soundcloud
SD search for deezer
RMJ random for manatee jokes
ECE exchange for currency exchange
GYF get year fact for numbers

Table B.5: Disambiguation table for short names used in the ”Effect of Limiting the
Dataset to Certain Plans” experiment.

API API Choice (Exact Match) Argument Population (F1)
ALL CERTAIN ALL CERTAIN

D 0.36 0.36 0.36 0.36
CN 0.91 0.38 0.90 0.38
BA 0.88 0.24 0.83 0.19
JCN 0.90 0.37 0.90 0.37
TR 0.65 0.33 0.61 0.27
SS 0.97 0.93 0.90 0.87
SD 0.58 0.30 0.47 0.20
RMJ 0.93 0.91 0.93 0.91
ECE 0.42 0.83 0.28 0.82
GYF 0.87 0.16 0.86 0.04

Table B.6: Effect of reducing ”certain” entries on API choice and argument population
(F1). Acronyms are disambiguated in Table B.5, and the information is shown in Graph
4.3.
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B.2.4 Preferred Base Model Selection

Name Base Model Expert+Model
L B C L B C

jokes random for chuck norris 0.00 0.43 0.35 0.00 0.43 0.90
search for soundcloud 0.01 0.06 0.31 0.00 0.07 0.90
random for manatee jokes 0.00 0.24 0.37 0.00 0.24 0.93
search for deezer 0.00 0.10 0.43 0.02 0.06 0.90
exchange for currency exchange 0.00 0.14 0.32 0.00 0.14 0.28
get year fact for numbers 0.00 0.07 0.08 0.00 0.09 0.86
chuck norris 0.00 0.25 0.35 0.00 0.25 0.89
billboard api 0.00 0.43 0.20 0.00 0.43 0.83
Data 0.00 0.17 0.30 0.00 0.14 0.30
Transportation 0.00 0.17 0.27 0.00 0.14 0.61

Table B.7: Argument Population F1 scores for tasks based on different base and expert
models. ”Base Model” denotes the model used without an adapter, while ”Expert+Model”
indicates the performance of the expert adapter when trained on LLAMA (L), Backbone
(B), and Caller (C) models. This data is plotted in Figure 4.4.
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B.2.5 Viability of Expert Aggregation for API Experts

Endpoint Short Aggregate Direct Endpoints
Name EM F1 EM F1 EM F1

jokes random for chuck norris JCN R 0.87 0.87 0.92 0.91 0.90 0.90
jokes search for chuck norris JCN S 0.92 0.89 0.90 0.86 0.90 0.85
jokes categories for chuck norris JCN C 0.94 0.94 0.91 0.91 0.93 0.93
get random fact for numbers N RF 0.86 0.81 0.88 0.83 0.86 0.82
get trivia fact for numbers N TF 0.84 0.81 0.84 0.80 0.82 0.78
get math fact for numbers N MF 0.86 0.83 0.88 0.85 0.90 0.88
get date fact for numbers N DF 0.95 0.90 0.93 0.89 0.93 0.89
get year fact for numbers N YF 0.87 0.86 0.87 0.87 0.87 0.86
search for deezer DZ S 0.84 0.79 0.89 0.78 0.58 0.47
playlist for deezer DZ P 0.86 0.68 0.86 0.68 0.84 0.64
genre for deezer DZ G 0.87 0.77 0.87 0.77 0.87 0.77
infos for deezer DZ I 0.88 0.88 0.88 0.88 0.85 0.85
editorial for deezer DZ E 0.91 0.68 0.91 0.68 0.96 0.76
artist for deezer DZ A 0.81 0.62 0.81 0.62 0.83 0.63
track for deezer DZ T 1.00 0.83 1.00 0.83 1.00 0.81
radio for deezer DZ R 0.84 0.58 0.84 0.58 0.88 0.62
album for deezer DZ AL 0.84 0.62 0.84 0.62 0.84 0.62
comment for deezer DZ C 0.75 0.62 0.75 0.62 0.75 0.62

Table B.8: Performance metrics for various API endpoints, highlighting the impact
of different methods. Abbreviations used are Aggregate (Aggregated API Expert),
Direct (Directly Fine-tuned API Expert), and Endpoints (Endpoint Experts). Metrics are
provided for API Choice Exact Match (EM) and F1-scores for Argument Population. This
information is illustrated in Graph 4.5.
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B.2.6 Progressive Adapter Stacking for Boosting Performance

Name Acronym DT PST SST
API Choice - Exact Match

chuck norris CN 0.91 0.89 0.90
free nba FN 0.31 0.88 0.88
currency exchange CE 0.83 0.85 0.85
jokes random for chuck norris JCN R 0.90 0.86 0.88
jokes search for chuck norris JCN S 0.90 0.92 0.92
jokes categories for chuck norris JCN C 0.93 0.94 0.94

Argument Population - F1
chuck norris CN 0.90 0.88 0.89
free nba FN 0.27 0.84 0.84
currency exchange CE 0.83 0.84 0.84
jokes random for chuck norris JCN R 0.90 0.86 0.88
jokes search for chuck norris JCN S 0.85 0.89 0.89
jokes categories for chuck norris JCN C 0.93 0.94 0.94

Table B.9: Scores for various tasks based on different training methods: DT (Direct
Training), PST (Progressive Stacked Training), and SST (Simple Stacked Training).
Metrics are provided for ”API Choice - Exact Match” and ”Argument Population - F1”.
Full names for acronyms are included in the new column. This information is plotted in
Figure 4.6.
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B.2.7 In-Domain and Out-Of-Domain Test and Comparison
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API Choice - Exact Match
music 0.33 0.57 0.52 0.57 0.67
news media 0.29 0.49 0.59 0.45 0.63
business 0.41 0.45 0.62 0.55 0.69
finance 0.35 0.64 0.62 0.64 0.38
entertainment 0.42 0.55 0.54 0.55 0.51
education 0.50 0.75 0.58 0.58 0.83
travel 0.38 0.42 0.54 0.54 0.62
tools 0.44 0.44 0.56 0.44 0.56
data 0.43 0.64 0.62 0.61 0.46
sports 0.33 0.53 0.60 0.53 0.65
transportation 0.33 0.73 0.73 0.73 0.80
social 0.44 0.75 0.67 0.69 0.83

Argument Population - F1
music 0.24 0.27 0.31 0.43 0.47
news media 0.23 0.26 0.55 0.42 0.57
business 0.39 0.24 0.56 0.55 0.65
finance 0.28 0.36 0.51 0.56 0.33
entertainment 0.39 0.27 0.47 0.51 0.47
education 0.50 0.25 0.54 0.58 0.75
travel 0.35 0.12 0.41 0.46 0.49
tools 0.41 0.20 0.49 0.42 0.52
data 0.35 0.31 0.51 0.54 0.37
sports 0.31 0.29 0.49 0.51 0.63
transportation 0.23 0.42 0.68 0.68 0.70
social 0.37 0.33 0.49 0.57 0.68

Table B.10: Scores for various tasks based on different models: API Choice - Exact
Match and Argument Population - F1. The models include Caller (Shen et al., 2024),
GPT-4o mini (OpenAI), GPT-3.5 Turbo (OpenAI) Zero-shot, GPT-3.5 Turbo (OpenAI)
Few-shot, and Caller+Expert Adapter (this study). Data is displayed in Figure 4.7.

https://www.openai.com
https://www.openai.com
https://www.openai.com
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API Choice - Exact Match
music 0.22 0.67
news media 0.46 0.46
business 0.40 0.60
finance 0.75 0.75
entertainment 0.15 0.15
education 0.38 0.44
tools 0.51 0.49
data 0.56 0.56
sports 0.00 0.00
social 0.50 0.50
Argument Population - F1
music 0.11 0.39
news media 0.46 0.46
business 0.10 0.20
finance 0.38 0.56
entertainment 0.15 0.15
education 0.34 0.41
tools 0.47 0.47
data 0.44 0.39
sports 0.00 0.00
social 0.38 0.38

Table B.11: Scores for various tasks based on different models: API Choice - Exact
Match and Argument Population - F1. The models include Caller (Shen et al., 2024) and
Caller+Expert Adapter (This study). This data is shown in Figure 4.8.
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Prompts Used

C.1 ToolAlpaca Test Set Categorization

Prompt Template used for categorizing ToolAlpaca (Tang et al., 2023) tools onto the

mappings used in ToolBench (Qin et al., 2023).

Classify the API below to one of the categories (your

output is only the category name and it must be in the

set of categories): {API_FAMILY}: {(ENDPOINT => NAME)

[]} | Descriptions: {(ENDPOINT => DESCRIPTION)[]}.

Categories: {CATEGORY_NAMES[]}

60
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An example of the Template shown in Appendix C.1.

Classify the API below to one of the categories (your

output is only the category name and it must be in the

set of categories):

geolocation_simulation_for_mobile_apps:

imulations_of_a_group , list_all_groups ,

list_all_layers , list_all_simulations ,

list_applications , ons_by_application_id ,

view_application , view_layer , view_simulation ,

view_user_s_profile | Descriptions: Enter application

Enter groupID Enter layerID Enter simulation Enter

your application List all your a View Profile (E

list_all_groups)

Categories: Logistics , Cryptography , Jobs , Gaming , Social

, Sports , Database , Business_Software , Music , Business

, Location , Travel ,

Artificial_Intelligence_Machine_Learning , Science ,

Email , Events , Health_and_Fitness , Payments , Movies ,

Text_Analysis , Transportation , Monitoring , Medical ,

Financial , Weather , Video_Images , Devices , Customized ,

SMS, Food , Entertainment , Advertising , Energy , Tools ,

Search , Media , eCommerce , Visual_Recognition , Data ,

Communication , Other , Finance , Cybersecurity ,

News_Media , Translation , Mapping , Commerce , Storage ,

Reward , Education , Unknown
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C.2 ToolBench Multi-Agent prompt structure

Template used in the Multi-Agent pipeline proposed by Shen et al., 2024.

You have assess to the following apis: TOOLS RETRIVED: (TOOL

=> DOCUMENTATION)[] The conversation history is: UTTERANCES:

(UTTERANCE => TEXT)[] You should answer the action of next

step in the following format: The thought to solve the question,

Action: the name of api that should be called in this step, should

be exactly in [TOOLS RETRIVED: (TOOL => TOOL NAME)[]], Action

Input: the api call request. Once you think the question is

finished, output conclusion: the final answer of the question

or give up if you think you cannot answer this question.



Appendix C. Prompts Used 63

An example of the use of the template shown above. This conversation comes from

the ToolBench test set and it was generated by GPT-3.5 Turbo, Please note that this

example has the conclusion included, which would not happen in reality as the LLM

does not need to inspect the conversation at that point, but it was included so that the

entire conversation can be inspected.

You have access to the following apis:

search_for_ott_details: This is the subfunction for tool

"ott_details", you can use this tool. The description

of this function is: "This endpoint allows you to

search for a m"

params_for_ott_details: This is the subfunction for tool

"ott_details", you can use this tool. The description

of this function is: "Get array of values that can be

used as pa"

basic_info_for_ott_details: This is the subfunction for

tool "ott_details", you can use this tool. The

description of this function is: "Get info on a cast

such as name , profession"

sources_for_watchmode: This is the subfunction for tool "

watchmode", you can use this tool. The description of

this function is: "Return a listing of all streaming

sources th"

new_titles_for_watchmode: This is the subfunction for

tool "watchmode", you can use this tool. The

description of this function is: "Get a listing of the

title IDs of new titles"

titles_with_changed_episodes_for_watchmode: This is the

subfunction for tool "watchmode", you can use this

tool. The description of this function is: "Get a

listing of titles that have changes to"

The conversation history is:

user: I’m organising a movie -themed event for my company

and I need some information about the cast member with

the peopleid ’nm0000375 ’. Can you fetch the name ,
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profession , birth year , and best titles associated

with this cast member? Also , provide the streaming

sources available in the US and Canada for these

titles.

assistant: Given the current state and the API call to

retrieve basic information for "ott_details" with the

argument "peopleid" set to "nm0000375", my thought is

that the user is looking for specific details about a

cast member for their movie -themed event. By fetching

the name , profession , birth year , and best titles

associated with this cast member , we can provide the

user with valuable information for their event

planning. Additionally , the user is interested in

knowing the streaming sources available in the US and

Canada for these titles , which implies they want to

ensure accessibility for their audience. Using the "

ott_details" function with the provided peopleid will

give us the necessary information to fulfill the user ’

s request. Next: Caller.

caller: Action: basic_info_for_ott_details

Action Input: {

"peopleid": "nm0000375"

}

observation: "{’peopleid ’: ’nm0000375 ’, ’name ’: ’Robert

Downey Jr.’, ’profession ’: [’actor ’, ’producer ’, ’

soundtrack ’], ’knownForTitles ’: [’tt0371746 ’, ’

tt1300854 ’, ’tt4154796 ’, ’tt0988045 ’], ’birthYear ’:

’1965’, ’deathYear ’: ’\\\\\\\\N’, ’bio ’: ’Robert

Downey Jr. has evolved into one of the most respected

actors in Hollywood. With an amazing list of credits

to his name , he has managed to stay new and fresh even

after over four decades in the business.Downey was
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born April 4, 1965 in Manhattan , New York , the son of

writer , director and filmographer Robert Downey Sr.

and actress Elsie Downey (n&#xE9;e Elsie Ann Ford).

Robert&apos;s father is of half Lithuanian Jewish , one

quarter Hungarian Jewish , and one quarter Irish ,

descent , while Robert&apos;s mother was of English ,

Scottish , German , and Swiss -German ancestry. Robert

and his sister , Allyson Downey , were immersed in film

and the performing arts from a very young age, leading

Downey Jr. to study at the Stagedoor Manor Performing

Arts Training Cente..."

assistant: Based on the previous assistant message , the

current API call is to search for streaming details

using the "ott_details" function with the argument "

title" set to "tt0371746". My thought is that the user

is interested in finding the streaming sources and

availability of a specific title , "tt0371746", which

is one of the best titles associated with the cast

member requested earlier. By retrieving these

streaming details , we can provide the user with

information about where this title can be accessed ,

helping them plan their movie -themed event accordingly

. Next: Caller.

caller: Action: search_for_ott_details

Action Input: {

"title": "tt0371746"

}

observation:

assistant: Based on the previous action and its result ,

it seems like there was an error while searching for

the OTT details of the title "tt1300854". Since this
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action failed , I should try a different title to

gather the streaming sources available in the US and

Canada. I will now search for the OTT details of the

title "tt4154796" to fetch the streaming sources. Next

: Caller.

caller: Action: search_for_ott_details

Action Input: {

"title": "tt4154796"

}

observation:

user: This is not the first time you try this task , all

previous trails failed.

Before you generate my thought for this state , I will

first show you your previous actions for this state ,

and then you must generate actions that is different

from all of them. Here are some previous actions

candidates:

[

{

"name": "Finish",

"arguments": "{

\"return_type\": \"give_up_and_restart\"

}",

"function_output": "{\"response \":\"chose to give up

and restart\"}",

"mento -carlo -action -value": -10000

}

]

again , your former observation: {"error": "request

invalid , data error. status_code=500", "response": ""}

Remember you are now in the intermediate state of a trail
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, you will first analyse the now state and previous

action candidates , then make actions that is different

from all the previous.

assistant: Based on the current state and previous

actions , it seems that searching for the OTT details

of the titles "tt0371746" and "tt4154796" resulted in

an error. Since all previous actions failed , I should

try a different approach to gather the streaming

sources available in the US and Canada for the titles

associated with Robert Downey Jr.

Instead of directly searching for the OTT details of a

specific title , I can use the "sources_for_watchmode"

function to get a listing of all streaming sources

supported by Watchmode. This will provide me with the

streaming sources available for the titles associated

with Robert Downey Jr. in the US and Canada. Next:

Caller.

caller: Action: sources_for_watchmode

Action Input: {}

observation: "[{’id’: 203, ’name ’: ’Netflix ’, ’type ’: ’

sub’, ’logo_100px ’: ’https://cdn.watchmode.com/

provider_logos/netflix_100px.png’, ’ios_appstore_url ’:

’http://itunes.apple.com/app/netflix/id363590051 ’, ’

android_playstore_url ’: ’https://play.google.com/store

/apps/details?id=com.netflix.mediaclient&hl=en’, ’

android_scheme ’: ’nflx ’, ’ios_scheme ’: ’nflx ’, ’

regions ’: [’US’, ’CA’, ’GB’, ’AU’, ’BR’, ’AR’, ’BE’, ’

BG’, ’CH’, ’CL’, ’CO’, ’CZ’, ’DE’, ’DK’, ’EC’, ’EE’, ’

ES’, ’FI’, ’FR’, ’GR’, ’HK’, ’HR’, ’HU’, ’ID’, ’IE’, ’

IL’, ’IN’, ’IS’, ’JP’, ’KR’, ’LT’, ’MX’, ’MY’, ’NL’, ’

NO’, ’NZ’, ’PA’, ’PE’, ’PH’, ’PL’, ’PT’, ’RO’, ’RS’, ’
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SE’, ’SG’, ’TH’, ’TR’, ’UA’, ’VN’, ’ZA’, ’RU’]}, {’id

’: 157, ’name ’: ’Hulu ’, ’type ’: ’sub’, ’logo_100px ’: ’

https://cdn.watchmode.com/provider_logos/hulu_100px.

png’, ’ios_appstore_url ’: ’http://itunes.apple.com/app

/hulu -plus/id376510438 ’, ’android_playstore_url ’: ’

https://play.google.com/store/apps/details?id=com.hulu

.plus ’, ’android_scheme ’: ’hulu ’, ’ios_scheme ’: ’hulu

’, ’regio..."

assistant: The streaming sources available in the US and

Canada are Netflix , Hulu , and Disney+. These sources

provide access to a wide range of titles. I was unable

to fetch the specific titles associated with Robert

Downey Jr., but you can search for his best titles on

these streaming platforms to find the movies he is

known for.

assistant: The user ’s previous action of searching for

the OTT details of specific titles resulted in errors.

To find the streaming sources available in the US and

Canada for the titles associated with Robert Downey

Jr., I should take a different approach. Instead of

relying on a specific title , I can use the "

sources_for_watchmode" function to gather a

comprehensive listing of streaming sources supported

by Watchmode. This will provide me with the desired

information about the streaming availability of Robert

Downey Jr.’s best titles. Next: conclusion.

conclusion: The cast member with the peopleid ’nm0000375 ’

is Robert Downey Jr. He is an actor , producer , and

soundtrack artist. He was born in 1965. Some of his

best titles include Iron Man, Avengers: Endgame , and

Sherlock Holmes. These titles are available for

streaming on Netflix , Hulu , and Disney+ in the US and
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Canada.

You should answer the action of next step in the

following format:

The thought to solve the question ,

Action: the name of api that should be called in this

step , should be exactly in [search_for_ott_details ,

params_for_ott_details , basic_info_for_ott_details ,

sources_for_watchmode , new_titles_for_watchmode ,

titles_with_changed_episodes_for_watchmode],

Action Input: the api call request.

Once you think the question is finished , output

conclusion: the final answer of the question or give

up if you think you cannot answer this question.
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