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Abstract

Machine learning credit risk models play an important role in banking, but despite

the widespread success of deep learning in other domains, tree-based models are still

state-of-the-art for tabular data. Additionally, there is difficulty applying complex, black-

box models to financial tasks like loan decisions as customers and regulators expect

transparency which is not present in many complex classifiers. In this dissertation, I

introduce XGFT-Transformer, a novel hybrid model capable of achieving SOTA AUC

and KS performance on two tabular credit risk datasets, as well as Global Counterfactual

Importance, a novel Explainable AI (xAI) algorithm capable of producing high-quality,

model-agnostic local and global feature importance scores faster than current popular

methods. My results demonstrate great promise for other Transformer-based credit risk

architectures, and a powerful, efficient use for counterfactual explanations that avoids

their usual pitfalls.
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Chapter 1

Introduction

One of the most fundamental practices of banks and other financial institutions is lend-

ing money. The flow of cash through saving and lending is a critical service to both

individuals and businesses, and one that has been of great importance to the economy on

a national and global scale for centuries. Banks profit through paying interest to account

holders and charging a higher rate of interest to those who apply for loans, and so long

as they are capable of providing cash for any customer on request, that same money

can be used by the bank to allow for borrowing of money by other customers. This

gives banks massive stores of credit to use, but also creates a degree of risk - if large

sums of money are borrowed and for whatever reason cannot be paid back, the bank

runs the risk of major losses, or even bankruptcy. High levels of risk, in other words

lending money with few restrictions, can have catastrophic consequences such as the

2008 financial crisis where massive government bailouts were required to stabilise the

economy. The FCIC, reporting on the causes of the crisis, labelled ‘excessive borrowing,

risky investments, and lack of transparency’ as one of several causes [18]. Therefore,

the importance of Credit Risk Management - the process of deciding whether to approve

a loan, cannot be understated.

1.1 Motivation

In the years since the 2008 crisis, banks were forced to rethink their strategies for

credit risk. At the same time, the field of machine learning began to enter a period of

rapid development with the rise of larger, more powerful learning models capable of

forming a deeper understanding of the relationships between variables across massive

1



Chapter 1. Introduction 2

data sources. The appeal of these high-performing models is clear, but unlike in other

application areas a major issue arises when applying complex learning models to the

domain of credit risk management, as well as other high-impact decision areas. These

models are black-boxes - their decisions cannot be explained in the same way traditional

ML models can. Deep neural networks and modern transformer models rely on billions

of parameters, too much to be fully understood even by machine learning experts. A

well-known example comes from OpenAI’s GPT-3 in 2020, which used roughly 175

billion parameters [10]. There is a clear balance between a model’s effectiveness and

how intuitive and human-understandable it is, but finance is an area that requires both

high performance and informed decisions. Modern banks are highly regulated, and

these regulations are strongly enforced with both customers and regulators expecting

transparency and clear rules when making loan decisions. Recent initiatives like the

EU Artificial Intelligence Act demonstrate a clear push towards safe, trustworthy AI

models [43]. The financial sector requires the ability to harness more complex, powerful

models whilst still being able to explain the reasons for a decision being made, and this

is where Explainable AI has become a key component.

Figure 1.1: Number of Explainable AI (xAI) academic publications by year as of July

2024. (Data obtained from SCOPUS)

Explainable Artificial Intelligence or xAI is a field that is currently seeing tremen-

dous growth as AI technology becomes incorporated into more aspects of daily life and

the general public become more aware of its potential, with more papers on the subject

being published every year since 2017 when this growth began. It is a wide-spanning
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area of research and development with many subdivisions founded upon the idea that

an artificial agent must be reliable and understandable. By developing techniques to

analyse how black-box models make use of their inputs to produce an observed output,

we can better understand the decision process and obtain a sense of transparency. In the

field of credit risk management, this technology can answer the key question of why a

model approved or declined a loan, providing reliable evidence equivalent to a human

bank employee’s explanation that meets customer expectations and financial regulations.

Transformer-based models have recently obtained desirable, state-of-the-art results

for credit risk [64] [69] [41], but they lack explainability. Explainable Transformers

are currently an important area of research, but many papers on the subject focus on

visual explanations or natural language applications which are unsuited to tabular data.

By combining the predictive power of modified Transformers for credit risk data with

efficient, informative explainability techniques, the resulting model would be well-

suited for real-world explainable credit risk operation and improve the field for both

banks and customers.

1.2 Contribution

In summary, the contributions of this paper are:

• A comprehensive literature review of the fields of machine learning for credit risk

and explainable AI.

• A novel approach to credit risk modelling on two real-world datasets capable

of outperforming the current state-of-the-art using a custom Transformer-based

approach.

• A novel, model-agnostic explainability technique capable of producing local and

global feature importance scores faster than other common state-of-the-art xAI

techniques, with no decrease in explanation quality, using counterfactuals.



Chapter 2

Background

2.1 Credit Risk Management

The practice of reviewing loan applications is one with a long history, but the mod-

ern practice of risk management is actually fairly recent. In the past, banking was

much more localised and loan applications were often based on personal knowledge of

the customer and their community reputation. As the world became more connected

through global trade, banks gradually grew in size to the point that credit risk was no

longer an intuitive concept and older ideas of finance were forced to change in the

face of globalization and financial instability such as the Great Depression. Regulatory

oversight for banks is a concept less than a century old, and our modern definition of

credit risk only emerged in the 1970’s and 80’s with the birth of the first risk models and

risk departments in major banks [32]. The 1988 Basel Accord was a pivotal moment in

this development, introducing minimum capital requirements for banks of at least 8%

of their risk-weighted assets, improving economic security [22]. Credit risk evolved

further towards the turn of the millennium with new regulations such as the 2004 Basel

II which further enhanced regulatory oversight and addressed other risk factors such as

operational risk [22].

Formally, Credit Risk is defined as the probability of a customer defaulting on their

loan, and there are many methods of analysis used to define this probability. Managing

this risk is an important task for any financial institution, and as such there is a rich

field of research on credit risk dating back to its inception. Traditional approaches to

credit risk management rely upon human analysis using the available details about the

individual or company who are applying for the loan. Specific rules and policies are

4



Chapter 2. Background 5

used for this purpose, such as the CAMPARI template - Character, Ability, Means,

Purpose, Amount, Repayment and Insurance [9].

Character here refers to the responsibility and integrity of the applicant, and is

usually judged by reviewing their credit history or credit rating to get an indication of

how they have handled credit in the past. Credit rating (or score) is a score given to

individuals and companies that reflects their ability to pay back loans and avoid going

into default, and it is a key component of modern credit risk. Different countries use

different credit scores and so there is no single definition, but a good example of the

components of a credit score can be found in the FICO score, commonly used in North

America, which combines different factors in a weighted score [48]. 35% is accounted

for by payment history - records of past credit repayments, defaults or bankruptcies.

Another 30% is covered by amounts owed - a person’s current debts. Credit Utilization

Ratio is a metric that can be used here, and is in general a helpful score for CRM. It

is defined as the ratio of current credit balances to total credit limit, the lower the risk.

The remaining 35% consists of the length of credit history, new credit accounts and

types of credit used by the customer. Together, this information forms a score. In the

case of FICO, the score ranges from 300 to 850, the higher the better.

Capacity refers to the applicant’s income sources and stability, and is used as a

measure of how likely they are to be able to repay the loan, whereas capital refers to

money paid immediately, such as a deposit when renting accommodation. Debt-to-

Income-Ratio, the ratio of total debt repayments to gross income, is a very common

statistic used when analysing financial security and loan capacity. Collateral is other

assets that can be offered in the event of defaulting on a loan, such as property. Loan-to-

Value-Ratio is a metric that can be used to measure the appraised value of this collateral,

and is defined as the ratio of loan amount to appraised value of property. The lower

this score, the better the loan is secured by the collateral, and as such has lower risk.

Lastly, conditions refer to the loan itself such as the interest rate, the amount borrowed,

and the purpose of the funds. These properties and associated scores define the main

types of information banks use in traditional credit risk models, though the specifics

differ from bank to bank and location to location. In summary, statistical information

about a customer’s financial situation is key for making loan decisions in the modern

day, which makes it a perfect application area for machine learning.
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2.2 Explainable AI

The idea of explainable AI systems is more relevant now than ever before, but the

history of the field goes back to long before deep learning. Beginning in the 1970’s,

‘expert systems’ were created as a way of emulating the decision-making process of a

human expert through logical inference. These systems were rule-based, relying on a

knowledge base containing many different logical rules to be followed when coming to

a decision. By then applying inference across these rules, an expert system could come

to a conclusion and supply its user with the rules that led to its decision, making it fully

understandable and trustworthy since the rules used were designed by human experts

[11]. One of the earliest examples is MYCIN, a system developed during the 1970’s at

Stanford University and used to diagnose bloodstream infections using a knowledge

base of around 600 rules [55]. The trend of rule-based AI systems continued to rise

throughout the 70’s and 80’s with more powerful systems, but by the 1990’s it became

clear that there were limits to this approach. Neural networks were being studied at this

time, including research on the possibility of exposing their decision-making process

through the extraction of rules, similar to other rule-based systems of the time [59].

However, it was not until the 2010’s and the rise of deep learning that the modern field

of xAI began to form.

Deep neural networks and similarly complex models are black-boxes with incredible

performance but no transparency by default, and ethical questions arise when applying

them to sensitive areas such as healthcare, law, or the subject of this paper - finance. By

revealing the factors that lead to a model’s decision, we can more easily spot biases

and other unwanted decision weighting. A normal user of the system can be given

understandable explanations, and researchers can utilise these explanations to improve

the model. Most importantly, technology can only be relied upon when its human users

trust it, and as AI becomes more prevalent and powerful the value of transparency and

trust cannot be understated.

2.2.1 Terminology

As the field of explainable AI develops, many new terms are used to refer to common

features and requirements. To aid in clarity and understanding, several important

concepts are defined below which will be consistent throughout this paper.
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2.2.1.1 Transparent vs Explainable Models

A model is considered transparent if it is intrinsically understandable by a human

with no adjustments. Decision trees and logistic regression are examples of this, as

they inherently provide a visual explanation of decision making. These models can

also be described as white-box models, but it is important to note that the two terms

are not interchangeable. Transparency is a property of human understanding of the

model’s decision making, whereas the definition of a white box is a model whose

parameters and architecture is known. Transparent models are sometimes also referred

to as interpretable models, or ante-hoc approaches.

A model is considered explainable if it is not intrinsically human-understandable,

but utilises an xAI algorithm to provide additional information explaining its decision-

making, such as importance of various features to a decision made. Explainability is

usually a desired property of black-box models, which are models whose parameters

and architecture are hidden from the user, such as in Large Language Models like

ChatGPT. However, similarly to the above case, the two terms are not interchangeable.

Approaches that rely on analysis of the model after training are also known as post-hoc

approaches.

2.2.1.2 Global vs Local Explanations

A local model explanation is one that aims to explain a particular decision made by the

model - why it provided a certain output given this input. In contrast, a global model

explanation is one that analyses the model without any regard to specific predictions,

and instead aims to provide understanding with regard to all predictions. Taking

the example of feature importance, a local feature importance metric provides an

understanding of which input features were most important in deciding the output from

the model, whereas a global feature importance metric may average all such local

feature breakdowns to provide a global view of which features were most important

across all decisions made - hence most important overall.

2.2.1.3 Model-Specific vs Model-Agnostic Explanations

An explainable AI technique is model-specific if it can only be applied to a certain kind

of model and does not work for all situations, for example an xAI method reliant on the

presence of neurons can only be applied to neural networks. The opposite case where a

technique is model-agnostic implies that it is applicable to all learning problems, which
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usually means it is reliant on input or output data samples instead of internal model

structure.

2.2.1.4 Trustworthiness

Both inherently transparent and explainable models improve a model’s trustworthi-

ness, which is a measure of human confidence in the model’s decision-making ability.

Transparent and white-box models are inherently more trustworthy, and one goal of

explainability methods is to improve the trustworthiness of black-box models to the

same level. This is a metric based on human thoughts, and so trustworthiness is only

measurable when human trials have been performed and feedback gathered.

2.2.1.5 Bias and Fairness

Since explanations provide insight into a model’s decision process, they are helpful in

detecting bias - an imbalance in the model’s learned weights towards certain subsets of

the data. This bias could be inherent to the training data itself and reflect human biases,

or come from issues in the model itself such as overfitting. Even if protected traits are

removed from a dataset, the model may still form a prejudiced opinion by learning

from other features that are more common to a certain subset. Improving fairness of

models is one of the major goals of explainable AI, allowing for biases to be detected

and corrected.

2.2.2 Transparent Models

Some machine learning models are naturally transparent and explainable, such as linear

or logistic regression, decision trees and SVMs. Models like these saw much use in the

past [26] [65] [8], but with the exception of tree-based learning, their performance is

insufficient in the modern day. These models do not require any additional explainability

techniques, since a human user can understand the model’s decision-making process

simply by observing a decision boundary, at least in the case of low-dimensional data, or

use techniques like Principal Component Analysis to visualise higher-dimensional data.

Decision trees are highly explainable by their nature, as humans are very used to the

rule-based tree structure, especially in finance where rule-based approaches are trusted

and traditional. These white-box techniques are considered a goal for explainable AI to

match. In some cases explainability can be obtained by simplifying a complex model to

a transparent one, called a surrogate, covered in the Chapter 3.
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2.3 Transformers

In 2017, the field of deep learning was revolutionised by the now-famous paper “At-

tention is All You Need”, which proposed the multi-head attention mechanism and

Transformer model [61]. Whilst primarily developed as an advancement in natural

language processing aimed at replacing the LSTM-based systems of the time which suf-

fered from small context windows and lack of parallelization, it not only became a new

standard for language models but also transformed the fields of computer vision, speech

processing and deep learning research as a whole. The Transformer model also led to

the later development of BERT and GPT, and is the core technology behind the current

advances seen in recent versions of the well-known ChatGPT. It is no exaggeration to

say it is the foundation of the current AI boom, and a subject of great academic interest.

Figure 2.1: The original Transformer architecture proposed by Google researchers [61].

The Transformer is based on the idea of sequence-to-sequence learning, consisting

of an encoder and a decoder module as well as attention - a way to represent how

important different tokens are to other tokens. The encoder processes input data and

learns an internal representation or context, and the decoder uses this information when
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producing output. The architecture can be modified to suit various inputs, hence it’s

widespread application across different fields. The attention mechanism is the key

component of both the encoder and decoder - it takes in the original input vector (in the

language modelling case, these are positionally-encoded text embeddings) as query, key

and value. By multiplying the query and key vectors and applying a softmax function,

we can obtain probabilities for each query-key pair, such as two tokens in a sentence.

This is referred to as how strongly one input token ‘attends to’ another - in other words,

the relevance of all input features to all others. By finally multiplying by the original

values, the original embeddings are modified to encode this relationship information

which can then be learned from. Formally, attention can be written as:

Attention(Q,K,V ) = so f tmax(
QKT
√

dk
)V

where dk is the key dimension, equal to the dimension of the model’s learned

embeddings dmodel divided by the number of attention heads h. This type of attention is

also called self-attention. In the original paper, they use 8 attention heads with dk = 64.

Dividing by 1√
dk

is used to stabilise the model and counteract vanishing/exploding

gradients in the softmax function. A single instance of attention is referred to as

one ‘attention head’, and the Transformer applies attention many times over different

linear projections of size dk, in order to learn different relationships, hence ‘multi-

headed’. Lastly, in both the encoder and decoder, a feed-forward neural network layer is

applied to further transform the rich, contextual information obtained from the attention

mechanism and learn complex relationships between input features. Transformer blocks

are often stacked sequentially, with each additional block providing more intricate

knowledge at the cost of huge additional numbers of parameters.



Chapter 3

Literature Review

3.1 Machine Learning for Credit Risk

3.1.1 Early Approaches

The pre-ML process of credit risk management essentially involved recording important

features about the applicant and testing them against a set of known rules to produce an

outcome. The resources used to make a credit decision and the outcome of that decision

could be gathered into a dataset and analysed to improve the bank’s rules such as raising

or lowering certain decision thresholds. Therefore, banks possess massive quantities

of such loan data, which became particularly valuable for machine learning models,

allowing for training of larger, complex models capable of taking much more relevant

information into consideration than a human being.

The earliest kinds of models, studied over the late 90’s and 2000’s, included basic

neural networks, linear/logistic regression, kNN and decision trees, as well as SVM

models towards the mid to late 2000’s [36] [26] [30] [5] [65] [35] [19]. At this time,

the most promising models were Logistic Regression [8], SVM [35] and hybrid models

[40] [60] that combine multiple classifiers into one - a trend that continues to be relevant

today. These models are also naturally transparent and interpretable - LR and SVM

models create understandable visual decision boundaries, and decision trees can be

thought of as an algorithmically generated set of rules to follow one after the other,

similar to traditional banking techniques, meaning there were few issues implementing

them in practice and can be thought of as good traditional baselines.

11
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3.1.2 Bagging and Boosting

By the late 2000’s and early to mid 2010’s, the above models were outperformed by

more complex approaches like random forest [49] which improved upon the accuracy

of models such as tuned logistic regression and could be trained relatively quickly

[34] [45]. Decision trees had been researched for a long time, but were usually out-

performed by other approaches when used alone due to their high variance. However

the technique of ‘bagging’, or training multiple trees and averaging their results, im-

proved performance to state-of-the-art levels. Towards the late 2010’s, extreme gradient

boosting [17] showed even greater potential [14]. In contrast to bagging, boosting is

the process of sequentially training small trees that are weak, biased learners on their

own. However, by having each subsequent tree aim to reduce the residual error in the

current ensemble, over time the overall ensemble becomes a strong learner. XGBoost

is an optimised, enhanced gradient boosting model that improves upon several of the

weaknesses of traditional gradient boosting. It has superior efficiency due to utilising

Hessian information, makes use of parallelisation techniques to speed up training times

and offers L1 and L2 regularization to better prevent overfitting, making it an attractive

tree-based model for machine learning. On tabular data like credit risk, it has outper-

formed all other approaches and is the target to beat for competing approaches [51] [63].

3.1.3 Neural Networks

Neural networks have also seen use in credit risk literature for over 20 years, but older

research focused on multi-layer perceptron models with only one or two hidden layers

[66] [5]. Modern deep learning approaches achieve greater performance by stacking

many hidden layers. Earlier layers capture low-level features and with greater depth

comes more non-linear combinations, allowing for superior generalization to complex

functions and greater expressive power [23]. Several papers achieve results surpassing

the traditional approaches such as LR, SVM and shallow neural networks [21] [44].

Sampling techniques such as oversampling (SMOTE) and random undersampling are

widely used to improve accuracy in the field of credit risk, since such datasets often

contain class imbalance where the majority of customers do not default [39]. However,

tabular data remains one of the few types of learning problem in which neural networks

have not become dominant and are outperformed by tree-based models. Grinsztajn et al.

[29] highlight some reasons for this difference, such as how neural networks are biased
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to overly smooth solutions, and how they are not robust to uninformative features which

are common in tabular learning problems.

3.1.4 TabNet

To narrow the gap between neural networks and tree-based models, a unique approach

is needed. TabNet [4] is a novel deep neural network architecture combining the

strengths of trees, neural networks, and Transformer concepts such as attention and its

encoder-decoder-style design. Data is processed across several ‘decision steps’, and a

sequential attention mechanism is applied at each step. This allows the model to select

a subset of features that are semantically meaningful, similar to how a decision tree

splits features at each node. Additionally, this way of processing data provides native

explainability, as the model captures which features were important to the attention

mechanism at each decision step and uses a simple aggregate function across steps to

define feature importance masks. By analysing feature importances, Arik et al. show

how TabNet is able to focus on relevant variables while disregarding irrelevant ones

using both synthetic and real-world datasets, achieving more appropriate importance

scores compared to other methods such as LIME whilst retaining high test accuracy,

making it an attractive solution for explainable tabular data classification. Liu et al. [41]

applied TabNet to the problem of credit risk, showing good performance compared to

gradient boosting techniques on their dataset. However, their evaluation is relatively

weak and difficult to compare to other papers as they do not use the common AUC

score in favour of their own metric. It provides a promising proof of concept, but would

require additional research and more thorough evaluation.

3.2 Explainable AI

3.2.1 Surrogate Models

LIME [53] is a local, model-agnostic algorithm introduced in 2016 that treats the model

as some black box function f , for example a perceptron function f (x) = Wx+ b. It

generates samples in the local neighbourhood of a point of interest near the decision

boundary, evaluates them using function f , then fits an interpretable model to these

local points by using the complex model as a source of truth and training on this local
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dataset. The resulting model, for example a logistic regression classifier, produces inter-

pretable results as it is naturally transparent, but these results are informed by the black

box model’s knowledge due to being trained on its classifications. Its model-agnostic

nature makes it widely applicable and LIME has seen use across many domains such as

healthcare and finance, and is seen frequently in credit risk literature [13] [46].

Neural Additive Models or NAMs are another surrogate technique proposed in 2021

[2]. NAMs combine the features of deep neural networks and Generalized Additive

Models [31], a type of regression model that replaces the linear predictor with a sum of

functions of the form g(E[y]) = β0 + f1(x1)+ f2(x2)+ · · ·+ fp(xp) where each fi is a

smooth function of the predictor variable xi ∈ X = (x1,x2, . . . ,xn). In NAMs, each fi is

a neural network that attends to just that variable, and by training many subnetworks

jointly and summing their outputs like in GAMs the resulting model has a high predictive

accuracy and is interpretable unlike typical DNNs. Each surrogate sub-network can be

visualised as a graph to detect bias, allowing for both global interpretations and local

explanations, however this technique is model-specific to neural networks.

3.2.2 Feature Relevance

Many xAI techniques present explainability by obtaining importance scores. In other

words, they ask the following question: “How strongly does the value of each input

feature influence the model to make a certain decision?” One such technique is counter-

factuals, a concept originating from other fields like philosophy and economics, but one

that can applied to ML models as a local explanation technique [62]. A counterfactual

explanation is one that explains the minimal change required for a different outcome,

and they come in the form “Decision A was made because variable X is less than Y.

If X was greater than Y, decision B would have been made.” In xAI, a counterfactual

explanation is similarly defined as the smallest change in the input features that changes

the prediction outcome, hence providing the user with the reasoning behind a model’s

decision. This can be done by optimising a modified objective function that uses the

distance between an original prediction x and the counterfactual x′. However, one

issue with counterfactuals is that they suffer from the Rashomon Effect - by presenting

a human user with several counterfactuals which are all equally valid but possibly

contradict each other they will be confused. Additionally, this same method can also be

used in the generation of adversarial attacks [24], since by making a tiny modification
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to input data the entire classification is changed - the modified input may look almost

identical to a human, but functions almost like an optical illusion to a machine learning

model. The same technique used to create counterfactuals can be used to fool them, and

to combat this vulnerability and improve trustworthiness, more robust counterfactuals

must be generated, especially in critical decision-making applications like credit risk

[56].

Partial Dependence Plots or PDP are a global, model-agnostic explanation technique

that make use of feature relevance to explain predictions [25]. A PDP is generated by

choosing a set of values of interest for one feature, for example [0, 1, 2, 3, 4], then

setting the feature of interest to these values and calculating the average output for all

data points, leaving all other features alone. This information can then be plotted as

a graph of how the model’s predictions are partially dependent on this feature, and

by repeating for all features a global explanation is obtained. PDPs are useful for any

machine learning task due to their global, model-agnostic nature, and such plots appear

in many different application domains, including industry [27] and most relevant, credit

risk models [7] [57].

Lastly, but of significant importance, is SHAP [42], a popular local, model-agnostic

explainable AI technique that can be used to calculate feature importance for a given

prediction. The technique is based upon the game theory concept of Shapley Values, a

technique to calculate the individual contributions of a player(s) to a team using their

average marginal contribution across all possible subsets of players. In the realm of

machine learning, SHAP performs the same marginal contribution calculation where

the ‘players’ are features, essentially calculating how strongly the presence or absence

of certain features contributes to the model’s decision. This is expensive to calculate

as it involves iterating over all possible feature subsets, but techniques such as Kernel

SHAP exist to mitigate this problem [42]. SHAP is often used in tandem with or

instead of LIME, as both are local, model-agnostic techniques, though SHAP is a more

consistent, stable approach with favourable theoretical properties and hence sees more

use in recent research. In credit risk literature, it is an extremely popular method for

adding explainability to any model - possibly the most widespread approach and a major

target to beat [46] [12] [27].
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3.2.3 Convolutional Techniques

While the use of Convolutional Neural Networks (CNNs) for credit risk may seem

unintuitive due to the data not being in the form of a 2D image, it is possible to convert

tabular credit risk data into this form using feature transformations such as Weight Of

Evidence to encode the information [64]. This allows for later usage of image-based ex-

plainability techniques whilst achieving high predictive accuracy [20], and CNN-based

credit risk models, including hybrids that combine a CNN with other models, are an

ongoing area of research [68]. Many such techniques exist to highlight the relevant

pixels to an output in image-based machine learning, of which I will cover two of

interest.

One such technique is Layerwise Relevance BackPropagation (LRP) [6], a local

explainability technique used in CNNs that provides relevance scores for a certain

prediction by identifying which pixels caused the strongest activations in the network. It

achieves this by starting from the output neuron containing the relevant class score then

backpropagating this score to the previous layer. The strength of connections between

each layer of the network and its previous layer is calculated iteratively, until it reaches

the final convolutional layer, hence displaying the relevance of each pixel to the final

decision. Since it relies upon the CNN structure it is a model-specific technique, but

backpropagation is easily applicable to both the dense MLP and convolutional layers

of any CNN and is an intuitive process in machine learning, and also one that is not

limited to just convolutional networks as any neural network can take advantage of

backpropagation.

Another widely-used algorithm for image-based explainability is Gradient-weighted

Class Activation Mapping, GradCAM [54] which performs a similar gradient-based

approach. Unlike LRP however, GradCAM backpropagates the gradients from the final

output prediction for a class of interest, denoted as yc, to the feature maps of the last

convolutional layer, denoted as Ak, instead of all the way back to the input layer. Here,

it generates importance weights by calculating the gradients ∂yc

∂Ak for each feature map k,

then averaging them:

α
c
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
i j

where Z is the number of pixels in the feature map, i× j. Once the average gradients
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for each feature map are calculated, GradCAM is then defined as the weighted sum

of feature maps passed through a ReLU activation function to only retain the positive

values that we are interested in:

GradCAM = ReLU(∑
k

α
c
kAk)

Compared to LRP, GradCAM is less computationally expensive, and creates a

higher-level heatmap of regions of interest instead of fine-grained pixel-level details. It

is most often used in medical research, but can be applied to any 2D data and produces

good, human-interpretable representations [33] [67].

3.3 Credit Risk Transformers

Whilst the Transformer was originally only intended as a language model, it’s architec-

ture is widely applicable to many deep learning applications when modified. Overall,

compared to the volume of literature covering models such as XGBoost, there is a small

quantity of research on Transformers for credit risk and a clear gap for further research

and development. A feature common to all Transformer-based credit risk models is that

the Transformer architecture is modified or combined with other systems to improve

performance and handle different input features. Zhang et al. [69] propose a model con-

sisting of a Transformer encoder followed by a CatBoost random forest ensemble, and

finally a decoder. CatBoost is very similar to XGBoost, implementing the same boosting

techniques and optimisations whilst also natively supporting categorical features [50].

Categorical feature support is key to the credit risk domain, as many relevant features

are categorical rather than numerical. By combining the unsupervised Transformer’s

ability to uncover the relationships between input features and the supervised CatBoost

tree to improve classification ability, the resulting model aims to improve predictive

accuracy and understanding, whilst also being able to handle high-dimensional features

at a large scale. They show promising results that outperforms other standard models,

as well as the baseline Transformer model, inspiring future work in the area.

Wang et al. provide another detailed study into the use of a modified Transformer

hybrid model with their CNN-SFTransformer [64]. Their approach is similar to the

hybrid approach implemented by Zhang et al., utilising a modified Transformer block

for unsupervised learning and a two-layer one-dimensional CNN for supervised learn-
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ing, done in parallel rather than sequentially. Feature data is provided to both networks,

and their output features fused to produce the final output. Their modified Transformer

architecture, SFTransformer, uses a different attention mechanism called semantic

feature-based multi-head attention, which takes in its keys, queries and values as raw

feature data rather than the usual positionally-encoded input embeddings. To improve

feature extraction from data and allow the model to better learn semantic relationships,

the concept of Gaussian-weighted distribution tokenization is used, where the query and

key are multiplied by different Gaussian weight matrices in each attention head such

that each head focuses on different semantic information. The scaled dot product is used

here to improve computation, and attention is calculated in the usual way, just using

the Gaussian-weighted key and query instead. They provide thorough experimental

details and analysis on two popular credit risk datasets that will be discussed in the

next chapter, showing improved predictive accuracy over baseline models. Whilst

their model does achieve an average 0.1 AUC gain, it is much more complex than the

tree-based alternatives and offers no explainability, reducing its practicality.

Figure 3.1: The Feature Tokenizer component of the FT-Transformer. Diagram obtained

directly from Gorishniy et al. [28]

Another approach to credit risk transformers is the FT-Transformer proposed by

Gorishniy et al. [28] in 2023. Unlike other similar models, they retain the tradi-

tional Transformer module with no major changes and instead focus on a novel feature

encoding method seen in Figure 3.1 above. Their Feature Tokenizer is capable of

encoding both numerical and categorical data into embeddings, making it highly appli-

cable to credit risk and other datasets with multiple feature types. Numerical features
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are encoded using element-wise multiplication with a weight parameter W (num) and

bias b(num), whereas categorical features instead use a lookup table W (cat) and bias

b(cat), transforming the input with a one-hot vector encoding. They experiment on a

large number of datasets and obtain consistent state-of-the-art results, which is even

more impressive considering the remainder of the architecture is untouched, however

gradient boosted trees remain dominant on some datasets. Overall, their Feature To-

kenizer is a highly adaptable module for considerably improving the performance of

Transformer-based models, and combining it with other modifications could lead to

further improvements.

Lastly, Zhang et al. [68] propose a use for the Transformer encoder that reflects

its original purpose as a language model. They combine typical loan information

with the textual description of the loan application, and apply the encoder to these

descriptions to obtain extracted features that help with classification. Their analysis

shows the effectiveness of these new learned features, but similarly to Wang et al. the

black-box nature of their model is something they note as a major drawback that would

not allow its use in practical financial applications. This issue is one that plagues many

Transformer-based approaches to credit risk, and it shows the value of explainability

research for complex models like Transformers. In summary, many different approaches

have been considered using Transformers for credit risk management, but no approach

has found dominance and there is a broad lack of interpretable models in the area.

3.4 Explainable Transformers

The most natural approach to understanding Transformers is to understand self-attention,

the core of the model, and a large portion of literature falls into this category. A foun-

dational work in this area is the concept of attention rollout, or attention flow [1],

which operates similarly to LRP by using attention weights as a score of relevance and

backpropagating from the final embeddings to the input tokens. By assuming a linear

combination of input tokens throughout the layers of a Transformer encoder, they show

that this method is much more interpretable that raw attention. However, they draw

attention to the simplifying assumption of their interpretation of these attention weights

as a source of caution, and Chefer et al. [16] later identified that attention rollout fails to

distinguish between positive and negative contributions, and attention flow is too slow

for large-scale use. They instead employ a full LRP-inspired approach, using gradient
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integration for self-attention layers and achieving superior results for Transformer en-

coders. Their initial work is not applicable to all Transformers, but is improved upon

to achieve state-of-the-art results on self-attention, co-attention and encoder-decoder

attention [15]. This LRP-based approach is one that has seen a large amount of research

interest, and continues to see improvement such as Ali et al. [3] introducing a more

stable and reliable LRP approach for Transformers. They identify two issues with

previous gradient-based approaches where the property of conservation is broken and

input variables are incorrectly scored. They show that this property breaks in two

areas, the attention heads and layer normalisation, and define new conservation rules

for these components that achieve better conservation across layers and state-of-the-art

AUAC (Area Under Activation Curve) scores. These approaches are applicable to any

Transformer but were designed for natural language or vision purposes, but attention

has also seen use in tabular and categorical data like the kinds seen in credit risk datasets.

Aside from utilising attention, several other methods have been proposed to incor-

porate explainability into Transformers. Like with neural networks, surrogate models

and post-hoc local explanations exist for Transformers - LIME and SHAP are both

applicable due to their model-agnostic nature and used in many different explainable

Transformers, but Leeman et al. [37] provide proofs that Transformers cannot represent

additive models and cast doubt on the applicability of these popular techniques. They

instead propose the Softmax-Linked Additive Log-Odds Model (SLALOM), a surrogate

model explanation technique capable of representing Transformer output more closely

than a GAM where feature explanations can be obtained in a 2D space. While not

directly applicable to tabular data, they provide an interesting argument against the use

of other popular surrogate models. Thielmann et al. [58] propose a hybrid approach for

tabular data inspired by NAMs, using a Transformer only for categorical features and

independent neural networks for each continuous feature. Like in NAMs, the overall

prediction is obtained by concatenating outputs. Each continuous feature can easily

be visualised as a graph, and categorical features can be interpreted through the use of

attention-based methods such as those described above, with only a minor performance

tradeoff. Another alternative approach to explainability in transformers is the use of

perturbation - applying noise to the input and observing changes in output, similarly in

theory to a PDP. Rao et al. [52] apply this technique to heart failure prediction using

BEHRT [38], developing a local surrogate approach that uses perturbations to measure

the importance of individual features on a certain prediction. They also show that by
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aggregating these results across the full dataset, a global explanation can be obtained

and overall relevance contributions analysed. Whilst their approach focused on time

series health data, this perturbation-based approach to feature importance could easily

be explored within credit risk Transformers. In summary, I have identified that the key

research areas in Transformer explainability are attention-based approaches that focus

on the Transformer internals, GAM-inspired hybrid approaches, and surrogate or local

methods that follow the model-agnostic approach and focus on the features themselves.
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Preliminaries

The machine learning task I will explore is credit risk (loan default) prediction on tabular

data. Each data point will consist of some amount of variables, more commonly called

features, with many such data points making up the full dataset. The features in the data

will be details about a customer that are relevant to deciding if they should be given a

loan or not, such as the kinds highlighted in Section 2.1. These could be personal details

like age or income, details specific to the loan they are requesting such as the amount or

collateral, or records of current/past loans and how they were repaid. Notably, credit

risk datasets are often mixed with both numeric (real-valued) and categorical (integer or

string) data, which can pose a problem for traditional classifers which cannot handle

categorical input, instead working exclusively in the space of real numbers. The type

of classification we wish to perform is binary classification - predicting either 0 (safe

loan) or 1 (risk of default) for each data point. A good credit risk model should be

able to train on many examples of this data, then accurately predict this binary label for

previously unseen data.

More formally, we have a dataset (X ,y) where X is a matrix of n samples, each

consisting of k features (or other words, a n× k matrix) and y is a corresponding list of

binary labels. Additionally, each xi ∈ X is a vector that contains both numerical and

categorical data, therefore input data must either be encoded into a suitable form prior

to processing, or the model itself must have some internal representation of categorical

features that it can use to its advantage. A common method of handling such categories

is a simple ordinal encoding, translating each category to a whole number such as

Category A = 1, Category B = 2, etc. First, as with any machine learning problem,

the full dataset must be split into training, validation and test sets. The training set

22
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is used to train the model, the validation set is used to adjust hyperparameters, and

the test set is only used to record final performance. During training, a loss function

is used to compare the model’s current predictions to the true labels, then adjust its

internal representation to reflect the loss, with a common choice being Binary Cross

Entropy Loss. In order to correctly classify unknown future samples in the test set,

the model must learn the complex relationships between input features and identify

values that represent higher probability of default. The performance of this model can

then be tested against any common evaluation metric, detailed in the Experiment chapter.

Credit Risk
Dataset

Preprocess and
Encode Categories Split Data Train Classifier

Training Data

Evaluation
Metrics

Validation or Test Data

Test Data

Model
Explanations

Trained Model

Trained Model

Figure 4.1: The typical process of training and evaluating a credit risk model.

The final step in the process is explanation, a step not always present in traditional

ML but an important one for credit risk models, for reasons detailed in the previous

chapters. Here, the trained model and test set are provided to whatever explainability

algorithm(s) are to be used, which are typically model-agnostic methods so that any

kind of classifier can be provided. The end result of the entire process is performance

metrics evaluated on either validation or test data, and feature importance scores, usually

in the form of a bar chart or other visualisation.
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Method

5.1 XGFT-Transformer

Feature
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T
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Figure 5.1: Architecture of the XGFT-Transformer.

The XGFT-Transformer is my novel hybrid model aimed at combining the representative

power of stacked Transformer units and the historically high classification performance

of XGBoost, inspired by similar research into hybrid Transformer models such as by

Zhang et al [69]. Existing research on such models uses the original Transformer input

encodings, but the Feature Tokenizer (FT) module introduced by Gorishniy et al. [28]

has shown promising performance improvements for tabular data compared to the

24
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traditional Transformer encoding technique.

The model consists of two separate components trained with separate loss functions.

First, the FT-Transformer is trained as normal, resulting in an encoder stack with a

powerful internal representation of the dataset, already capable of high performance

on its own. Next, the encoder is beheaded, removing the final fully-connected layers

(Linear Head) of the FT-Transformer, transforming it from a model that outputs binary

probabilities to one that produces raw embeddings. This allows us to subsequently

encode the training data using the beheaded model, obtaining a transformed training

set of embeddedings that represent the Transformer encoder’s classification knowledge.

This new training set is finally used as the input to the XGBoost model, which is trained

as normal to obtain the binary probabilities for classification, with the training loss

only propagating through the XGBoost model and not the Transformer itself. During

inference, validation or test data is fed forward through the beheaded encoder stack and

into the XGBoost model as one fluid process. By providing XGBoost with a dense

encoded representation of useful semantic knowledge instead of raw features, it may

be able to learn more efficiently. Additionally, each half of the model can cover the

other’s weaknesses, with the goal of increased stability and less variance in performance.

Unlike other hybrid Transformer models, a decoder module is not used, which reduces

the number of parameters and leads to faster performance. This approach is also highly

adaptable, with any other classifier able to replace the role of XGBoost, such as similar

boosted tree models like CatBoost.

5.2 Global Counterfactual Importance

My novel approach to model-agnostic explainability is inspired by counterfactuals, a

less common xAI technique. I identified multiple issues with raw counterfactuals in

Section 3, however my novel algorithm applies a fix for all of these issues by using

counterfactuals to inform a global importance score. By returning one global feature im-

portance metric we can avoid the Rashomon Effect. Adding a small amount of random

noise as suggested by Slack et al. [56] can reduce the counterfactuals’ vulnerability to

adversarial classifiers, but this is left to be explored in future work. Additionally, my

algorithm is capable of handling both numerical and categorical variables with greater

user control over the algorithm, making it more applicable to tabular problems like

credit risk. The pseudocode for Global Counterfactual Importance (GCI) can be seen
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below:

Algorithm 1 Global Counterfactual Importance

Require: Model M trained on dataset (xtrain,ytrain), test set (xtest ,ytest), Categorical

Scaler k, Largest Distance dmax

D←


0 . . . 0
... . . . ...

0 . . . 0


C← [best counterfactual(M, x) for x in xtest] ▷ Obtain C from existing algorithms

for c ∈C do ▷ Calculate a score for each counterfactual

dc← normalizedDistance(c, xtest
i )

dc← [ f ×||dc|| for f ∈ dc] ▷ Weight by size of dc

Di← dc

end for
D← D.applymap(x← |x−dmax| if x > 0 else x) ▷ Rescale values

return mean(D)

Algorithm 2 Normalized Distance

Require: Counterfactual c, Test instance xtest , Categorical Scaler k

dc← [0, . . . ,0]

for f ∈ c do
xmin← min(range(f)) ▷ Min/Max value of feature f

xmax← max(range(f))

xoriginal ←
xtest

f −xmin

xmax−xmin
▷ Normalize to range 0-1

xcounter←
c f−xmin

xmax−xmin

dc
f ← |xoriginal− xcounter|

if f is categorical then
dc

f ← dc
f × k ▷ Categorical importance scaling

end if
end for
return dc

One of the main difficulties in creating a unified score for data which can contain

both numerical and categorical features is how to represent a measure of distance

between vectors. To quantify how much of a change was required to flip the model’s
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classification, we want to be able to measure the distance between its original position

and the position of the counterfactual in vector space. However, whilst the numeric

features operate in a real number space, the categorical features are restricted to n whole

numbers. To alleviate this issue, each feature f is normalized, scaling each to range

between 0 and 1, with 1 being the maximum value of that feature, which then allows for

a simple Euclidean distance measure to be taken between the two points. An important

feature is considered to be one that a) only needs to be changed slightly for the entire

prediction to change, and b) makes up a high percentage of the counterfactual change.

To achieve this logic, each feature f in the distance vector is scaled by the absolute

value of the full distance vector. If both f and ||dc|| are small (which also means f

makes up the majority of the counterfactual), the value becomes even smaller, whereas

the opposite is true for large values. Unlike other feature importance scores, a smaller

value implies greater importance, but to conform with convention the scores are scaled

such that small values become large and vice-versa, with scores of 0 remaining at 0.

To ensure scores are comparable between runs, hyperparameter dmax should be set to a

high enough value such that no counterfactual distance will be greater than it - a static

value of 10 is used in my experiments. The resulting matrix contains local importance

scores for the full test set, but these are finally aggregated with a simple mean to obtain

Global Counterfactual Importance scores.

With the default settings of the algorithm, categorical variables are treated more

harshly due to normalization. For example, a binary category being changed from 0

to 1 would have a distance of 1, equivalent to a numerical category increasing from its

minimum to its maximum value. This means a categorical feature changing is seen as

less important overall, since any change to it is perceived as a large change. Rather

than a flaw however, this behaviour is one that can be controlled and adjusted to suit

the application. For settings where a categorical shift represents an important feature,

the hyperparameter k (1 by default) can be adjusted. Small values of k shift the balance

to favour categorical variables, shrinking their distances, whereas values greater than

1 do the opposite. Therefore, GCI allows for greater user control over what should

be perceived as a more important change than other xAI algorithms for mixed tabular

datasets. It can be applied to any application domain and adjusted to suit the data,

making for a lightweight, flexible algorithm capable of producing feature importances

in the vein of other model-agnostic methods like SHAP.
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Experiments

6.1 Datasets

The project uses two credit risk datasets, detailed below, both obtained from the UCI

Machine Learning Repository. Both are tabular datasets containing numerical and

categorical features for each data point, a setup that is traditionally difficult for some

classifiers like neural networks. In the following sections I will describe their structures

and detail any preprocessing steps applied to the data before use.

6.1.1 German Credit Risk Dataset

The first dataset is a German credit risk dataset, chosen for its historical prevalence in

literature. This dataset has been used for decades as a standard benchmark, making it

an excellent source for performance comparisons between the classifiers implemented

in this paper and other prominent works in literature. It contains 1000 data points with

20 features each, 8 of them numerical such as loan duration and age, and 12 categorical

such as loan purpose and checking account status. The data is labelled with the positive

class 2 being those at risk of default, and then negative class 1 being safe loans. The

dataset is available both with raw categorical data and numerical substitutions, but I

will be using the raw categories and performing encodings manually to account for

both models which require categorical indexes and those that cannot handle them.

This dataset was lightly preprocessed, changing the class labels to 0 (safe loan) and

1 (defaulter) to reflect the standards of binary classification. A class imbalance was

indentified within the dataset, with 700 instances considered to be good loans, whereas

300 are considered to be at risk of defaulting. To analyse the effect of class imbalance,

28
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two versions of the dataset are used - the base version, and an oversampled version.

To perform this oversampling, I use Synthetic Minority Oversampling Technique or

(SMOTE), specifically the SMOTE-NC variant which allows for categorical variables

in the data, resulting in an additional 400 synthetic positive data points and raising

the total dataset size to 1400. This is still considered a small dataset by modern ML

standards, and the larger, complex classifiers may struggle due to its size, a factor I will

explore in later analysis.

6.1.2 Taiwan Credit Risk Dataset

The second dataset is newer, obtained from a Taiwanese bank, chosen for its larger

size. Whilst this dataset has not seen as much usage in literature compared to the first

dataset, it is much more appropriate for modern, large models due to containing 30x the

amount of data points. It contains 30000 instances with 23 features, 9 categorical such

as education and payment history and 14 numerical such as bill statement amounts and

corresponding payment amounts, and a binary label where 1 corresponds to a defaulter

and 0 is a safe loan. This data came preprocessed with categorical data represented

as numbers with associated labels, but as some classifiers used in this project require

categorical data it was first re-categorised with appropriate strings representing the

numerical substitutions. Then, like with the first dataset, case-by-case encodings are

applied depending on the classifier’s needs. Unlike the German dataset which focuses

on personal qualities, the Taiwan dataset includes a history of six months of loan

details, meaning the classifiers will have to learn very different features to adequately

represent both datasets. This dataset contains 6636 positive (defaulter) samples and

23364 negative (good) samples, showing a similar class imbalance as the German

dataset as most people do not default on their loans. This could still pose a challenge

for classifiers, but with 20 times more defaulter data than the German dataset the effects

should be lessened.

6.1.3 Final Data Preparations

After importing the datasets, they are split into training, validation and tests sets. For

evaluation using an validation set, the data is split at a ratio of 75-12.5-12.5, whereas

for k-fold cross-validation a common split of 80-20 is used. Due to the small size of the

German dataset, cross validation is a valuable technique that allows for the use of more

data during training.
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6.2 Credit Risk Models

The following models were implemented as a baseline for performance and explainabil-

ity comparisons:

• Logistic Regression - The simplest model, used mostly as a sanity check. Logistic

regression is also a transparent model, but explainability techniques can still be

applied to it such as counterfactuals. The Scikit-Learn python library was used

for the implementation of this model.

• XGBoost - A popular model in credit risk literature, XGBoost is an optimised

implementation of boosted trees and is an excellent baseline for comparison of

more complex models as it and similar tree-based models are a current standard

for tabular data classification. The experiments use the official XGBoost python

library.

• TabNet - An attentive neural network-based model for tabular data. TabNet has

been used for credit risk classification in literature before, but results are sparse.

Neural networks traditionally perform poorly on tabular data, but this model was

included in order to evaluate and compare its performance more deeply than in

other works. This model makes use of the categorical data internally, and no

initial encoding is used. The experiments use the PyTorch-Tabnet library for

implementation of the model.

• FT-Transformer - This Transformer model forms a core component of the

novel classifier introduced in the next section, and represents the state-of-the-art

for tabular data Transformers. I hope to evaluate its performance to gauge the

usefulness of larger models compared to the simple baselines such as XGBoost

and identify if Transformers are worthwhile to use on tabular problems such as

credit risk. Like TabNet, this model makes use of the categorical data internally,

not requiring an initial encoding. The experiments use the PyTorch-Tabular

library’s implementation of the model.

Additionally, for the implementation of the XGFT-Transformer I use both of the

corresponding libraries above - XGBoost and PyTorch-Tabular. The latter required

me to create a custom tabular Transformer implementation, inheriting their existing

architecture and adding the required beheading method and custom predict function.
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6.3 Explainability Algorithms

Many kinds of classifier are used in my experiments, and industrial credit risk models

may be modified and customised in many unknown proprietary ways. For these reasons

as well as its dominance in credit risk literature, I chose to focus on model-agnostic

explainability and explore xAI techniques that can be applied to any architecture,

making use of model inputs and outputs to obtain feature importance scores at a local

or global level. My literature review identified SHAP as the most prominent model-

agnostic xAI technique for credit risk, as it has seen widespread adoption in many

areas of research and industry. The SHAP Python library is used in my experiments,

which implements several versions of the algorithm allowing it to be adapted to any

model, such as Kernel SHAP and Tree SHAP. The appropriate version of SHAP for

each classifier is used, and Shapley Values are obtained which can be plotted to obtain

both local and global importance scores. LIME was also considered for this purpose,

but by default it only produces local explanations and is less popular in modern works

than SHAP. SP-LIME would allow for global comparisons, but this is left to future

work. For the implementation of GCI, the official DiCE [47] library is used to generate

the counterfactuals. However, the library was originally only compatible with sklearn

logistic regression, so I implemented custom DiCE model representations to fix this.

6.4 Experimental Setup

6.4.1 Hyperparameter Optimization

For each combination of model and dataset as described in the above sections, I

use an identical experimental setup. Firstly, all five models undergo hyperparameter

optimization using Random Search. This algorithm was chosen as the ideal tradeoff

between performance and time required for optimization, though other techniques such

as Grid Search and Bayesian Optimization were also tested. A set of potential values

for each hyperparameter is given to the algorithm, then the model is evaluated over

many iteration on random selections from the set. The exact search spaces used in

random search can be seen in Appendix A. In my experiments, 500 iterations of random

search are performed to ensure high confidence in the final values whilst retaining

reasonable runtimes. To provide the models with as much training data as possible,

4-fold cross validation is used at each evaluation to decide the best hyperparameter
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selection. Once the optimization is complete, these values are saved to a file to be used

in later experiments. The final test scores are obtained by training each model with its

optimal hyperparameters, then using the test set predictions to calculate the metrics

described in the following section.

6.4.2 Evaluation Metrics

In the case of binary classification of credit risk, the results from a classifier can be in

one of four categories. True Positive (TP) for customers who are correctly identified as

being at risk of default, False Positive (FP) for customers who are incorrectly identified

as such, False Negative (FN) for defaulting customers who are classified as safe and

True Negative (TN) for safe customers who are classified as such. The first and simplest

evaluation metric used in my experiments is a confusion matrix, which records these

values in a 2x2 matrix. Of these values, FNs are the most dangerous and important to be

avoided as much as possible. Next, True and False Positive Rate is calculated as below:

T PR =
T P

T P+FN

FPR =
FP

FP+T N
Using these, the Receiver Operating Characteristic (ROC) curve can be obtained by

plotting a graph of FPR on the horizontal axis and TPR on the vertical axis, depicting

the trade-offs between the two rates at different thresholds. A random classifier will

draw a straight line through the middle (0.5, 0.5) of this space - the higher the curve

above this, the better the classifier, and any line below this is worse than random.

Area Under the ROC Curve (AUC) is the most common performance metric seen

in credit risk literature and also sees widespread use in machine learning overall. It

provides a measure of performance across all thresholds and can be interpreted as the

probability that a random positive sample will be ranked higher than a random negative

one. The Kolmogorov–Smirnov (KS) metric is another common metric seen in credit

risk prediction. It is calculated by sorting the samples by predicted default probability,

then obtaining the cumulative true/false positive rates and calculating the maximum

difference between the two curves, i.e. max(T PR−FPR). The larger this value, the

better the model’s ability to distinguish between the binary classes. Confusion matrices,

AUC and KS metrics are all used as evaluation metrics in my experiments, and where

available I also provide standard deviation of results as a confidence measure.
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6.5 Results and Analysis

6.5.1 Performance Comparisons

Method
German German (SMOTE) Taiwan

AUC KS AUC KS AUC KS

Logistic Regression 0.734 ± 5e-2 0.419 ± 8e-2 0.814 ± 3e-2 0.528 ± 4e-2 0.707 ± 6e-3 0.326 ± 8e-3

XGBoost 0.801 ± 3e-2 0.495 ± 6e-2 0.888 ± 2e-2 0.637 ± 4e-2 0.779 ± 7e-3 0.428 ± 1e-2

TabNet 0.561 ± 3e-2 0.127 ± 2e-2 0.647 ± 3e-2 0.271 ± 3e-2 0.77 ± 8e-3 0.416 ± 2e-2

FT-Transfomer 0.76 ± 3e-2 0.436 ± 6e-2 0.86 ± 3e-2 0.588 ± 5e-2 0.782 ± 6e-3 0.431 ± 1e-2

XGFT-Transformer 0.779 ± 2e-2 0.449 ± 4e-2 0.878 ± 2e-2 0.613 ± 3e-2 0.783 ± 3e-3 0.432 ± 8e-3

Table 6.1: Performance Comparison for each model.

Method
German German (SMOTE) Taiwan

AUC KS AUC KS AUC KS

No Feature Tokenization 0.605 ± 2e-2 0.205 ± 4e-2 0.802 ± 2e-2 0.503 ± 3e-2 0.773 ± 1e-2 0.415 ± 2e-2

FT-Transfomer 0.76 ± 3e-2 0.436 ± 6e-2 0.86 ± 3e-2 0.588 ± 5e-2 0.782 ± 6e-3 0.431 ± 1e-2

XGFT-Transformer 0.779 ± 2e-2 0.449 ± 4e-2 0.878 ± 2e-2 0.613 ± 3e-2 0.783 ± 3e-3 0.432 ± 8e-3

Table 6.2: Ablation Study for the XGFT-Transformer.
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The classification AUC and KS scores are displayed in Table 6.1 above, and show an

interesting result. XGBoost remains the top performing model on the smaller datasets,

however this does not remain the case for the Taiwanese dataset. With access to more

data, both the FT-Transformer and XGFT-Transformer surpass its scores, with my novel

model achieving the highest performance on the Taiwanese dataset overall. This could

be due to the fact it contains a different selection of features, but is more likely due to the

large increase in data quantities. Modern deep learning models, especially Transformers,

are usually trained on huge datasets and are designed to make use of such quantities of

information to learn a superior representation of relationships and trends. Moreover,

complex models are known to easily overfit on small datasets, which can be seen most

strongly in my experiments with TabNet which performs very poorly on the small Ger-

man dataset, but almost comparible to XGBoost when given more training data to learn

from. The German dataset was chosen for its prevalence in literature, but these results

show that it may no longer be a reasonable dataset to use for evaluating modern credit

risk models. SMOTE proved to still be an effective method of improving performance

on the smaller, imbalanced dataset, despite being a relatively old technique, causing

large improvements of up to 0.1 AUC and even greater improvements to KS score.

Since KS is a metric that shows how well the model can distinguish binary classes,

this shows the minority oversampling successfully assisted the model in learning the

minority class. Lastly, by inspecting the confusion matrices, I find that the number of

false negatives (defaulters classified as safe) is on average considerably lower for the

two Transformer models, which provides further evidence for their ability to distinguish

between these difficult samples and handle a minority class well without the need for

oversampling.

An ablation study was also performed in Table 5.2 to analyse the effectiveness of

different components in my contribution. The feature tokenization module is shown to

be a key component that leads to large improvements on tabular data, emphasising the

importance of a good input representation. The XGFT-Transformer performs slightly

better in both AUC and KS on the Taiwanese dataset, but a larger benefit can be seen in

the confidence of results. Across all experiments, the hybrid model notably improves

stability and reliability of results, consistently achieving confidence improvements

ranging from 1.5 to 2x. This result agrees with my hypothesis, that by allowing the two

components to correct for the parts that the other is poor at classifying, the resulting

model is more robust.
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The results show promise for Transformer-based credit risk models, backing up

results from other recent research, with the FT-Transformer showing superior learning

ability compared to the other models tested on large enough data. Compared to other

similar approaches, Wang et al. [64] also test on the German dataset and achieve

superior results, which could be due to multiple factors. Firstly, they use a different

Transformer architecture, the SFTransformer, and these results may show that it is more

effective on small data. Secondly, they have have simply found a better hyperparameter

selection, as there was not enough time in my experiments to perform an exhaustive

search. Lastly, this could be a reflection of superior architecture decisions. Unlike the

XGFT-Transformer, their model learns in parallel rather than sequentially, and performs

a fusion of features to produce the final result, also allowing for a unified loss to be

calculated and backpropagated. Of these possibilities, I believe the latter is most likely

to lead to noticeable improvements, and is a direction for future work.

6.5.2 Runtime Comparison

LR

XG

TN

FTT

XGFTT

2

16

16

115

90

2

14

21

355

468

4

120

418

3,672

3,831

Inference Speed Comparison (milliseconds)

German
German (SMOTE)

Taiwan

One of the tradeoffs of using a larger, more complex model is longer training and

inference times, which can be seen in the chart above. The lightweight logistic regres-

sion and XGBoost models achieve very fast inference speeds, and for small data this

remains under a second on all models. However, as the size of the dataset increases,

we see a dramatic increase in inference time for the more complex models. This is

an unavoidable effect of larger models, however it does not reach impractical levels

and in all experiments inference took no longer than four seconds at most. Also, the
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XGFTT model shows only a slight increase in computation time compared to the base

FT-Transformer - the majority of computation time is taken up by the FTT half of the

model. Further optimization of the Transformer component would be required to allow

for even larger datasets, as the trends seen in these results show that with roughly 30x

more data, inference takes roughly 30x as long. For a bank with 100,000 or 1,000,000

data points available, inference time would continue to linearly increase following this

same trend, reaching impractical levels.

6.6 xAI Evaluation

Method Dataset LR XGB TabNet FTT XGFTT

SHAP German 33.54 0.31 171.58 2842.2 2894.46

GCI German 17.96 24.62 26.54 140.05 154.48

SHAP Taiwan 1055.67 8.23 11121.62 169,520.58 189,720.91

GCI Taiwan 601.55 1054.14 1661.89 8,589.36 10,260.77

Table 6.3: Runtime Comparison in seconds for each global xAI method. Note that

TreeSHAP is used for XGBoost, leading to its dramatic speed-up.

To evaluate the effectiveness of Global Counterfactual Importance as an explainabil-

ity metric I will compare it to SHAP in both efficiency and explanation quality. Firstly,

the performance of the algorithms is summarised for both datasets in Table 5.3. With

the exception of XGBoost for which TreeSHAP was used, KernelSHAP is consistently

far slower than GCI in generating global importance scores. This trend only gets worse

for KernelSHAP when the classifier becomes more complex as in the FTT and XGFTT

cases, or when the quantity of data to analyse increases, as seen in the Taiwanese dataset

where there are 6000 test samples to process. GCI also demonstrates a large increase in

computation time, but it is consistently far faster. This is especially noticeable in the

case of bigger models - when used to explain the XGFT-Transformer, GCI performs

over 18x faster than SHAP. The intensity of calculating Shapley Values, especially for

larger data, is one of the known weaknesses of this algorithm. GCI in contrast only has

complexity O(n2) as we just need to iterate over the features of all samples once, and

do not consider feature coalitions.

Next, the question of explanation quality is explored - in other words, how accurate
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are the feature importance scores given by the different algorithms? Since there is

no direct evaluation score for explainability, I evaluate the quality of global feature

importances by their ranking. Specifically, the top 5 most important features identified

by each algorithm are recorded, and then the most important feature that is disagreed on

is dropped. The full top 5 for each experiment are recorded in Appendix B. For example,

if xAI algorithm A and B both identify feature X as most important, but then identify

differing features B and C as second most important, B and C will be dropped for the

following experiments. To obtain a numerical evaluation, I compare the performance

decrease that occurs when the different features are removed. A greater performance

drop means that the feature was indeed important, and the xAI algorithm is performing

well. This experiment was performed on both datasets, using Logistic Regression and

XGBoost models to allow for quicker runtimes. An immediate discovery from these

tests was that for both datasets, SHAP and GCI agree upon the most important feature

consistently, but after that disagree on ranks 2-5, etc. As such, Figure 5.2 displays the

results of this experiment, with the ‘Top Feature’ category representing this shared most

important feature.

LR German XG German LR Taiwan XG Taiwan
0.5

0.6

0.7

0.8

0.9

1

A
U

C

Performance Decrease from Dropping Important Features

Original Score
Top Feature

SHAP
GCI

Figure 6.1: Feature importance comparison by removing features deemed important

and comparing performance drop.

In all experiments I have found that a single feature dominates the importance scores,

but the effects are far more pronounced in the German dataset. ‘Status of existing check-

ing account’ is always found to be the most important feature in this dataset, which is a

reasonable result, and removing this feature causes a considerable loss of roughly 0.07
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AUC and 0.13 KS. In the Taiwanese dataset, ‘repayment status in September 2005’ was

the dominant feature. The dataset contains multiple variables for repayment status in

various months, with September being the final one, alongside bill amounts and amount

paid for the same months. The repayment status is a categorical feature representing

how many months payment has been delayed for, therefore if there is a clear trend of

delayed repayment leading to defaulting, it makes sense for the classifiers to pick up

on this. It is a less intuitive feature to be ranked at the top, and this is reflected in the

comparatively small performance drop seen in this dataset’s experiments. This smaller

drop could be due to the fact the model has been given time series data, and losing one

observation month from this is less impactful than losing an entire variable such as

account status in the German case.

Since GCI is a less complex algorithm than something like SHAP, it seems logical

to expect it to produce lower-quality explanations, however the results seen in Figure

5.2 dispute this. In each scenario, GCI achieves explanations of comparable or superior

quality, selecting features in its top 5 that have greater impact on performance than

those chosen by SHAP. The exception to this is XGBoost on the Taiwanese dataset,

however the difference is only 0.0012 AUC. Outside of the top 5, the algorithms

produce much different rankings, and additionally I have found that the results are not

deterministic. This applies to both KernelSHAP, in which Shapley Value is estimated

to save processing time, and GCI where only one counterfactual per sample is used.

This highlights a flaw in the original design, as by only using one counterfactual per

sample there is a high variance in values from run to run. On average the top features

rank the same each time, but exact values and lower rankings fluctuate due to the high

variance. To fix this, multiple counterfactuals would need to be calculated per sample,

which would in turn reduce the performance advantage compared to SHAP, since the

majority of time is spent calculating the DiCE counterfactuals, not performing GCI

itself. Averaging three counterfactuals instead of just using one would triple the overall

amount of counterfactuals to be calculated, and with the runtime observations made

above it is likely this would roughly triple runtime. For the larger models this is still

much faster than KernelSHAP, but for models like LR and XGB it would remove GCI’s

advantage.
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Conclusions

7.1 Summary of Results

In this work, I have thoroughly investigated the field of credit risk management and the

application of machine learning to this domain. Guided by a comprehensive literature

review, I have developed a custom credit risk model, XGFT-Transformer, using a hybrid

Transformer architecture, as well as a new, efficient xAI tool, Global Counterfactual

Importance (GCI) to answer the lack of explainability seen in similar works. By compar-

ison on two datasets against various competing models, I have demonstrated that while

tree-based learning still performs well at a small scale, at a larger scale the expressive

power of Transformers leads to superior performance, so long as the data is embedded

well. Unlike other works in the area, particularly those that make use of Transformers,

XGFTT is fully explainable via any model-agnostic approach, and GCI demonstrates

excellent performance in this application compared to competing methods. In summary,

by combining tabular transformers with efficient, model-agnostic explainability and

harnessing the large quantities of data held by banks, a new state-of-the-art in credit

risk can be achieved.

7.2 Future Work

7.2.1 Data Improvements

Our experiments highlight the need for new, larger datasets to support complex models.

Tree-based models are only surpassed on larger data, and Transformer-based models

39
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like the ones implemented here would likely benefit greatly from a larger quantity of

data in the magnitude of >100k samples. However, there is some difficulty in obtaining

such a large dataset in a publicly available format, as banks which are large enough to

have this information are more likely to use it for internal, private research instead.

7.2.2 Model Improvements

The effectiveness of hybrid Transformer-based credit risk models is undeniable, though

there are multiple areas for future exploration in the architecture of the XGFT-Transformer.

Firstly, while the feature tokenizer used to encode inputs has produced good results in

this project, a comparison of different encoding techniques would allow future iterations

more confidence when deciding on the optimal way to represent mixed input data.

Second, the choice to train the components of the XGFT-Transformer sequentially and

seperately rather than using a unified loss function may have impacted performance and

a future implementation using parallel training and a combined loss similar to Wang et

al. [64] should be considered. Lastly, any model could be used as the hybrid component,

not just XGBoost. A comparison of different hybrid components could be performed to

obtain evidence for the effectiveness of XGBoost, CNN or other components.

7.2.3 xAI Improvements

While GCI does produce results much faster than other approaches in its category, it

can likely be further optimized to reduce computation time significantly, especially on

larger models where it still requires multiple hours to compute importances for 6000 test

samples. The majority of this computation is spent calculating the DiCE counterfactuals,

making efficient counterfactual calculation the first area for improvement here. Another

benefit of improving the efficiency of counterfactual calculation is that it would allow for

> 1 counterfactual to be produced per sample, which could then be averaged to obtain

a more robust importance score and avoid the fluctuations seen in my experiments.
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Müller, and Lior Wolf. Xai for transformers: Better explanations through con-

servative propagation. In International Conference on Machine Learning, pages

435–451. PMLR, 2022.
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Appendix A

Hyperparameter Search Spaces

Hyperparameter Search Range

C 1e−4 . . .1e2

max iter 100 . . . 2500

penalty [None, l1, l2]

solver [liblinear, lbfgs, sag]

Table A.1: Hyperparameter search space for logistic regression.

Hyperparameter Search Range

n estimators 100 . . . 2000

max depth 2 . . . 10

learning rate 1e−4 . . .1e−1

subsample 0.5 . . . 1

colsample bytree 0.5 . . . 1

reg alpha 0 . . . 10

reg lambda 0 . . . 10

gamma 0 . . . 10

Table A.2: Hyperparameter search space for XGBoost.
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Hyperparameter Search Range

n d 2 . . . 64

n a 2 . . . 64

n steps 2 . . . 10

n independent 1 . . . 5

n shared 1 . . . 5

gamma 1 . . . 2

lr 1e−4 . . .1e−2

step size 1 . . . 15

scheduler gamma 0.9 . . . 0.999

weight decay 1e−4 . . .1e−1

lambda sparse 1e−4 . . .1e−1

Table A.3: Hyperparameter search space for TabNet.

Hyperparameter Search Range

input embed dim 8 . . . 64

num heads 4 . . . 12

num attn blocks 2 . . . 10

attn dropout 0 . . . 0.15

add norm dropout 0 . . . 0.15

ff dropout 0 . . . 0.15

learning rate 1e−4 . . .5e−3

lr scheduler [None, LinearLR]

Table A.4: Hyperparameter search space for FT-Transformer.



Appendix B

Top 5 Feature Rankings

Rank German LR German XG Taiwan LR Taiwan XG

1 Checking Account Status Checking Account Status BILL AMT AUG PAY STATUS SEP

2 Duration (Months) Duration (Months) BILL AMT SEP LIMIT BAL

3 Age (Years) Credit History PAY STATUS MAY AMT PAID AUG

4 Credit History Purpose LIMIT BAL PAY STATUS AUG

5 Credit Amount Credit Amount PAY STATUS JUL BILL AMT SEP

Table B.1: Top 5 Features identified by SHAP
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Rank German LR German XG Taiwan LR Taiwan XG

1 Checking Account Status Checking Account Status BILL AMT AUG PAY STATUS SEP

2 Duration (Months) Duration (Months) PAY STATUS MAY PAY STATUS JUN

3 Credit History Credit History PAY STATUS JUL BILL AMT JUL

4 Credit Amount Credit Amount PAY STATUS JUN PAY STATUS MAY

5 Age (Years) Purpose BILL AMT MAY BILL AMT AUG

Table B.2: Top 5 Features identified by GCI


