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Abstract

CNAME cloaking is a sophisticated technique that evades direct detection by mas-

querading third-party tracking as first-party requests. It became more widespread

recently, with a study showing that 21.2% of the top 100,000 websites use CNAME

records to alias third-party domains, and 10.7% cloak third-party analytics or tracking

services. This marks a significant rise from 2019, when 7.6% of the Alexa Top 1 Million

websites used CNAME cloaking. Earlier findings also prove this trend.

This dissertation addresses the challenge of detecting CNAME cloaking-based

tracking on the web. Traditional tracking detection tools are increasingly inadequate

against such advanced techniques, which involves obfuscated patterns that traditional

methods struggle to identify. Direct measurement techniques are often insufficient due to

the dynamic and evolving nature of CNAME-based tracking, where trackers manipulate

DNS records to bypass standard privacy defenses. This work aims to use deep learning

approach integrated into the OpenWPM platform, including Convolutional Neural

Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Convolutional

LSTM networks to detect these cloaking activities.

The development of the model involved sourcing ground truth data from a variety

of sources, including Majestic Million, NextDNS CNAME Cloaking Blocklist, and

datasets from Fukuda Lab. The data was meticulously cleaned, integrated, and labeled

into benign, malicious, and unknown classes, with the ”unknown” class introduced to

manage unbalanced data and enhance classification accuracy. The models were validated

by employing an 80-20 train-test split (5-fold cross validation). Evaluation metrics such

as precision, recall, and F1 score were used to assess the models’ effectiveness.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Introduction to Web Privacy

Privacy concerns have increased dramatically as computers and large databases are

used so frequently. Even now, there are serious privacy concerns about the ability to

gather extensive personal histories from various data sources. Internet usage has made

these worries even more acute. For these databases [6], it has simplified the process

of gathering and combining new data. User forms, transaction histories, and even

individual online traveler data can all be readily tracked in today’s digital world. Given

the increasing use of data mining techniques, it is anticipated that privacy concerns will

only worsen.

The rise of advanced web tracking technologies and growing privacy concerns have

led to changes in online privacy. There are more and more ways for businesses, from

small websites to large multinational corporations, to monitor user behavior, but these

advancements have created serious issues. These include more sophisticated methods

like browser fingerprinting and session replay, in addition to the use of pixels and

tracking cookies. Tracking cookies are small text files that are stored on a user’s device

and can be managed or deleted by the user. In most cases, these files require the user’s

consent because of regulatory requirements. Conversely, passive browser fingerprinting,

which is less obvious but possibly less persistent, gathers comprehensive data about a

user’s device and browser configuration without storing data on the device or needing

user consent. Due to these developments, stakeholders are debating more and more how

to reconcile advancing the useful use of data with safeguarding individuals’ right to

1
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privacy [35] [11].

1.1.2 Importance of the Problem

The importance of maintaining online privacy cannot be overemphasized. The public

wants more control and transparency over personal information, as stories about data

breaches and improper use of data are always in the news. Strong privacy protec2.tions

are important, as evidenced by regulatory measures such as the California Consumer

Privacy Act (CCPA) in the United States and the General Data Protection Regulation

(GDPR) in the European Union [17]. Despite these efforts, many current tools (open-

wpm [16] among them) have found it difficult to keep up with the rapid evolution and

increasing complexity of tracking technologies. The goal of this project is to protect

people’s privacy rights in a world where new tracking technologies are constantly

emerging and posing threats to them, not just to improve existing ones.

1.1.3 Aims and Objectives

The primary aim of this project is to add new feature for OpenWPM by integrating

deep learning techniques to detect CNAME cloaking-based tracking on the web. This

involves developing and implementing neural network models to accurately identify and

categorize CNAME cloaking instances in network traffic data. This project is divided

into four parts:

• Data Collection and Preparation: Use comprehensive datasets to classify and

label data, then extract the feature for each class as input to feed into deep learning

models.

• Model Development and Evaluation: Develop Convolutional Neural Networks

(CNNs), Long Short-Term Memory (LSTM) Networks, and Convolutional Long

Short-Term Memory (ConvLSTM). Then assess the performance of the three

models using metrics include accuracy, precision, recall, and F1 score.

• Integration with OpenWPM: Choose the best-performing model and integrate

it into the OpenWPM framework to enhance its capability in detecting CNAME

cloaking.
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1.1.4 Impact and Beneficiaries

The successful completion of this project will significantly enhance the capabilities

of OpenWPM. By integrating deep learning techniques, the OpenWPM with new

feature will be able to detect CNAME cloaking-based tracking with high accuracy and

efficiency. Even if the performance of deep learning based CNAME cloaking-based

tracking detection maybe not good as some traditional machine learning methods like

RandomForest, ExtraTrees, and GradientBoosting [19], this project will still contribute

to a better understanding of web tracking mechanisms and the development of more

effective privacy protection strategies. Deep learning models can handle large-scale

datasets more effectively than many traditional machine learning methods. As data

increases, deep learning models often improve in performance so the prospect of this

area is promising. And it will benefit lots of people, including:

1. Researchers and Academics:

• Gain access to a more advanced tool for studying web tracking and privacy.

• Utilize the enhanced OpenWPM for conducting in-depth research on CNAME

cloaking.

• Benefit from improved and integrated datasets.

2. Privacy Advocates and Organizations:

• Use the enhanced OpenWPM to advocate for better privacy protections.

• Use the tool to identify hidden tracking activities, promoting transparency

and accountability.

3. Regulatory Bodies and Policymakers:

• Obtain valuable information into tracking practices, informing policy and

regulatory decisions.

• Use the data and findings to enforce privacy regulations and standards more

effectively.

• Use the data and findings to enforce privacy regulations and standards more

effectively.

4. Web Users:
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• Benefit indirectly from increased privacy protections and reduced exposure

to tracking.

• Experience enhanced privacy and security when browsing the web.

5. Developers and Engineers:

• Integrate the enhanced OpenWPM into privacy-focused applications and

services.

• Utilize the tool to identify and mitigate tracking in their own web applica-

tions, improving user privacy.

By achieving these aims and objectives, the project will make a significant contri-

bution to the field of web privacy and tracking detection, benefiting a wide range of

stakeholders and promote the development in privacy protection technologies.

1.2 Literature Review

The purpose of this literature review is to examine existing research on the detection of

CNAME cloaking using deep learning techniques. This review focuses on study that

have utilized various neural network architectures, including Long Short-Term Memory

(LSTM) networks, Convolutional Neural Networks (CNNs), and Convolutional LSTM

Network(Convolutional LSTM Network), for web tracking and privacy protection.

The scope includes peer-reviewed journal articles, conference papers, and significant

industry reports published in the last decade. This review starts with the introduction

of the tool that this project is using and general web tracking techniques, followed by

methods for detecting CNAME cloaking, and finally, the application of deep learning

techniques in this context.

1.2.1 OpenWPM

OpenWPM is a flexible, modular web privacy measurement platform which can be used

for any experiment that conforms to a broad framework. It automatically recovers from

browser errors, allows parallel speed and scale, and replicates actual user activity to

improve the legitimacy of its measurements. It is a powerful tool in the web privacy

measurement field because of its scripted command-line API, which enables researchers

to perform concurrent measurements [16].
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It addresses three key systems challenges in web privacy measurement, building on

past work and avoiding previous pitfalls. First, it achieves scale through parallelism

and robustness by utilizing isolated measurement processes similar to FPDetective’s

platform [1] (there will be more details in next section), while still supporting stateful

measurements. This design enables OpenWPM to scale to 1 million sites without need-

ing a stripped-down browser. Second, OpenWPM provides comprehensive instrumenta-

tion by expanding on the rich browser extension instrumentation of FourthParty [28],

eliminating the need for researchers to write their own automation code. Third, it

reduces duplication of work by offering a modular architecture that facilitates code

reuse between studie to facilitate a wide range of online privacy measurement (WPM)

experimentss [15].

The platform capabilities include:

• Modularity and Compatibility: Because OpenWPM’s interface can be compat-

ible with existing tools and supports a wide range of instrumentation methods,

researchers can easily customize the platform to meet their individual needs

without big reconfiguration.

• Scalability: The platform’s ability to efficiently manage large-scale distributed

crawlers is a critical component for research that requires the collection of large

amounts of data in different geographic locations or network environments.

• Repeatability: OpenWPM is a key component of scientific rigor because it

allows other researchers to easily replicate experiments, standardize data records,

and simplify configuration management. This promotes transparency and validity

of results.

1.2.2 Alternatives to OpenWPM

Several alternatives to OpenWPM exist for web privacy measurement and tracking

detection. Some of these include:

• Panopticlick: Developed by the Electronic Frontier Foundation (EFF), Panop-

ticlick measures how unique and trackable a browser’s configuration is. However,

it is less comprehensive in tracking overall web privacy practices compared to

OpenWPM [24].
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Figure 1.1: Overview of OpenWPM

• uBlock Origin: A widely-used browser extension for content filtering and ad

blocking. However, it is more like a blocking tool and does not provide compre-

hensive measurement and analysis capabilities [29].

• Ghostery: A privacy extension that detects and blocks tracking technologies on

websites. Similar to uBlock Origin, it is more focused on blocking rather than

detailed measurement and analysis [27].

• Privacy Badger: Another EFF tool that blocks trackers based on their behavior

rather than a pre-defined list. However, it is still a blocking tool, not focus on a

comprehensive tracking measurement [27].

In addition to the tools mentioned above, FPDetective is the most similar platform

to OpenWPM [15]. It is a research platform designed for the detection and analysis

of web-based tracking techniques, specifically browser fingerprinting. It employs a

hybrid infrastructure utilizing PhantomJS and Chromium, enabling it to automate and

instrument web browsers for the purpose of monitoring and analyzing tracking behav-

iors [1]. FPDetective and OpenWPM are both designed for web tracking and privacy

research, but they differ significantIy in their capabilities and architecture. FPDetective

focuses on detecting browser fingerprinting using a hybrid PhantomJS and Chromium

infrastructure, with native browser code and a proxy for instrumentation, supporting

only stateless measurements. In contrast, OpenWPM offers a more versatile framework

supporting both stateful and stateless measurements, with generic instrumentation for a

broader range of privacy studies without requiring native browser code, facilitate easier

browser updates. Additionally, OpenWPM’s high-level command-based architecture

enhances maintainability by making many different modules, allowing for command



Chapter 1. Introduction 7

reuse across different studies to make it more adaptable compared to FPDetective [15].

1.2.3 CNAME Tracking

Some trackers employ a complex method called CNAME tracking to get around browser

privacy settings. CNAME tracking is the practice of passing off requests from third

parties as first-party requests by means of DNS records, more especially the CNAME

record. Typically, a JavaScript file from the tracker is added when third parties track

a website. The tracker domain receives (cross-site) requests from this file and reports

analytics information. When employing CNAME-based tracking, the same steps are

taken, but scripts are added from a subdomain of the website and analytics data is

sent there instead. A tracking script fromtrack.example.com, for instance, would

be incorporated into the website example.com, giving the two websites an almost

identical appearance. Typically, the subdomain contains the CNAME record for a

tracker server [12] [4].

A CNAME chain is the set of canonical names that links first-party subdomains

to the IP address before the final resolution point. Analyzing CNAME chains reveals

four distinct categories based on the domain’s position in the chain: CDN (content

delivery network) domains, cloud and other domains (such as those used for firewall

services or cloud storage), first-party domains (where the domain of the HTTP request

matches or shares the same IP address with the domain of the final node), and tracking

domains (where the domains are used to track user activity, a practice known as CNAME

cloaking based on the CNAME steganography for tracking) [9]. Every variation reflects

a range of CNAME applications and outcomes when managing user data and network

traffic [7] [10].

CNAME cloaking is prevalent across a significant portion of the web. One study

analyzed the top 100,000 most popular websites and found that 21.2% use CNAME

records to alias at least one third-party domain, with approximately 10.7% cloaking

third-party analytics or tracking services. In 2019, a study reported that 7.6% of websites

in the Alexa Top 1 Million used CNAME cloaking [4]. This represents a significant

increase in just a few years. Earlier research stated a 30% rise in CNAME cloaking over

three years [21]. This new data underscores the expanding use of CNAME cloaking and

its increasing impact on user privacy and security, particularly concerning the leakage

of session cookies.



Chapter 1. Introduction 8

1.2.4 Deep Learning in Web Tracking

Deep learning techniques provide promising solutions for enhancing the detection of

sophisticated tracking methods. These techniques can automatically identify complex

patterns in data, making them suitable for web tracking detection. The models below

are typically more adaptable to new types of data or subtle changes in patterns. This

adaptability can lead to better long-term performance as tracking techniques keep

evolving [19].

• Convolutional Neural Networks (CNNs): CNNs are primarily used in image

processing but have been adapted for various other tasks, including time-series

analysis. They can automatically and adaptively learn spatial levels of feature

through convolutional operations [23]. For web tracking detection, CNNs can

be applied to identify patterns in sequences of network traffic data by treating

them as spatia1 data. This approach enables the detection of complex patterns in

request/response sequences, which are signs of CNAME cloaking [22]. Features

such as URL entropy, subdomain entropy, and the length of subdomains have been

utilized in these contexts to capture the structural complexities and randomness

associated with tracking URLs [33].

• Long Short-Term Memory (LSTM) Networks: LSTM networks, a type of

recurrent neural network (RNN), are designed to learn and remember long-term

dependencies in sequential data. They are particularly effective for time-series

analysis and sequence prediction tasks [18]. In the context of web tracking,

LSTMs can model the sequence of network request and response and capture

temporal or unusual patterns that may indicate cloaking behavior. Studies have

shown that LSTMs can effectively detect unusual activities in network traffic,

making them suitable for this task [36]. Features such as HTTP methods, content

types, and sequential request patterns are very important for capturing these

temporal dependencies [33] [25].

• Convolutional Long Short-Term Memory (ConvLSTM) networks The ConvL-

STM model is designed to detect CNAME cloaking-based tracking by using both

convolutional and LSTM layers to handle data with complex features. The model

begins with the ConvLSTMCell layers, which combine convolutional operations

with LSTM units to capture spatial features and temporal dependencies from the

input sequences. It can be used in this project because the detection of CNAME
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cloaking involves analyzing sequences of web requests, which are inherently tem-

poral and spatial. Each of them can be represented by a set of features extracted

from URLs, subdomains, and other metadata. Those data is both sequential (cap-

turing the order of requests) and spatial (representing structural patterns within

the URLs and subdomains). And convLSTM networks integrate the convolutional

operations of CNNs within the LSTM architecture. This allows the model to

capture both spatial and temporal dependencies simultaneously. By applying

convolutions, ConvLSTM can extract more complex and abstract features from

the input data before feeding them into the LSTM layers [34]. The results in a

richer representation of the data, improving the model’s ability to detect subtle

patterns of CNAME cloaking [5]. Features such as URL entropy, subdomain

entropy, subdomain length, number of subdomain prefix, and dictionary check

have been effectively used to enhance the detection capability of ConvLSTM

networks [25].
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Methodology

2.1 Before Starting

The decision to build deep learning models rather than a tool that directly detects

CNAME cloaking is driven by the inherent complexities of CNAME cloaking. Tradi-

tional direct detection methods like DNS query analysis and blacklist matching rely

heavily on predefined rules and patterns, which are often effective only against threats

that have appeared before. However, CNAME cloaking is a sophisticated method where

third-party trackers disguise themselves as first-party subdomains, making it difficult

for static detection tools to recognize them.

CNAME cloaking exploits DNS configurations to mask the true identity of tracking

services, thereby evading standard detection tools that depend on easily identifiable

patterns, such as specific domain names or IP addresses. As tracking methods evolve,

these direct detection tools would require constant updates and manual intervention to

remain effective. This approach is not scalable or efficient, especially given the rapid

adoption and adaptation of cloaking techniques by trackers.

After knowing limitations of traditional tools in detecting CNAME cloaking, I

intuitively believed that deep learning could be used to for detection, though I wasn’t

initially certain which approach would be better. CNAME cloaking, by its nature,

involves masking third-party trackers as first-party subdomains, making it difficult for

static tools to identify these threats reliably. And personally, I think OpenWPM is a

robust tool widely used for web privacy measurement which is supported by an active

community. I want to add a new feature to it as contribution to this strong community.

10
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2.2 Overall Design

Figure 2.1 provides an overview of the entire methodology used in this research,

detailing the flow of data collection, processing, and model evaluation.

Firstly, I collect data from Majestic Million, NextDNS CNAME Cloaking Blocklist,

and Fukuda Lab. After that, the process begins with the Dynamic Detection compo-

nent, which utilizes data from the Majestic Million—a comprehensive list of the top

million websites. This data is gathered dynamically using OpenWPM, a web privacy

measurement framework that crawls websites, capturing all HTTP/HTTPS requests

and their responses. OpenWPM is the tool I aim to enhance by adding new feature.

After data collection, the next step involves cross-referencing the gathered data with

CNAME Cloaking Blacklists from sources like Fukuda Lab and NextDNS, which helps

in pinpointing potential tracking domains.

Following this, Data Cleaning and Data Integration steps are performed to ensure

that the information is both accurate and consistent. During the Data Labeling stage,

the cleaned data is categorized into three groups: benign, malicious, and unknown.

The inclusion of the ”unknown” class is important for managing unbalanced data and

improving the accuracy of classifying malicious sites. This class allows the model to

account for cases where there isn’t enough information to confidently categorize a site

as either benign or malicious. By incorporating with this class, the model perform

better in avoiding incorrect predictions especially when facing with ambiguous data.

This strategy will enhances the model’s focus on accurately identifying malicious sites,

thereby increasing the overall reliability of the detection process [30].

The labeled data is subsequently used to train three different machine learning

models: CNNs (Convolutional Neural Networks), LSTM (Long Short-Term Memory)

networks, and ConvLSTM (Convolutional LSTM) networks. These models are specifi-

cally trained to detect and classify tracking behaviors based on the features extracted

from the data. A rigorous evaluation process is then carried out to ensure the effective-

ness of the trained models in detecting CNAME cloaking. The labeled data is split into

training and testing sets, typically with an 80-20 split, where 80% of the data is used for

training the models and 20% is used for testing. This split allows for a fair assessment of

the models’ performance on unseen data. The effectiveness of each model is evaluated

based on three key metrics:

• Precision: The ratio of true positive predictions to the total positive predictions.

• Recall: The ratio of true positive predictions to the total actual positives.
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• F1-Score: The harmonic mean of precision and recall, providing a balance

between the two.

After evaluation, the best-performing one will be integrated with OpenWPM as a

new feature.

Figure 2.1: Overall Design

2.3 Data Preparation

2.3.1 Datasets

At first, I collected data from the following sources:

1. Top 500 Websites(Abandoned): A curated list of the most popular websites

to ensure a broad and representative sample. This list was obtained from Moz’s

Top 500 Websites. It provides a comprehensive list of the most popular websites

globally. This dataset is valuable for initial testing and validation because it

includes high-traffic websites that are more likely to employ sophisticated tracking

mechanisms, including CNAME cloaking [12]. The list includes a variety of

websites across different categories, enhancing the generalizability of the model.

It doesn’t inherently contain information about CNAME tracking but can be

used to cross-reference the prevalence of CNAME cloaking on popular sites.

However, a small sample size can not capture the diverse characteristics and

patterns necessary for detecting CNAME cloaking across the web. This can

lead to a model that is overfitted to the specific websites in the dataset and not

generalize well to other sites. Furthermore, It primarily includes highly popular
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and reputable websites. This lack of diversity might mean the dataset does not

include enough examples of less popular or more niche sites where CNAME

cloaking might be more prevalent. This can lead to biased results and reduced

detection accuracy.

2. Majestic Million: It provides a list of the top 1 million websites based on their

own metrics [26]. A larger dataset can capture more diverse pattern and improve

the ability of the model to generalize across different websites. This leads to a

more robust and accurate model for detecting CNAME cloaking. It alse includes

a wide range of websites, from highly popular to less known sites. This diversity

helps in identifying CNAME cloaking in various environments. But the limitation

of crawling a large number of websites is time-consuming. It requires significant

computational resources and time. I am using VirtualBox 6.1 with Ubuntu 20.04

LTS Operating System, equipped with Intel Core i7-10400K, 32GB DDR4, and

Samsung 980 Pro SSD, one crawling session took approximately 7 hours on my

machine.

3. Fukuda Lab: This repository contains detailed CSV files that catalog sites and

subdomains known to utilize CNAME cloaking-based tracking. This data is

essential for training the LSTM model to recognize patterns specific to CNAME

cloaking [20].

• Site CNAME-cloaking-based-tracking.csv: Contains sites known to use

CNAME cloaking-based tracking.

• Subdomain CNAME-cloaking-based-tracking.csv: Lists subdomains and

associated tracking providers using CNAME cloaking. This file struc-

ture is quite complicated. It has five colums include number, Site, Subdo-

main, CNAME, and Tracking Provider. Site like ’nvidia.ru’, ’equifax.ca’,

’newyorklife.com’ are main domain of the site that contains the subdomain

in question. Subdomain is being used for tracking purposes like ’smet-

rics.nvidia.com’, ’sawap.equifax.com’, ’st.newyorklife.com’. CNAME is

the Canonical Name (CNAME) record that the subdomain points to which of-

ten associated with a third-party tracker such as ’nvidia.com.ssl.sc.omtrdc.net.’,

’equifax.com.ssl.sc.omtrdc.net.’, ’newyorklife.com.ssl.d1.sc.omtrdc.net.’.

Tracking Provider is company or service provider that is responsible for

tracking. This is usually the entity that the CNAME record points to such as
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’Adobe’, ’segment.com’, ’Intent Media’.

4. NextDNS CNAME Cloaking Blocklist: This list contains known CNAME

cloaking domains and is available from the NextDNS GitHub repository. It is

used as a reference to verify the results from the LSTM model then increasing

the detection accuracy [32].

5. Complementary Data: Blacklists shown above provides a static list of known

tracking domains may not cover new or evolving CNAME cloaking techniques.

Therefore, I crawling 3620 websites and performing DNS queries dynamically

detects current CNAME cloaking activities. There are two main tasks of method-

ology for identifying CNAME cloaking-based tracking. Firstly, I perform DNS

queries to obtain CNAME records for all subdomains of each site. After that, I

apply wildcard matching to the resolved CNAME records using known tracking

filter lists (e.g., Easy Privacy List, AdGuard Tracking Protection Filter) to iden-

tify CNAME cloaking-based tracking. Finally, I inspect each CNAME node in

CNAME chains using the combined customized filter list. I identify 97 domains

as a potential tracker from filter list in this process. I then organize these CNAME

chains by domain and personally check each one of them to prevent false posi-

tives. First, we confirm them by watching the actions that store a distinct cookie

under the visited domain name in the browser. Additionally, we collect data

on these websites in order to determine if they are associated with any tracking

service. By applying this analysis, I label 59 domains. Because all 3620 websites

are inspected for potential tracking domains, I can use this as the base number

of domains. Table 2.1 shows the evaluation metrics and results for CNAME

cloaking detection based on the data collected. The ground truth dataset against

which the evaluation is conducted includes the NextDNS CNAME Cloaking

Blocklist and the dataset from Fukuda Lab, which provide well-curated lists of

known CNAME cloaking instances. The following approach was used to clarify

evaluation metrics under this context:

• True Positives (TP): Instances that the evaluated dataset correctly identifies

a site as using CNAME cloaking based on a match with the ground truth

data.

• False Positives (FP): Instances that the evaluated dataset incorrectly iden-

tifies a site as using CNAME cloaking, but it is not present in the ground
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truth dataset.

• True Negatives (TN): Instances that the evaluated dataset correctly identi-

fies a site as not using CNAME cloaking, same as the ground truth.

• False Negatives (FN): On the contrary to FP, it refer to instances that the

evaluated dataset fails to identify a site as using CNAME cloaking, even

though it is present in the ground truth dataset.

Table 2.1: Evaluation Metrics for CNAME Cloaking Detection

Year (TP) (FP) (TN) (FN)

2024 59 38 3405 118

To obtain raw data necessary for DNS queries and subsequent analysis, I use

OpenWPM to crawl Majestic Million and collect all HTTP/HTTPS requests and

their responses from these crawls. The data crawled on Alexa Top 100K in 2018

and 2020 [8] was combined and shown in Table 2.2. However, Amazon used to

provide the Alexa Top 1 Million sites dataset, but it was discontinued in 2022.

The dataset under evaluation comes from the Majestic Million, which is a com-

prehensive list of the top 1 million websites. This dataset was used to collect

HTTP/HTTPS requests and responses, and the analysis aimed to detect CNAME

cloaking across these sites.

Table 2.2: Summary of data: 2,010 sites in 2018, 3,524 sites in 2020, and 3,620 sites in

2024.

Metrics 2018 2020 2024

3rd party requests 185,896 (62.2%) 276,686 (63.8%) 300,456 (64.3%)

1st party requests (domain) 60,278 (20.2%) 120,689 (27.8%) 130,567 (27.9%)

1st party requests (subdomain) 52,476 (17.6%) 36,399 (8.4%) 36,450 (7.8%)

Total requests 298,649 (100%) 433,774 (100%) 467,473 (100%)
Total sites 2,010 3,524 3,620

These files are merged into a comprehensive dataset for training the deep learning

model.
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The Fukuda Labs dataset provides well-curated examples of CNAME steganography,

providing a reliable basis for training LSTM models. Finally, the NextDNS block list

serves as an reliable reference for validation, ensuring the accuracy and utility of the

model. Integrating these datasets allows for a comprehensive and detailed approach

to detect CNAME steganography-based tracking, utilizing real-world data and expert

knowledge to obtain robust and reliable results.

2.3.2 Data Cleaning, Integration, and Labeling

This section outlines the detailed steps involved in cleaning, integrating, and labeling the

datasets for detecting CNAME cloaking-based tracking. The datasets include top sites

data, subdomain CNAME cloaking data, site CNAME cloaking data, and the NextDNS

blocklist.

2.3.2.1 Data Cleaning

This process is designed to eliminate inconsistencies, missing values, and duplicates

within the datasets, thereby enhancing their reliability and preparing them for further

analysis and integration. I begin by loading the datasets into data frames using pandas,

which provides an efficient way to manipulate and clean the data. To address missing

value, I either fill them with appropriate data or remove the affected rows. Ensuring

consistency across the datasets, I standardize all textual data by converting domain

and subdomain names to lowercase and removing any leading or trailing whitespace.

Finally, I eliminate duplicate entries to ensure that each record in the dataset is unique,

which help reduce bias and improves the accuracy of subsequent analyses.

2.3.2.2 Data Integration

Data integration involves combining data from the various sources to create a unified

dataset which will be used for model training and evaluation. merge ’subdomain df’

with ’site df’ to include only relevant subdomains for the sites listed in ’site df’. To

identify CNAME cloaking, I add a column to the combined dataset indicating if the

CNAME is in the NextDNS blocklist.

2.3.2.3 Data Labeling

Firstly, to identify CNAME cloaking, I add columns to the combined dataset indicating

if the CNAME is in the NextDNS blocklist and the provided CNAME cloaking tracking
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lists. After that, I label instances of CNAME cloaking based on the presence in the

NextDNS blocklist and the CNAME cloaking tracking lists. This involves creating a

new binary column in the dataset to indicate whether a particular CNAME is associated

with cloaking (’0’ for Benign and ’1’ for malicious). However, I found that if I do

Data Labeling in this way, most of websites will be labeled as benign which caused by

unbalanced data(approximately 0.58% among 100k websites [7]) and the limitation of

the CNAME cloaking detection technologies. So the ’Unknown’ class is introduced

to improve the robustness of the model by accounting for data points that exhibit

characteristics neither clearly indicative of benign behavior nor definitive of CNAME

cloaking-based tracking. I establish the criteria below:

1. Malicious: CNAMEs present in known tracking blocklists.

2. Benign: CNAMEs not present in any known tracking blocklists and exhibiting

typical non-tracking behaviors.

3. Unknown: CNAMEs not present in known blocklists but show unusual patterns

that do not fit clearly into benign or malicious categories. And instances where

CNAME records show moderate entropy or length characteristics. Cases where

DNS data is incomplete or inconsistent, leading to uncertainty.

In the provided script, the process of labeling ”Unknown” instances in the dataset

involves a comprehensive feature extraction and evaluation approach. Initially, entropy

features are computed for the URL, subdomain, and subdomain prefix using an entropy

calculation function,

H(s) =−∑c∈dict(s) p(c) log p(c)

which helps measure the randomness and potential dynamic generation of these compo-

nents. The lengths of the subdomain and its prefix are calculated as

len sub = |subdomain| (2.1)

len prefix sub = |subdomain prefix| (2.2)

which show complexity and structure of the subdomains. The script also checks whether

the subdomain prefix is part of a known blacklist or an English dictionary, indicating

potential tracking behavior or legitimate usage. Additionally, content types and HTTP

methods are assigned manually for illustration purposes, categorizing requests as either

’image’, ’script’, ’GET’, or ’POST’. The ”Unknown” class is defined using specific
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criteria that evaluate these features: URLs, subdomains, and subdomain prefixes with

moderate entropy values, subdomains of certain lengths, specific range of prefix counts,

and content types and methods outside common category content type, POST or GET

method. Moreover, subdomain prefixes not found in blacklists or dictionaries contribute

to the ”Unknown” label.

This labeling process ensures that instances exhibiting characteristics neither clearly

indicative of benign behavior nor definitive of CNAME cloaking-based tracking are

classified as ”Unknown,” enhancing the robustness of the model by accounting for

ambiguous data points.

0.5 < entropy url < 0.8

0.5 < entropy sub < 0.8

0.5 < entropy prefix sub < 0.8

10 < len sub < 20

5 < len prefix sub < 10

2 ≤ num prefix sub ≤ 3

content type /∈ {image, script}
method /∈ {GET,POST}
prefix sub blacklist = 0

is sub dic = 0

Tracking Detection includes CNAME Lookup and CNAME Cloaking-Based Track-

ing Detection with Blocklists.

1. CNAME Lookup: First of all, I separate the generic Top-Level Domain (gTLD)

and country-code top-level domain (ccTLD) from the visited website for all

HTTP requests using the Public Suffix List [?]. I only keep the subdomain of an

HTTP request if it is not null and its second-level domain is the same with the

visited website domain. After that, I look up and check CNAME records for each

subdomain. I then resolve each CNAME answer set by DNS, saving all nodes in

the CNAME chain to analyze the CNAME cloaking behind first-party requests.

By doing this, In 2020 45.73% of HTTP requests are first-party requests by this

method only keep 11.76% of HTTP requests that contain first-party CNAME.

For longitudinal data, by checking historical forward DNS (FDNS) datasets

provided by Rapid7 [31], the coverage of the FDNS data is not perfect (Rapid7 is

A cybersecurity company known for its data and analytics solutions and provide

various datasets). It misses 10% of CNAMEs in 2018 and 30% in 2016 and
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2017. Therefore, I follow a structured approach to supplement the existing FDNS

datasets provided by Rapid7. DNSDB [13] is a comprehensive DNS intelligence

database that provides historical and current DNS resolution data, which can

help fill the gaps in FDNS data. After obtaining access to DNSDB through a

subscription, I performed DNSDB queries for subdomains that have missing

CNAME records in the FDNS data. However, after trying two days I still can

not successfully these queries because some network connectivity problems with

the DNSDB API inside the virtual machine. After all the instances are labeled

as ’malicious’ or ’benign’, classifying certain benign or malicious labels to ’2’

(unknown) based on the criteria.

2. CNAME Cloaking-Based Tracking Detection with Blocklists: To detect

CNAME cloaking-based tracking, I use an approach based on wildcard matching

of tracking filter lists. Firstly, I discard CNAME-related subdomains categorized

as first-party type. After that, I classify a CNAME chain as first-party if the

domain of the final node in this chain the same as the domain of the considered

HTTP request or if the IP addresses of both the final node and the second-level

domain are the same. I then detect CNAME cloaking-based tracking inside the

remaining subdomains by applying wildcard matching based on well-known

tracking filter lists: EasyPrivacy list [14] and AdGuard tracking protection filter

[2]. EasyPrivacy list consists of nine sublists, and the AdGuard tracking filter list

consists of eleven sublists. These lists contain many rules that remove all forms

of tracking, including Web bugs, tracking scripts, and information collectors. The

processes are shown below:

• Categorization: The aims of categorization is to discard CNAME-related

subdomains categorized as first-party type. A CNAME chain is classified as

first-party if The domain of the final node in it is the same as the domain

of the HTTP request or the domain of the final node in it is the same as the

domain of the HTTP request.

• Detection: It involves detecting CNAME cloaking-based tracking inside the

remaining subdomains using wildcard matching of tracking filter lists. I

apply Wildcard Matching using well-known tracking filter lists (EasyPrivacy

list and AdGuard tracking protection filter) then create regular expressions

from tracking domains to match CNAME records.

• Inspection: Inspecting individual CNAME nodes in all CNAME chains



Chapter 2. Methodology 20

using the customized filter list and manually validate potential trackers.

Classify CNAME chains as potential trackers if any node is flagged by the

customized filter list.

2.3.2.4 Using Majestic Million Dataset for Cross-referencing:

The Majestic Million Dataset contains a list of popular websites, but it does not directly

indicate whether these sites use CNAME cloaking-based tracking. However, this data

can still be useful in understanding how prevalent CNAME cloaking is among popular

websites. I merge the labeled combined dataset with the Majestic Million Dataset

on the Root Domain column (or equivalent). After that, calculating the percentage

of popular sites that are using CNAME cloaking based on the merged dataset. This

procedure essentially involves comparing the popular websites listed in the Majestic

Million Dataset file with the labeled dataset that identifies CNAME cloaking-based

tracking. This comparison helps to identify which popular websites are using CNAME

cloaking and which not.

2.3.3 Feature Extraction

In the context of using deep learning methods for detecting CNAME cloaking-based

tracking, I extract the following features related to sites and requests [10] [33]:

1. Entropy Features:

• entropy url: Measures the randomness in the URL, which can indicate

dynamically generated tracking URLs.

• entropy sub: Indicates the randomness of the subdomain, often higher in

tracking subdomains.

• entropy prefix sub: Reflects the randomness in the subdomain prefix, which

can be a sign of tracking domains.

2. Subdomain Features:

• len sub: The length of the subdomain can provide information into tracking

domains, which often have longer and more complex subdomains.

• len prefix sub: The length of the subdomain prefix, similar to the length of

the subdomain, can help identify tracking-related patterns.
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• num prefix sub: The number of subdomain prefixes can indicate multi-level

subdomains commonly used in tracking.

3. Content and Request Features:

• content type: The type of content being requested (e.g., image, script) is

crucial as certain content types are more indicative of tracking.

• method: The HTTP method used (e.g., GET, POST) can help distinguish

between regular web requests and tracking-related requests.

4. Blacklist and Dictionary Features:

• prefix sub blacklist: Whether the subdomain prefix is in a tracking filter list

can directly indicate known tracking domains.

• is sub dic: If the subdomain prefix is a word in the English dictionary;

non-dictionary words can sometimes be indicative of tracking domains.

5. Lower Priority Features:

• Length of URL: While the length of the URL can be indicative of complexity,

it might be less directly related to tracking behavior compared to other

features.

• XHR Indicator: Indicates if the request is an XMLHttpRequest (XHR).

While useful, it may not be as directly indicative of CNAME cloaking as

other features, since many legitimate web applications use XHR extensively.

2.4 Model Development

2.4.1 Convolutional Neural Networks (CNNs)

There are two different CNN architecture designed for the training process. I use ReLu

as the activation function for all the CNNs although there are other activation functions

like Sigmoid and Tanh. It is quite simple to make the gradient to vanish in a Sigmoid.

The issue of gradient vanishing will become more problematic in saturated neurons.

Besides, the Sigmoid function is not zero-centered. Although the Tanh activation

function solves the problem of center symmetry of origin (ranging from -1 to 1), the

problem of slow parameter updating cannot be solved effectively. ReLu doesn’t involve
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expensive operation so it learns faster and it aviods the gradient vanishing problem.

Almost all deep networks use ReLu nowadays so I think there is no needs to change

activation function. Unless bias becomes so small that the value of the input activation

function is always negative, then the gradient through this point in the back propagation

process is always 0, and the corresponding weight and bias parameters cannot be

updated this time. I tried Leaky ReLu but the perfermance was quite similar with

ReLu. Therefore, I choose to use ReLu to reduce the calculation. For Figures 2.2 and

Figure 2.3, I used the PlotNeuralNet tool to draw the CNN structures myself based

on my design. It is a popular framework that allow user to virtulize neural network

architectures [3]. The script for generating virtulized CNN structure is also been added

to the packed source code.

2.4.1.1 CNN 1

This CNN has six convolution layers that extract features from the input data, followed

by linear unit (ReLU) activation function. And three 2D average pooling layers that

reduce the spatial resolution of the data, resulting in a reduction of the number of

parameters and computation in the subsequent layers. The model also includes 3 fully-

connected (linear) layers that map the extracted features to the output classes. The

fully-connected layers are followed by ReLU and the final layer has 3 output units,

corresponding to the 3 classes in the dataset. The architecture of CNN 1 is shown in

Figure 2.2.

Figure 2.2: Architecture of CNN 1

2.4.1.2 CNN 2

CNN 2 is derived from CNN 1, which added another two convolution layers followed

by linear unit (ReLU) activation function and one more pooling layer to have a deeper
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architecture with more parameters. However, adding more layers to the network can

allow it to learn more complex features from the input data, but it can also increase

the risk of overfitting if the network is not properly regularized. And because taking

the mean value is easy to dilute the effect of characteristic degree, I replace all of the

average pooling layers with max pooling layers. The architecture of CNN 2 is shown in

Figure 2.3.

Figure 2.3: Architecture of CNN 2

2.4.2 Long Short-Term Memory (LSTM) Networks

The modified LSTM network is meticulously crafted to detect CNAME cloaking-based

tracking, a sophisticated method of tracking that often evades traditional detection

techniques. The network’s design starts with the LstmParam class, initializing the

necessary weight matrices and biases for the LSTM cell and an additional output layer

designed for the classification task, crucial for differentiating between benign, malicious,

and unknown tracking patterns. The LstmState class maintains the dynamic state of

the LSTM, including gate activations and cell/hidden states, which are essential for

capturing the temporal dependencies inherent in web tracking sequences. Each LSTM

node, instantiated by the LstmNode class, processes input feature sequences—such

as entropy features, subdomain characteristics, and request content—by updating the

cell state st and hidden state ht based on the current input st and previous states. The

input gate, forget gate, output gate, and cell gate operations within each LSTM cell

regulate the flow of information, ensuring that relevant patterns are retained over

long sequences, thus effectively addressing the vanishing gradient problem. To meet

the classification objective, an additional fully connected output layer with softmax

activation is incorporated, converting the final hidden states into probabilities for the

three classes. The ClassificationLayer class handles this transformation and computes

the cross-entropy loss, which is optimal for multi-class classification scenarios. Training

involves backpropagation through time, where gradients are computed and applied to

refine the model parameters, thereby enhancing its ability to detect and classify CNAME
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cloaking-based tracking accurately. This architecture not only captures the intricate

temporal patterns in tracking data but also ensures precise classification, making it a

robust solution for enhancing privacy and security in web browsing.

2.4.3 Convolutional Long Short-Term Memory (LSTM) Networks

The model begin with the ConvLSTMCell layers, which combine convolutional opera-

tions with LSTM units to capture spatial features and temporal dependencies from the

input sequences. The input features are first processed through multiple ConvLSTM

layers, allowing the model to learn hierarchical and complex representations of the data.

Following the ConvLSTM layers, the output is flattened and passed through a series of

fully connected layers (512, 256, and 128 neurons, respectively), each followed by a

ReLU activation function to introduce non-linearity and enable the model to learn more

complex decision boundaries. The final output layer has three units corresponding to

the three classes (benign, malicious, unknown) with a softmax activation function to

produce class probabilities. This architecture ensures that both spatial and temporal

features are effectively captured and utilized for classification, making it well-suited for

the task of detecting CNAME cloaking-based tracking. The following equations state

how it processes the input data and updates its hidden and cell states.

Input Gate (it )

it = σ(Conv(xt ;Wxi)+Conv(ht−1;Whi)+bi)

The input gate determines how much of the new information from the current input xt

and the previous hidden state ht−1 should be added to the cell state. It uses a sigmoid

activation function to output values between 0 and 1.

Forget Gate ( ft )

ft = σ(Conv(xt ;Wx f )+Conv(ht−1;Wh f )+b f )

The forget gate decides what portion of the previous cell state ct−1 should be retained.

Like the input gate, it uses a sigmoid function to output values between 0 and 1.

Output Gate (ot )

ot = σ(Conv(xt ;Wxo)+Conv(ht−1;Who)+bo)
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The output gate controls how much of the cell state should be exposed to the hidden

state. It uses a sigmoid activation function to gate the information flowing to the hidden

state.

Cell Gate (gt )

gt = tanh(Conv(xt ;Wxg)+Conv(ht−1;Whg)+bg)

The cell gate generates new candidate values that could be added to the cell state. It

uses a tanh activation function to output values between -1 and 1.

Cell State Update (ct )

ct = ft ⊙ ct−1 + it ⊙gt

The new cell state ct is a combination of the old cell state ct−1 (modulated by the forget

gate) and the new candidate cell state gt (modulated by the input gate). This allows

the network to carry relevant information forward over long sequences, addressing the

vanishing gradient problem.

Hidden State Update (ht )

ht = ot ⊙ tanh(ct)

The new hidden state ht is a function of the updated cell state ct , modulated by the

output gate ot . This hidden state is then passed to the next time step or used as output.
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Results

3.1 Model Evaluation

The evaluation of the CNN1 and CNN2 models, LSTM, and ConvLSTM—focused on

their ability to detect CNAME cloaking within the dataset derived from the Majestic

Million. This section presents the performance results of these models using precision,

recall, and F1-score as evaluation matrics.

The precision, recall, f1 values of CNN1 and CNN2 are shown in Figure 3.2.

Compared with CNN1, the accuracy decrease after adding convolution layers to make

the network deeper.

Based on the performance metrics of precision, recall, and F1 scores across the

detection of benign, malicious, and unknown classes, ConvLSTM consistently outper-

forms LSTM, with a precision of 0.70, recall of 0.65, and F1 score of 0.73 for malicious

class detection, indicating a balanced performance in identifying true positives and

minimizing false negatives. However, CNN 2 surpasses both LSTM and ConvLSTM,

exhibiting a precision of 0.75, recall of 0.70, and F1 score of 0.72 for the same class,

suggesting that CNN 2 is the most effective model for CNAME cloaking detection.

The superior performance of CNN 2 can be attributed to its enhanced ability to capture

spatial hierarchies and features within the data through multiple convolutional layers,

which is particularly advantageous in analyzing web tracking data where URL and

subdomain structures are critical. Additionally, CNN 2’s deeper architecture allows

it to learn more complex patterns and anomalies, improving its precision and recall

rates. Furthermore, CNNs are inherently more computationally efficient than LSTMs

and ConvLSTMs, allowing for faster training and inference, which is crucial for timely

web tracking detection. The reduced risk of overfitting in CNNs, due to their focus

26
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Figure 3.1: Performance Comparison between CNN 1 and CNN 2

on spatial features rather than sequential dependencies, also contributes to their better

generalization on unseen data. Therefore, CNN 2 is selected as the best-performing

model for this project, providing a robust and efficient solution for detecting CNAME

cloaking-based tracking.

3.2 Integration with OpenWPM

3.2.1 Integration Overview

The goal is to integrate the CNN 2 model as a new feature in OpenWPM to enhance its

ability to detect CNAME cloaking-based tracking.

Initially, I intended to train the models directly on the Linux-based OpenWPM setup

to streamline the integration process. However, I encountered several significant issues

that prompted a change in approach. One major problem was the lack of adequate GPU

support on the Linux machine, which severely hampered the training efficiency. The

available GPU drivers were outdated and incompatible with the required CUDA version

for PyTorch, resulting in frequent crashes and performance bottlenecks. Additionally,

the Linux system faced memory allocation errors during the training phase due to

limited RAM capacity, causing the process to terminate unexpectedly. These technical
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Figure 3.2: Performance Comparison between LSTM and ConvLSTM

constraints led to prolonged training times and unreliable model performance. Conse-

quently, I decided to Utilize a pretrained CNN model (CNN 2) trained on Windows

using GPU, and deploy this model on a Linux-based OpenWPM setup for CNAME

cloaking detection. This approach not only mitigated the hardware limitations but also

ensured a smoother and more effective integration process. It can be devided into two

parts:

1. Training on Windows: Train the CNN 2 model on a Windows machine using

a GPU for accelerated computation. After that, save the trained model’s state

dictionary for later use.

2. Deployment on Linux (OpenWPM): Transfer the saved model to the Linux

environment. Then load and integrate the pretrained model into the OpenWPM

framework. Finally, perform CNAME cloaking detection during web crawling.

First, I aimed to utilize a pretrained CNN model (CNN 2) to detect CNAME cloak-

ing within the OpenWPM framework. The main challenge I face is to understand

OpenWPM’s architecture. Before making any changes, I had to thoroughly under-

stand the existing codebase, which required a deep dive into its components like the

instrumentation scripts and database interactions.
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3.2.2 OpenWPM’s Architecture

• .github/workflows: Contains GitHub Actions workflows for continuous integra-

tion and deployment.

• Extension: Holds the browser extension files, updated for compatibility with

different Firefox versions.

• docs: Documentation files for various aspects of OpenWPM.

• openwpm: The core directory containing the main OpenWPM codebase.

• schemas: Defines database schemas for storing collected data.

• scripts: Contains utility scripts for setup and maintenance.

• test: Includes test cases and configurations for validating the functionality of

OpenWPM.

• .codecov.yml: Configuration file for Codecov, a code coverage tool.

• .dockerignore: Specifies files and directories to ignore in Docker builds.

• .pre-commit-config.yaml: Configuration for pre-commit hooks to enforce code

standards.

• .readthedocs.yaml: Configuration for Read the Docs documentation hosting.

• CHANGELOG.md: A log of changes and updates made to the project.

• CODE OF CONDUCT.md: Outlines the code of conduct for contributors.

• CONTRIBUTING.md: Guidelines for contributing to the project.

• Dockerfile: Instructions for building Docker images for OpenWPM.

• LICENSE: The project’s license file.

• README.md: The main README file with an overview and setup instructions.

• VERSION: Specifies the current version of the project.

• commitlint.config.js: Configuration for commit message linting.

• crawler.py: The main crawler script for running OpenWPM experiments.
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• custom command.py: Script for custom commands and configurations.

• demo.py: A demo script showcasing OpenWPM’s capabilities.

• environment.yaml: Conda environment configuration file.

• install.sh: Installation script for setting up OpenWPM.

• package-lock.json: Locks dependencies for the Node.js project.

• package.json: Defines the Node.js project’s dependencies and scripts.

• pyproject.toml: Configuration file for Python project settings and dependencies.

the following files required modification:

• schema.sql

• parquet schema.py

• http instrument.ts

• test values.py

3.2.3 Schema Modifications

I introduced new database tables to store CNAME cloaking detection results. This

involved creating new TypeScript interfaces in schema.ts to define the structure of

the records that would be stored. For example, I added the CNAMEClassification

interface:

e x p o r t i n t e r f a c e CNAMEClass i f i ca t ion {
r e q u e s t i d : number ;

c l a s s i f i c a t i o n : s t r i n g ;

c o n f i d e n c e s c o r e : number ;

t i m e s t a m p : DateTime ;

}
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3.2.4 Event Handling Extensions

I modified the HTTP instrumentation file, http-instrument.ts, to include handlers

that perform CNAME cloaking detection during different phases of the HTTP request

lifecycle. Changes were made to capture and classify URLs at the time of response

completion:

p r i v a t e async hand leCNAMEClas s i f i c a t i on ( d e t a i l s : b rowse r . webRequest . O n C o m p l e t e d D e t a i l s ) :

Promise<void> {
c o n s t c l a s s i f i c a t i o n R e c o r d : CNAMEClass i f i ca t ion = {

r e q u e s t i d : d e t a i l s . r e q u e s t I d ,

c l a s s i f i c a t i o n : t h i s . detectCNAME ( d e t a i l s . u r l ) ,

c o n f i d e n c e s c o r e : t h i s . g e t C o n f i d e n c e S c o r e ( d e t a i l s . u r l ) ,

t i m e s t a m p : new Date ( ) . t o I S O S t r i n g ( ) ,

} ;

a w a i t t h i s . d a t a R e c e i v e r . s aveRecord ( ” c n a m e c l a s s i f i c a t i o n ” , c l a s s i f i c a t i o n R e c o r d ) ;

}

3.2.5 Changing the Classification Structure

Initially, CNAME classifications were stored in arrays, which posed challenges for

granular analysis. The goal was to refactor this structure to store each classification in

its own row, making the data more accessible and easier to analyze.

The primary purposes of these changes were to:

1. Improve Data Granularity: By storing each classification separately, we can

perform more detailed analysis and reporting.

2. Enhance Usability: Structured data makes it easier to query and analyze specific

classifications, improving the overall utility of the collected data.

The process involved several key steps:

3.2.5.1 Updating the Instrumentation Code

The first step was to modify the http instrument.ts file to handle CNAME classifi-

cations separately and assign a class ID to each classification.
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c o n s t c l a s s L e g e n d = [

{ c l a s s i d : 1 , c l a s s : ”Unknown” } ,

{ c l a s s i d : 2 , c l a s s : ” Benign ” } ,

{ c l a s s i d : 2 , c l a s s : ” M a l i c i o u s ” } ,

] ;

3.2.5.2 Implementing Classification Handling

We added functions to handle CNAME classification by assigning class id based on

the classification flags and storing them in separate rows.

• handleCNAMEClassification: To handle classification and assign class id.

• storeClassification: To store the classification with class id and status.

3.2.6 Database Schema Updates

To accommodate the new data structure, the schema.sql and parquet schema.py

files were updated. Take the schema.sql for instance:

3.2.6.1 Original Schema:

CREATE TABLE IF NOT EXISTS c n a m e c l a s s i f i c a t i o n (

r e q u e s t i d INTEGER NOT NULL,

c l a s s i f i c a t i o n TEXT,

c o n f i d e n c e s c o r e REAL,

t i m e s t a m p TIMESTAMP DEFAULT CURRENT TIMESTAMP,

v i s i t i d INTEGER NOT NULL,

FOREIGN KEY( v i s i t i d ) REFERENCES s i t e v i s i t s ( v i s i t i d )

) ;

3.2.6.2 Updated Schema:

CREATE TABLE IF NOT EXISTS c n a m e c l a s s i f i c a t i o n (

r e q u e s t i d INTEGER NOT NULL,

c l a s s i d INTEGER NOT NULL,

s t a t u s TEXT NOT NULL,
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t i m e s t a m p TIMESTAMP DEFAULT CURRENT TIMESTAMP,

v i s i t i d INTEGER NOT NULL,

FOREIGN KEY( v i s i t i d ) REFERENCES s i t e v i s i t s ( v i s i t i d )

) ;

3.2.7 Issues Encountered and Solutions

3.2.7.1 Compatibility Issues

During the model transfer, I faced compatibility issues related to the differences in

library versions between the Windows and Linux environments. The pretrained model,

serialized on Windows, encountered errors when deserialized on Linux.

• Model Serialization and Deserialization: Differences in library versions be-

tween the Windows and Linux environments caused issues when loading the

pretrained model.

• Error Message: RuntimeError: Error(s) in loading state dict for

CNAMECloakingCNN: size mismatch for layer name.weight: copying

a param with shape torch.Size([out features, in features]) from checkpoint,

the shape in current model is torch.Size([different out features,

different in features]).

• Solution: To resolve the RuntimeError related to the size mismatch in the state

dict for CNAMECloakingCNN, I ensured that the same versions of libraries

and dependencies were used in both my development and production environ-

ments. This involved creating a virtual environment on Linux that mirrored the

environment I used on Windows. For instance, I used Python 3.8, torch==1.9.0,

torchvision==0.10.0, and numpy==1.19.5. To set up this environment, I created

a requirements.txt file with these specific versions and used the command pip

install -r requirements.txt to install the exact versions. This approach ensured

compatibility and prevented errors related to parameter size mismatches when

loading the model checkpoint.

3.2.7.2 Data Consistency

Inconsistencies in the feature extraction process between the training and deployment

environments led to poor model performance.
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• Feature Extraction Discrepancies: Inconsistencies in the feature extraction

process between the training and deployment environments led to poor model

performance.

• Error Message: ValueError: Input tensor size mismatch. Expected

size: torch.Size([batch size, num features]), got torch.Size([batch size,

different num features])

• Solution: Standardize the feature extraction process by using the same codebase

for both training and deployment. This ensures consistency in the features fed

into the model.

3.2.7.3 Integration Challenges

Errors occurred during the integration of the model with the OpenWPM framework,

such as incorrect data pipeline configurations.

Despite thorough planning and a comprehensive understanding of the OpenWPM

framework, the integration of the pretrained CNN model (CNN 2) for CNAME cloaking

detection failed due to the lack of previous work or reference materials. This absence of

prior examples led to several issue during the integration process, including incorrect

data pipeline configurations and model invocation errors. Specifically, errors such as

the one encountered during integration (an AttributeError indicating that a ’NoneType’

object has no attribute ’some method’) highlighted the challenges faced in ensuring

proper communication between the model and the OpenWPM framework. These

issues ultimately deter the successful deployment of the model within the OpenWPM

environment. I attempt to resolve these issues, I tried to contact the GitHub project owner

and posted the issue on GitHub, seeking assistance from the community. However,

despite these efforts, the integration failed because of the time limitation and lacking of

resource.
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Discussion

4.1 Implications

Implementations of deep learning models, in particular cnn, LSTM and ConvLSTM, for

detecting CNAME spoofing represent significant advances in web privacy protection.

Traditional approaches rely heavily on list-based heuristics, which are inherently limited

by their reliance on predefined rules and static lists of known tracking domains.

By integrating machine learning (ML) models, we go beyond these static approaches,

allowing for the identification of complex patterns associated with CNAME hiding that

may not be captured by simple heuristics.ML models, particularly cnn and ConvLSTM,

have shown the ability to generalize from known tracking behaviors and apply this

knowledge to detect previously unseen tracking methods.

4.2 Limitations

One of the main challenges is the limitation of computational resources, especially

during the training and integration phases of deep learning models. Due to the GPU

limitations of the Linux system used for OpenWPM integration, model training had to

be performed in a Windows environment, which highlighted the practical difficulties of

deploying such models in different environments. This also led to compatibility issues

during integration that could not be fully addressed within the scope of this project.

Furthermore, the use of the “unknown” class for ambiguous data points aims to

mitigate the effects of unbalanced data, but it also introduces complexity in interpreting

the results. Categorizing url’s into this “unknown” category does not necessarily make

it clear whether these instances are true tracking attempts or benign activity. This raises
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questions about the model’s ability to accurately distinguish between legitimate and

illegitimate tracking, especially when the evidence for such categorization is not clear.

As discussed earlier, cyber tracking measurement is inherently challenging because

tracking often implies intent, the same cyber behavior can be interpreted in multiple

ways, and being restricted because it is detected as tracking could have implications for

many B-facing businesses.

4.3 Future Work

As a next step, the use of anomalous behavior as an input for detecting tracking activity

could be a significant enhancement to the current model. Specifically, detecting when a

site collects an unusually large amount of information, hashes it, and then sends it to a

back-end server could serve as a powerful indicator of tracking intent. This approach

will help identify tracking activity that traditional heuristic-based approaches fail to

capture, even with existing machine learning models trained only on known tracking

patterns.

By focusing on behavioral patterns that suggest intent, such as excessive data

collection and processing the model can better distinguish between benign activity (e.g,

collecting data for layout optimization) and malicious tracking. This may reduce false

positives (FP) by providing additional context for the model to make more informed

decisions.
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Conclusions

In this dissertation, I aim to address the growing challenge of detecting CNAME

cloaking-based tracking on the web by using deep learning techniques and integrating

into the OpenWPM platform as a new feature. This research dives into the field of

advanced web privacy protection technologies. The core contributions of this work

include the development of neural network models and the enhancement of feature

extraction methods, specifically tailored to the unique challenges posed by CNAME

cloaking detection. Unlike many other problems that deep learning want to solve,

CNAME cloaking invo1ves subtle and often obfuscated patterns that traditional tracking

detection methods struggle to identify. This makes it a particularly challenging problem

for deep learning, requiring specialized models and carefully designed features to

effectively detect these hidden tracking mechanisms.

The primary objective of this project was achieved by creating and implementing

convolutional neural networks (CNNs) and Long Short-Term Memory (LSTM) net-

works to detect and classify CNAME cloaking-based tracking. These models were

rigorously evaluated using metrics such as precision, recall, and F1 score, and they

demonstrated high accuracy in identifying CNAME cloaking. Among the models,

CNNs proved to be the most effective, outperforming both LSTM and ConvLSTM

networks in detecting the complex patterns associated with CNAME cloaking. Dispite

the fact that the limitation of hardware determines the scale of the datasets, this result

still highlights the importance of choosing the right model architecture for specific tasks

in web tracking detection.

A major challenge encountered during this research was the intended integration

of the developed models into the OpenWPM framework. Although the models were

successfully developed and evaluated, the integration process faced several hurdles,
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including incorrect data pipeline configurations and compatibility issues between dif-

ferent software environments. These challenges prevented the full integration of the

models into OpenWPM as originally planned. Despite extensive efforts to resolve these

issues, the integration could not be completed.

However, the foundation laid by this dissertation offers a solid base for future work.

The integration challenge indicate that further refinement is needed, particularly in data

pipeline configuration and the management of software dependencies. Future research

can build on these findings to overcome the obstacles encountered and successfully

integrate advanced detection models into web privacy measurement frameworks like

OpenWPM.

Another essential aspect of this research is that it focus on feature extraction. By

carefully selecting and extracting features such as URL entropy, subdomain length,

and blacklist indicators, the models were equipped with the necessary data to make

accurate classification. This process of feature extraction was crucial to the success of

the detection models, underscoring the importance of data pre-processing in machine

learning projects.

Moreover, this dissertation contributes to a broader understanding of web privacy

and tracking mechanisms. By characterizing the methods used for CNAME cloaking,

this research provides valuable information that can inform the development of more

effective privacy protection strategies. The finds from this study have significant

implication for researchers, privacy advocates, regulatory bodies, and web users, who

can all benefit from improved tools for detecting and mitigating online tracking.

In conclusion, while this dissertation successfully demonstrated the feasibility and

effectiveness of using deep learning techniques to detect CNAME cloaking-based

tracking, the integration of these models into the OpenWPM framework is still a

challenge for future exploration. The information learned from these challenges provide

valuable guidance for future efforts in enhancing web privacy measurement tools. Work

direction in the future can focus on addressing integration challenges, exploring more

advanced deep learning techniques, and expanding the scope of feature extraction to

further protect user privacy in an increasingly digital world.
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