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Abstract

Vertebral fractures are a significant medical concern due to their impact on mobility,

chronic pain, and overall quality of life, particularly in older populations where osteo-

porosis is prevalent. Despite the critical nature of early detection, a large proportion of

vertebral fractures go undiagnosed due to asymptomatic presentations and the manual

nature of current diagnostic methods, which are time-consuming and prone to human

error. This project, “VertFault: 3D Segmentation from CT Images for Vertebral Fracture

Detection,” addresses these challenges by developing an automated tool for detecting

and grading vertebral fractures using CT scans. The research employs a two-stage

pipeline: a U-Net-based model for vertebra localisation and a multi-task learning

framework for 3D segmentation and fracture classification. While the model shows

robustness in vertebra localisation, fracture detection in a class-imbalanced setting

remains challenging, particularly in accurately identifying higher-grade fractures. This

study highlights the potential of automated tools in improving clinical outcomes, though

further research is necessary to enhance fracture detection accuracy.
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Chapter 1

Introduction

The evolution of spinal imaging, driven by advancements in computed tomography

(CT), has significantly improved the diagnosis and treatment of spinal pathologies,

from degenerative diseases to traumatic injuries [1]. CT scans play a crucial role in

spinal diagnosis due to their ability to provide high-resolution, detailed cross-sectional

images of the spine. These scans offer superior bone contrast, making it possible to

detect subtle fractures and other bony abnormalities with high precision. The detailed

imagery obtained from CT scans enables clinicians to assess the extent of vertebral

fractures, determine the involvement of surrounding structures, and plan appropriate

interventions.

However, the accurate diagnosis of vertebral fractures remains a major challenge,

with two-thirds of such fractures going undetected [2]. This under-diagnosis is often

due to asymptomatic presentations or non-specific symptoms, which can lead to severe

consequences as patients with undiagnosed fractures are at a higher risk of subsequent

fractures, resulting in chronic pain and diminished quality of life [3].

The complexity of spinal anatomy and subtle fracture manifestations on imaging

further complicate diagnosis. Traditional methods rely on radiologists’ expertise to

meticulously analyse scans, a process that is both time-consuming and susceptible to

human error [4].

Recent advancements in computer vision (CV), such as Convolutional Neural

Networks and consequently, U-Net architectures, have shown significant promise in

automating and enhancing medical image analysis, achieving remarkable accuracy in

tasks such as tumor detection [5], organ segmentation [6], and disease classification

[7]. Applying such methods to the field of spinal imaging promises similarly positive

advancements in the detection and diagnosis of vertebral fractures, making the process

1



Chapter 1. Introduction 2

more efficient, accurate, and less reliant on individual clinical expertise and manual

analysis.

This project focuses on refining the tasks of automated localisation and segmentation

of vertebrae to develop a robust tool for the end goal of detection and grading of vertebral

fractures in 3D CT scans. Positioned at the intersection of medical imaging, artificial

intelligence, and clinical orthopaedics, this endeavor holds promise in enhancing clinical

outcomes by providing an effective tool for the early detection and grading of vertebral

fractures, facilitating timely and targeted interventions.



Chapter 2

Background

2.1 Spinal Anatomy and Pathologies

2.1.1 Anatomy of the Spine

To lay the preliminary understanding for our project, we delve into the detailed anatomy

of the spine in order to contextualise the terminology employed in later sections. The

spine consists of 33 stacked vertebra that form the spinal column allowing for body

movement whilst protecting the spinal cord [8]. The S-shape of the spine consists

of three main curvatures: the cervical (neck) and lumbar (low back) regions have a

concave curvature, while the thoracic region has a convex curve. This curved shape

provides structural support and flexibility, allowing for upright posture while effectively

distributing weight and absorbing shock during movement. This curvature also protects

the spinal cord by reducing the risk of direct impact from external forces.

There are 5 distinct regions of the spine: cervical, thoracic, lumbar, sacral and

coccyx [8]. The lowest regions of the sacrum and coccyx are immobile, and as such,

only the upper 24 vertebrae are movable. Figure 2.1 visualises the regions in greater

detail including their alphanumerical naming [9].

The vertebrae themselves are individual bony units that together form the vertebral

column, providing support and protection for the spinal cord. Each vertebra consists

of three main components: the vertebral body, vertebral arch, and processes. The

vertebral body, positioned anteriorly, provides the primary weight-bearing structure.

The vertebral arch, located posteriorly, encloses the spinal cord and forms the vertebral

foramen, the opening that collectively constitute the spinal canal. Extending from the

arch are processes: one that points posteriorly and two on either side which jointly serve

3



Chapter 2. Background 4

as attachment sites for muscles and ligaments [10].

Figure 2.1: (Left) Typical S-shape curvature of the spine. (Right) 5 regions of the spine

with anatomical labels. Adapted from [9].

Figure 2.2: Vertebral structures present throughout the spinal column. Adapted from

[11].

2.1.2 Vertebral Fractures: Causes, Symptoms, and Implications

Vertebral fractures are defined as a break in one of the vertebrae in the spine [12]

and are significant due to their impact on mobility and quality of life. Compression

fractures, common in osteoporosis and osteopenia, involve the collapse of the vertebral

body, often due to weakened bone. Burst fractures result from severe trauma, causing

the vertebra to shatter. Other types include flexion-distraction fractures from sudden
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forward flexion, and fracture-dislocations where bone fragments separate and misalign

the spine.

Osteoporosis is the condition characterised by diminished bone density and struc-

tural deterioration, rendering bones fragile and prone to fractures. As individuals age,

the risk of osteoporosis increases, with postmenopausal women being particularly sus-

ceptible due to the decline in estrogen levels essential for maintaining bone density [13].

Osteopenia, a precursor to osteoporosis, involves lower than normal reference bone

density but not to the extent of osteoporosis. Both conditions significantly elevate the

risk of fractures, particularly vertebral fractures, as the reduced bone density weakens

the structure of vertebrae [14]. These fractures can lead to chronic pain, reduced mo-

bility, and further complications, highlighting the importance of early detection and

intervention in patients with osteopenia and osteoporosis to prevent progression and

mitigate the risk of severe fractures.

In the older population, osteoporotic compression fractures are the most common

type of vertebral fracture [15]. Clinical manifestations of such fractures can often be

subtle, leading to a high rate of undiagnosed cases [2]. Many vertebral fractures are

asymptomatic or occur in the absence of specific trauma. When symptoms do appear,

they typically include a sudden onset of back pain, loss of height, and spinal deformities

like kyphosis [16]. The implications of undiagnosed vertebral fractures are profound,

leading to chronic pain, reduced mobility, and a decreased quality of life. More critically,

undiagnosed fractures significantly increase the risk of subsequent fractures, including

hip fractures, which are associated with high morbidity and mortality [13]. Given such

consequences, the importance of early detection and treatment of vertebral fractures

cannot be overstated.

Notably, vertebral fractures also demonstrate a bimodal distribution, with younger

patients sustaining such fractures due to high-energy traumatic mechanisms (falls from

height, vehicular accidents, etc.) [17]. However, such fractures are associated with

improved rates of diagnosis due to the traumatic nature of the injury [18]. Despite the

higher diagnosis rates in younger individuals due to apparent trauma, there are still

instances of missed diagnoses. Improved diagnostic measures are essential for both

the young and the elderly to prevent the aforementioned consequences of undiagnosed

vertebral fractures.
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2.2 Computed Tomography (CT) Imaging for Spinal Pathol-

ogy

Computed Tomography (CT) is one of the most advanced and widely used imaging

modalities in medical diagnostics. CT scanning involves the use of X-rays combined

with computer technology to produce detailed cross-sectional images of the body. The

X-rays rotate around the patient, and the data collected is computationally reconstructed

into slices, providing a detailed view of the internal structure [19]. This method is

particularly effective in visualising bone structures and detecting fractures due to its

high-resolution 3D images with radiodensity contrast that highlights bony tissues [20].

Within the context of spinal imaging and spinal pathology diagnosis, CT is often

considered the superior imaging modality [20]. This preference stems from CT’s ability

to produce high-resolution images of bone structures in three planes, which is essential

for accurately identifying fractures [21]. CT scans are performed more frequently than

other imaging modalities [22] due to their speed, cost-effectiveness, and superior ability

to visualise bone structures. Pertinently, this higher usage rate results in a large number

of publicly available annotated CT datasets, which are essential for developing and

training automated diagnostic tools [23]. Furthermore, the contrast between bone and

soft tissue provided by CT scans facilitates the development of advanced algorithms for

automated detection, enabling precise analysis of the vertebral anatomy.

2.3 Challenges in Vertebral Fracture Diagnosis

Vertebral fractures are primarily diagnosed using CT scans, which provide detailed

cross-sectional images of the spine. The diagnosis process typically involves semi-

quantitative methods that combine morphometric and manual visual assessment [24].

The preferred semi-quantitative method, proposed by Genant et al. [25], is considered

the gold standard due to its accuracy, reliability, and continuous use in clinical studies

[26]. The scheme categorises fracture severity based on the extent of anterior, posterior

or middle height reduction in vertebrae. The grading system includes three grades: mild

(grade 1), with a 20-25% reduction in anterior, middle, or posterior vertebral height;

moderate (grade 2), with a 25-40% reduction; and severe (grade 3), with more than a

40% reduction in vertebral height. Figure 2.3 illustrates the grading scheme for the case

of anterior height loss, Ha.

Despite the existence of standardised methods of fracture diagnosis and grading,
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Figure 2.3: Semi-Quantitative grading of vertebral fractures illustrating the the reduction

in anterior height. Reduction in the posterior or middle of the vertebra can be assessed

using the same scheme. Taken from [25].

there remain existing challenges to diagnosis of vertebral fractures due to various factors.

Anatomical variations among patients can impact the accuracy of diagnosis, as variations

in vertebral shape and non-fracture related deformities may resemble or obscure true

fractures [27]. Subtle manifestations of fractures, such as minor compression or slight

endplate deformities, are often difficult to detect visually, even with high-resolution

imaging techniques. This subtlety necessitates meticulous manual analysis, which is

both time-consuming [4] and prone to human error due to lack of standardisation in the

radiologic interpretation [28].

Furthermore, vertebral fractures are commonly present on imaging obtained for

other reasons in patients who may not show signs or symptoms suggestive of fracture

[28]. As aforementioned, the high rate of under-diagnosis, often due to asymptomatic

fractures or those occurring without specific trauma, has severe consequences for patient

health, further highlighting the use case and value of automated methods for fracture

detection [29].

2.4 ML/AI in Spinal Imaging

Existing research on automated spine analysis corroborates the importance of accurate

vertebrae localisation, identification, and segmentation in downstream orthopaedic tasks,

such as fracture detection and grading. However, previous work has predominantly

focused on the former two tasks. Schmidt et al. [30] employ a classification tree-based

approach toward localisation and identification, which incorporates appearance and

geometric relationships of spine parts by using local feature vectors from sub-volumes

of the image to predict the probabilities of specific image points being an intervertebral
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disc. Glocker et al. [31] developed a two-stage method for localising and identifying

vertebrae in CT scans. Initially, regression forests predict vertebra centroids using

supervised learning with image point features and displacements. Precision is improved

by incorporating long-range spatial features, which use context from surrounding organs,

enabling accurate center estimation. A Hidden Markov Model (HMM) then refines these

predictions, accounting for the sequential and probabilistic relationships of vertebrae,

correcting misalignments, and aligning with the spine’s overall shape.

Recent advances have shifted towards deep learning, particularly Convolutional

Neural Network (CNN) based methods, for enhanced vertebrae localisation and iden-

tification in CT scans. Liao et al. [32] introduced a multi-task 3D CNN to extract

short-range contextual information from vertebrae samples, paired with a Bidirectional

Recurrent Neural Network (Bi-RNN) [33] to analyse long-range spatial relationships

along the spine. This approach uses a deep multi-task 3D CNN, converted into a fully

convolutional network (FCN) to accommodate various CT image sizes, and a Bi-RNN

to refine spatial data from the FCN, improving anatomical accuracy of the spine model.

For the same task, Cui et al. [34] present a novel framework that improves vertebrae

identification through a module that captures both the upward and downward relation-

ships between vertebrae and a continuous vertebrae label map, as opposed to one that

is discrete. This model not only addresses the global structure of the spine but also

captures intricate local details of each vertebra. The approach employs a localisation

network to create a Gaussian-like 3D heatmap and an offset map, which together refine

vertebra center predictions using a unique voting scheme that incorporates Chamfer

distance supervision to ensure proximity to actual vertebra positions.

Within the frame of medical image segmentation, the U-Net architecture has proved

to be a pivotal advancement. The U-Net is characterised by its symmetric, U-shaped

structure, designed to capture both local and contextual information efficiently, which

is essential for tasks like vertebrae localisation and segmentation [35] [36]. Payer et

al. [37] propose a U-Net based, multi-stage method for vertebrae localisation and seg-

mentation in CT images, utilising a progressive approach to enhance precision. Initially,

a coarse localisation of the spine is achieved through a U-Net architecture. This is

followed by a detailed localisation and identification of individual vertebrae using a

fully-connected CNN that merges local landmark appearances with their spatial configu-

rations to facilitate heatmap regression for accurate localisation. Finally, another U-Net

performs binary segmentation of each identified vertebrae in a high resolution, before

merging the individual predictions into the resulting multi-label vertebrae segmentation.
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With regard to the task of automated vertebral fracture detection in CT scans,

relatively few works have addressed the problem comprehensively. However, with the

aforementioned advancements in computer vision and increased concern regarding the

consequences of undiagnosed fractures, there has been a growing focus on developing

more robust and precise methods for fracture detection and grading. Zhang et al.

[38] propose a multistage ensemble framework, starting with a U-Net and Graph

Convolutional Network (U-GCN) [39] for locating and identifying vertebrae in the

thoracic and lumbar sections of the spine, followed by a classification network to detect

vertebral fractures in regions-of-interest cropped around the localised vertebrae. Nadeem

et al. [40] developed a chest CT-based automated method for fracture assessment. Their

approach begins with the computation of a voxel-level vertebral body likelihood map

from chest CT scans using a trained deep learning network. To address the challenge

of fused vertebrae in CT images, intensity autocorrelation is employed for separation.

Vertebral heights are then computed using contour analysis on the central anterior-

posterior plane of each vertebral body. Finally, vertebral fracture status is assessed

using ratio functions of vertebral heights.

Despite these advancements, existing methods have several limitations. They often

treat vertebral localisation, segmentation, and fracture detection/grading as separate

tasks, which can lead to inefficiencies and suboptimal performance due to the lack

of shared information between tasks. Additionally, these methods may struggle with

accurately capturing the detailed morphology of vertebrae and the subtle variations

associated with fractures.

Performing segmentation and fracture grade classification in a multi-task manner

can address these limitations effectively. A multi-task learning framework enables

the model to leverage shared representations between tasks, enhancing the overall

performance. For instance, the features learned during the segmentation process, such

as detailed vertebral morphology, can be directly applicable to the identification and

classification of fracture grades. This shared learning approach improves the efficiency

and accuracy of the model by providing a richer context for each task.

Multi-task learning has been proven to be successful in medical image analysis [41]

[42], as it can improve learning efficiency and performance by leveraging the inductive

bias when jointly solving related tasks [43]. By integrating vertebral segmentation and

fracture classification into a unified framework, we allow the model to benefit from the

detailed anatomical features captured during segmentation, leading to more accurate

fracture detection and grade classification. This holistic approach has potential to over-
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come the limitations of previous methods and deliver more precise and comprehensive

diagnostic tools for vertebral fractures in CT scans.

Instead of requiring separate models for vertebrae segmentation and fracture classi-

fication, a multi-task model can share common features and representations, making the

process more data efficient and multi-task learning has been shown to provide faster

learning speed for related tasks, helping to alleviate the weaknesses of deep learning

models: large-scale data requirements and computational demand [44]. This integration

can also facilitate better generalisation to diverse datasets [45], as the model learns to

handle variations in vertebral anatomy and fracture presentations cohesively.

2.5 Project Objectives and Contributions

The primary objective of this project is to develop a two-stage pipeline with an inte-

grated multi-task learning framework in the latter stage that combines 3D vertebrae

segmentation and fracture grade classification within a single model. This involves sev-

eral specific tasks aimed at improving the current state of automated vertebral fracture

detection. The first stage seeks to achieve accurate localisation of vertebrae in CT scans.

This initial step is crucial because the vertebrae centers must be precisely located before

they can be segmented and assessed for fractures. We emphasise that without accurate

localisation, the subsequent segmentation and classification tasks would be unreliable

and prone to significant errors. Following individual vertebrae localisation, precise 3D

segmentation of individual vertebrae will be performed to provide detailed anatomi-

cal delineations, which are essential for accurate fracture detection. We concurrently

perform classification of vertebral fracture grades by leveraging shared representations

between segmentation and classification tasks in a multi-task manner. This integrated

approach is designed to create an efficient workflow that reduces computational costs,

improves data efficiency, and enhances the diagnostic accuracy of vertebral fractures.

Ultimately, this project seeks to improve clinical decision-making and patient care by

providing a robust and precise diagnostic tool for both targeted and incidental detection

of vertebral fractures.
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Methods

3.1 Overview

This project employs a two-stage pipeline for automated vertebral fracture detection

and grading in 3D CT scans. The primary objective is to develop a robust and efficient

system that leverages multi-task learning to enhance diagnostic accuracy.

In the first stage, our pipeline focuses on the precise localisation of individual

vertebrae within CT images and we frame this task as a landmark detection problem.

We employ a U-Net-based network architecture to generate heatmaps and offset maps.

The heatmaps provide a probabilistic representation of vertebrae locations, while the

offset maps indicate the displacement vectors from each voxel to the nearest vertebra

center. This combination allows for the accurate identification of vertebrae centers

within the CT scans. The localisation network includes multiple convolutional blocks,

max pooling layers, and transposed convolutional layers to progressively capture and

refine spatial features. The accurate localisation of vertebrae centers is crucial as it

isolates the regions of interest for subsequent analysis.

In the second stage, the pipeline processes these identified vertebrae centers for

detailed analysis. For each identified vertebra center, a cropped patch is extracted from

the original CT image, ensuring the target vertebra is fully enclosed. These patches

are then fed into a multi-task network designed to perform both 3D segmentation and

fracture classification simultaneously. The multi-task network uses a shared encoder-

decoder U-Net architecture similar to the localisation network but with two output

branches, one for segmentation and another for classification.

11
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3.2 Vertebrae Localisation

The initial stage of our pipeline involves accurately localising the individual vertebrae

within arbitrary field-of-view (FOV) CT images, where the number of vertebrae present

in each image may vary. To do so, we frame it as a landmark detection task, where

the landmarks themselves are the vertebrae centers. The intuitive solution would be

to directly regress the vertebrae center coordinates given any arbitrary FOV CT image

[46] [47]. However, while computationally efficient, this method has been shown to

be inaccurate or to miss landmarks altogether [48]. Subsequently, as previous work

has performed, we could perform heatmap regression by fitting a 3D Gaussian kernel

at each vertebra center, generating a heatmap where the intensity values represent the

proximity to these centers. Regression is then performed on the heatmap values [49]

[50]. However, pure heatmap regression is prone to failure in CT scans with a large

number of vertebrae, as these vertebrae are more tightly packed compared to scans with

fewer vertebrae [34]. Given the severe consequences of undiagnosed vertebral fractures

and, by extension, the critical importance of precise vertebrae localisation, regardless of

the number of vertebrae present, we seek a more robust method for accurately localising

vertebrae centers. Figure 3.1 provides an overview of our localisation network, which is

discussed in detail below.

3.2.1 Localisation Network Model Architecture

Our vertebrae localisation network largely follows the implementation by Cui et al. [34]

and is based on a standard U-Net architecture [36]. Structured in an encoder-decoder

format, the model features multiple layers of convolutional blocks, max pooling, and

transposed convolutional layers. Each convolutional block consists of two 3D convo-

lutional layers, followed by instance normalisation [51] and a LeakyReLU activation

function [52]. Note: all components and methods were implemented from scratch.

The encoder path consists of five convolutional blocks, each followed by a 3D max

pooling layer, which progressively reduces the spatial dimensions while increasing the

number of feature channels. The decoder path reverses this process by using transposed

convolutional layers [53] to progressively upsample the feature maps, thereby restoring

the original spatial dimensions of the input. Each upsampling step is followed by a

concatenation with the corresponding encoder feature maps, which is then processed

through additional convolutional blocks. This skip-connection ensures that the decoder

has access to high-resolution features from the encoder, enhancing the network’s ability



Chapter 3. Methods 13

Figure 3.1: Localisation network to predict vertebrae centers given an input CT image

to reconstruct detailed spatial information [36].

The localisation network features two output branches and takes as input a 3D CT

image. It predicts a one-channel Gaussian 3D heatmap (H) and a three-channel offset

map (O), where the spatial dimensions of both are the same as the input CT image. The

heatmaps are derived from the ground-truth vertebrae center coordinates by fitting a 3D

Gaussian with a standard deviation of d = 3 voxel-size, providing a probabilistic map

of vertebrae locations. In order to output valid probabilities bounded between 0 and 1,

the output layer of the heatmap branch uses a sigmoid activation.

To generate the offset map from the ground-truth center coordinates, a meshgrid

for the coordinates is created over the entire 3D volume. For each vertebra center,

the Euclidean distance from the center to all voxels is computed, and the offset map

is updated with the relative offset vectors for voxels where this center is the nearest

resulting in a three-channel map which indicates the 3D offset (displacement) vectors

of each voxel pointing to its nearest vertebra center.
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3.2.2 Weighted Vote Map Generation and Vertebrae Center Locali-

sation

To perform localisation, we obtain all foreground voxels, V , from the predicted heatmaps,

Ĥ, by thresholding voxels above the value of 0.8 (Ĥ > Ht = 0.8). For each foreground

voxel vi 2V , we take its corresponding 3D offset vector from the predicted offset map,

Ô as the vote from vi to its nearest vertebra center and take the heatmap value of vi as

the weight of that vote. For instance, a foreground voxel at position [0,0,1] in Ĥ with a

value of 0.8 and a corresponding offset vector of [0,1,1] would contribute to the voxel

at position [0,1,2], calculated as [0,0,1]+ [0,1,1], with a weight of 0.8. The weighted

votes are subsequently accumulated in a weighted vote map, M̂, that takes the same

spatial dimension as Ĥ, as outlined in Algorithm 1 below.

Algorithm 1 Weighted Vote Map Generation

Input: Predicted heatmap Ĥ, Predicted offset map Ô, Heatmap threshold Ht .

Output: Weighted vote map M̂.

V  {vi | Ĥ(vi)> Ht} . Find foreground voxels

if V is empty then
Continue to next image . No valid votes, skip image

end if
M 0 . Initialise vote map to zero

for each voxel vi 2V do
(x,y,z) coordinates of vi

h Ĥ(x,y,z) . Vote value from predicted heatmap

(Dx,Dy,Dz) Ô(x,y,z) . Extract predicted offsets

(vx,vy,vz) (x+Dx,y+Dy,z+Dz) . Compute vote locations

if 0 vx < dimx(M)and0 vy < dimy(M)and0 vz < dimz(M) then
M̂(vx,vy,vz) M̂(vx,vy,vz)+h . Accumulate vote value

end if
end for
Return: M

As a post-processing step, we perform clustering to localise the density peaks

in the weighted vote map, M̂, which correspond to the coordinates of the vertebrae

centers. To that end, we implement a variant of the fast-search clustering algorithm

introduced by Rodriguez et al. [54]. Specifically, the algorithm identifies density
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peaks in M̂ by iterating through each voxel and comparing it to an empirically chosen

neighborhood of 3⇥ 3⇥ 3 voxels. For each voxel (x,y,z) 2 M̂, if the voxel’s value

is greater than a value threshold, h = 0.1, and is also the maximum value within its

neighborhood, it is considered a peak. Additionally, the algorithm checks the distance

to higher density voxels in M̂ to ensure significant separation, confirming a peak only if

this distance exceeds a distance threshold, l. This ensures that the identified centers

are well-separated and represent significant density maxima. We refer the reader to

Algorithm 2 in Appendix A.1 for the full pseudocode implementation for the fast-search

clustering algorithm.

3.2.3 Model Training

3.2.3.1 Loss Functions

To train the localisation network, we utilise several loss terms. For the one-channel

heatmap regression that outputs Ĥ, pixel-wise L1 or L2 Loss would be natural choices

[55] [56] [57]. However, these loss functions have been shown to have performance

limitations: they are not sensitive to small errors, which hinders the robust localisation

of the Gaussian kernel’s mode. Furthermore, they treat all voxels equally, causing

background voxels (which tend to be in the large majority) to dominate the Loss.

Consequently, models trained with pixel-wise L1 or L2 Loss tend to predict blurry

heatmaps with low intensity on foreground voxels relative to the ground truth, leading

to inaccurate landmark localisation [58].

In the work of Cui et al. [34], Smooth-L1 Loss was employed for training the

heatmaps. However, we observed that this approach led to unstable training where

background voxels were disproportionately influencing the loss, resulting in all voxel

values being driven towards zero. Consequently, no voxels would exceed the threshold

Ht and as such, the offset map was unable to train. To address this limitation, we

adopted the Adaptive Wing Loss function as proposed by Wang et al. [58] for heatmap

regression. This loss function is designed to adapt its curvature based on the values

of the ground truth voxels. As training progresses, the influence on foreground voxels

increases as the errors decrease, focusing more on reducing these errors. Conversely,

this influence rapidly decreases as errors approach zero, thus preventing overfitting. For

background voxels, the influence of the loss function gradually tends to zero as errors

decrease, reducing the focus on these voxels and stabilising the training process.
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LAdaptiveWingLoss =

8
><

>:

w ln
✓

1+
��� y�ŷ

e

���
a�y
◆

if |y� ŷ|< q

A|y� ŷ|�C otherwise
where y and ŷ are the ground truth and predicted heatmap voxel values, respectively.

w,q,e and a are positive values, A=w(1/(1+(q/e)a�y))
⇣
(a� y)(q/e)(a�y�1)

⌘
(1/e)

and C = (qA�w ln(1+(q/e)a�y)) are used to make the loss function continuous and

smooth at |y� ŷ|= q. Through experimentation, we find that setting w = 10, q = 0.5,

e = 3, a = 2.1 resulted in the most stable training of the heatmaps.

For the three-channel offset map, Ô, we supervise its training using the Smooth-L1

Loss. However, we recall that Ĥ and Ô are trained simultaneously, but the voxels in Ĥ

only take values in the range [0,1], while the voxels in Ô can theoretically take values in

the range [�Dx,Dx], [�Dy,Dy], and [�Dz,Dz] for the x-, y-, and z-offsets, respectively,

where Dx, Dy, and Dz are the dimensions of the input CT image minus one. As such, to

ensure that the loss from background voxels Ô does not dominate and negatively impair

model gradients, we mask the Smooth-L1 Loss computation of Ô to include only the

foreground voxels identified in Ĥ. This results in the following formulation for our

masked Smooth-L1 Loss:

M = 1{Ĥ > Ht}

LSmoothL1 =
1
N Â

i2{x,y,z}
Â
j,k,l

M jkl ·SmoothL1(Ôi jkl�Oi jkl)

SmoothL1(d) =

8
<

:

0.5d2

b if |d|< b

|d|�0.5b otherwise

M is an indicator function that equals 1 if Ĥ is greater than the threshold Ht , and 0

otherwise. d is the difference Ôi jkl�Oi jkl and b is a positive value. This criterion uses

a squared term if the absolute element-wise error |d| falls below b, and an L1 term

|d|�0.5b otherwise. We use the default value of b = 1.

To further robustly regress the vertebrae centers, we derive a candidate vertebrae

center set, Ĉ, which is attained by thresholding the generated weighted vote map, M, to

extract its foreground voxels:

Ĉ = {(x,y,z) | M(x,y,z)>Vt},
where Vt is the vote threshold parameter. From our experiments, the choice of Vt = 0.6

resulted in the most stable training, as it produced a balanced number of selected
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candidate centers and resulted in the most accurate localisation on a held-out validation

set. Subsequently, we compute the Chamfer Distance between all candidate centers

in Ĉ and the ground-truth center coordinates, C, in order to minimise the bidirectional

distance between points in the two:

LCD = Â
ĉi2Ĉ

min
ck2C
kĉi� ckk2

2 + Â
ck2C

min
ĉi2Ĉ
kck� ĉik2

2 .

As such, the total training loss, LLocalisation, is formulated as:

LLocalisation = LAdaptiveWingLoss +fLSmoothL1 + gLCD.

f and g are balancing weights for the loss such that no one loss dominates training

and are empirically set to a = 0.01 and b = 0.01.

3.2.3.2 Dataset

Throughout the development and evaluation of the project pipeline, we utilise the

original, publicly available VerSe2019 dataset1. Developed for the vertebral labeling

and segmentation challenge at the MICCAI 2019 conference, this dataset comprises

141 patients with 160 3D CT images, with some patients having multiple scans [59].

Furthermore, the dataset is pre-divided into training (n=80), validation (n=40), and test

(n=40) sets.

The data, acquired from multiple CT scanners across various sites, includes a range

of fields of view (cervical, thoraco-lumbar, and cervico-thoraco-lumbar scans) [59].

Consequently, the number of visible vertebrae varies across scans and furthermore,

the images may differ in orientation and spacing. The VerSe2019 dataset additionally

includes radiologist-refined 3D segmentation masks, aligned in orientation and spacing

with their corresponding images. It also provides ground-truth vertebrae center coordi-

nates in an accompanying JSON file. Notably, the dataset provides ground-truth fracture

grades derived from the Genant semi-quantitative method for all thoracic and lumbar

vertebrae in each CT image, but not for the cervical vertebrae. Therefore, while our

localisation network addresses all three spinal regions, the fracture detection stage and

its associated results and discussion focus exclusively on thoracic and lumbar vertebrae.
1The choice of VerSe2019 over VerSe2020 is due to the availability of ground-truth fracture data for

VerSe2019.



Chapter 3. Methods 18

3.2.3.3 Localisation Network Implementation Details

As a preprocessing step, we resample all images to 1mm⇥1mm⇥1mm, using trilinear

interpolation, to ensure consistent voxel dimensions across all spatial axes. As input

to the localisation network, all CT images are randomly cropped to 128⇥128⇥128.

While larger crop sizes were considered, this choice was limited by computational

constraints. As a result of the large variance with regard to the size of the images in our

dataset (min = 103⇥157⇥76 vs max = 915⇥1189⇥709), the chosen crop size does

not necessarily guarantee a CT crop with a valid vertebra center in it (full statistics on

dataset size are in Appendix A.2). As such, to ensure at least one valid vertebra center

is enclosed, all images that exceed 256⇥256⇥256 are first downsampled to that size

prior to random cropping. While there is no definitive consensus on the most optimal

interpolation technique for image downsampling [60], trilinear interpolation has been

selected for our purposes due to its computational efficiency and demonstrated efficacy

in minimising interpolation error with medical images [61]. Conversely, for images

smaller than the crop size of 128⇥128⇥128, we perform zero padding of the image.

Finally, for model training, we employ He initialisation [62] for the model weights

and utilise the Adam [63] optimiser with a learning rate of 0.05, training the network for

1000 epochs. Early stopping is not implemented in this process because the heatmaps

take time to train. With Adaptive Wing Loss, all voxel values initially decrease towards

zero before any foreground voxel values start to rise above the heatmap threshold Ht .

Until the point where any voxels exceed this threshold, the offset and Chamfer Distance

losses are set to zero. Stopping the training early would prevent the model from utilising

these loss functions once the threshold is surpassed. As such, we implement regular

saving of the model and monitor the loss curves. At inference time, we use the model

saved at the epoch where training loss plateaus, which was at epoch 600.

3.3 Vertebrae Fracture Detection

Following the localisation of vertebrae centers, we proceed to detect vertebral fractures

and their grades. To prepare a suitable training dataset for fracture detection, we first

extract 96⇥ 96⇥ 96 crops centered on the ground-truth vertebra centers from each

CT image in the VerSe2019 training set, which has been isometrically resampled to

1mm⇥1mm⇥1mm using trilinear interpolation. For the specific vertebra of interest,

we extract its segmentation mask from the original CT segmentation file, which has also
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been resampled to isotropic spacing using nearest neighbour interpolation. This results

in a new dataset of individual vertebrae crops and their accompanying segmentation

mask, each labeled with its ground-truth fracture grade, which is subsequently used to

train the fracture detection network.

3.3.1 Fracture Detection Network Model Architecture

As elucidated earlier, we aim to perform segmentation and fracture classification to-

gether in a multi-task manner and, in doing so, compare and evaluate the performance

benefits of using shared representations for fracture grade classification. To this end, we

implement two separate fracture detection networks: FracNet, which solely performs

fracture grade classification given the aforementioned cropped CT patch (ŷ = f (x)),

where ŷ represents the predicted fracture grade and x represents the input CT patch), and

FracSegNet, which performs simultaneous 3D segmentation of the target vertebra and

fracture grade classification. During training, FracSegNet receives both the cropped CT

patch and the corresponding vertebra ground-truth segmentation mask ({x,S}), where S

is the ground-truth segmentation mask, and the model is trained to predict the fracture

grade and segmentation mask ({ŷ, Ŝ}= f (x,S)). During inference, FracSegNet only

receives the cropped CT patch as input ({ŷ, Ŝ}= f (x)), and the model outputs both the

predicted fracture grade ŷ and the predicted segmentation mask Ŝ.

The backbone of both networks is architecturally identical to that of the localisation

network but differs in terms of the output branches. Following the final decoder layer,

FracNet employs an adaptive global average pooling layer [64], which reduces the

spatial dimensions to a single vector per feature map. This is followed by a fully

connected (FC) layer with 256 neurons, after which a dropout layer is applied to

mitigate overfitting. The next FC layer has 128 neurons, followed by another dropout

layer. Subsequently, an FC layer with 64 neurons is applied, followed by a final fully

connected layer with 4 neurons corresponding to the number of fracture grades {0, 1, 2,

3}. Barring the final FC layer, all others are followed by a ReLU activation function.

Finally, a softmax activation function is used on the output of the final FC layer to

output a valid probability distribution across grades.

In contrast, FracSegNet retains the classification branch described above and adds a

binary segmentation branch that applies a 1⇥1⇥1 convolutional layer to the output of

the final decoder layer, generating a feature map that matches the spatial dimensions

of the input. This is followed by a sigmoid activation function to produce the final 3D
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Figure 3.2: Visual schematic of the architectures for FracNet and FracSegNet. Both

models share an identical UNet backbone for feature extraction. FracNet employs a clas-

sification branch with global average pooling and fully connected layers for fracture grade

classification. FracSegNet extends this architecture by adding a parallel segmentation

branch, which applies a 1x1x1 convolution followed by a sigmoid activation to generate

a 3D segmentation mask of the vertebra.

segmentation mask. Figure 3.2 provides a visual overview of both the FracNet and

FracSegNet architecture.

3.3.2 Model Training

3.3.2.1 Loss Functions

We supervise the training of FracNet using Focal Loss as introduced by Lin et al. [65]

for the task of dense object detection. We recall that the VerSe2019 dataset presents a

significant class imbalance concerning fracture grades, with the new fracture detection

training set comprising 591 Grade 0, 63 Grade 1, 50 Grade 2, and 22 Grade 3 crops.

Addressing this imbalance is required to prevent the model from being biased toward

predicting Grade 0. In doing so, Focal Loss introduces a scaling factor, g, to the standard

Cross-Entropy Loss that down-weights the contribution of easy-to-classify examples,

allowing the model to focus more on hard, misclassified cases. Such an adjustment aids

in improving the model’s performance on minority classes by emphasising learning

from difficult examples, which are underrepresented in imbalanced datasets like ours.

Similar to the implementation by Lin et al., we further address the class imbalance in
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the dataset by computing the weighting factor ac for each class c based on the inverse of

the class frequencies ([591, 63, 50, 22]). Specifically, ac is calculated as the normalised

inverse of the number of samples in each class, ensuring that classes with fewer samples

are given higher importance during training.

The Focal Loss is thus defined as:

LFocal =�
N

Â
i=1

C

Â
c=1

ac(1� ŷic)
gyic log(ŷic) (3.1)

where ac is a weighting factor for class c computed from the inverse of class counts

to handle class imbalance, g is the scaling parameter that adjusts the rate at which

examples with more confident predictions (higher ŷic) are down-weighted, C = 4 is the

number of classes, yic is a binary indicator that is 1 if the i-th sample belongs to class

c and 0 otherwise, and ŷic is the predicted probability for the i-th sample belonging to

class c. We follow the implementation in Lin et al. by setting g = 2.

The classification branch of FracSegNet is supervised with the same formulation

of Focal Loss as above. For the segmentation branch, we use the Dice Loss which is

a widely used measure of overlap between predicted and ground truth segmentations

[66]. Note: Dice Loss is equivalent to 1�Dice Score. The binary variant of Dice Loss

is shown below:

LDiceLoss = 1� ÂN
n=1 pnrn + e

ÂN
n=1 pn + rn + e

� ÂN
n=1 (1� pn)(1� rn)+ e
ÂN

n=1 2� pn� rn + e| {z }
Dice Score

,

where the e term is to avoid division by 0. Finally, our total training loss for

FracSegNet, LFracSegNet is formulated as:

LFracSegNet = LFocal +LDiceLoss,

where LFocal and LDiceLoss are equally weighted.

3.3.2.2 Fracture Detection Network Implementation Details

In terms of model training, we use He initialisation for both FracNet and FracSegNet

and train both models with the Adam optimiser and a learning rate of 0.0005 for 1000

epochs with an early stopping patience of 50 epochs. We adjust the learning rate

dynamically as well, reducing the learning rate by a factor of 10 every 80 steps.
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Experiments

4.1 Vertebrae Localisation

To quantitatively evaluate our localisation network on the test set, we begin by randomly

cropping a 128⇥ 128⇥ 128 patch from each testing image, similar to the training

process. From these patches, we generate the predicted heatmaps, Ĥ, and offset maps,

Ô, which are used to compute the weighted vote map, M, as detailed in Algorithm 1.

We then apply fast-search clustering (described in Algorithm 2) on M to localise the

predicted centers. The localisation error is then measured as the L2 norm (Euclidean

distance) between each predicted vertebra center and its nearest ground-truth center.

Furthermore, the mean localisation error between predicted and ground-truth centers

are calculated for each vertebra region—cervical, thoracic, and lumbar—allowing

for region-specific analysis. For comparison, we highlight the performances of 2

localisation methods: the full localisation network as described, LocNet-F, and a

heatmap only localisation network, LocNet-H, where fast-search clustering is performed

directly on Ĥ. As mentioned in 3.2.2, for the fast-search clustering in LocNet-F, we set

h = 0.1 and Ht = 0.7 as it resulted in the most accurate localisation of vertebrae centers

on the validation set. For the same reason, we set h = 0.7 for LocNet-H. For both, we

set l = 5.0 .

22
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Figure 4.1: Example of localisation results for a single input CT for LocNet-H (left) and

LocNet-F (right). Blue denotes the predicted centers while red is ground-truth.

Method Localisation Error (mm) #
Cervical Thoracic Lumbar Overall

LocNet-H 1.19 ±0.5 3.61 ±8.2 6.06 ±14.6 4.27 ±10.9

LocNet-F 2.58 ±2.1 3.78 ±6.2 3.09 ±5.4 3.39 ±5.6

Table 4.1: Quantitative vertebrae localisation results for the full localisation network,

LocNet-F, and the heatmap only network, LocNet-H.

4.2 Vertebrae Fracture Detection

To assess the performance of our vertebrae fracture detection network, it would have

been ideal to take vertebrae crops based on the predicted vertebrae centers provided

by LocNet-F for a given input CT image, as its predictions have demonstrated robust

localisation accuracy. However, to ensure a precise and consistent evaluation, we

utilise the ground truth vertebrae centers. This approach allows us to eliminate any

potential biases introduced by prediction errors from LocNet-F, thereby providing a

more accurate measure of the fracture detection network’s capabilities on its own. Thus,

to create a standardised test set to evaluate FracNet and FracSegNet, we follow the
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same procedure as for the training set and take 96⇥96⇥96 sized crops of every vertebra

present across all CT images in the Verse2019 test set. It is important to note that the

test set for FracNet is larger than that for FracSegNet, as there are fewer available

segmentation masks than vertebra centroids. This discrepancy arises because some

vertebrae, particularly those at the peripheries of certain CT images lack corresponding

segmentation masks.

4.2.1 Classification Metrics

In evaluating the performance of the models for fracture grade prediction, the following

classification metrics were employed: precision, recall, and F1-score. These metrics

were chosen to provide a comprehensive assessment of each model’s capability, par-

ticularly in the context of the inherent class imbalance present in our task of grading

vertebral fractures, where grade 2 and grade 3 fractures occur far less frequently. Accu-
racy was deliberately omitted from our evaluation due to its potential to be misleading

in such imbalanced scenarios, where it may disproportionately reflect performance on

the majority class. Furthermore, we report precision, recall, and F1-score individually

for each grade, to ensure that the performance on underrepresented, and more clinically

important, fracture grades is properly accounted for despite the imbalance in the dataset.

Precision is critical for evaluating the accuracy of the model’s positive predictions

for each fracture grade. It is defined as the ratio of true positives to the sum of true

positives and false positives, reflecting the proportion of correct positive predictions

among all cases predicted as positive for a specific grade. In a clinical setting, where the

consequences of misclassification can be significant, the precision of such a diagnostic

tool for classification is crucial.

Precision =
TP

TP+FP
Recall, also known as sensitivity, measures the model’s ability to identify all true

instances of a particular fracture grade. It is the ratio of true positives to the sum of

true positives and false negatives. Recall is crucial in the context of fracture detection,

as it ensures that the model is capable of identifying all true cases of a given fracture

grade, thereby reducing the risk of missing a severe fracture. As aforementioned, the

implications of missed fracture diagnoses are stark, which informed the selection of

recall as a metric in evaluating model performance.

Recall =
TP

TP+FN
F1-score represents the harmonic mean of precision and recall, providing a single
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measure that balances the these two metrics. It is particularly useful when evaluating

models on imbalanced datasets [67], as it evaluates the models performance not only on

the majority class but also on minority classes, which are of greater clinical relevance.

F1-score = 2⇥ Precision⇥Recall
Precision+Recall

4.2.2 Segmentation Metrics

To evaluate the performance of the models for vertebrae segmentation by FracSegNet,

we employ the following segmentation metrics: accuracy, precision, recall, Dice
coefficient, and average Hausdorff distance.

Accuracy measures the overall correctness of the segmentation by calculating the

proportion of correctly predicted pixels (both true positives and true negatives) out of

the total number of pixels. However, in the context of imbalanced datasets—where

background pixels vastly outnumber foreground pixels, comparative to other images in

the dataset—accuracy can be misleading, as it disproportionately reflects performance

on the majority class (background). Therefore, while included for completeness, accu-

racy must be considered alongside the following metrics that better reflect FracSegNet’s

performance on the foreground class.

Precision in segmentation evaluates the accuracy of the positive (foreground) predic-

tions by calculating the ratio of true positive voxels to the sum of true positive and false

positive voxels. This metric determines the proportion of correctly identified vertebrae

regions among all regions predicted as vertebrae, which is particularly important in

avoiding over-segmentation.

Recall (also known as sensitivity) measures the model’s ability to capture all true

positive voxels, defined as the ratio of true positive voxels to the sum of true positive

and false negative voxels. High recall indicates that the model successfully identifies

most of the vertebral regions, which is essential in a clinical setting to avoid missing any

regions of the vertebrae. The formulation for accuracy, recall and precision are identical

to that of the classification task, but apply voxel-wise in the segmentation context.

Used earlier in the Dice Loss, Dice Score is a widely used metric in medical

image segmentation that evaluates the overlap between the predicted and ground truth

segmentation masks. We refer the reader to the aforementioned formulation of Dice

Loss in Section 3.3.2.1 for the formulation of Dice Score.

Average Hausdorff Distance is a metric that quantifies the spatial distance between

the predicted and ground truth segmentation boundaries. It is defined as the average
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of the minimum distances between each point in one set and the nearest point in the

other set, calculated in both directions (from predicted to ground truth and vice versa).

Formally, for two finite point sets X and Y , the average Hausdorff distance is given by

[68]:

dAHD(X ,Y ) =

 
1
|X | Â

x2X
min
y2Y

d(x,y)+
1
|Y | Â

y2Y
min
x2X

d(x,y)

!
/2

Where:

• |X | and |Y | are the number of points in sets X and Y , respectively.

• d(x,y) represents the Euclidean distance between points x and y.

• The summations calculate the average minimum distance from each point in X to

the closest point in Y , and vice versa.

4.2.3 Results

In our experiments, we observed suboptimal training performance for the classification

task in both FracNet and FracSegNet, as illustrated by the training curves in Figure

4.2. Despite the implementation of Focal Loss, FracNet exhibited a steady decline

in training loss; however, the validation loss remained stagnant from the very onset

of training, indicating a potential failure to generalise. In the case of FracSegNet,

neither the training nor validation losses showed significant improvement throughout

the training process, despite the segmentation task seeing stable training. Additionally,

it was observed that at the onset of training, the scales of the Focal Loss for classification

and the Dice Loss for segmentation varied considerably. As a result, weighting schemes

were attempted to balance these losses, but these efforts did not yield any improvement.

To that end, we experiment with weighted and unweighted Cross-Entropy Loss as

the loss function for classification:

LCE(p,y) =�
4

Â
c=1

yc log(pc)

LWCE(p,y) =�
4

Â
c=1

wc · yc log(pc)

where:

• p = [p1, p2, p3, p4] represents the predicted probability distribution over the 4

classes for a given input crop.
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Figure 4.2: Training and validation loss curves for FracSegNet (left) and FracNet (right)

with Focal Loss for classification.

• y = [y1,y2,y3,y4] is the one-hot encoded true class label, where yc = 1 if the class

label is c, and yc = 0 otherwise.

• wc =
1/nc

Â4
c0=1(1/nc0)

is the weight assigned to class c, calculated as the normalised

inverse of the class count nc, where nc is the number of samples in class c.

In our experiments, some degree of stable training was observed for FracSegNet

using unweighted Cross-Entropy Loss, while FracNet exhibited a failure to generalise

with both weighted and unweighted Cross-Entropy Loss, similar to its training dynamics

with Focal Loss. As such we include the results for FracSegNet with unweighted Cross-

Entropy Loss alongside both FracNet and FracSegNet that were trained with Focal

Loss in Table 4.3 which shows the confusion matrix of ground-truth fracture grades

versus predicted fracture grades for all 3 networks. Accordingly, we highlight the

precision, recall and F1-score for the predictions of each grade for all 3 networks in

Table 4.4.

Accuracy Precision Recall Dice Score Avg. Hausdorff Distance

Grade 0 0.98 0.73 0.76 0.73 16.7

Grade 1 0.98 0.73 0.76 0.73 15.0

Grade 2 0.97 0.73 0.67 0.68 17.61

Fr
ac

Se
gN

et

(F
oc

al
Lo

ss
)

Grade 3 0.97 0.66 0.71 0.67 16.9

Grade 0 0.99 0.92 0.89 0.90 12.53

Grade 1 0.99 0.91 0.91 0.91 11.46

Grade 2 0.99 0.89 0.93 0.91 12.99

Fr
ac

Se
gN

et

(U
nw

ei
gh

te
d

C
E)

Grade 3 0.98 0.84 0.90 0.87 13.41

Table 4.2: Comparison of segmentation performance for FracSegNet (Focal Loss) and

FracSegNet (Unweighted CE) across different fracture grades.
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Predicted Grade

Grade 0 Grade 1 Grade 2 Grade 3 Support

Grade 0 292 0 0 0 292

Grade 1 38 0 0 0 38

Grade 2 22 0 0 0 22Fr
ac

N
et

(F
oc

al
Lo

ss
)

Grade 3 12 0 0 0 12

Grade 0 257 0 0 0 257

Grade 1 36 0 0 0 36

Grade 2 22 0 0 0 22

Fr
ac

Se
gN

et

(F
oc

al
Lo

ss
)

Grade 3 12 0 0 0 12

Grade 0 235 20 2 0 257

Grade 1 31 3 2 0 36

Grade 2 8 6 7 1 22

Fr
ac

Se
gN

et

(U
nw

ei
gh

te
d

C
E)

G
T

G
ra

de

Grade 3 3 2 7 0 12

Table 4.3: Confusion matrix comparing the predicted fracture grades against the ground

truth (GT) grades for both FracNet (Focal Loss) and both FracSegNet networks. The

table shows the number of vertebrae that were predicted as each grade (columns) for

each ground truth grade (rows).

Precision Recall F1-score

Grade 0 0.80 1.00 0.89

Grade 1 - 0.00 0.00

Grade 2 - 0.00 0.00Fr
ac

N
et

(F
oc

al
Lo

ss
)

Grade 3 - 0.00 0.00

Grade 0 0.79 1.00 0.88

Grade 1 - 0.00 0.00

Grade 2 - 0.00 0.00Fr
ac

Se
gN

et
(F

oc
al

Lo
ss

)

Grade 3 - 0.00 0.00

Grade 0 0.85 0.91 0.88

Grade 1 0.10 0.08 0.09

Grade 2 0.39 0.32 0.35Fr
ac

Se
gN

et
(U

nw
ei

gh
te

d
C

E)

Grade 3 0.00 0.00 0.00

Table 4.4: Comparison of classification metrics for FracNet, FracSegNet (Focal Loss),

and FracSegNet (Unweighted CE) across different fracture grades. ”-” denotes undefined

due to division by zero.
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Discussion

5.1 Vertebrae Localisation

From the vertebrae localisation results in Table 4.1, it is clear that the two models,

LocNet-F and LocNet-H, demonstrate contrasting performance characteristics across

the cervical, thoracic, and lumbar regions of the spine.

Cervical Spine Localisation

In the cervical region, LocNet-H exhibits superior performance with a considerably

lower mean localisation error of 1.19mm ± 0.5mm compared to 2.58mm ± 2.1mm

for LocNet-F. This outcome suggests that the heatmap-only approach is particularly

effective in this region, where the vertebrae are densely packed and smaller than those

in the thoracic and lumbar regions, which contrasts with the assertions made by Cui et

al. [34].

We assert that the observed discrepancies in the cervical region’s performance can be

attributed to the dense arrangement of vertebrae in this area. As a result of the cervical

vertebrae being closely packed, there is overlap between the localised high-intensity

regions within the weighted vote map, M, generated by LocNet-F. These high-intensity

regions correspond to the areas where the vote maps for individual vertebrae converge,

leading to high aggregated values that are not necessarily centered on the true vertebral

bodies but are instead located at the intersections of adjacent vertebral vote map regions.

Consequently, the fast peak search clustering algorithm tends to erroneously identify

centers at the peripheries of these overlapping regions rather than at the true anatomical

centers. This specific problem is visualised in Figure 5.1, where the image on the left is

29
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Figure 5.1: The left panel displays the weighted vote map, M̂ for a typical case of cervical

vertebrae, where brighter regions indicate higher aggregated values. The right panel

shows the corresponding CT image with blue crosses marking the centers predicted by

the fast peak search clustering algorithm. The overlap of vote maps between adjacent

cervical vertebrae leads to inaccurate center predictions at the periphery of these

overlapping regions, rather than at the true vertebrae centers.

the weighted vote map, M, and on the right is the corresponding CT image where the

blue points denote the centers predicted by applying fast-search clustering on M. In the

weighted vote map, the brighter appearing regions correspond to higher intensity values

due to overlapping vertebral vote maps, which are consequently localised as centers by

the clustering algorithm. In contrast, the heatmap-only approach, is unaffected by the

issue of overlapping vote map regions. As a result, it yields more accurate localisation

in the cervical spine. The reliance on direct intensity values from the heatmap allows

for more accurate identification of the vertebral centers.

Consequently, the performance of LocNet-F in the cervical region could be im-

proved by using Gaussian heatmaps with a smaller standard deviation, d, during training.

A smaller d would produce smaller, more focused heatmaps, resulting in fewer fore-

ground voxels being selected from the offset map for vote map generation, as outlined

in Algorithm 1. This reduction in the number of selected voxels would necessarily

reduce the size of each vertebra’s vote map region, preventing spatial overlap between

vote maps of adjacent vertebrae, ensuring that the votes in M are concentrated closer

to the true anatomical centers rather than dispersed across regions between vertebrae.

This adjustment would allow LocNet-F to better distinguish between closely spaced
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vertebrae in the cervical region, improving the precision and consistency of vertebral

center localisation.

Thoracic Spine Localisation

In the thoracic region, the localisation errors between LocNet-F and LocNet-H are

similar, with LocNet-F exhibiting an error of 3.78mm, slightly higher than the 3.61mm

achieved by LocNet-H. The thoracic vertebrae, while not as densely packed as the

cervical vertebrae, are more spatially separated, which mitigates the vote map overlap

issue that affects the cervical region, as seen in a typical case involving thoracic vertebrae

in Figure 5.2.

Figure 5.2: Comparison of the weighted vote map, M̂ (left) and the corresponding CT

image (right) for a typical case of thoracic vertebrae. In the vote map, brighter regions

indicate higher aggregated values. The CT image shows blue crosses marking the

centers predicted by the fast peak search clustering algorithm. Unlike in the case of

cervical vertebrae, there is no overlap of vote maps, resulting in precise localisation.

This lack of overlap also enables LocNet-F to more accurately localise vertebral

centers in the upper thoracic spine, where the vertebrae are still relatively densely

packed. As shown in Figure 5.3, LocNet-H misses several upper thoracic vertebrae

that are successfully localised by LocNet-F. This discrepancy contributes to the lower

standard deviation observed for the latter, as it consistently identifies more vertebrae,

leading to a more stable error distribution. However, for vertebrae that are successfully

localised by both models, LocNet-H achieves slightly more accurate localisation, as

seen in the last vertebra in Figure 5.3.
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Figure 5.3: Comparison of vertebral center localisation in the upper thoracic spine using

LocNet-H (left) and LocNet-F (right). LocNet-H misses several vertebrae in this region,

whereas LocNet-F successfully localises them. Red dots indicate ground truth centers,

and blue crosses indicate predicted centers.

Crucial to our concerns, the robustness of LocNet-F is particularly evident in cases

involving fractures, where precise localisation is crucial. While LocNet-H shows a

slightly lower mean localisation error, its higher standard deviation can be attributed to

its inconsistency, especially in pathological cases where it may miss more vertebrae.

In contrast, LocNet-F’s use of the offset map and weighted voting mechanism results

in more consistent localisation, even in challenging cases. As shown in Figure 5.4,

LocNet-F successfully localises the center of a vertebra with a Grade 3 fracture, whereas

LocNet-H completely misses it. This consistency demonstrates LocNet-F’s robustness

in handling difficult cases, leading to more reliable results across different thoracic

scans, particularly in pathological scenarios.

Lumbar Spine Localisation

In the lumbar region, LocNet-F significantly outperforms LocNet-H, with a localisation

error of 3.09 mm ± 5.4 mm compared to 6.06 mm ± 14.6 mm for LocNet-H. The

lumbar vertebrae are larger and more widely spaced compared to those in the cervical

and thoracic regions, resulting in no overlap between vote maps, which minimises the

risk of erroneous vote accumulation. This spatial separation contributes to LocNet-F’s

lower standard deviation, as it consistently identifies vertebrae across the lumbar region.



Chapter 5. Discussion 33

Figure 5.4: Comparison of thoracic vertebral center localisation in a pathological case

involving a Grade 3 fracture. The left panel shows the results of LocNet-H, where the

vertebra with the fracture is missed entirely. The right panel displays the results of

LocNet-F, which successfully localises the center of the fractured vertebra.

The substantial standard deviation associated with LocNet-H in the lumbar region

underscores the instability of the heatmap-only approach, particularly in managing

the variability in vertebral size and orientation. This inconsistency can be attributed

to LocNet-H’s tendency to miss vertebrae, which leads to greater variability in the

localisation error. Conversely, LocNet-F’s integration of offset maps allows for more

consistent localisation, as evidenced by the lower variance in error, demonstrating

LocNet-F’s superior adaptability to the morphology of the lumbar spine.

Overall Performance

When evaluating the performance across all spinal regions, LocNet-F consistently

demonstrates superior accuracy, achieving a lower overall localisation error of 3.39mm

± 5.6mm, compared to LocNet-H’s 4.27mm ± 10.9mm. This indicates that the inte-

gration of offset maps and weighted vote mechanisms in LocNet-F offers significant

advantages in achieving reliable and precise localisation. The lower standard deviation

in LocNet-F further underscores its robustness, providing more consistent performance

across varying anatomical complexities. Therefore, LocNet-F emerges as the more ef-

fective and dependable approach for vertebrae localisation, especially when considering

its critical role as a precursor to accurate fracture detection.

5.2 Vertebrae Fracture Detection

With regard to vertebrae fracture detection, the breakdown of model performance, as

depicted in Tables 4.2, 4.3 and 4.4 in Section 4.2, offers insight into the strengths and
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limitations of all 3 models. Notably, the results across all three tables highlight the

improved performance of FracSegNet with unweighted Cross-Entropy Loss over that

of FracSegNet with Focal Loss. Consequently, we focus on the former model for the

following discussion and going forward, refer to it simply as FracSegNet.

The confusion matrix (Table 4.3) reveals a critical shortcoming of FracNet, which

successfully detects non-fractured vertebrae (grade 0) but fails entirely to identify higher-

grade fractures (grades 1, 2, or 3), due to its inability to generalise during training.

Although FracNet was trained using Focal Loss—specifically designed to mitigate

such class imbalances—the network’s inability to detect higher grades suggests that the

information contained in the CT patches alone may be insufficient for accurate fracture

classification, particularly for rarer fracture grades. Even after experimenting with

different network depths, crop sizes, and both weighted and unweighted Cross-Entropy

Loss, FracNet consistently showed poor performance, indicating that simply adjusting

the architecture was not enough to overcome the model’s limitations.

Furthermore, it could be argued that an alternative architecture, such as a 3D ResNet

[69], which is well-regarded for its performance in image classification tasks, could have

been employed to potentially achieve better classification results, as performed by Zhang

et al. [38], albeit with a more balanced dataset. However, while the primary objective

of this investigation was to perform classification of vertebral fractures, we also sought

to explore whether integrating segmentation in a multi-task learning framework could

enhance the classification of vertebral fractures. Given that U-Net is particularly adept

at segmentation tasks, while also being suitable for classification tasks [70], it was

chosen as the backbone architecture for both FracNet and FracSegNet to maintain

consistency and to evaluate the potential benefits of shared representations with the

same network architecture.

FracSegNet, while still imperfect, demonstrates some improvement over FracNet.

As shown in Table 4.2, FracSegNet is capable of identifying grade 2 fractures, and

fractured vertebrae in general to a modest extent. The use of shared representations

through multi-task learning appears to contribute to this enhancement, as it allows the

model to leverage additional contextual information about the vertebra of interest from

the segmentation task. This suggests that incorporating vertebral structure information

alongside the CT data can provide more discriminative features for fracture detection.

The segmentation metrics indicate that for Grade 2 fractures, the model achieves a

higher recall (0.93) but exhibits slightly lower precision (0.89) relative to Grade 1 and

Grade 0 fractures. This suggests that while the model captures a greater proportion of
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true positive voxels for Grade 2 fractures, it does so by accepting a higher rate of false

positives in the segmentation. Despite this trade-off, the higher recall in segmentation

contributes to the improved classification of Grade 2 fractures in the multitask Frac-

SegNet. The model’s increased recall in identifying Grade 2 fracture voxels, despite

lower precision, likely aids in the correct classification of these fractures by capturing

more true positive voxels during segmentation. This observation aligns with findings by

Oliveira et al. [71] who perform multi-task classification and segmentation of chronic

venous disorders (CVD). In their work, classification accuracy was much more strongly

correlated with segmentation recall than segmentation precision when leveraging a

multi-task deep learning network that simultaneously performed both tasks. Conversely,

for Grade 1 fractures, the model maintains a more balanced but less aggressive segmen-

tation approach, with both precision and recall around 0.91. This balance likely leads to

the underclassification of some Grade 1 fractures as Grade 0, as the model applies more

stringent criteria during segmentation. In summary, the model’s emphasis on recall over

precision in Grade 2 fracture segmentation plays a crucial role in its better performance

in classifying these fractures.

However, FracSegNet’s continued struggle with Grade 3 fractures indicates that

even multi-task learning is not fully sufficient to address the complexities of fracture

detection in highly imbalanced datasets. In addition to the challenges associated with

classifying vertebral fractures, the segmentation performance for Grade 3 fractures in

the FracSegNet model is notably poorer compared to other grades, as evidenced by

the lower segmentation metrics across the board. This disparity likely stems from the

greater imbalance between foreground and background voxels in Grade 3 cases, where

the affected vertebrae are significantly smaller and more fragmented compared to those

with Grade 0, 1, or 2 fractures. This uneven distribution exacerbates the difficulty of

accurate segmentation in Grade 3 fractures [72]. An example of this is shown in Figure

5.5, where the predicted segmentation mask generated by FracSegNet for a typical

Grade 3 fracture demonstrates both over-segmentation and under-segmentation, with

some background voxels being preferentially segmented, while some foreground voxels

are not segmented. To address this issue, we propose that the adoption of Unified Focal

Loss proposed by Yeung et al. [72], which is designed to manage such voxel-level

imbalances, could improve the overall segmentation performance for vertebrae with

Grade 3 fractures.

The Unified Focal Loss is a hierarchical loss framework that generalises Dice and

cross entropy-based losses, specifically designed to manage class imbalance in medical
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Figure 5.5: Visualisation of a grade 3 fractured vertebra (middle vertebra in each panel)

in a CT crop (left panel). The middle panel shows the ground truth segmentation mask,

while the right panel displays the predicted segmentation by FracSegNet. The predicted

segmentation mask exhibits over-segmentation and under-segmentation.

image segmentation tasks [72]. Unlike standard Dice loss, the Unified Focal Loss

introduces a modulating factor that enhances learning from difficult, minority class

samples while reducing the impact of easy, majority class examples. This is achieved

by combining the strengths of the Focal Loss with a mechanism that balances recall and

precision—specifically, controlling the trade-off between false negative voxels (under-

segmentation) and false positive voxels (over-segmentation). By incorporating these

elements into a unified framework, the Unified Focal Loss addresses the limitations

of traditional loss functions, offering improved stability during training and better

performance in handling class imbalances.

LmF(pt) = d(1� pt)
1�g ·LBCE(p,y), (5.1)

LmFT =
C

Â
c=1

(1�mTI)g , (5.2)

mTI = ÂN
i=1 p0ig0i

ÂN
i=1 p0ig0i +dÂN

i=1 p0ig1i +(1�d)ÂN
i=1 p1ig0i

, (5.3)

) LUF = lLmF +(1�l)LmFT , (5.4)

where:

• LmF(pt) is a modified focal binary cross entropy loss, LBCE, that focuses on hard-

to-classify examples by applying the modulation factor (1� pt)1�g, where pt

represents the predicted probability for the true class [72].

• LmFT is a modified focal Tversky Loss [73] that utilises the modified Tversky
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Index (mTI) [74] to measure the overlap between the predicted and ground truth

segmentation. The index is weighted by d to prioritise false negatives or false

positives.

• l is a weighting factor that controls the balance between the two intermediate

losses, LmF and LmFT , allowing for fine-tuning based on the degree of class

imbalance present in the dataset.

Applying this loss function to the segmentation task within FracSegNet could

potentially improve the segmentation performance for grade 3 fractures, addressing

the current limitation in the model’s ability to accurately segment and classify these

more severe fractures. Given that segmentation performance is intrinsically linked

to the quality of the shared representations learned in the multi-task framework [75],

enhancing segmentation through Unified Focal Loss could also positively impact the

model’s fracture classification capabilities, particularly for the rarer and clinically

significant grade 3 fractures.

In conclusion, while multi-task learning represents a promising step forward com-

pared to pure classification, particularly in its ability to leverage shared representations

for fracture detection, overall performance remains limited, especially for the most

severe fractures. More broadly, these challenges highlight the difficulty in developing

robust methods for fracture detection in the face of the class imbalances inherent in

medical imaging data, laying the groundwork for the proposed future work, which aims

to address these limitations and further enhance the multi-task model’s clinical utility.



Chapter 6

Future Work

Building on the findings and limitations of our methods in Chapters 4 and 5, we proceed

to outline directions for future research. While multi-task learning has shown some

potential in our experiments, as aforementioned, the inherent class imbalance in medical

imaging datasets poses a continuous challenge in building robust automated tools for

fracture detection. Despite the inclusion of Focal Loss for classification, current results

indicate that additional strategies are necessary to fully realise the potential of a fracture

detection model. To that end, we have proposed the use of Unified Focal Loss to improve

segmentation performance in the class-imbalanced, multi-task learning setting, thereby

enhancing the quality of shared representations and enabling robust generalisation

on the aligned task of fracture detection [76]. Furthermore, investigating alternative

loss functions that are sensitive to class imbalance in segmentation tasks should be an

area of further research. For instance, Focal Tversky Loss [73] and Hybrid Loss [77]

were specifically developed to address the challenges of class imbalance in medical

image segmentation. Exploring these loss functions within the context of multi-task

learning frameworks could potentially enhance segmentation accuracy, particularly

for underrepresented classes, which in turn could lead to improvements in fracture

classification performance.

By the same token, investigating different network architectures should also be

prioritised. As aforementioned, a ResNet backbone could be implemented as the shared

multi-task encoder to learn general representations. Such a network would subsequently

have task-specific classification and segmentation decoders, where the latter incorporates

a U-Net decoder that upsamples features to match the spatial dimensions of the input,

as implemented by Graham et al. [76] for histology segmentation and classification.

Conversely, the classification decoder would largely resemble the classification branch

38
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in FracSegNet, with the exception that it takes the output representation from the

ResNet as input, instead of the output from a U-Net decoder.

Further expanding the multi-task framework, it would be pertinent to explore the

addition of specialised branches for detecting vertebral endplate and posterior wall

fractures, similar to the efforts of Zhang et al [38], though their work did not incorporate

these tasks within a multi-task learning framework. Integrating these tasks into the same

network could provide a more comprehensive assessment of vertebral health, aligning

the model’s output with the various ways in which vertebral fractures present. Detecting

the presence of fractures in these specific regions could also contribute to more accurate

overall fracture grade classification by offering additional context about the structural

integrity of the vertebrae, thereby improving the model’s ability to differentiate between

fracture grades.

In conclusion, the proposed future work aims to improve fracture detection by

refining both the technical approaches and the scope of the models. By addressing the

current limitations and exploring new avenues in multi-task learning, segmentation, and

network architecture, future research can move closer to developing more effective and

reliable tools for clinical use.



Chapter 7

Conclusion

This thesis project introduced a two-stage pipeline for vertebral fracture detection,

beginning with vertebrae localisation followed by a multi-task learning network to

simultaneously perform vertebrae segmentation and fracture classification from 3D CT

scans. The research aimed to address the critical issue of under-diagnosis of vertebral

fractures, which can have severe consequences if left untreated. The integration of

segmentation and classification tasks in a multi-task learning framework was hypothe-

sised to improve diagnostic accuracy by leveraging shared representations of vertebral

structures. While the multi-task learning approach (FracSegNet) did provide some

benefits, particularly in improving the detection of grade 2 fractures compared to a

purely classification-based model (FracNet), the overall performance remained insuf-

ficient for reliable clinical application. The results indicated that, although multi-task

learning improved fracture detection accuracy in certain cases, the model struggled

significantly with detecting and correctly classifying higher-grade fractures, especially

grade 3, reflecting the inherent challenges posed by the class imbalance in the dataset.

Moreover, the quality of vertebral segmentation, particularly for grade 3 fractures,

suggests that more targeted efforts are required to improve segmentation performance in

the presence of severe fractures and imbalanced classes. As discussed in the proposed

future work, incorporating loss functions such as Unified Focal Loss could potentially

enhance the model’s ability to accurately segment vertebrae affected by severe fractures.

This, in turn, could improve the overall fracture detection accuracy, especially for

underrepresented and clinically significant cases. Further research should prioritise

these enhancements to address the limitations identified in the current model for the

development of reliable, automated diagnostic tools that can be effectively used in

clinical practice.
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Appendix A

Localisation Network

A.1 Fast-search clustering for identifying peaks in M

Algorithm 2 Fast Search Clustering
Input: Weighted vote map M, Value threshold h, Distance threshold l.

Output: List of density peaks P.

P /0 . Initialise list of peaks

for each voxel (z,y,x) in M do
if M[z,y,x]> h then

neighborhood M[z�1 : z+2,y�1 : y+2,x�1 : x+2]

if M[z,y,x] = max(neighborhood) then
higher density voxels {v | M[v]> M[z,y,x]}
if higher density voxels is empty then

P P[{(z,y,x)} . Add isolated high value peak

continue
end if
distances {kv� (z,y,x)k | v 2 higher density voxels}
if min(distances)> l then

P P[{(z,y,x)} . Add peak if sufficiently separated

end if
end if

end if
end for
Return: P

50
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A.2 VerSe2019 Dataset Statistics

Training Validation Test
Number of CT images 80 40 40

Smallest CT image size 114 ⇥ 152 ⇥ 76 103 ⇥ 157 ⇥ 76 129 ⇥ 144 ⇥ 68

Largest CT image size 915 ⇥ 1189 ⇥ 709 538 ⇥ 702 ⇥ 683 656 ⇥ 733 ⇥ 787

Mean CT image size 270.575 ⇥ 339.2 ⇥ 288.6 252.325 ⇥ 350.725 ⇥ 230.9 265.275 ⇥ 340.05 ⇥ 258.8

Standard deviation of CT image sizes 124.1189 ⇥ 173.6119 ⇥ 187.2345 104.7204 ⇥ 169.5830 ⇥ 141.7891 131.9945 ⇥ 160.6758 ⇥ 184.1612

Table A.1: Statistics of CT image sizes for training, validation, and test datasets.


